<mallest of these integers 1s +1. o dusigpaws the empty relation,
. rue for arbitrary @,y. I M is such that no f and ¢
oxist which satisfy all n? rulgti(ms, then control is transferred to
the label paramcter fail. This procedure has been used to deter-
dence functions of symbols in & given precedence
(see [Froyp, R. Syntactic analysis and operator

gothatz oy ist

mine the prece

grammar ,
;rcccdencc. J.ACM 10 (19(%3)’ ;31(.-,H_333]);
pegin integer 1, 1, k, kL, fran, grmn; ' .
procedure fizrow (0, L, x); valued, [, x; integeri, l, z;
pegin integer g; fle] o= glt] A+
if k = k1 then
begin if M [0, k] = 15 A fli} > glk] then go to fail else

ger identifier must not be changed between successive calls of
the procedure;

begin

y = 3120 X y; y 1=y — (y+07108864) X 67108864;

random = y/67108864.0 X (b—a) + a

end random

Coveyou [2] showed that for multiplicative congruential
methods of generating pseudorandom numbers, the correlation
betwecen successive numbers will be approximately the reciproeal
of the multiplying factor, Greenberger [3] showed further that the
factor should be considerably less than the square root of the
modulus.

if MU, k) = eq A flil # glk] then go to fail
end;
for j := kl step —1 until 1 do
i Mli, g1 = s A fli) = glJ] then fizcol (7,7, 1) else
if M[G, 5] = eq A fli] # glj] then fizcol (i, j, 0)
end fixrow;
proccdureﬁxcol (L, 4,); value I, §, x;integerl, j, z;
begin integer i; glj] = il +z;
if bk # k1 then
begin if Mk,j} = g7 N\ JTk] < gl7] then go to fail else
if Mik,j] = eq N flk] #= g[jl then go to fail
end;
fori := k step —1 until 1 do
if M{i, 7] = gr A fli] < glJ] then fizrow (i, j, 1) else
it M[3, j] = eq A fli] % glj] then fizrow (4, j, 0)

It

end fizeol;

ko= 0;

fork := 1 slep L until n do
hegin fmin = 1;

forj := 1 step 1 until k1 do
if Mik, 1 = gr N fmin < g[j] then fmin = glil+1 else
if Mik, 7] = eq A fmin < g[j] then fmin = gljl;

Jlk) := fmin;

for j := kl step —1 until 1 do
if Mk, 7] = Is N\ fmin > g[j] then fizcol (k, j, 1) else
if Mk,) = eq A fmin > g{j] then fixcol (&, j, 0);

kl = k1+1; gmin 1= 1;

for? := 1 step 1 until k do
if M[i, k] = Is A fli] > gmin then gmin := f[i]+1 else
if M{i, k] = eq A f[i) > gmin then gmin := f[i];

glkl 1= gmin;

for7 := k step —1 until 1 do
MG, k] = gr A fli) € gmin then fizrow (i, k, 1) else
it M[5, k) = eq A fli] < gmin then fizrow (2, k, 0)

end k
end Precedence

I

ALGORITHM 266
PSEUDO-RANDOM NUMBERS [G3]
M.C.Pikg anp 1. D. HiLL

(Reed. 15 Feb. 1965 and 6 July 1965)
Medical Research Council, London, England

real procedure random (a, b, y);
reala, b; integer y;

comment random gencrates a pseudo-random number in the
open interval (a, b) where a < b. The procedure assumes that
1nte‘ger arithmetic up to 3125 X 67108863 = 209715196875 is
available. The aotual parameter corresponding to ¥ must be an
integer identifier, and at the first call of the procedure its value
rrfust be an odd integer within the limits 1 to 67108863 inclusive.
fa correct sequence is to be generated, the value of this inte-

Volume g / Number 10 / October, 1965

(continued on next page)

Revised Algorithms Policy « May, 1964

A contribution to the Algorithms department must be in the form of
an algorithm, a certification, or a remark. Contributions should be sent in
duplicate to the editor, typewritten double-spaced in capital and lower-case
Jetters. Authors should carefully follow the style of this department, with
especial attention to indentation and completeness of references. Material
to appear in boldface type should be underlined in black. Blue underlining
may be used to indicate dtalic type, but this is usually best left to the Editor.
An algorithm must be written in the ALgon 60 Reference Language
{Comm. ACM 6 (Jan. 1963), 1-17], and normally consists of a commented pro-
cedure declaration. Each algorithm must be accompanied by a complete
driver program in ALcoL 60 which generates test data, calls the procedure,
and outputs test answers. Moreover, selected previously obtained test answers
should be given in comments in either the driver program or the algorithm.
The driver program may be published with the algorithm if it would be of
major assistance to a user.
Input and output should be achieved by procedure statements, using
one of the following five procedures (whose body is not specified in Arcor):
[see “Report on Input-Output Procedures for ALGOL 60,” Comm, ACM Y
(Oct. 1964), 628-629}. .
procedure inreal (ch 1, destination); value ok l; integer channel;
real destination; comment the number read from channel channel is as-
signed to the variable destination; . . . ;

procedure outreal (channel, source); value channel, source; integer channel;
real source; comment the value of expression source is output to channel
channel; ... ;

procedure inint (ch I, destination);
value channel; integer channel, destination; . .. ;

procedure outinteger (channel, source);
value channel, source; integer channel, source; . . . ;

procedure outstring (channel, string); value channel; Integer channel;
string string; . . . ¢

If only one channel is used by the program, it should be designated by 1.

Examples:

oulstring (1, ‘@ ="); outreal (1, %);
for ¢ := 1 step 1 until n do outreal (I, Ali});
ininteger (1, digit {17]);

It is intended that each published algorithm be a well-organized, clearly
commented, syntactically correct, and a substantial contribution to the
Argor literature. All contributions will be refereed both by human beings
and by an ALcoL compiler. Authors should give great attention to the cor-
rectness of their programs, since referees cannot be expected to debug them.
Because ALGoL compilers are often incomplete, authors are encouraged to
indicate in comments whether their algorithms are written in a recognized
subset of ALgoL 60 [see “Report on SUBSET ALGOL 60 (IFIP),” Comm.
ACM 7 (Oct, 1964), 626-627].

Certifications and remarks should add new information to that already
published. Readers are especially encouraged to test and certify previously
uncertified algorithms. Rewritten versions of previously published algo-
rithms will be refereed as new contributions, and should not be imbedded
in certifications or remarks.

Galley proofs will be sent to the authors; obviously rapid and ecareful
proofreading is of paramount importance.

Although each algorithm has been tested by its author, no liability is as-
sumed by the contributor, the editor, or the Association for Computing
Machinery in connection therewith.

The reproduction of algorithms appearing in this department is explicitly
permitted without any charge. When reproduction is for publication pur-
poses, reference must be made to the algorithm author and to the Communi-
cations issue bearing the algorithm.—G.E.F.

The method of Algorithm 133 [1] satisfies Greenberger’s condi-
tion, but since the reciproeal of its multiplying factor is as high as
0.2, Coveyou’s result shows that it is very unsatisfactory for pur-
poses requiring statistically independent consecutive random
numbers., .

Algorithms 133 and 266 have both been tested by computing a
number of sets of 2000 successive random Integers between 0 and 9,
dividing each set into 400 groups of 3, and performing the poker
test [4]. The results were classified in the following seven cate-
gories:

(Z) all different
(i) 1 pair
(#id) 2 pairs
(Zv) 3 of a kind
(v) 3 of a kind and 1 pair
(vi) 4 of a kind
(vit) 5 of a kind.
The following tables resuited:

ALGORITHM 133

(i) ORI

: — - |

Run | Starting Value | {4) ; ,2 (e)

Y P, [J— _ |
1 ! 13421773 | 114 { 193 142 |37 7T 7T 0
2) 22369621 | 111 181 46 |40 14 8 0
3 33554433 1 130 178 148 12w (7 6 3
4 | 6871947673 | 118 | 179 |51 (35 10 |5 2
5 | 11453246123 | 128 | 189 |44 [28 6 4 |1
6 | 17179869185 | 135 | 155 |45 |52 |6 5 2

Expected for each 120.96! 201.60, 43.20 28.80‘ 3.60, 1.80 0.04
Run |

3 8

Total for 6 Runs | 736 51075 276 220 150

Expected for 725 .76%1209.60 259.20/172.80 21 .60/10.80 0.24
Total ! 5 | j
[

i

ALGORITHM 266

Run E Starting Value i (i)

@ e | | @
1| 1321773 132 191 35 138 2 2 0
20 22369621 [140 1187 145 27 g 1 0
31 33554433 129 1198 (44 25 14 0 0
4| 86219 107 (202 50 (37 |2 |2 o0
5 | 42758321 1101 207 60 25 |5 2 0
6 | 56237485 | 118 4213 1 2 g
7| 62104023 | 119 ! 610

Expected for cach | 12(),96; 201.60| 43.20 28.80, 3.60. 1.80 0.04
Run | | | :
[

Total for 7 Runs

| 846.72 1411.201302.40. 201 .60 25.20 12.60 0.25

i ! i
i :]

Expected for
Total

Combining eategories (v7) and (vi1) in each case, the observed
totals give x* values (on 5 degrees of freedom) of 155.0 for Algo-
rithm 133, and of 3.28 for Algorithm 266,

REvERENCES
1. Benrexz, P. (¢, Algorithm 133,

{(Nov. 1962), 553.
2. Covevou, RO Serial correlation in the gencration of pseudo-
random numbers. J, ACM T(1960), 72-74.

tandom. Comm. ACH 5

606 Communications of the ACM

3. Grerssprann, Mo An o prioridetermination of serial corralg.
tion i computer genersted random numbers. Moy, Compy
SO 385 580 Corvection in Math. Comput 161962, 5

4o Kexvann, MG ane Basivarox-sSwrmg, B Randomnesg &n(i
random sumpling numbers o Rogal Staiist. Soe. 101 (193),
7166,

ALGORITH M 267

RANDOM NORMAL DEVIATIE [GA
MLCPie (Reed. 3 May 1965 and 6 July 1965)
Medieal Research Couneil, London, Ingland

procedure RN D(rl, 22, Randonr);
real procedure Randon;

comment RN uses two calls of the real procedure Random
which is any pseudo-random number generator which will
produce at each eall o random number lying strictly between 0
and 1. A suitable procedure is given by Algorithm 266, Pscudo-
Random Numbers [Comm. ACI 8(0Oct. 1965), 605] if one chooses
a = 0,5 = 1and initializes y to some large odd number, such as
13421773, RN D produces two independent random variables zl
and 2 ecach from the normal distribution with mean 0 and
variance 1. The method used is given by Box, G.E.P,, am
Muvuuer, M.E., A note on the generation of random normal
deviates. [Ann. Math. Stat. 29 (1958), 610-611];

begin real ¢;
el = sqrt{—2.0 X In(Random));
too== 6.2831853072 X Randonm;

62831853072 = 2 X pi;

= ool X ocos(l)

veal ol r2;

comment
22 = ol X sin{l); =zl
end RN D

Algorithm 121, NormDev [Comm. ACM § (Sept. 1962), 482; 8
(Sept. 1965}, 356] also produces random normal deviates and
Algorithm 200, NORMAL RANDOM [Comm. ACM 6 (Aug. 1963),
+44; 8 (Sept. 1065), 556] produces random deviates with an approxi-
mate normal distribution, but the procedure KND seems pref-
erable to both of them.

We may eompare NORM AL RANDOM to RN D (which is exact)
by noting that at recommended minimum n NORM AL RANDOM
requires 10 calls of Random while END gets two independent
normal deviates from 2 calls of Random and one call each of sgt,
In, sin and cos. Under the stated test conditions a single call of
NORMAL RANDOM (with n = 10) took 20 pereent more comput-
ing time than a single call of #N D when the real procedure Random
was given by Algorithm 266,

To eompare NormDer to 2N D in the same way, we have first to
caleulate the expected number of calls of In, sqrt, exp and]Eart(lo{n
for each call of NormDer. This may be done by noting that there fs
(1) an initial single call of fandow, then (2) with Pl“)b“bi“t}' 0.8
a random normal deviate restricted to (0, 1) has to be fmmq and
this requires on average 1.36 ealls of Kandom and 118 c:t[ls' of exp,
and (3) with probability 0.32 a random normal deviate restricted to
(1,) has to be found and this requires on average 2.04 (;&lL? of
Random and 1.52 colls of each of In and sqrt. NormDev thus requires
o average 2.58 calls of Random, 0.80 calls of exp, 049 calls of lr;
and 0.49 calls of sgrt. (Note: NormDer requires one further call 01
Random if o signed normal deviate is required.) Under the statec
test conditions a single eall of NormDer took vietually the bwl(;
amount of computing time as a single eall of £AD when the rea
procedure Random was us above, o

(Note: Intesting NormDer the procedure was f~'[>(v’(‘/(l“r‘;l up b.\,’xc
placing A by 06820804 wherever it oceurred and removing lf;lfff’m
the paramcter list, In testing NORM AL RANDOM /lfly(m‘, b'lr!/:;‘lo!
nowere replaced by 4, 1.0 and 10 respectively and remoyved from t
parameter list))

