ALGORITHM 268
ALGOL 60 REFERENCE LANGUAGE EDITOR [R2]
1. M. McKBEMAN* (Reed. 9 Dec. 1964, 23 Feb. 1965 and
17 May 1965)
Computer Science Department, Stanford University,
gtanford, California
¢gupported in part by the Office of Naval Research under
Contract Nonr 226(37), NR 044-211.
The author expresses his thanks to thc referee for several
waluable suggestions.

procedure Algoledit (characterset, linelimat);

string characterset;

integer lineltmat;

comment If this procedure is presented an Avncor 60 program

or procedure in the form of a sequence of basic symbols, it will

transmit to the output medium a copy of the text with indenta-
tions between each begin -end pair and some rearrangement of the
blank spaces within the text. This procedure is an example of its
ownoutput. It is used to edit Ancor 60 text that is difficult to read
because, for example, the Arcorn has been transeribed from
printed documents, or written by inexperienced programmers, or
stored in compressed form (i.e., with all redundant blank spaces
removed). The integer “—1°" will represent the nonbasic symbol
“carriage return”, ‘“—2’ will represent an end-of-file mark, other
symbols will have the integer value corresponding to their position
in the parametric string “‘characterset’’. The string must contain
exactly the 116 basic symbols of Avgorn 60. The parameter “line-
limt” sets an upper bound on the number of basic symbols that
the user wishes to appear on a line of output. The identifiers

“Isg”" and “rsq”’ will be used in place of strings of length one whose

only elements are < <’ and ", respectively;

begin integer array spacesbefore, spacesafter[l : 116],
buffer(1 : linelimit];
integer {abstop, symbol, i, symbolcount, level,
Boolean newline;
integer procedure val(s);
string s;

. comment The value of this procedure is the integer
eorresponding to the position in the string ‘‘characterset’
of the symbol in the string “s”’. The body of the
procedure must be expressed in code;

Procedure get(symbol);
integer symbol;
begin insymbol(2, charactersel, symbol);
if symbol = — 2 then go to eof
end get;
Procedure send(symbol);
integer symbol;
begin comment “‘send’’ must not break identifiers
across lines or insert spurious characters into
strings;
integer 4, u, v;
if symbol — 1\ symbolcount > linelimst
then
begin v := tabstop;
if newline then go to K

i

Vol
ome 8 / Number 11 / November, 1963

J. G. HERRIOT, Editor

if level # 0 then

begin comment Inside a string;
for 7 := 1 step 1 until
symbolcount do outsymbol(l,
characterset, buffer(i]);

outsymbol (1, characterset, — 1};
v = {
end else
begin w = symbolcount;
newline := true;
if symbol = — 1 then go to Dj;

comment Find a convenient place to
break the line;
for wu := symbolcount — 1 step —
1 until 1 do if bufferfu + 1] =
val(‘u’) \V bufferlu] = wval(rsq) then
go to D;
w 1= symbolcount;
comment Send the line;
D :for 7:=1 step 1 until u« do
outsymbol (Y, characterset, buffer(i]);
outsymbol (1, characterset, — 1);
comment Find a non-blank character
to start the next line;
for ¢ := u + 1 step 1 wuntil
symbolcount do if buffer[z] # val(‘u’)
then go to [
go to @
comment Move a new line to the
head of the buffer area;
F :for i := 1 step 1 until
symboleount do
begin v := v + 1;

newline = false;

buffer(v] = buffer[i]

end;
comment Insert blanks for tab stops;
G :for ¢ :=1 step 1 wuntil
tabstop do buffer(t] := val(‘L’)

end;

E : symbolcount := v

end;
comment Now we can put the new symbol in the
buffer array;
if symbol = — 1 A = (newline /\ symbol
= pal(‘w’)) then
begin symbolcount := symbolcount + 1;
newline := false;
buffer[symbolcount] := symbol
end
end send;
for symbol := 1 step 1 wuntil 116 deo
spacesbefore[symbol] := spacesafter(symbol| := 0;
for symbol := val(*+7"), val(*—"), wal(‘=’), wval(*),
val(:="), wal(‘<’), wal(‘<’), wal(*="), wal(‘s£’),
val(*>"), val(*>?) do spacesbefore[symbol] :=
spacesafter[symbol] := 1';

Communieations of the ACM 667

for symbol = val(* /), eal ('), pal (D). ral(f=T),
val {‘else’), cal(‘step’). ral(Cuntil’),
valfdo’) do spacesbeforelsymboli =

val{‘then’},
val(fwhile’),
spacesafter[symbol} = 2,

for symbol 1= ral{’go to’),
ral{*for”), ral(procedure’}.
val(‘real’), ral{‘Boolean’,
val (fswitelt), val{‘label’),
spucesafterfsymbol} = 2;
level = symbolcount = labstop = U;

val Chegin’y, ral (i),
ral (value™y, rol{own’l,
ral{finteger™), val{farrvay’),
cal Csteing’y, () do

newline = true;

nextsymbol deblank - get(symbol);
scanned - if symbol = val{*u’) symbol = — 1
then go to deblank:
it symbol = ral(*begin’) then send(— 1) else
if symbol = ral{’end”) then
hegin labstop = tabstop — 5:

send(— 1}

end;
for 1 := 1 step 1
send{(val (*137));
send (symbol);
for 7 := 1 step 1 until spacesafter[symboi] do
send (el (FU'));
if symbol = ral(‘comment’)
begin comment Pass comments on unchanged;
for 71 := 1 while symbol # wl{’;’) do
begin get(symbol);
send (symbol)

antil spacesbeforelsymbol] do

then

end
end else if symbol = val(end’) then
begin comment “‘end’’ comments;
for 1 = 1 while symbol 5 vwl(‘;) do
begin gef(symbol);
if symbol = val(Celse’) \/ symbol =
val(fend’) then go to scanned;
send (symbol)
end

end else if symbol = val(lsq) then
begin comment Pass strings on unchanged;
level := 1,
for 7 := 1 while level # 0 do
begin get(symbol);
send {symbol);
if symbol = val(lsq) then level 1= level

4+ 1 else if symbol = val(rsg)
then level = level — 1
end
end;
it symbol = val(‘begin’) then fabstop := lubstop + 5
else if symbol = wl(’;) then send(— 1);
g0 to nexisymbol;
eof : send{ — 1);
outsymbol(l, characterset,)

end Algoledit

ALGORITHM 269

DETERMINANT EVALUATION [I73]

Jarosrav Praxy axp Joser Straka
(Reed. 10 Sept. 1964 and 29 Dec. 1964)

Institute of Nuclear Research, Rez by Prague, Cuecho-
glovakia

real procedure determinant (A, n); arvay A; integer n;

rgt. s 3 ’ e o

comument This procedure evaluates a determinant by triangu-

larization with searching for pivot in row and with sealing of

668 Communications of the ACM

the rows of the matrs bhetfore the trinngnlavization, This was
done s in procedure KQUILIBRATE of the Algorithp 135
[Comimr . ACI S INov, 162y 553

begin real product, lompy integer (0§ 7, s

aveay multilonl;

procedure FQUILIBRATE A nomaliy;
integer nyo arvay b, ol

begin integer (. 1 veal e

for ¢ = 1 step D until n de

ce {100

I step U uantil 2 do

begin
for ;
il absit]

!
i mr o= 0.0 then

D> e then e e abs (AL]

begin determinant = 01 go to RETURN end;
pod|] t= ey comment c= buse Toer for exact sealing;
if e = 1.0 then
for j o= 1 step 1 antil n do Al g) = Al 3]/ max;
end

end FQUILIBRATE:
EQUILIBRATECA, . nuliy,
product =1,

for r 1= 1 step | until n—1 do
begin s = r; lemp = absCA{r, r);
for ; := r 4+ 1 step L until n do
if temyp < abstA{r, ji) then
begin temp = abs{A{r, i, s 1= j end;
if lemp = 0 then hegin determinant = 0; go to RETURN
end;
if s # r then
begin product 1= — product;
for i := r step 1 until n do
begin temp = Al r]; A, r] o=
Afl 8] 1= tomp
end
end;

product = product X Alr, ri;

comment Be on guard against overflow or underflow here;

for 1 := r+1 step 1 until n do

begin temp = AL, »{/Alr, rl;

for 7 = r+1 step L until n do
Ald, 7] c= AL g - Alro gl X temyp

end
end;
temp = product X Aln, nl;
for v 1= 1 step L until 2 do temp = temp X mult [r];
comment Again danger of overflow or underflow;
delerminant = temp;

RETURN

end determinant
IEFERENCE ! ‘
MoKesyax, W AL Algorithm 135-Crout with cquilibration and
iteration. Comm. ACY 5 (Nov, 1902), 553,

ALGORITHM 270

FINDING EIGENVECTORS BY GAUSSIAN ELIMI-
NATION [F2]

Arpert Newnovse (Reed. 3 May 1965 and 16 July 1965)

University of Houston, Houston, Texas

procedure NULLSPACE (n,u, ec, epsy; valuen, eps; integer
n,ec; realbeps; wrvayn;
comment NULLSPACE computes the veetors z of order 7 sueh
that xa = z, where ¢ 33 an nXn malrix, 2 18 the goro-veetor (‘)f
order n, eps is o small positive number auch that if the maxi-
he procedure
the first

mn pivot element is numerieally less than eps t
considers it zera, The e vectors o are to be found in
pe rows of the matrix a upon exit from this procedure;

Volume 4 / Number 11/ November, 1963

conumentt In [iu(li?lg 1‘11(‘.‘ cigenvectors © of an nXn matrix B
" after having found the mg(\nv:l‘h_lr‘,s Aol B by any of the many
available methods, it is often desirable to start from the original
matrix B and not from ibs transform from which the N's were
obtained. Whercas the resulting cigenvectors will still be in-
guenced by crrors in the N's, the cigenveetors would not be
influenced by errors in the transformed matrix,

Since M — B = A isa singular matrix of rank » the problem is
to find ¢ = n — 7 vechors @ which form a basis of the left null
space of 4.

Yote: If the right null space ig desired the matrix A should
pe transposed.

The following algorithm finds these n—r lincarly independent
vectors by the Gauss-Jordan elimination in place using the
naximal available clement for the pivot. The process will termi-
nafe after r steps, since the maximal available elements for
pivoting are then equal to zero.

Now, replacing these zero pivot elements by unity, the rows
of the matrix, from which no nonzero element has been chosen,
are the basis of the null space of A, that is, if is such a row
then 24 = 2, the zero vector of order n.

The proof for this is established by the fact that the elimina-
tion amounts to premultiplying B3 by a matrix 4’, a product of
clementary matrices, such that A’A is a matrix with ones on
r of the diagonal positions and zeros everywhere else.

Test results. A version of this procedure acceptable to the
IBM 7094 (ALCOR-ILLINOIS 7090 ALGOL Compiler) was
tested.

With eps = 1078 the results for the 5X5 matrix

1 2 3 4 5
6 7 8 9 10
1 12 13 14 15
16 17 18 19 20
21 22 23 24 25

showed the dimension of the null space as 3 having as a basis
x = (~.75, 1.00, 0.00, 0.00, —.25)
2 = (—.50, 0.00, 1.00, 0.00, —.50)
2 = (—.25, 0.00, 0.00, 1.00, —.75)

exact to 6 decimal places;
hegin integer array r, ¢[1:n];
real maz, temp;
for i ;= 1 step 1 until n do 7[¢] 1= c[i] := 0;
form := 1 step 1 until n do
begin maz := 0;
fork := 1 step 1 until » do
begin if r{k] # 0 then go to L else
for j := 1 step 1 until n do
if ¢[j] = OA abs(alk, j1) > mazx then
begin kk := k; jj := j; max := abs(alk, j])
end 7 loop;
I end & loop; .
it maz < eps then go to SORT;
oAl = kk; r[kk] := j§j; temp := VJalkk, jjl; olkk, =1
forj ;=1 step 1 until n do alkk, 7] := alkk, j]1 X temp;
fork := 1 step 1 until kk — 1, kk + 1 step 1 until n do
begin temp = alk, j71; alk, 57} 1= 0;
for j := 1 step 1 until » do
I)egin
alk, 71 := alk, 7] — temp X alkk, jl;
if abs(alk, j]) < eps then alk, jl := 0
end;
end & loop;
end i Jgop,
SORT: for J = 1step L until n do
)hegin
REPEAT. ¢ gl == OAF 5 cljl then

integer 1,7, k, m, i, kk, t;

\\‘
Olume § / Number 11 / October, 1963

9. Hissarp, Tnomas N.

begin
for k := 1 step 1 until n do
if 7{k] = 0 then
begin temp = alk, ji;
alk, 7 = alk, cljll; alk, ¢[jl} := temp
end & loop;
t=cljl; elyl :=elt]; elt] = ¢;
end;
end conditional and j loop;
ec 1= (;
for k := 1 step 1 until » do
Jif 7{kl = 0 then
begin ec := ec + 1; alk, k] := 1;
if ec # k then
begin
for j := 1 step 1 until n do alee, j] := alk, 7]
end; .
end conditional and & loop;
comment The first ec rows of the matrix ¢ are the vectors
which are orthogonal to the eolumns of the matrix a;
end NULLSPACE

go to REPEAT

ALGORITHM 271
QUICKERSORT [M1]
R. S. Scowen* (Recd. 22 Mar. 1965 and 30 June 1965)
National Physical Laboratory, Teddington, Iingland

* The work desecribed below was started while the author was
at English Electric Co. Ltd, completed as part of the research
programme of the National Physical Laboratory and is published
by permission of the Director of the Laboratory.

procedure quickersort(a, 1);
value j; integer j; array a;

begin integer i, k, ¢, m, p;
It{Lin{abs (§)+2) /In(2)+0.01];

comment The procedure sorts the elements of the array af[l:]]
into ascending order. It uses a method similar to that of QUICK-
SORT by C. A. R. Hoare [1], i.c., by continually splitting the
array into parts such that all elements of one part are less than
all elements of the other, with a third part in the middle eon-
sisting of a single element. I am grateful to the referee for point-
ing out that QUICKERSORT also bears a marked resemblance
to sorting algorithms proposed by T. N. Hibbard {2, 3]. In par-
ticular, the elimination of explicit recursion by choosing the
shortest sub-sequence for the secondary sort was introduced by
Hibbard in (2].

An element with value ¢ is chosen arbitrarily (in QUICKER—
SORT the middle element is chosen, in QUICKSORT a random
element is chosen). 4 and j give the lower and upper limits of
the segment being split. After the split has taken place a value
¢ will have been found such that alq] = ¢ and ¢[l] £ ¢ £ al/}
forall I, J such that ¢ < T < ¢ < J £ J. The program then
performs operations on the two segments a[¢:q—1] and alg+1:71
as follows. The smaller segment is split and the position of the
larger segment is stored in the It and ut arrays ({{ and ut are
mnemonics for lower temporary and upper temporary). If the
segment to be split has two or fewer elements it is sorted and
another segment obtained from the It and wt arrays. When no
more segments remain, the array is completely sorted.
REFERENCES:

1. Hoarm, C. A. R. Algorithms 63 and 64. Comm. ACM 4 (July

1961), 321.

real ¢, z; integer array ul,

Some combinatorial propertics of
certain trees with applications to searching and sorting.

J. ACM 9 (Jan. 1962), 13. .
3. ——. An empirical study of minimal storage sorting. Comm.

ACM 6 (May 1963), 206-213;

Communications of the ACM 669

;o= o= 1
ANif j—1 > 1 then
begin comment
so split it;
poo= (0 2
comment p is the position of an arbitrary clement in the
segment a{z:j]. The best possible value of p would be one
which splits the segment into two halves of equal size, thus
if the array (segment) is roughly sorted, the middle ele-
ment is an excellent choice, If the array is completely
random the middle element is as good as any other.
If however the arcay a{l:7] is such that the parts a{l:j+2]
and afj=+241:7] are both sorted the middle element could
he very bad. Accordingly in some eircumstances
p o= (i-+j) = 2 should be replaced by p 1= @+3Xj) + 4
or p = RANDOM{, j) as in QUICKSORT;

This segment has more than two elements,

2

alp] = alif;
qi=17;
fork := ¢ + 1 step 1 until ¢ do
begin comment Search for an element afk] > ¢ starting
from the beginning of the segment;
if alk] > t then
hegin comment Such an a{k] has been found;
for ¢ := ¢ step —1 until & do
begin comment Now search for alg] < ¢ starting from
the end of the segment;
if alg] < t then
begin comment alg] has been found, so exchange
alq) and alk];

x = alkl;
alk] = alql;
algl = =
q = q—1;
comment Search for another pair to exchange;
go to L
end
end for g,
q =k —1;

comment ¢ was undefined according to Para. 4.6.5 of
the Revised Avcorn 60 Report [Comm. ACM 6 (Jan.
1963), 1-17};

go to M
end;
L. end for k;
comment We reach the label M when the search going up-

wards meets the search coming down;
M ali] = alqgl;

alg) i= &

comment The segment has been split into the three parts
(the middle part has only one element), now store the
position of the largest segment in the If and u¢ arrays and
reset 7 and § to give the position of the next largest segment;

if 2X g> 1+ jthen

begin
ltm] = 4
utlm)] = ¢—1;
1= q-+1
end
else
begin
tm] = g+1;
utlm) = 7;
7= g1
end;
comment Update m oand split this new smaller segment;
wm o= bl
go to N
end
670 Communications of the ACM '

else {7 2 7 then

begin comment This wegment has less than two clements:
z0o o P .

enld

’K“?‘Q(‘

begin comment This s the case when the segment has just
two elements, so sorb afi] and afy} where J o= 4 4 1,

il > alj] then

begin

v o= oalil;

alil = aljl;

alj] =
end;

comment If the /¢ aud i aerays contain more segments
to be sorted then repeat the process by splitting the smallest
of these, If no more segments remain the array has been
completely sorted;
Poomoi= m—1;
if m > 0 then
begin
7 {tm];
o= utlml;
<

go to N
end;
end
end guickersort

REMARK ON ALGORITHAL 250 [G6)
INVERSE PERMUTATION
[B. . Boonstra, Comm. ACA 8 (Feb. 1965), 104]
C. W. Meprock (Reed. 12 Apr, 1965 and 14 July 1965)
IBM Corp., Programming Systems, Poughkeepsie, N.Y.

Several simplifications may be made to the subject algorithin
to permit more efficient operation.

1. On many compilers, the procedure would be more efficient
if the outer loop were written as a for loop.

2. The initialization of the vector P to negative values may be
omitted by reversing the interpretation of positive and negative
values. As revised, Pl¢] contains a negative number if it contains
the inverse value and 7 is less than the current value of the pa-
rameter n. P[¢] contains a positive value in all other cascs. This
allows the for loop labeled tag to be eliminated.

3. The variable first may be eliminated by declaring the pa-
rameter n as a value parameter, and utilizing it as the controlled
variable of the outer loop.

The author wishes to thank the referee for valuable suggestions.

The revised algorithm then reads:

procedure inversepermutation {I?) of natural numbers up to: (n);
value n; integer n; integer array P;
comment Given a permutation P(7) of the numbers 7 = 1{)m,
the inverse permutation is computed in situ;
begin integer 7, J, k;
for n = n step —1 until 1 do
begin 1 := Pin};
if 7 < O then Pln] := —¢
else if © # n then
begin £ = n;
lowp: § = P}, Pl
if j = n then Pinj

clse
begin b = i; ¢ = j; go to loop
end

end

end
end inpersepermulation

Volume 8 / Number 11 / October, 1963

