conumentt In [iu(li?lg 1‘11(‘.‘ cigenvectors © of an nXn matrix B
" after having found the mg(\nv:l‘h_lr‘,s Aol B by any of the many
available methods, it is often desirable to start from the original
matrix B and not from ibs transform from which the N's were
obtained. Whercas the resulting cigenvectors will still be in-
guenced by crrors in the N's, the cigenveetors would not be
influenced by errors in the transformed matrix,

Since M — B = A isa singular matrix of rank » the problem is
to find ¢ = n — 7 vechors @ which form a basis of the left null
space of 4.

Yote: If the right null space ig desired the matrix A should
pe transposed.

The following algorithm finds these n—r lincarly independent
vectors by the Gauss-Jordan elimination in place using the
naximal available clement for the pivot. The process will termi-
nafe after r steps, since the maximal available elements for
pivoting are then equal to zero.

Now, replacing these zero pivot elements by unity, the rows
of the matrix, from which no nonzero element has been chosen,
are the basis of the null space of A, that is, if is such a row
then 24 = 2, the zero vector of order n.

The proof for this is established by the fact that the elimina-
tion amounts to premultiplying B3 by a matrix 4’, a product of
clementary matrices, such that A’A is a matrix with ones on
r of the diagonal positions and zeros everywhere else.

Test results. A version of this procedure acceptable to the
IBM 7094 (ALCOR-ILLINOIS 7090 ALGOL Compiler) was
tested.

With eps = 1078 the results for the 5X5 matrix

1 2 3 4 5
6 7 8 9 10
1 12 13 14 15
16 17 18 19 20
21 22 23 24 25

showed the dimension of the null space as 3 having as a basis
x = (~.75, 1.00, 0.00, 0.00, —.25)
2 = (—.50, 0.00, 1.00, 0.00, —.50)
2 = (—.25, 0.00, 0.00, 1.00, —.75)

exact to 6 decimal places;
hegin integer array r, ¢[1:n];
real maz, temp;
for i ;= 1 step 1 until n do 7[¢] 1= c[i] := 0;
form := 1 step 1 until n do
begin maz := 0;
fork := 1 step 1 until » do
begin if r{k] # 0 then go to L else
for j := 1 step 1 until n do
if ¢[j] = OA abs(alk, j1) > mazx then
begin kk := k; jj := j; max := abs(alk, j])
end 7 loop;
I end & loop; .
it maz < eps then go to SORT;
oAl = kk; r[kk] := j§j; temp := VJalkk, jjl; olkk, =1
forj ;=1 step 1 until n do alkk, 7] := alkk, j]1 X temp;
fork := 1 step 1 until kk — 1, kk + 1 step 1 until n do
begin temp = alk, j71; alk, 57} 1= 0;
for j := 1 step 1 until » do
I)egin
alk, 71 := alk, 7] — temp X alkk, jl;
if abs(alk, j]) < eps then alk, jl := 0
end;
end & loop;
end i Jgop,
SORT: for J = 1step L until n do
)hegin
REPEAT. ¢ gl == OAF 5 cljl then

integer 1,7, k, m, i, kk, t;

\\‘
Olume § / Number 11 / October, 1963

9. Hissarp, Tnomas N.

begin
for k := 1 step 1 until n do
if 7{k] = 0 then
begin temp = alk, ji;
alk, 7 = alk, cljll; alk, ¢[jl} := temp
end & loop;
t=cljl; elyl :=elt]; elt] = ¢;
end;
end conditional and j loop;
ec 1= (;
for k := 1 step 1 until » do
Jif 7{kl = 0 then
begin ec := ec + 1; alk, k] := 1;
if ec # k then
begin
for j := 1 step 1 until n do alee, j] := alk, 7]
end; .
end conditional and & loop;
comment The first ec rows of the matrix ¢ are the vectors
which are orthogonal to the eolumns of the matrix a;
end NULLSPACE

go to REPEAT

ALGORITHM 271
QUICKERSORT [M1]
R. S. Scowen* (Recd. 22 Mar. 1965 and 30 June 1965)
National Physical Laboratory, Teddington, Iingland

* The work desecribed below was started while the author was
at English Electric Co. Ltd, completed as part of the research
programme of the National Physical Laboratory and is published
by permission of the Director of the Laboratory.

procedure quickersort(a, 1);
value j; integer j; array a;

begin integer i, k, ¢, m, p;
It{Lin{abs (§)+2) /In(2)+0.01];

comment The procedure sorts the elements of the array af[l:]]
into ascending order. It uses a method similar to that of QUICK-
SORT by C. A. R. Hoare [1], i.c., by continually splitting the
array into parts such that all elements of one part are less than
all elements of the other, with a third part in the middle eon-
sisting of a single element. I am grateful to the referee for point-
ing out that QUICKERSORT also bears a marked resemblance
to sorting algorithms proposed by T. N. Hibbard {2, 3]. In par-
ticular, the elimination of explicit recursion by choosing the
shortest sub-sequence for the secondary sort was introduced by
Hibbard in (2].

An element with value ¢ is chosen arbitrarily (in QUICKER—
SORT the middle element is chosen, in QUICKSORT a random
element is chosen). 4 and j give the lower and upper limits of
the segment being split. After the split has taken place a value
¢ will have been found such that alq] = ¢ and ¢[l] £ ¢ £ al/}
forall I, J such that ¢ < T < ¢ < J £ J. The program then
performs operations on the two segments a[¢:q—1] and alg+1:71
as follows. The smaller segment is split and the position of the
larger segment is stored in the It and ut arrays ({{ and ut are
mnemonics for lower temporary and upper temporary). If the
segment to be split has two or fewer elements it is sorted and
another segment obtained from the It and wt arrays. When no
more segments remain, the array is completely sorted.
REFERENCES:

1. Hoarm, C. A. R. Algorithms 63 and 64. Comm. ACM 4 (July

1961), 321.

real ¢, z; integer array ul,

Some combinatorial propertics of
certain trees with applications to searching and sorting.

J. ACM 9 (Jan. 1962), 13. .
3. ——. An empirical study of minimal storage sorting. Comm.

ACM 6 (May 1963), 206-213;

Communications of the ACM 669

;o= o= 1
ANif j—1 > 1 then
begin comment
so split it;
poo= (0 2
comment p is the position of an arbitrary clement in the
segment a{z:j]. The best possible value of p would be one
which splits the segment into two halves of equal size, thus
if the array (segment) is roughly sorted, the middle ele-
ment is an excellent choice, If the array is completely
random the middle element is as good as any other.
If however the arcay a{l:7] is such that the parts a{l:j+2]
and afj=+241:7] are both sorted the middle element could
he very bad. Accordingly in some eircumstances
p o= (i-+j) = 2 should be replaced by p 1= @+3Xj) + 4
or p = RANDOM{, j) as in QUICKSORT;

This segment has more than two elements,

2

alp] = alif;
qi=17;
fork := ¢ + 1 step 1 until ¢ do
begin comment Search for an element afk] > ¢ starting
from the beginning of the segment;
if alk] > t then
hegin comment Such an a{k] has been found;
for ¢ := ¢ step —1 until & do
begin comment Now search for alg] < ¢ starting from
the end of the segment;
if alg] < t then
begin comment alg] has been found, so exchange
alq) and alk];

x = alkl;
alk] = alql;
algl = =
q = q—1;
comment Search for another pair to exchange;
go to L
end
end for g,
q =k —1;

comment ¢ was undefined according to Para. 4.6.5 of
the Revised Avcorn 60 Report [Comm. ACM 6 (Jan.
1963), 1-17};

go to M
end;
L. end for k;
comment We reach the label M when the search going up-

wards meets the search coming down;
M ali] = alqgl;

alg) i= &

comment The segment has been split into the three parts
(the middle part has only one element), now store the
position of the largest segment in the If and u¢ arrays and
reset 7 and § to give the position of the next largest segment;

if 2X g> 1+ jthen

begin
ltm] = 4
utlm)] = ¢—1;
1= q-+1
end
else
begin
tm] = g+1;
utlm) = 7;
7= g1
end;
comment Update m oand split this new smaller segment;
wm o= bl
go to N
end
670 Communications of the ACM '

else {7 2 7 then

begin comment This wegment has less than two clements:
z0o o P .

enld

’K“?‘Q(‘

begin comment This s the case when the segment has just
two elements, so sorb afi] and afy} where J o= 4 4 1,

il > alj] then

begin

v o= oalil;

alil = aljl;

alj] =
end;

comment If the /¢ aud i aerays contain more segments
to be sorted then repeat the process by splitting the smallest
of these, If no more segments remain the array has been
completely sorted;
Poomoi= m—1;
if m > 0 then
begin
7 {tm];
o= utlml;
<

go to N
end;
end
end guickersort

REMARK ON ALGORITHAL 250 [G6)
INVERSE PERMUTATION
[B. . Boonstra, Comm. ACA 8 (Feb. 1965), 104]
C. W. Meprock (Reed. 12 Apr, 1965 and 14 July 1965)
IBM Corp., Programming Systems, Poughkeepsie, N.Y.

Several simplifications may be made to the subject algorithin
to permit more efficient operation.

1. On many compilers, the procedure would be more efficient
if the outer loop were written as a for loop.

2. The initialization of the vector P to negative values may be
omitted by reversing the interpretation of positive and negative
values. As revised, Pl¢] contains a negative number if it contains
the inverse value and 7 is less than the current value of the pa-
rameter n. P[¢] contains a positive value in all other cascs. This
allows the for loop labeled tag to be eliminated.

3. The variable first may be eliminated by declaring the pa-
rameter n as a value parameter, and utilizing it as the controlled
variable of the outer loop.

The author wishes to thank the referee for valuable suggestions.

The revised algorithm then reads:

procedure inversepermutation {I?) of natural numbers up to: (n);
value n; integer n; integer array P;
comment Given a permutation P(7) of the numbers 7 = 1{)m,
the inverse permutation is computed in situ;
begin integer 7, J, k;
for n = n step —1 until 1 do
begin 1 := Pin};
if 7 < O then Pln] := —¢
else if © # n then
begin £ = n;
lowp: § = P}, Pl
if j = n then Pinj

clse
begin b = i; ¢ = j; go to loop
end

end

end
end inpersepermulation

Volume 8 / Number 11 / October, 1963

