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PROCEDURE FOR THE NORMAL DISTRIBUTION
FUNCTIONS* [S15])

LD, MacLaren

(Recd. 28 July 1964, 17 Nov. 1964 and 26 July 1965)
Argonne National Laboratory, Argonne, IlL, and Boeing
Scientific Rescarch Laboratories, Seattle, Wash.

* Work performed in part under the auspices of the US Atomic

~

Fnergy Conunission.

real procedure phila, k); value a, k; real a; integer k;
comment Before use, this procedure must be called onee with
} = 3 {o initialize own variables. Thereafter for & = 1 the
procedure gives

1 a
@(a) = —"ﬂf exp (—2/2) dt,

(2w)é
and for b = 2 it gives
P*(q) = 2®{| al) — 5)

o\t plel
- f exp (—#/2) di
T/ Jo

begin own integer V;

own real B, EPS, EPS2, EPS3, ONE, DELTA, DELT A2, P2,

comment ®*(a)is computed by Taylor’s series expansion in the
interval 0 < ¢ < B, and by asymptotic series in the interval
B < a. The Taylor’s series expanson is made about one of the
points 0, B/N, 2B/N, --- , B, and the cocflicients in the series
are computed using the recursion formula for Hermite poly-
nomials. The number of terms to take in the series is deter-
mined by an error estimate based on & majorizing series. This
procedure, which is essentially the familiar onc of interpolat-
ing in a stored table of values, gives a fast program and can be
used effectively for many functions. In this case another sig-
nificant increase in speed could be obtained by also storing a
table of values of the first derivative of *. The own variables
B, EPS and N might be called program parameters. By suit-
ably choosing their values the programmer may make the
procedure as accurate as desired and may inercase the speed
of the procedure at the cost of extra storage space. This is the
advantage of this procedure over others previously published
in this journal (see [1-4]).

The values of these program parameters are determined
when the procedure is eoded, not when it is called. They are
set by means of an initializing call with k = 3. The other own
variables are computed from B, EPS and N when the initializ-
ing call is made. If Forrran [V were used, all the own vari-
ables could be set by use of a DATA statement. An alternative
to either method is to replace all oceurrences of the parameters
by the appropriate constants,

The choice of the parameter N depends mainly on speed
versus storage considerations. The larger N is, the faster the
procedure will be and the more storage will be needed. Note,
however, that N must be chosen large enough so that
B2(1/(2N) + 1/(4N?)) < 1, forotherwise the method of estimat-
ing the error in the Taylor’s series may fail. The choice of B
may also affect the speed, because for smaller values of a the
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asymptotic series for $*(a) will take longer than the Taylor's
series. The choiee of B depends, however, mainly on the error
desired. Neglecting roundoff, the maximum error in the com-
puted value of ®* () will be ZPSif ¢ < B or max (EPS, §(a)/2)
if B < a, where §(a) is the absolute value of the smallest term
in the asymptotic series for ®¥(u). Some values of 6(a) are:
(1) = 3.0 X 1078, §(5) = 3.0 X 10722, 5(5.5) = 1.4 X 104, and
§(6) = 4.4 X 10717 If N is large cnough, roundoff will be no
problem. (The referee has pointed out that the computation
for B < « could be made by continued fractions, as in Algo-
rithm 180. The advantage of this would be that the continued
fraction expansion converges for all @ > 0, but roundoff errors
may be significant for smaller values of @.)

With the program parameters having the values given
below, the procedure was compiled as a ForTraN ITsubroutine
on the IBM 1620, using eight-digit floating point arithmetic,
and tested for many values of @. The error never exceeded
2 X 1078, The program was also compiled with B8 = 6.0, KPS =
2 X 107% and N = 60, using 15 digit arithmetic. Spot checks
turned up no errors greater than 2 X 10-1;

own real array C[0:16];
comment The array € must give the value of #*(e) at the
point of expansion, i.e., C[m] must equal ®*(mB/N). Tables of
$*(a) to fifteen decimal places are published by the National
Bureau of Standards [5]. The upper bound for the array must
equal the value of the program parameter N;
realf, f1,12,z,y, 2, ¢, {2, x¢;
integer m;
real procedure max(z, y); value z, y; rvealz, y;
begin max ;= if r <y theny elsex;
end max;
if £ = 3 then
begin comment initialize own variables;
EPS = .00000002; B := 4.0; N :=16; C[0} := 0.0;
Ol 1= .19741265:
Cl2] = .38202492;
Cl4] = 68268949 ;

C3] 1= .5467530;

O3] := 78870045;  C[6] = .86638560;
O[] 1= 91988169;

O8] 1= 95449974;  C[0] = .07555105;
CI10] 1= 98758067;

ClI1] := .99404047; C12] = .99730020;
CT18] 1= 99884595;

C[14] 1= .99953474; C[15] := .90082317;

C16] = .99993666;

ONF = .99999999;

comment ONE is the largest number less than 1 which may
be represented in the machine, This prevents loss of ac-
curacy in some implementations of floating point sub-
traction;

PI2 1= 797884560802865;

comment PI2 = (2/7)'?;

DELTA := B/N;

DELTA2 := 5 X DELTA;

EPS3 := 2.0 X EPS;

12 1= max(BXDELTA, sqrt .0} X DELT A2);

t := DELTA2 X (B+DELTAZ2);

z = (t+sqrt(t)) X exp(BX);

y = 12 X (1L0+2) X exp(5Xé2712);

ifi2 <1 Ay < xthen EPS2:= EPS/yelse EPS2 := EPS/x;

pht =0
end initialization
else

begin comment compute ®(a);
y = abs(a);
ify > B then
begin comment computation by asymptotic series;
zi=y 12 f:=PI2Xexp(—.5X)ly;
v o= 1.0/; z:=f;fl = ~f Xz
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for =3,

A A B

YRS hen go to [

begin 2z
ifabs(f) <

end;
L1 2= ONE -~ SRS

end asympiotic computation

else
begin comment  Taylor’s serics computation;
wme = enlier (y/DELT A
aorsmom X DILT A sy -
iCDELT A2 < then
beginm = m -+ 1; x:
Xl 2= 1 2;
1 X PT2 X erpl— HXa T 2);
AXat K [l
ENE

- DELT A L=y -

zend;

al 1=

!

Revised Algorithms Policy « May, 1964

A contribution to the Algorithms department must be in the form of
an migorithi, a certification, or a remark. Contributions should be sent in
duplicate to the editor, typewritten double-spuced in capital snd lower-case
letters. Authors should earefully follow the style of this depuartment, with
especial attention to indentation and completeness of references. Material
to appenr in boldface type should be underlined in black. Blue underlining
may be used to indicate italic type, but this is usuelly best left to the Editor.

An slgorithm must be written in the Ancon 60 Referemce Language
(Comm. ACM 6 (Jun. 1963), 1-17], nnd normally consists of & commented pro-
cedure declaration. Each algorithm must be accompanied by o complete
driver program in ArGor 60 which gencrates test data, calls the procedure,
and outputs test wnawers. Morcover, selected proviously obtained test answers
should be given in comments in cither the driver program or the algovithm,
The driver program rony be published with the algorithm if it would be of

mujor assistance to o user.
Input and output should be achieved by procedure statements, using
one of the following five procedures (whose bady is not specified in Avdon):
lsee “Report on Input-Output Procedures for ALGOL 60, Coman, ACM 7
(Oct. 1964), 628-629].
procedure inreal (channel, destination); value channe; integer channel;
real destination; comment the number read from channel channel is as-
signed to the varviable destination; . . . ;

procedure outreal (channel, source); value channel, source; integer channel;
real source; comment the value of expression gource is output to channel
channel; . ..}

procedure ininteger {channel, destination};
value channel; integer channel, destination; ... ;

procedure outinteger (channel, source);
valuo channel, source; Integer channel, source; . .. ;

procedure outslring (channel, string), value channel; inteper channel;
string string; . .. ;

{f only one chunnel is used by the program, it should be designated by L
Examples:

outstring (1, % ='); outreal {1, x);
for i :== 1 step | untll n do outreal (1, A[Z]);
ininteger (1, digit [17]);

It is intended that each published algorithm be a well-organized, clearly
commented, syntactically correct, and a substantial contribution to the
ALGon literature, All contributions will be refereced both by human beings
and by an Angor compiler. Authors should give great attention to the cor-
rectness of their programs, since referces cannot be expected to debug them.
Because ALaoL compilers are often incomplete, authors are encouraged to
indieate in comments whether their algorithms are written in a recognized
subset of Ancon 60 {see “Report on SUBSET ALGOL 60 (IFIP},”" Comm.
ACM 7 (Oct, 1964), 626-627].

Certifications and remsrks should add new information to that already
published. Readers are especially encouraged to test and certify previously
uncertified algorithms. Rewritten versions of previously published algo-
rithms will be refereed ag new countributions, and should not be imbedded
in certifications or remarks.

Galley proofs will be sent to the authors; obviously rapid and ecareful
proofreading is of paramount irnportance.

Although each algorithm has been tested by its author, no liability is as-
sumed by the contributor, the editor, or the Association for Computing
Machinery in connection therewith,

The reproduction of algorithms appearing in this department is explicitly
permitted without any charge. When reproduetion is for publication pur-
poses, reference must be made to the slgorithm author and to the Communi-
cations issue bearing the algorithm —G.E.T.
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ervd Tavlors sevies conpmnion;
if o= 1 then
begin
= if 0 < o then -+ 0 X relse 5 - 05Xz
end;

phi = z
end computation

end phi
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HANKEL FUNCTION [Lus J. Schaelfer, Conne A0 5
(Sept. 1962), 483]

Grorce A Reinpy (Reed, 5 Oct, 1964 and -+ Nov. 106H

Westinghouse Resenveh Laboratories, Pittsburgh,  Pa.

This procedure, after modification, was run on the 13-5000 using
B-5000 Ancon. Values obtained cheeked with US National Buvea
of Standards fandbook of Mathematical Funclions, Applicd Mathe
raatics Series 35, US Government Printing Office, Washington.
D.CL14964,

For N = 0, Land 2, aceuracy was to 10 decimals for X <80, s
deteriorated to 6 decimals for 8 < X < 175, For 3 £ N < Gue
curacy was to the 5 decimals of the tables.

Some changes proved neeessary to make the algorithi s
Since the algorithm is short and the changes are involved, 1in
algorithn is restated heres Note that o test for w zeve argument
X is ineluded in the body of the procedure sinee H{2] ought to b
minus infinity when X = (.
procedure HANKEL (N, X, H); value N, X integer V'

vreal X'; arrvay I;
begin veal K, P, B, A8, 7. D, [, integer;

if X =0then

begin comment In this case ({2} s minus infinity. 3 denotes

the largest number which can be represented in the machive.
The numerical value of M is to be written into the
procedure:
H2] 1= — M,
H{l] := it N = 0 then 1 else U
go to et

end;

A=R=1; H{l]:=H[2]:=8:= 0

it A= 0then begin £ :=1; 8 D :=0end

else
begin for @ := 1 step 1 until N do
begin R :=RX@; S: +1/Qend; D:=R/N
end;
R:=1/R;, K:=XXJX/M; P:=KTN, T = In (K} —
1.1544313208631;
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GRADER PIOGRAM
COMP.BULL.V9C(18)

CALCULATION DOF EASTER

* THE NUMBERS 263 AND 2664 WERE EACH INADVERTENTLY ASSIGNED
TO TWO ALGORITAMS, WHEM GIVING REFERENCES TD THESE

ALGORITHMS,

PLEASE BE CAREFUL TD DO SO UNAMBIGUOUSLY.

mn: Al, Bl, B3, ete. is the key to the underlined Modified Share Classification heading each group of algorithms; 2d column: number of
n CACM; 3d column: title of algorithm; 4th eolumn: month, year and page (in parens) in CACM, or reference elsewhere. This index sup-
usly published indexes: Index by Subject to Algorithms, 1960~1963 (C ACM 7 (Mar. 1964), 146-149], and 1964 [C ACM 7 (Dee. 1964), 703).

The last constant is 2 X gamna, Euler’s constant;

for @ := 0,Q + 1 while@ < N VL > H 2l do

hegin L :=

Volume § / Numi

H[2l; HI] = HI]+ A XR; |
H@]P=HB]+u4X(RX(T~S)*(Wq<N1han/Pebem)
A= A XEK/@QFD; R = ~{f/(Q+N+1);

§ .= 8 + 1/@Q+1) + 1/@Q+N+1);

Jer 12 / December, 1965

ifQ+ 1< NthenD := D/(N—Q—1);

end;
P = (X/2) T N; H]:= H[1] X P; H[2] := 0.318309886184
X H2I X P;
comment The multiplicative constant is 1/FP%;
exit:

end HANKEL
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