ALGORITHM 275

EXPONENTIAL CURVE FIT [E2]

GrrarD R. DLy (Reed. 27 July 1964 and 16 Apr. 1965)
US Department of Defense, Washington, D. C.

(Now with HRB-Singer, Inc., State College, Pa.)

procedure EXPCRVFT (a,b,c, E squared, n, z, y, epsilon, | mazx,
Slag) ;
integer n, [maz, flag;
real a, b, ¢, E squared, epsilon;
real array z, y;
comment This algorithm will fit a curve defined by the equation
=qa X exp(d X z) + ¢ to a set {z;, y;} of n data points. The
Taylor series modification of the classical least squares method
is utilized to approximate a solution to the system of nonlinear
equations of condition. After every iteration, the statistic E
squared is computed as a measure of the goodness of fit. Com-
mencing with the second iteration, the successive values of E
squared are differenced, and when the difference in absolute
value becomes less than epsilon, the calculations cease, If the
number of iterations necessary to achieve this result exceeds
I maz, a flag is set to a nonzero value and the procedure is termi-
nated;
begin
integer 7, I, m;
comment Computation of initial estimates follows;
b := 2 X In(abs(((yln] — yln—1]) X @[2] — =[1]))/
(2] — y11]) X (z[n] — z[n—1]))))/
(z[n] + zln—1] — z[2] — 2[1]);
= (yln] — yln—11)/((zln] — zln—1))
X exp((b X (zln] + 2[n—11))/2) X b);
= (n+1) + 2;
¢ :=y[m] —a X exp(b X z[m]);
E squared := 0;
for 7 := 1 step 1 until » do
E squared := E squared + (yli] — ¢ — a X exp(d X z[Z]))12;
comment Computation of corrections follows;
for [:= 1 step 1 until [maz do
begin
real sumezl, sumex2, sumziexl, sumziexr2, sumaxilex2, sumyt,
sumyiexl, sumayierl, d11, d12, d13, d22, d23, d33, el, €2, €3,
deltall, deltal2, delial3, delta22, delta23, delta33, delta, u, v, w,
save;
sumezxl := sumex2 := sumziexl := sumarex2 :=
sumyt 1= sumyterl := sumzyierl 1= 0;
for 7 := 1 step 1 until n do
begin
real exl, ex2, xiexl, xiex2, xi2ex2;
erl := exp(b X z[z]);

sumzilex2 =

ex2 1= ex112;

ziexl = z[i] X exl;

ater2 = z[i] X ex2;

z12ex2 = x[i] X ziex?;

sumezl := sumezl + erl;
sumex2 = sumex2 + ex2;
sumzxierl := sumziexl 4 xiexl;
sumztez2 := sumxiex2 + ziex2;

sumxi2ex2 1= sumxi2ex2 + x12ex2;

Volume 9 / Number 2 / February, 1966

. G. HERRIOT Editor

sumyt 1= sumyi + yli];
sumytexl := sumyiexl 4+ y[i] X exl;
sumaytexl 1= sumzyiexl + yli] X xiexl;

end computation of sum terms in normal equations;
dll 1= sumex2;

dl12 := sumziex2 X a;

dl3 := sumexl;

d22 := sumziZex2 X a T2;

d23 := sumxiexl X a;

33 := n;

el := — sumex2 X a — sumexl X ¢ + sumyiexl;
€2 = — sumziex2 X a T2 — sumziexl X ¢ X a +

sumayiexrl X a;
ed := — sumexl X a — n X ¢ 4 sumyt;

deltall := d22 X d33 — d2372;

deltal2 := d13 X d23 — d12 X d33;

deltal3 := d12 X d23 — d13 X d22;

delta22 1= dl1 X d33 — d1312;

delta23 := d12 X d13 — d11 X d23;

delta33 := dl11 X d22 — d1212;

delta := dll X deltall + d12 X deltal2 + d13 X delial3;

u := (el X deltall 4+ €2 X deltal2 4 €3 X deltal3d)/delia;

v = (el X deltal2 + €2 X delta22 + €3 X delta23)/delta;
w = (el X deltal3 + €2 X delta23 + e3 X deltad3)/delia;
a =a -+ u;

b :=0b+ v;

¢ =c¢ -+ w;

E squared := 0;

for i := 1 step 1 until n do

E squared := E squared + (y[i] — ¢ — a X exp(b X z|7])) 1 2;
if I = 1 then go to relry;
if abs(save — F squared) < epsilon
then go to 73
else if I < | max
then go to retry
else go to unfurl;

relry: save := E squared;
end computation of corrected values of a, b, and ¢;
unfurl: flag := 1;

73: end least squares curve fit toy = a X exp(b X 2) + ¢

ALGORITHM 276
CONSTRAINED EXPONENTIAL CURVE FIT [E2]

Gerarp R. DriLy (Recd. 27 July 1964 and 16 Apr. 1965)
US Department of Defense, Washington, D. C.
(Now with HRB-Singer, Inc., State College, Pa.)

procedure CSXPCVFT (a, b, ¢, E squared, n, z, y, k, 2, epsilon,
1 maz, flag, jump);
integer n,k, [maz, flag, jump;
real a,b, ¢, E squared, z, epsilon;
real array z, y;

comment This algorithm will fit a curve defined by the equation
y =a X exp X z) + ¢ toaset {z;, y:} of n data points, and
constrain the curve so it contains the point (zx, z). The Taylor

Communications of the ACM 85

series modification of the classical least squares method is
utilized to approximate a solution to the system of nonlinear
equations of condition. After every iteration, the statistic E
squared is computed as a measure of the goodness of fit. Com-
mencing with the second iteration, the successive values of E
squared are differenced, and when the difference in absolute
value becomes less than epsilon, the calculations cease. If the
number of iterations necessary to achieve this result exceeds
! maz, a flag is set to a nonzero value and the procedure is termi-
nated. In normal usage, the jump parameter is brought in as a
ZERO.

With certain data sets, convergence difficulties will be ex-
perienced. In these cases it is sometimes helpful to first utilize
the procedure EXPCRVFT [Algorithm 275, Comm. ACM 9
(Feb. 1966), 85] to obtain initial values for b and ¢, and then
bring the jump parameter in as a ONE in order to bypass the
following starting value computations for b and c¢.;

begin

integer ¢, [, m;

real exp factor;

if jump = 1 then go to eniry;

comment Computation of initial estimates follows;

b := 2 X In(abs(((yln] — yln—1]) X (2] — =[11))/
(w2] — y1]) X (zln] — zln—11)))/
(@ln] 4 zln—1] — 2[2] — z(1]);

m = (n+1) =+ 2;

exp factor := exp(b X (zim] — z[k]));

¢ := (ylm] — z X exp factor)/(1 — exp factor);

a:= (z— ¢) X exp(—b X zlk]);

E squared := 0;

for ¢ := 1 step 1 until » do

E squared := E squared + (y[i] — ¢ — a X exp(b X =[i])) 12;
comment Computation of corrections follows;

entry: forl := 1 step 1 until [maz do
begin
real sumexl, sumex2, sumgexrl, sumqgex2, sumgexllsex2,
sumq2ex2, sumyi, sumyiexl, sumgyrexrl, zlsc, d11, d12, d22,
el, €2, delta, v, w, save;
sumexl := sumex2 := sumgexl := sumgqer2 := sumgexllsex2 :=

sumq2ex? 1= sumyi = sumyiexl := sumgyiexl := 0;
for i := 1 step 1 until = do
begin

real ¢, exl, ex2, gexl, qex2, qexlisex2, q2ex2;

q = zli] — zk];

exl = exp(® X ¢);

ex2 = exl]2;

gexl := ¢ X exl;
gex2 := q X ex2;
gexllsex2 .= gexl — gex2;

q2ex2 1= gex2 X ¢;

sumexl 1= sumexl + exl;

sumex2 1= sumex2 + ex2;

sumgexrl = sumgexrl + gexl;

sumgex2 = sumgex2 -+ gex2;
sumgezllsex2 := sumgerllsex2 -+ gexlisex2;
sumq2ex2 = sumglex2 4+ q2ex2;

sumyt 1= sumyi + ylil;

sumytexl := sumyiexl + exl X ylil;

sumqyiexrl 1= sumgyiezl + gexl X ylil;
end computation of sum terms in normal equations;
zlsc 1= 2z — ¢;

dll := sumq2ex2 X zlsc T 2;

d12 := sumgexllsex2 X zlsc;

d22 :=n — 2 X sumexl 4+ sumezx2;

el = sumgyterl X zlsc — sumgex2 X zlsc T2 —

sumqgexl X zlsc X ¢;
e2 := sumyi — sumyiexl + sumexl X 2 X ¢ — 2) +
sumez2 X zlsc — n X ¢;

86 Communications of the ACM

delta 1= d11 X d22 — d1272;

v 1= (el X d22 — €2 X d12)/della;
w = (62 X dll — el X d12)/della;
b :=b+ v
¢ :=c¢ + w;

a = (z — ¢) X exp(~b X z[k]);
E squared := 0;
for ¢ := 1 step 1 until n do
E squared := E squared +
Wkl — ¢ — a X exp® X z1)) 72,
if [= 1 then go to retry;
if abs(save — E squared) < epstlon
then go to 73
else if [< [max
then go to retry
else go to unfurl;
retry: save := E squared;
end computation of corrected values of a, b, and ¢;
unfurl: flag 1= 1;
73: end constrained least squares fit to y = a X exp(db X x) +

ALGORITHM 277

COMPUTATION OF CHEBYSHEV SERIES

COEFFICIENTS {C6)

Lyie B. Smrra (Recd. 15 July 1965, 23 July 1965 and 20
Sept. 1965)

Stanford University, Stanford, California

procedure CHEBCOEFF (F, N, ODD, EVEN, A);
value N;
Boolean ODD, EVEN,
integer N;
real procedure F;
array 4;
comment This procedure approximates the first N41 coeffi-
cients, a, , of the infinite Chebyshev series expansion of a func-
tion F'(z) defined on [—1, 1].

0,

F@) = 2. auTu(®),)
n=0
where D’ denotes a sum whose first term is halved, and 7',(x)
denotes the Chebyshev polynomial of the first kind of degree =,
defined by

T,.(z) = cos nb, x = cos @ n=20,1,2,--4).

The truncated series Z',.‘lo a.To(x), gives an approximation to
F{(z) which has maximum error almost as small as that of the
“best’’ polynomial approximation of degree N, see [1]. In this
procedure the coefficients, @, , are closely approximated by
Bn,x, n = 0Q1)N, which are the coefficients of a ‘Lagrangian”
interpolation polynomial coincident with F(z) at the points
zi , © = 0(1)N where z; = cos(xi/N), see [2]. The B, x are given
by

2 N 9 N
Buy = = 2" F@)Talzs) == 2" Fla)Ti(zy),
N =0 N i=0
where >_” denotes a sum whose first and last terms are halved.
The B, ,» are evaluated by a recurrence relation described by
Clenshaw in [1] and improved by John Rice [5]. This recurrence
relation can also be used to evaluate the truncated series,
> s a.Ta(z), once CHEBCOEFF has found values for the
coefficients. For even N a relation between B,y and B, »
(pointed out by Clenshaw [3, p. 27]) is used in computing B, ~ .

Volume 9 / Number 2 / February, 1966

For large N, B,y is very close to a. . In [2] the relation is given
as

Bn,N = a, + Z:;l (a2pN—n + a2pN+n)- (2)

This shows that By~ approximates ay quite well for large N
since from (2) we see that

Byy =ay + av + -+ . (3)

For even N a simple check on the accuracy is available. Since
the relation

n = 01)N/2—1)

Bn.N = Bn.NIZ et BN—n,N)
is used in the computation, the difference
B, xw — Bun = By_ay, ®)

which measures in some sense the accuracy of the approxima-
tion, is available to the user. For instance, in the example below
with N = 8 the number A[7] is the difference between A[1] for
N = 4 and A[l] for N = 8.

ParaMETER ExpraNaTION. If the function F is odd or even
then the Boolean parameters ODD or EVEN should be true
respectively in which case every other coefficient in the array
A will be zero. The array A will contain the coefficients of the
truncated series with N1 terms.

ExampLe. For the function F(z) = e the following values
were computed for A[n] with N = 4 and N = 8. The computations
were done using this procedure written in Extended Avncor for
the Burroughs B5500 computer. Also shown are computed values
for the coefficients of the ‘“best’’ polynomial of degree 8 from [4]
(digits differing from the correct result are in italics).

A[n) with N = 4 | A[n] with N = 8 |“Best” ap from [4]|Correct ay, from [1}

=

17555(2.53213
8208011.13031

175552.53213
82080(1.13031

2.53213 21539/2.53213
1.13032 14175]1.13031

0 17555
1 82080
210.27164 08174(0.27149 53395|0.27149 53395/0.27149 53395
3(0.04487 97762|0.04433 68498/0.04433 68498/0.04433 68498
4/0.00547 42404/0.00547 42404(0.00547 42404(0.00547 42404
5 0.00054 29263/0.00054 29263/0.00054 29263
6 0.00004 49779(0.00004 49773|0.00004 49773
7 0.00000 32095(0.00000 31984/0.00000 31984
8 0.00000 01992i0.00000 019980.00000 01992;

begin
integer ¢, m, N2, 81, 82, 7'1;
real b0, b1, b2, pi, TWOX, FXN2;
array FX, X[0:N];
Boolean TEST;
pi 1= 3.14159265359;
N2 := N + 2;
comment If N is even TEST is set to true;
if 2 X N2 = N then TEST := true
else TEST := false;
comment Compute the necessary function values;
for ¢ := 0 step 1 until N do
begin
X[4] := cos(pz X 1/N);
FX[i] := F(X[D;
end;
S2:=1; 81 :=0;
comment If F(z) is odd or even initialize accordingly;
if ODD then

begin
for m := 0 step 2 until N do
A[m] := 0;
S2:=2; S81:=1;
end else

Volume 9 / Number 2 / February, 1966

if EVEN then

begin
for m := 1 step 2 until N do
A[m] := 0;
82 :=2; 81 :=0;
end;
comment If TEST is true the coefficients are computed in
two steps;

FXN2 := FX[N]/2.0;
if TEST then

begin
for m := S1 step S2 until N2 do
begin
bl := 0;
b0 := FXN2;

TWOX := 2.0 X X[2 X m];
for ¢ := N—2 step —2 until 2 do

begin
b2 := bl; bl := bO;
b0 := TWOX X b1—b2 + FX[i];
end;
Alm] := 2.0 X (X[2Xm]xb0—~b14-FX[0]/2.0)/N2;
end;
A[N2] := A[N2]/2.0;
T1 := 81,
if ODD \/ EVEN then
begin

if2X (N2 +2) = N2
then 81 := N2 + 2 — 81
else S1 := N2 4+ 1 + S1;
end
else S1 := N2 + 1;
end;
comment Compute the desired coefficients;
for m := 81 step S2 until N do

begin
bl := 0;
b0 := FXN2;

TWOX := 2.0 X X[m];
for i := N—1 step — 1 until 1 do

begin
b2 := bl; bl := bO;
b0 := TWOX X bl — b2 + FXi];
end;
Aim] 1= 2.0 X (X[m]Xb0—b1+FX[0]/2.0)/N;
end;
if TEST then
begin

for ¢ := T1 step 82 until N2—1 do
Ald] := A[f] — A[N—4);
end;
A[N] := A[N]/2.0;
end CHEBCOEFF

REFERENCES:

1. Cuensuaw, C. W. Chebyshev Series for Mathematical Func-
tions. MR 26 %362, Nat. Phys. Lab. Math. Tables, Vol. 5,
Dep. Sci. Ind. Res., Her Majesty’s Stationery Off., London,
1962.

2. Evutorr, D. Truncation errors in two Chebyshev series
approximations. Math. Comp. 19 (1965), 234-248.

3. Crensaaw, C. W. A comparison of “best’’ polynomial ap-
proximations with truncated Chebyshev series expansions.
J.SIAM {B}, 1 (1964), 26-37.

4. Computed values by Dr. C. L. Lawson. (private communica-
tion)

5. Rice, JouN. On the conditioning of polynomials and rational
forms. (submitted for publication).

Communications of the ACM 87

ALGORITHM 278 for j := 1 step 1 until S do plot[i,j] := 1;

GRAPH PLOTTER [J6] for 7 := 2 step 1 until L—1 do
P. Lroyp (Recd. 4 June 1965) ,ff?;’” 1:?11’ 8 dotpl%[;’é] =1
i = en go to H
Queen Mary College, London, England for i := 1 step 1 until m do
procedure graphplotter (N, z, y, m, n, zerror, yerror, g, L, S, EM, for j := n step —1 until 1 do
C0, C1, C2, C3, C4, label); plot[1+-entier (0.5+pX (x[¢]—zmin)),
value N, m, n, zerror, yerror, g, L, S; 14-entier (0.5+¢X (yl¢,j1—ymin))] 1= j+2;
array z, ¥; plotter:
integer N, g, m, n, L, 8; for ¢ := 1 step 1 until L do
real zerror, yerror; begin
string EM, C0, C1, €2, C3, C4; NEWLINE(N,1); SPACE(N.g);
label label; comment NEWLINE and SPACE must be declared
comment This procedure is intended to be used to give an ap- globally to graphplotter, NEWLINE(N,p) outputs p car-
proximate graphical display of a multivalued function, y[z, j] of riage returns and p line feeds on channel N, SPACE(N,p)
z[z], on a line printer. Output channel N is selected for all out- outputs p blank character positions on channel N;
put from graphplotier. The display is confined to points for which for j := 1 step 1 until S do
1<i<mandl<j<nwhere2<n<4.Ifn =1 thenyis begin
considered to be a one-dimensional array yii] and the display is switch SW = SW1, SW2, SW3, SW4, SW5, SW6;
again given for 1 € ¢ < m. The format of the print out is ar- go to SWiplotli,j1];

ranged so that a margin of g spaces separates the display from SW1: outstring(N,EM); go to fin;
the left-hand side of the page. I and 8 denote the number of SW2: outstring(N,C0); go to fin;
lines down the page and the number of spaces across the page SW3: outstring(N,C1); go to fin;
which the display will occupy. The graph is plotted so that lines SW4: outstring(N,C2); go to fin;

1 and L correspond to the minimum and maximum values of z, SW5: outstring(N,C3); go to fin,
and the spaces 1 and 8 correspond to the minimum and maxi- SW6: outstring(N,C4);
mum values of ¥, that is, y is plotted across the page and x down fin:
the page. After the graph has been plotted, the ranges of z and end
y for which the display is given are printed out in the order as end of display output;
above, separated from the display by a blank line. The strings NEWLINE(N,2); SPACE(N.y); outreal(N,xmin);
EM --- (4 must be such that they occupy only one character outreal (N xmazx) ;
position when printed out. The characters of C1 C2 C3 C4 repre- outreal (N ymin); outreal (N ymaz);
sent y[z,1] y[4,2] y(4,3] yli,4]. EM is the character printed out go to end;
round the perimeter of the display. CO is printed at empty N1A:
positions. At coincident points the order of precedence of the ymax = ymin = yfl];
characters is C1 C2 C3 C4 EM C0. For the special case n=1 the for 1 := 2 step 1 until m do
character C1 represents y[¢]. Control is passed from the pro- begin
cedure to the point labeled label if the interval between the if y[¢] > ymaz then ymazx = y[il;
maximum value and minimum values of z[¢] is less than zerror, if yli] < ymin then ymin = ylil
or if the range of ¥ is less than yerror. If the values of z[7] occur end of hunt for maximum and minimum values of y when
at equal intervals, choosing L=m will make one line equivalent n =1
to one interval of z; go to escape;
begin N1B:
real p, ¢, xmaz, Tmin, ymax, ymin; for ¢ := 1 step 1 until m do
integer i, j; plot[l+4-entier (0.5+pX (z[i]—azmin)),
integer array plot[1:L,1:8]; Y4-entier (0.54+¢X (ylt]l—ymin))] := 3;
zmax 1= zmin = z{l]; go to plotter;
for ¢ := 2 step 1 until m do end:
begin end of graphplotter
if z[z} > zmaz then zmaex = zlil;
if z[i] < zmin then zmin := z[7]

end of hunt for maximum and minimum values of z;
if n=1 then go to N1A4;
ymaz 1= ymin = y[1,1];

1966 CONFERENCE DATES

for 7 := 1 step 1 until m do

for j := 1 step 1 until n do

begin ACM SYMSAM March 29-31 WASHINGTON
if y[2,7]1 > ymaz then ymaz = yli,jl;
if yligl < ymin then ymin = yli,j] SPRING JCC April 26-28 BOSTON

end of hunt for maximum and minimum values of y;
S —zmi error —yma

escape: if abs(zmaz—zmin) < zerror \/ abs(ymax—ymin) < ACM 66 August 30-Sept. 1 LOS ANGELES

yerror then go to label;

p := (L—1)/(@@maz—amin); q := (S—1)/(ymaz—ymin);

for i := 1 step 1 until L do FALLJCC November 8-10 SAN FRANCISCO
for j := 1 step 1 until S do plot[i,j] 1= 2;

for?:=1,L do

88 Communications of the ACM Volume 9 / Number 2 / February, 1966

