series modification of the classical least squares method is
utilized to approximate a solution to the system of nonlinear
equations of condition. After every iteration, the statistic E
squared is computed as a measure of the goodness of fit. Com-
mencing with the second iteration, the successive values of E
squared are differenced, and when the difference in absolute
value becomes less than epsilon, the calculations cease. If the
number of iterations necessary to achieve this result exceeds
! maz, a flag is set to a nonzero value and the procedure is termi-
nated. In normal usage, the jump parameter is brought in as a
ZERO.

With certain data sets, convergence difficulties will be ex-
perienced. In these cases it is sometimes helpful to first utilize
the procedure EXPCRVFT [Algorithm 275, Comm. ACM 9
(Feb. 1966), 85] to obtain initial values for b and ¢, and then
bring the jump parameter in as a ONE in order to bypass the
following starting value computations for b and c¢.;

begin

integer ¢, [, m;

real exp factor;

if jump = 1 then go to eniry;

comment Computation of initial estimates follows;

b := 2 X In(abs(((yln] — yln—1]) X (2] — =[11))/
(w2] — y1]) X (zln] — zln—11)))/
(@ln] 4 zln—1] — 2[2] — z(1]);

m = (n+1) =+ 2;

exp factor := exp(b X (zim] — z[k]));

¢ := (ylm] — z X exp factor)/(1 — exp factor);

a:= (z— ¢) X exp(—b X zlk]);

E squared := 0;

for ¢ := 1 step 1 until » do

E squared := E squared + (y[i] — ¢ — a X exp(b X =[i])) 12;
comment Computation of corrections follows;

entry: forl := 1 step 1 until [maz do
begin
real sumexl, sumex2, sumgexrl, sumqgex2, sumgexllsex2,
sumq2ex2, sumyi, sumyiexl, sumgyrexrl, zlsc, d11, d12, d22,
el, €2, delta, v, w, save;
sumexl := sumex2 := sumgexl := sumgqer2 := sumgexllsex2 :=

sumq2ex? 1= sumyi = sumyiexl := sumgyiexl := 0;
for i := 1 step 1 until = do
begin

real ¢, exl, ex2, gexl, qex2, qexlisex2, q2ex2;

q = zli] — zk];

exl = exp(® X ¢);

ex2 = exl]2;

gexl := ¢ X exl;
gex2 := q X ex2;
gexllsex2 .= gexl — gex2;

q2ex2 1= gex2 X ¢;

sumexl 1= sumexl + exl;

sumex2 1= sumex2 + ex2;

sumgexrl = sumgexrl + gexl;

sumgex2 = sumgex2 -+ gex2;
sumgezllsex2 := sumgerllsex2 -+ gexlisex2;
sumq2ex2 = sumglex2 4+ q2ex2;

sumyt 1= sumyi + ylil;

sumytexl := sumyiexl + exl X ylil;

sumqyiexrl 1= sumgyiezl + gexl X ylil;
end computation of sum terms in normal equations;
zlsc 1= 2z — ¢;

dll := sumq2ex2 X zlsc T 2;

d12 := sumgexllsex2 X zlsc;

d22 :=n — 2 X sumexl 4+ sumezx2;

el = sumgyterl X zlsc — sumgex2 X zlsc T2 —

sumqgexl X zlsc X ¢;
e2 := sumyi — sumyiexl + sumexl X 2 X ¢ — 2) +
sumez2 X zlsc — n X ¢;

86 Communications of the ACM

delta 1= d11 X d22 — d1272;

v 1= (el X d22 — €2 X d12)/della;
w = (62 X dll — el X d12)/della;
b :=b+ v
¢ :=c¢ + w;

a = (z — ¢) X exp(~b X z[k]);
E squared := 0;
for ¢ := 1 step 1 until n do
E squared := E squared +
Wkl — ¢ — a X exp® X z1)) 72,
if [= 1 then go to retry;
if abs(save — E squared) < epstlon
then go to 73
else if [< [max
then go to retry
else go to unfurl;
retry: save := E squared;
end computation of corrected values of a, b, and ¢;
unfurl: flag 1= 1;
73: end constrained least squares fit to y = a X exp(db X x) +

ALGORITHM 277

COMPUTATION OF CHEBYSHEV SERIES

COEFFICIENTS {C6)

Lyie B. Smrra (Recd. 15 July 1965, 23 July 1965 and 20
Sept. 1965)

Stanford University, Stanford, California

procedure CHEBCOEFF (F, N, ODD, EVEN, A);
value N;
Boolean ODD, EVEN,
integer N;
real procedure F;
array 4;
comment This procedure approximates the first N41 coeffi-
cients, a, , of the infinite Chebyshev series expansion of a func-
tion F'(z) defined on [—1, 1].

0,

F@) = 2. auTu(®),)
n=0
where D’ denotes a sum whose first term is halved, and 7',(x)
denotes the Chebyshev polynomial of the first kind of degree =,
defined by

T,.(z) = cos nb, x = cos @ n=20,1,2,--4).

The truncated series Z',.‘lo a.To(x), gives an approximation to
F{(z) which has maximum error almost as small as that of the
“best’’ polynomial approximation of degree N, see [1]. In this
procedure the coefficients, @, , are closely approximated by
Bn,x, n = 0Q1)N, which are the coefficients of a ‘Lagrangian”
interpolation polynomial coincident with F(z) at the points
zi , © = 0(1)N where z; = cos(xi/N), see [2]. The B, x are given
by

2 N 9 N
Buy = = 2" F@)Talzs) == 2" Fla)Ti(zy),
N =0 N i=0
where >_” denotes a sum whose first and last terms are halved.
The B, ,» are evaluated by a recurrence relation described by
Clenshaw in [1] and improved by John Rice [5]. This recurrence
relation can also be used to evaluate the truncated series,
> s a.Ta(z), once CHEBCOEFF has found values for the
coefficients. For even N a relation between B,y and B, »
(pointed out by Clenshaw [3, p. 27]) is used in computing B, ~ .

Volume 9 / Number 2 / February, 1966

For large N, B,y is very close to a. . In [2] the relation is given
as

Bn,N = a, + Z:;l (a2pN—n + a2pN+n)- (2)

This shows that By~ approximates ay quite well for large N
since from (2) we see that

Byy =ay + av + -+ . (3)

For even N a simple check on the accuracy is available. Since
the relation

n = 01)N/2—1)

Bn.N = Bn.NIZ et BN—n,N)
is used in the computation, the difference
B, xw — Bun = By_ay, ®)

which measures in some sense the accuracy of the approxima-
tion, is available to the user. For instance, in the example below
with N = 8 the number A[7] is the difference between A[1] for
N = 4 and A[l] for N = 8.

ParaMETER ExpraNaTION. If the function F is odd or even
then the Boolean parameters ODD or EVEN should be true
respectively in which case every other coefficient in the array
A will be zero. The array A will contain the coefficients of the
truncated series with N1 terms.

ExampLe. For the function F(z) = e the following values
were computed for A[n] with N = 4 and N = 8. The computations
were done using this procedure written in Extended Avncor for
the Burroughs B5500 computer. Also shown are computed values
for the coefficients of the ‘“best’’ polynomial of degree 8 from [4]
(digits differing from the correct result are in italics).

A[n) with N = 4 | A[n] with N = 8 |“Best” ap from [4]|Correct ay, from [1}

=

17555(2.53213
8208011.13031

175552.53213
82080(1.13031

2.53213 21539/2.53213
1.13032 14175]1.13031

0 17555
1 82080
210.27164 08174(0.27149 53395|0.27149 53395/0.27149 53395
3(0.04487 97762|0.04433 68498/0.04433 68498/0.04433 68498
4/0.00547 42404/0.00547 42404(0.00547 42404(0.00547 42404
5 0.00054 29263/0.00054 29263/0.00054 29263
6 0.00004 49779(0.00004 49773|0.00004 49773
7 0.00000 32095(0.00000 31984/0.00000 31984
8 0.00000 01992i0.00000 019980.00000 01992;

begin
integer ¢, m, N2, 81, 82, 7'1;
real b0, b1, b2, pi, TWOX, FXN2;
array FX, X[0:N];
Boolean TEST;
pi 1= 3.14159265359;
N2 := N + 2;
comment If N is even TEST is set to true;
if 2 X N2 = N then TEST := true
else TEST := false;
comment Compute the necessary function values;
for ¢ := 0 step 1 until N do
begin
X[4] := cos(pz X 1/N);
FX[i] := F(X[D;
end;
S2:=1; 81 :=0;
comment If F(z) is odd or even initialize accordingly;
if ODD then

begin
for m := 0 step 2 until N do
A[m] := 0;
S2:=2; S81:=1;
end else

Volume 9 / Number 2 / February, 1966

if EVEN then

begin
for m := 1 step 2 until N do
A[m] := 0;
82 :=2; 81 :=0;
end;
comment If TEST is true the coefficients are computed in
two steps;

FXN2 := FX[N]/2.0;
if TEST then

begin
for m := S1 step S2 until N2 do
begin
bl := 0;
b0 := FXN2;

TWOX := 2.0 X X[2 X m];
for ¢ := N—2 step —2 until 2 do

begin
b2 := bl; bl := bO;
b0 := TWOX X b1—b2 + FX[i];
end;
Alm] := 2.0 X (X[2Xm]xb0—~b14-FX[0]/2.0)/N2;
end;
A[N2] := A[N2]/2.0;
T1 := 81,
if ODD \/ EVEN then
begin

if2X (N2 +2) = N2
then 81 := N2 + 2 — 81
else S1 := N2 4+ 1 + S1;
end
else S1 := N2 + 1;
end;
comment Compute the desired coefficients;
for m := 81 step S2 until N do

begin
bl := 0;
b0 := FXN2;

TWOX := 2.0 X X[m];
for i := N—1 step — 1 until 1 do

begin
b2 := bl; bl := bO;
b0 := TWOX X bl — b2 + FXi];
end;
Aim] 1= 2.0 X (X[m]Xb0—b1+FX[0]/2.0)/N;
end;
if TEST then
begin

for ¢ := T1 step 82 until N2—1 do
Ald] := A[f] — A[N—4);
end;
A[N] := A[N]/2.0;
end CHEBCOEFF

REFERENCES:

1. Cuensuaw, C. W. Chebyshev Series for Mathematical Func-
tions. MR 26 %362, Nat. Phys. Lab. Math. Tables, Vol. 5,
Dep. Sci. Ind. Res., Her Majesty’s Stationery Off., London,
1962.

2. Evutorr, D. Truncation errors in two Chebyshev series
approximations. Math. Comp. 19 (1965), 234-248.

3. Crensaaw, C. W. A comparison of “best’’ polynomial ap-
proximations with truncated Chebyshev series expansions.
J.SIAM {B}, 1 (1964), 26-37.

4. Computed values by Dr. C. L. Lawson. (private communica-
tion)

5. Rice, JouN. On the conditioning of polynomials and rational
forms. (submitted for publication).

Communications of the ACM 87

ALGORITHM 278 for j := 1 step 1 until S do plot[i,j] := 1;

GRAPH PLOTTER [J6] for 7 := 2 step 1 until L—1 do
P. Lroyp (Recd. 4 June 1965) ,ff?;’” 1:?11’ 8 dotpl%[;’é] =1
i = en go to H
Queen Mary College, London, England for i := 1 step 1 until m do
procedure graphplotter (N, z, y, m, n, zerror, yerror, g, L, S, EM, for j := n step —1 until 1 do
C0, C1, C2, C3, C4, label); plot[1+-entier (0.5+pX (x[¢]—zmin)),
value N, m, n, zerror, yerror, g, L, S; 14-entier (0.5+¢X (yl¢,j1—ymin))] 1= j+2;
array z, ¥; plotter:
integer N, g, m, n, L, 8; for ¢ := 1 step 1 until L do
real zerror, yerror; begin
string EM, C0, C1, €2, C3, C4; NEWLINE(N,1); SPACE(N.g);
label label; comment NEWLINE and SPACE must be declared
comment This procedure is intended to be used to give an ap- globally to graphplotter, NEWLINE(N,p) outputs p car-
proximate graphical display of a multivalued function, y[z, j] of riage returns and p line feeds on channel N, SPACE(N,p)
z[z], on a line printer. Output channel N is selected for all out- outputs p blank character positions on channel N;
put from graphplotier. The display is confined to points for which for j := 1 step 1 until S do
1<i<mandl<j<nwhere2<n<4.Ifn =1 thenyis begin
considered to be a one-dimensional array yii] and the display is switch SW = SW1, SW2, SW3, SW4, SW5, SW6;
again given for 1 € ¢ < m. The format of the print out is ar- go to SWiplotli,j1];

ranged so that a margin of g spaces separates the display from SW1: outstring(N,EM); go to fin;
the left-hand side of the page. I and 8 denote the number of SW2: outstring(N,C0); go to fin;
lines down the page and the number of spaces across the page SW3: outstring(N,C1); go to fin;
which the display will occupy. The graph is plotted so that lines SW4: outstring(N,C2); go to fin;

1 and L correspond to the minimum and maximum values of z, SW5: outstring(N,C3); go to fin,
and the spaces 1 and 8 correspond to the minimum and maxi- SW6: outstring(N,C4);
mum values of ¥, that is, y is plotted across the page and x down fin:
the page. After the graph has been plotted, the ranges of z and end
y for which the display is given are printed out in the order as end of display output;
above, separated from the display by a blank line. The strings NEWLINE(N,2); SPACE(N.y); outreal(N,xmin);
EM --- (4 must be such that they occupy only one character outreal (N xmazx) ;
position when printed out. The characters of C1 C2 C3 C4 repre- outreal (N ymin); outreal (N ymaz);
sent y[z,1] y[4,2] y(4,3] yli,4]. EM is the character printed out go to end;
round the perimeter of the display. CO is printed at empty N1A:
positions. At coincident points the order of precedence of the ymax = ymin = yfl];
characters is C1 C2 C3 C4 EM C0. For the special case n=1 the for 1 := 2 step 1 until m do
character C1 represents y[¢]. Control is passed from the pro- begin
cedure to the point labeled label if the interval between the if y[¢] > ymaz then ymazx = y[il;
maximum value and minimum values of z[¢] is less than zerror, if yli] < ymin then ymin = ylil
or if the range of ¥ is less than yerror. If the values of z[7] occur end of hunt for maximum and minimum values of y when
at equal intervals, choosing L=m will make one line equivalent n =1
to one interval of z; go to escape;
begin N1B:
real p, ¢, xmaz, Tmin, ymax, ymin; for ¢ := 1 step 1 until m do
integer i, j; plot[l+4-entier (0.5+pX (z[i]—azmin)),
integer array plot[1:L,1:8]; Y4-entier (0.54+¢X (ylt]l—ymin))] := 3;
zmax 1= zmin = z{l]; go to plotter;
for ¢ := 2 step 1 until m do end:
begin end of graphplotter
if z[z} > zmaz then zmaex = zlil;
if z[i] < zmin then zmin := z[7]

end of hunt for maximum and minimum values of z;
if n=1 then go to N1A4;
ymaz 1= ymin = y[1,1];

1966 CONFERENCE DATES

for 7 := 1 step 1 until m do

for j := 1 step 1 until n do

begin ACM SYMSAM March 29-31 WASHINGTON
if y[2,7]1 > ymaz then ymaz = yli,jl;
if yligl < ymin then ymin = yli,j] SPRING JCC April 26-28 BOSTON

end of hunt for maximum and minimum values of y;
S —zmi error —yma

escape: if abs(zmaz—zmin) < zerror \/ abs(ymax—ymin) < ACM 66 August 30-Sept. 1 LOS ANGELES

yerror then go to label;

p := (L—1)/(@@maz—amin); q := (S—1)/(ymaz—ymin);

for i := 1 step 1 until L do FALLJCC November 8-10 SAN FRANCISCO
for j := 1 step 1 until S do plot[i,j] 1= 2;

for?:=1,L do

88 Communications of the ACM Volume 9 / Number 2 / February, 1966

