ALGORITHM 279
CHEBYSHEV QUADRATURE [D1]

F. R. A. Hopcoop and C. LitaErLAND (Recd. 31 July
1964, 1 Dec. 1964, 16 Aug. 1965 and 29 Nov. 1965)
Atlas Computer Laboratory, S.R.C., Chilton, Berks,

England

real procedure cheb(a, b, error, nmaz, f);
value a, b, error, nmaz; reala, b, error; integer nmaz; real
procedure f;
comment This routine evaluates the integral of f(z) with lower
and upper limits set to ¢ and b respectively. The method is
that suggested by Curtis and Clenshaw [Num. Math. 2 197-205
(1960),}. The method consists of fitting 2 T » 4 1 point Cheby-
shev polynomial to integrand and thus finding integral. = is
tried equal to 2 and increased by 1 if error, the relative error,
is too large. If n reaches maximum nmaz without required ac-
curacy obtained a message is printed. Accuracy is determined by
assuming that error is less than the contribution to the integral
of the last term in the integrated Chebyshev polynomial. After
n = 2 has been tried, an estimate of the integral is available
and subsequently the last term in the Chebyshev polynomial is
found first and this saves evaluating whole polynomial if ac-
curacy not obtained. An extra check is that the next two terms
are also tested allowing up to 8 times error on previous term in
each case. A reasonable value for nmaz is probably 7. Integrals
requiring many more points than this would probably be better
tackled using some method which subdivides the range. Also
the temporary storage required increases considerably for larger
values of nmaz. For example nmaz = 10 requires 2048 words;
begin
real arminl, araddl, bmina, badda, br, bsum, cs, csaddl, csadd2,
esterr, x, estint, tnidv2, twodvn, twolr, verror;
integer j, k, m, r, s, mmaz, mmazd2, rk;
k= 21 (nmax — 2);
mmazd2 1= 2 X k;
mmaz = 2 X mmazd2;
begin
real array func, cosine [0:mmazx];
bming := .5 X (b—a);
badda := .5 X (bXa);
twodvn := 1; m := 4;
comment m--1 is number of points used in Chebyshev fit;
start: lwodvn := .5 X twodvn;
bsum := araddl := 0;
k:=k+2;
j = if m = 4 then 0 else k;
frretn: if j £ mmaxd2 then
begin
costne [§] := if m = 4 then cos (3.14159265 X j/mmax)
elseifj = k then sqrt (1 + cosine[2 X 71)/2)
else (cosine[j — k] + cosinelj + k1)/(2 X cosinelk]);
cosine [mmazxz — j]| := —cosinelj]
end;
z := bmina X cosine [§] + badda;

]
3
|
. i A
BEAY 3 e 2 ; j
J. G. HERRIOT, Editor

comment Evaluates remaining values of integrand required
storing .5 X lower bound for easier use in Cr recurrence
formula;

if mmaz = j then go to fnrein;

ifm =4thenk :=2Xk;

verror 1= error;

roi=m;

rk 1= mmaz;

comment verror is the error allowed in Chebyshev coefficient
compared with estimate of integral;

brretn: twotr := 2 X cosine[rk];

csadd2 := 0;
csaddl := 0;
s 1= mmazc;

cretn: cs := twotr X csaddl — csadd2 + funcls];

if s > 0 then

begin
csadd2 := csaddl;
csaddl := cs;
s:=8—k;
go to crein

end recurrence to evaluate next Chebyshev coefficient of
original function;
arminl 1= .5 X twodvn X (cs — csadd2) X (if r = m then
5 else 1.0);
br := .5 X (arminl — araddl)/(r + 1);
comment bris Chebyshev coefficient of integrated function;
bsum := bsum + br;
araddl := arminl;
comment integral = (b —a) X (b1 + b3 + --- 4.5 X bn);
if r = m then esterr := br;
comment error assumed less than last term added in br sum;
if m = 4 7433 m = mmax 7433 r = m — 4 then

begin
if abs(br) = verror X estint then
begin
newm: m : = 2 X m;
go to start
end;
verror := 8 X verror

end Checks last 3 coefficients to ensure within allowed
error bounds;
if r 0 then
begin
=71 — 2
rh =1k —2Xk;
go to brrein
end;
intdv2 := bsum X bmina;
estint := abs(bsum);
if error X estint < abs(esterr) then
begin
if m = mmax then go to newm;
outstring (1, ‘Accuracy not obtained’);
end;
cheb := 2 X intdv2

func [§] := ifj = mmaz then .5 X f(z) else f(x);
Jr=2Xk+7;

270 Communications of the ACM

end
end cheb

Volume 9 / Number 4 / April, 1966



ALGORITHM 280

ABSCISSAS AND WEIGHTS FOR GREGORY
QUADRATURE [D1]

Joun H. WeLsca (Reed. 27 Apr. 1965, 14 May 1965, 14
Sept. 1965 and 9 Dec. 1965)

Computation Center, Stanford University, Stanford, Cali-
fornia

procedure gregoryrule (n, v, ¢, w);
value n, r; integer n, r; real array {, w;

comment Computes the abscissas and weights of the Gregory

Revised Algorithms Policy « May, 1964

A contribution to the Algorithms department must be in the form of
an algorithm, a certification, or a remark. Contributions should be sent in
duplicate to the editor, typewritten double-spaced in capital and lower-case
Ietters. Authors should carefully follow the style of this department, with
especial attention to indentation and completeness of references. Material
to appear in boldface type should be underlined in black. Blue underlining
may be used to indicate dtalic type, but this is usually best left to the Editor.
An algorithm must be written in the Avgon 60 Reference Language
{Comm. ACM 6 (Jan. 1963), 1-17}, and normally consists of a commented pro-
cedure declaration. Each algorithm must be accompanied by a complete
driver program in ArcoL 60 which generates test data, calls the procedure,
and outputs test answers. Moreover, selected previously obtained test answers
should be given in comments in either the driver program or the algorithm.
The driver program may be published with the algorithm if it would be of
major assistance to a user.
Input and output should be achieved by procedure statements, using
one of the following five procedures (whose body is not specified in Aragowr):
[see “Report on Input-Output Procedures for ALGOL 60,” Comm, ACM 7
(Oct. 1964), 628-629].
procedure inreal (ch l, destination); value ch I; integer ch l;
real destination; comment the number read from channel ckannel is as-
signed to the variable desiination; . . . ;

procedure oulreal (channel, source); value channel, source; integer channel;
real source; comment the value of expression source is output to channel

channel; ... ;
procedure ininteger (ch 1, destination);
value ch 1; integer ch 1, destination; . .. ;

procedure outinteger (channel, source);
value channel, source; integer channel, source;. .. ;
procedure outsiring {(channel, siring); value channel; integer channel;

string string; ... ;
If only one channel is used by the program, it should be designated by 1.
Examples:

oulstring (1, ‘z =’); outreal (1, z);
for ¢ := 1 step 1 until n do outreal (1, Ali]);
ininteger (1, digit [17]);

It is intended that each published algorithm be a well-organized, clearly
commented, syntactically correct, and a substantial contribution to the
AwrgoL literature. All contributions will be refereed both by human beings
and by an ArLGoL compiler. Authors should give great attention to the cor-
rectness of their programs, since referees cannot be expected to debug them.
Because ALGOL compilers are often incomplete, authors are encouraged to
indicate in comments whether their algorithms are written in a recognized
subset of ALaoL 60 {see “Report on SUBSET ALGOL 60 (IFIP),” Comm.
ACM 7 (Oct, 1964), 626-627].

Certifications and remarks should add new information to that already
published. Readers are especially encouraged to test and certify previously
uncertified algorithms. Rewritten versions of previously published algo-
rithms will be refereed as new contributions, and should not be imbedded
in certifications or remarks.

Galley proofs will be sent to the authors; obviously rapid and eareful
proofreading is of paramount importance.

Although each algorithm has been tested by its author, no liability is as-
sumed by the contributor, the editor, or the Association for Computing
Machinery in connection therewith.

The reproduction of algorithms appearing in this department is explicitly
permitted without any charge. When reproduction is for publication pur-
poses, reference must be made to the algorithm author and to the Communi-
cations issue bearing the algorithm.—G.E.F.

Volume 9 / Number 4 / April, 1966

quadrature rule with r differences:

in 1 1 h
Ff@ dt = h(éfo + i+ foa +§f") —E(an— ASo)

to

h
~ 5 (Vn + AYo) — -+ — herna(Vfa + ATf0)

= Z w.‘ff(ti);
=0
where & = (¢, — 0)/n, and the ¢;* are given in Henriei [1964]. The
number 7 must be an integer from 0 to n, the number of sub-
divisions. The left and right endpoints must be in ¢[0] and ¢[n]
respectively. The abscissas are returned in ¢[0] to ¢[n] and the
corresponding weights in w[0] to w[n].

If r = 0 the Gregory rule is the same as the repeated trapezoid
rule, and if r = » the same as the Newton-Cotes rule (closed
type). The order p of the quadrature rule is'p = r 4+ 1 for r
odd and p = r 4 2 for r even. For n = 9 and large r some of the
weights can be negative.

For n £ 32 and r < 24, the numerical integration of powers
(less than r) of x on the interval [0, 1] gave 9 significant digits
correct in an 11-digit mantissa. Since the binomial coefficients
are generated in the local integer array b, integer overflow may
occur for large values of r. The type of b ean be changed to real
to prevent this with no change in the results stated above.
REFERENCES:

Hivpesranp, F. B. Introduction to Numerical Analysis.

MecGraw-Hill, New York, 1956, p. 155.
Henrici, PETER. FElements of Numerical Analysis. Wiley,
New York, 1964, p. 252.;
begin integer 7, j; real h, cj;
integer array b[0: n]; real array ¢[0: n + 1];
b[0] :=1; ¢[0] := 1.0; ¢[l1] := —0.5; bn] :=0;
h = (f[n] — ¢0])/n; w[0] := wn] := 0.5;
for 7 := n—1step —1 until 1 do

begin w[i] := 1.0; ¢Z] ;=< X h +¢[0]; B[] := 0end;
if r > n then r := n;
for j := 1 step 1 until r do
begin c¢f := 0.5 X ¢[j];

for 7 := j step —1 until 1 do b[i] := b[¢] — bl—1];

for 7 := 3 step 1 until j 4+ 2 do ¢j := ¢j + clj+2—1)/7;

efi+1] := —cj;

for 7z := 0 step 1 until » do

wli] := wli] — ¢f X (b[n — 7] + b4]);
end;
for 7 := 0 step 1 until n do w{z] := w[i] X h
end gregoryrule

ALGORITHM 281

ABSCISSAS AND WEIGHTS FOR ROMBERG
QUADRATURE [D1]

Joun H. WeLscH (Recd. 27 Apr. 1965, 14 May 1965, 14
Sept. 1965 and 9 Dec. 1965)

Computation Center, Stanford University, Stanford, Cali-
fornia

procedure rombergrule (n, p, t, w);
value n, p; integer n, p; real array ¢, w;

comment Computes the abscissas and weights of the pth order
Romberg quadrature rule which features equally spaced ab-
scissas and positive weights lying between 0.484 X h and 1.4524

X h (h = subdivision length). The number of subdivisions n
must be a power of 2 (say 27 ¢) and p an even number from 2 to

Communications of the ACM 271



2¢+2. Romberg integration is normally given as the extrapola-
tion to the limit of the trapezoid rule. Let

1 1
T = h (Efo +fit s s fz"), and T
AT = T

4m — 1

H

then the Romberg quadrature rule gives

tn n
f F@ dt = TS = 3 w5,
to =0

wheren = 22, m = (p — 2)/2, and & = g—m. The left and right
endpoints must be in ¢[0] and ¢[n] respectively. The abscissas
are returned in £[0] to £[n] and the corresponding weights in
w[0] to win].

If p = 2 the Romberg rule is the same as the repeated trape-
zoid rule, and if p = 4, the same as the repeated Simpson rule.

For n = 128 and p £ 16, the numerical integration of powers
(less than p) of z on the interval [0, 1] gave answers correct to
one round off error in an 11-digit mantissa.
REFERENCE: Bauer, F. L., Rutishauser, H., and Stiefel, E.
New aspects in numerical quadrature. Proc. of Symp. in Appl.
Math., Vol. 15: High speed computing and experimental arith-
metic. Amer. Math. Soc., Providence, R. I., 1963, pp. 199-218;

begin integer 7, j, m, ml, m4, s;

real h, ¢ct; real array c[0: (p — 2)/2];
k= (t[n] — t[0])/n; w[0] := w[n] := 0;
for ¢ := n—1 step —1 until 1 do

begin w[i] := c[7] :=0; t[z] ;=17 X kh 4 ¢[0] end;

m = (p — 2)/2; ¢[0] :=1.0; s:=md:=1; ¢[n]:=0;
if m > In(n)/ln(2) then m := ln(n)/In(2);
for j := 1 step 1 until m do
begin m4 := 4 X m4; ml :=md —1;
for ¢ := j step —1 until 1 do
clz] := (md X cl[i] — ¢[t — 1])/ml;
¢[0] := ¢[0] X (m4/ml);
end;
for ¢ := 0 step 1 until m do
begin ¢z := c[i] X s;
for j := 0 step s until n do w[j] := wijl+ci;
s =2Xs
end;

w[0] := wln] := 0.5Xw|[0];
for j := 0 step 1 until n do w[j] := w[j] X A;
end rombergrule

ALGORITHM 282

DERIVATIVES OF e*/x, cos (x)/x, AND sin (z)/z*
[S22]

Wavrter GavurscHl (Reed. 19 Aug. 1965)

Argonne National Laboratory, Argonne, Ill,
* Work performed under the auspices of the U.S. Atomic Energy
Commission. Author’s present address is Purdue University.

procedure dsubn(z, nmaz, d);
value z, nmaz; integer nmax; real z; arrayd;
comment This procedure generates the derivatives

dn 2
du(z) = —(E‘> (n=0,12 -, nmax)
do* \ x

using the recurrence relation
dn(z) = (e® — ndn(2))/x

The results are stored in the array d. If z = 0, there is an error

(n= 1)2131 e )

272 Communications of the ACM

exit to a global label called alarm;
begin integer n; real ¢;

if z = 0 then go to alarm;

e := exp(z); d[0] := e/x;

for n := 1 step 1 until nmaz do
dln] := (e - n Xdn —1))/z
end dsubn;

procedure csubn(z, nmaz, ¢);
value z, nmaz; integer nmaz; realz; arrayc;
comment This procedure obtains the derivatives

dn
enlz) = (co: x) (n=0,12---, nmax)

da
from the recurrence relation
en(x) = (ro(z) — nena@))/x (n =1,2,3,--+),

where {ra(2)}n-1 = {—sinz, —cosz, sin x, cosz, —sin x, ++-}.
The results are stored in the array ¢. If £ = 0, there is an error
exit to a global label called alarm;
begin integer n; array taull: 4];
if z = 0 then go to alarm;
tau[l] := —sin(x); taul2] := —cos(x);
taul3] := —tau[l); taufd) :
¢[0] := tauld]/x;
for n := 1 step 1 until nmazx do
cln] := (lauln—4X ((n—1) + 4)] — nXc[n—1])/z
end csubn;
procedure ssubn(z, nmaz, d, 8);
value z, nmaz,d; integer nmaz,d; real z; array s;
comment This procedure generates to d significant digits the
derivatives

[
!
g
<
s

dr [sinx
so(z) = d—x"( - ) (n =0,1,2,- -, nmax),
and stores the results in the array s. The method of computation
is based on the recurrence relation

su(@) = (on(z) — n8aa(@))/x n=1,23, ---),

where {0,(2)}n1 = {cos x, —sin z, —cos T, sin z, €OS T, -+ }.
The recurrence relation is applied in forward direction as long
as n = |z], and in backward direction for the remaining values
of n, starting with an appropriately large n = ». A detailed dis-
cussion of the method will be published elsewhere. It is assumed
that a global real procedure ¢(y) is available, which evaluates
the inverse function ¢ = ¢(y) of y = ¢ In ¢ to low accuracy for
y = 0. (See W. Gautschi, Algorithm 236, Bessel functions of
the first kind, Comm. ACM 7 (Aug. 1964), 479 Gautschi, W.
Computation of successive derivatives of f (2)/z, in press;
begin integer n, n0, nu; realzl,dl, sl; array sigma [1:4];

zl := abs(x);
sigma [1] := cos(z); sigma [2] := —sin(z);
sigma [3] := —sigma [1]; sigma [4] := —sigma [2];

n0 := entier (x1); s[0] := ifz # 0 then sigma [4]/z else 1;
for n := 1 step 1 until if n0 £ nmaz then 10 else nmax do

sln] := (sigmaln — 4 X ((n — 1) = 4)] — n X s[n — 1)) /z;
if n0 < nmaz then
begin

sl :=0; dl := 23026 X d + .6931;

nu = if nmaz £ 2.7183 X z1 0 then

1 4 entier (2.7183 X 21 X t(.36788 X dl/x1)) else
1 + entier (nmazx X t(dl/nmaz));
for n := ny step —~1 until 2042 do

begin
sl := (sigma[n — 4 X ((n — 1) = 4)] — = X sl)/n;
if n £ nmaz + 1 then s{n—1] := sl
end
end
end ssubn

Volume 9 / Number 4 / April, 1966



ALGORITHM 283

SIMULTANEOUS DISPLACEMENT OF POLYNO-
MIAL ROOTS IF REAL AND SIMPLE [C2]

Immo O. KernNeERr (Recd. 8 Sept. 1965 and 12 Nov. 1965)

Rechenzentrum Universitaet Rostock

procedure Prrs (A, X, n, eps); value n, eps;
integer n; real eps; array A, X;

comment Prrs (polynomial roots real simple) computes the n
roots X of the polynomial equation

Anx" + An—lx”_l + -+ A-O =0

simultaneously. On entry the array X contains the vector of
initial approximations to the roots and on exit it contains the
vector of improved approximations to the roots. The initial
approximations must be distinet. Accuracy is specified by means
of a parameter eps. Iteration is continued until the Euclidean
norm of the correction vector does not exceed eps. The con-
vergence is quadratic;
begin integer 7, k; real z, P, Q;
eps 1= epsT2;
W: @ := 0;
for 7 := 1 step 1 until n do
begin z := P := Aln];
fork := 1lstep 1 until n do
begin z := z X X[¢] + Aln — k];
ifk 52 7 then P := P X (X[7]—-XI[k])
end;
X[7] := X[i]—=z/P;
Q:=Q+ (/P)T2
end;
if Q@ > epsthengoto W
end

CERTIFICATION OF ALGORITHM 9 [D2]

RUNGE-KUTTA INTEGRATION [P. Naur et al,
Comm. ACM 3 (May 1960), 318]

Hexry C. THACHER, JR. (Recd. 28 July 1964 and 22 Nov.
1965)

Argonne National Laboratory, Argonne, Iil.

Algorithm 9 was transcribed into the hardware representation
for CDC 3600 ALgoL and run successfully. The following procedure
was used for the global procedure comp:
real procedure comp (a,b,c); valuea,b,c;
begin integer AE, BE, CE;
integer procedure expon(z); real z;
comment This function produces the base 10 exponent of z;
expon := if z = 0 then —999 else
entier (4342944819 X In(abs(z)) + 1);

comment The number —999 may be replaced by any number
less than the exponent of the smallest positive number handled
by the particular machine used, for this algorithm assumes
that true zero has an exponent smaller than any nonzero
floating-point number. Users implementing real procedure
comp by machine code should make sure that this condition

reala, b, c;

AE := expon(a); BE := expon(b);
if AE < BE then AFE := BE;
comp :=abs(a — b)/10 1 AE

end

CE := expon(c);
if AF < CE then AE := CE;

3

This has the advantage of machine independence, but is highly
inefficient compared to machine code.

The procedure was tested using the two following procedures
for FKT':

procedure FKT (X, Y, N, Z); real X; integer N; array
Y, Z;

comment (dy/dx) = 21 = y», (dyfdx) = 22 = —y, . With
y1(0) = 0, 1(0) = 1, the solution is y, = sinx, y» = cos z;

begin Z (1] := Y [2]; Z [2] := —Y [1] end;

procedure FKT (X, Y, N, Z); real X; integer N; array
Y, z;

comment (dyi/dx) = 1 + y. For 41:(0) = 0, y(z) = tanz;

Z[1]:=14Y[1112;

The RK procedure was used to integrate the differential equa-
tions represented by the first FKT procedure from z = 0(0.5)7.0,
with eps = eta = 1078, and with %,(0) = 0, ¥:(0) = 1. The actual
step size A was .0625 for most of the range, but was reduced to
.03125 in the neighborhood of £ = kx/2, where one or the other of
the solutions is small.

The computed solutions at 2 = 7.0 were: y; = 6.5698602746
X 107L, yo = 7.5390270246 X 1071, with errors —5.71 X 107 and
4.48 X 1077, respectively.

Results for the second differential equation are summarized in
Table I below.

The efficiency of the procedure would be increased slightly on
most computers by changing the type of the own variable s from
real to integer.

The error is estimated by comparing the results of successive
pairs of steps with that of a single double step. This is somewhat
more time-consuming than the Kutta-Merson process presented
in Algorithm 218 [Comm. ACM 6 (Dec. 1963) 737-8]. However,
the criterion for step-size variation in Algorithm 9 which effec-
tively applies an approximate relative error criterion, eps, for
lyl > ela, and an absolute error criterion eta X eps, for Jy| < eta,
appears superior when the solution fluctuates in magnitude,

REMARK ON ALGORITHM 218 [D2]

KUTTA-MERSON [Phyllis M. Lukehart, Comm. ACM 6
(Dec. 1963), 737]

G. Baver (Reed. 25 Oct. 1965)

Technische Hochschule, Braunschweig, Germany

Successive calls of Kutla Merson with first = false do not reach
the upper bound ¢+% if the interval & is unequal to the interval
h of the first call with firsi = true.

Proposed correction:

1) declaration real k¢, instead of own real hc;
2) if first then begin for 7 := 1 step 1 until n do y0[¢] := y[i];
he :=h; ploc :=1; first := false
end else hc := h/ploc;

is satisfied by their program; instead of if first then begin --- end;
TABLE I [ALG. 9]
x = 0.5 z = 1.0 x =15
7 bmin Absolute error Relative error Bmin | Absolute errvor | Relative error kmin Absolute ervor Relative error
107 1073 .03125 -1 X 107% | —2 X 107 .03125 9 X 108 6 X 1078 | .00390625 | —1 X 107¢ | —8 X 108
108 103 125 —5 X 1077 | -9 X 1077 0625 8 X 1077 5 X 1077 || .0078125 —2 X 10| —1 X 1075
1073 1073 .25 —1X 1075 | —2 X 1075 .25 —2 X 10| —1 X 10| .03125 —3 X102 | -2 X 10
VYolume 9 / Number 4 / April, 1966 Communications of the ACM 273



