G. HERRIOT, Editor ``` comment Evaluates remaining values of integrand required ALGORITHM 279 CHEBYSHEV QUADRATURE [D1] formula: F. R. A. HOPGOOD and C. LITHERLAND (Recd. 31 July 1964, 1 Dec. 1964, 16 Aug. 1965 and 29 Nov. 1965) Atlas Computer Laboratory, S.R.C., Chilton, Berks, verror := error; r := m; England rk := mmax; real procedure cheb(a, b, error, nmax, f); value a, b, error, nmax; real a, b, error; integer nmax; real procedure f; comment This routine evaluates the integral of f(x) with lower csadd2 := 0; and upper limits set to a and b respectively. The method is csadd1 := 0; that suggested by Curtis and Clenshaw [Num. Math. 2 197-205 s := mmax; (1960),]. The method consists of fitting 2 \uparrow n + 1 point Cheby- if s \neq 0 then shev polynomial to integrand and thus finding integral. n is tried equal to 2 and increased by 1 if error, the relative error, begin is too large. If n reaches maximum nmax without required ac- curacy obtained a message is printed. Accuracy is determined by assuming that error is less than the contribution to the integral of the last term in the integrated Chebyshev polynomial. After go to cretn n = 2 has been tried, an estimate of the integral is available and subsequently the last term in the Chebyshev polynomial is found first and this saves evaluating whole polynomial if ac- .5 else 1.0); curacy not obtained. An extra check is that the next two terms are also tested allowing up to 8 times error on previous term in each case. A reasonable value for nmax is probably 7. Integrals requiring many more points than this would probably be better tackled using some method which subdivides the range. Also the temporary storage required increases considerably for larger values of nmax. For example nmax = 10 requires 2048 words; real armin1, aradd1, bmina, badda, br, bsum, cs, csadd1, csadd2, esterr, x, estint, intdv2, twodvn, twotr, verror; begin integer j, k, m, r, s, mmax, mmaxd2, rk; begin k := 2 \uparrow (nmax - 2); mmaxd2 := 2 \times k; mmax := 2 \times mmaxd2; end: begin real array func, cosine [0:mmax]; bmina := .5 \times (b-a); badda := .5 \times (b \times a); twodvn := 1; m := 4; if r \neq 0 then comment m+1 is number of points used in Chebyshev fit; begin start: twodvn := .5 \times twodvn; bsum := aradd1 := 0; k := k \div 2; end; j := if m = 4 then 0 else k; firetn: if j \leq mmaxd2 then ``` ``` storing .5 \times lower bound for easier use in Cr recurrence if mmax \ge j then go to fnretn; if m = 4 then k := 2 \times k; comment verror is the error allowed in Chebyshev coefficient compared with estimate of integral; brretn: twotr := 2 \times cosine[rk]; cretn: cs:=twotr \times csadd1-csadd2+func[s]; csadd2 := csadd1; csadd1 := cs; s := s - k; end recurrence to evaluate next Chebyshev coefficient of original function; armin1 := .5 \times twodvn \times (cs - csadd2) \times (if r = m then br := .5 \times (armin1 - aradd1)/(r + 1); comment br is Chebyshev coefficient of integrated function; bsum := bsum + br; aradd1 := armin1; comment integral = (b-a) \times (b1+b3+\cdots+.5 \times bn); if r = m then esterr := br; comment error assumed less than last term added in br sum; if m \neq 4 7433 m \neq mmax 7433 r \geq m-4 then if abs(br) \ge verror \times estint then newm: m := 2 \times m; go to start verror := 8 \times verror end Checks last 3 coefficients to ensure within allowed error bounds; r := r - 2; rk := rk - 2 \times k; go to brretn intdv2 := bsum \times bmina; estint := abs(bsum); if error \times estint < abs(esterr) then begin if m \neq mmax then go to newm; outstring (1, 'Accuracy not obtained'); end: cheb := 2 \times intdv2 end end cheb ``` begin $j := 2 \times k + j$; func $[j] := if j = mmax then .5 \times f(x) else f(x);$ cosine [mmax - j] := -cosine[j] $x := bmina \times cosine[j] + badda;$ $cosine[j] := if m = 4 then cos (3.14159265 \times j/mmax)$ else $(cosine[j-k] + cosine[j+k])/(2 \times cosine[k]);$ else if j = k then $sqrt((1 + cosine[2 \times j])/2)$ ALGORITHM 280 ABSCISSAS AND WEIGHTS FOR GREGORY QUADRATURE [D1] John H. Welsch (Recd. 27 Apr. 1965, 14 May 1965, 14 Sept. 1965 and 9 Dec. 1965) Computation Center, Stanford University, Stanford, California procedure gregoryrule (n, r, t, w); value n, r; integer n, r; real array t, w; comment Computes the abscissas and weights of the Gregory #### Revised Algorithms Policy • May, 1964 A contribution to the Algorithms department must be in the form of an algorithm, a certification, or a remark. Contributions should be sent in duplicate to the editor, typewritten double-spaced in capital and lower-case letters. Authors should carefully follow the style of this department, with especial attention to indentation and completeness of references. Material to appear in **boldface** type should be underlined in black. Blue underlining may be used to indicate *italic* type, but this is usually best left to the Editor. An algorithm must be written in the Algol 60 Reference Language [Comm. ACM 6 (Jan. 1963), 1-17], and normally consists of a commented procedure declaration. Each algorithm must be accompanied by a complete driver program in Algol 60 which generates test data, calls the procedure, and outputs test answers. Moreover, selected previously obtained test answers should be given in comments in either the driver program or the algorithm. The driver program may be published with the algorithm if it would be of major assistance to a user. Input and output should be achieved by procedure statements, using one of the following five procedures (whose body is not specified in Algol): [see "Report on Input-Output Procedures for ALGOL 60," Comm, ACM 7 (Oct. 1964), 628-629]. procedure inreal (channel, destination); value channel; integer channel; real destination; comment the number read from channel channel is assigned to the variable destination; . . .; procedure outreal (channel, source); value channel, source; integer channel; real source; comment the value of expression source is output to channel channel; . . . ; procedure ininteger (channel, destination); value channel; integer channel, destination; . . . ; procedure outinteger (channel, source); value channel, source; integer channel, source; . . . ; procedure outstring (channel, string); value channel; integer channel; string string; . . . ; If only one channel is used by the program, it should be designated by 1. Examples: outstring (1, 'x ='); outreal (1, x); for i := 1 step 1 until n do outreal (1, A[i]); ininteger (1, digit [17]); It is intended that each published algorithm be a well-organized, clearly commented, syntactically correct, and a substantial contribution to the Algor literature. All contributions will be refereed both by human beings and by an Algor compiler. Authors should give great attention to the correctness of their programs, since referees cannot be expected to debug them. Because Algor compilers are often incomplete, authors are encouraged to indicate in comments whether their algorithms are written in a recognized subset of Algor 60 [see "Report on SUBSET ALGOL 60 (IFIP)," Comm. ACM 7 (Oct. 1964), 626-627]. Certifications and remarks should add new information to that already published. Readers are especially encouraged to test and certify previously uncertified algorithms. Rewritten versions of previously published algorithms will be refereed as new contributions, and should not be imbedded in certifications or remarks. Galley proofs will be sent to the authors; obviously rapid and careful proofreading is of paramount importance. Although each algorithm has been tested by its author, no liability is assumed by the contributor, the editor, or the Association for Computing Machinery in connection therewith. The reproduction of algorithms appearing in this department is explicitly permitted without any charge. When reproduction is for publication purposes, reference must be made to the algorithm author and to the Communications issue bearing the algorithm.—G.E.F. quadrature rule with r differences: $$\int_{t_0}^{t_n} f(t) dt \approx h \left(\frac{1}{2} f_0 + f_1 + \dots + f_{n-1} + \frac{1}{2} f_n \right) - \frac{h}{12} (\nabla f_n - \triangle f_0)$$ $$- \frac{h}{24} (\nabla^2 f_n + \triangle^2 f_0) - \dots - h c_{r+1}^* (\nabla^r f_n + \triangle^r f_0)$$ $$= \sum_{i=0}^n w_i f(t_i),$$ where $h = (t_n - t_0)/n$, and the c_j^* are given in Henrici [1964]. The number r must be an integer from 0 to n, the number of subdivisions. The left and right endpoints must be in t[0] and t[n] respectively. The abscissas are returned in t[0] to t[n] and the corresponding weights in w[0] to w[n]. If r=0 the Gregory rule is the same as the repeated trapezoid rule, and if r=n the same as the Newton-Cotes rule (closed type). The order p of the quadrature rule is p=r+1 for r odd and p=r+2 for r even. For $n\geq 9$ and large r some of the weights can be negative. For $n \leq 32$ and $r \leq 24$, the numerical integration of powers (less than r) of x on the interval [0, 1] gave 9 significant digits correct in an 11-digit mantissa. Since the binomial coefficients are generated in the local integer array b, integer overflow may occur for large values of r. The type of b can be changed to real to prevent this with no change in the results stated above. References: HILDEBRAND, F. B. Introduction to Numerical Analysis. McGraw-Hill, New York, 1956, p. 155. HENRICI, PETER. Elements of Numerical Analysis. Wiley, New York, 1964, p. 252.; begin integer i, j; real h, cj; ``` integer array b[0:n]; real array c[0:n+1]; b[0]:=1; c[0]:=1.0; c[1]:=-0.5; b[n]:=0; h:=(t[n]-t[0])/n; w[0]:=w[n]:=0.5; for i:=n-1 step -1 until 1 do begin w[i]:=1.0; t[i]:=i\times h+t[0]; b[i]:=0 end; if r>n then r:=n; for j:=1 step 1 until r do begin c[n]:=1 step 1 until 1 do c[n]:=1 step 1 until 1 do c[n]:=1; for c[n]:=1 step 1 until c[n]:=1; for c[n]:=1 step 1 until c[n]:=1; for c[n]:=1; for c[n]:=1; c[n]:=1; for ``` ALGORITHM 281 end gregoryrule end; ABSCISSAS AND WEIGHTS FOR ROMBERG QUADRATURE [D1] JOHN H. WELSCH (Reed. 27 Apr. 1965, 14 May 1965, 14 Sept. 1965 and 9 Dec. 1965) Computation Center, Stanford University, Stanford, California **procedure** rombergrule (n, p, t, w); value n, p; integer n, p; real array t, w; for i := 0 step 1 until n do $w[i] := w[i] \times h$ comment Computes the abscissas and weights of the pth order Romberg quadrature rule which features equally spaced abscissas and positive weights lying between $0.484 \times h$ and $1.4524 \times h$ (h = subdivision length). The number of subdivisions n must be a power of 2 (say $2 \uparrow q$) and p an even number from 2 to 2q+2. Romberg integration is normally given as the extrapolation to the limit of the trapezoid rule. Let $$T_0^{(k)} = h\left(\frac{1}{2}f_0 + f_1 + \dots + f_{2^k - 1} + \frac{1}{2}f_{2^k}\right), \text{ and } T_m^{(k)}$$ $$= \frac{4^m T_{m-1}^{(k+1)} - T_{m-1}^{(k)}}{4^m - 1},$$ then the Romberg quadrature rule gives $$\int_{t_0}^{t_n} f(t) \ dt = T_m^{(k)} \approx \sum_{j=0}^n w_j f(t_j),$$ where $n = 2^q$, m = (p - 2)/2, and k = q-m. The left and right endpoints must be in t[0] and t[n] respectively. The abscissas are returned in t[0] to t[n] and the corresponding weights in w[0] to w[n]. If p = 2 the Romberg rule is the same as the repeated trapezoid rule, and if p = 4, the same as the repeated Simpson rule. For $n \leq 128$ and $p \leq 16$, the numerical integration of powers (less than p) of x on the interval [0, 1] gave answers correct to one round off error in an 11-digit mantissa. REFERENCE: Bauer, F. L., Rutishauser, H., and Stiefel, E. New aspects in numerical quadrature. Proc. of Symp. in Appl. Math., Vol. 15: High speed computing and experimental arithmetic. Amer. Math. Soc., Providence, R. I., 1963, pp. 199-218; begin integer i, j, m, m1, m4, s; real h, ci; real array c[0: (p-2)/2]; $h := (t[n] - t[0])/n; \quad w[0] := w[n] := 0;$ for i := n-1 step -1 until 1 do **begin** w[i] := c[i] := 0; $t[i] := i \times h + t[0]$ **end**; m := (p-2)/2; c[0] := 1.0; s := m4 := 1; c[n] := 0;if m > ln(n)/ln(2) then m := ln(n)/ln(2); for j := 1 step 1 until m do **begin** $m4 := 4 \times m4$; m1 := m4 - 1; for i := j step -1 until 1 do $c[i] := (m4 \times c[i] - c[i-1])/m1;$ $c[0] := c[0] \times (m4/m1);$ end; for i := 0 step 1 until m do **begin** $ci := c[i] \times s$; $\mathbf{for}\ j := 0\ \mathbf{step}\ s\ \mathbf{until}\ n\ \mathbf{do}\ w[j] := w[j] + ci;$ $s := 2 \times s$ end; ### ALGORITHM 282 end rombergrule $w[0] := w[n] := 0.5 \times w[0];$ DERIVATIVES OF e^x/x , $\cos(x)/x$, AND $\sin(x)/x^*$ [S22] Walter Gautschi (Recd. 19 Aug. 1965) for j := 0 step 1 until n do $w[j] := w[j] \times h$; Argonne National Laboratory, Argonne, Ill. * Work performed under the auspices of the U.S. Atomic Energy Commission. Author's present address is Purdue University. **procedure** dsubn(x, nmax, d); value x, nmax; integer nmax; real x; array d; comment This procedure generates the derivatives $$d_n(x) = \frac{d^n}{dx^n} \left(\frac{e^x}{x}\right) (n = 0, 1, 2, \dots, nmax)$$ using the recurrence relation $$d_n(x) = (e^x - nd_{n-1}(x))/x$$ $(n = 1, 2, 3, \dots).$ The results are stored in the array d. If x = 0, there is an error ``` exit to a global label called alarm; begin integer n; real e; if x = 0 then go to alarm; e := exp(x); d[0] := e/x; for n := 1 step 1 until nmax do d[n] := (e - n \times d[n-1])/x end dsubn; procedure csubn(x, nmax, c); value x, nmax; integer nmax; real x; array c; ``` comment This procedure obtains the derivatives $$c_n(x) = \frac{d^n}{dx^n} \left(\frac{\cos x}{x}\right) (n = 0, 1, 2, \dots, nmax)$$ from the recurrence relation $$c_n(x) = (\tau_n(x) - nc_{n-1}(x))/x (n = 1, 2, 3, \cdots),$$ where $\{\tau_n(x)\}_{n=1}^{\infty} = \{-\sin x, -\cos x, \sin x, \cos x, -\sin x, \cdots\}$. The results are stored in the array c. If x = 0, there is an error exit to a global label called alarm; begin integer n; array tau[1:4]; if x = 0 then go to alarm; tau[1] := -sin(x); tau[2] := -cos(x);tau[3] := -tau[1]; tau[4] := -tau[2];c[0] := tau[4]/x;for n := 1 step 1 until nmax do $c[n] := (tau[n-4\times((n-1) \div 4)] - n\times c[n-1])/x$ end csubn; **procedure** ssubn(x, nmax, d, s);value x, nmax, d; integer nmax, d; real x; array s; **comment** This procedure generates to d significant digits the derivatives $$s_n(x) = \frac{d^n}{dx^n} \left(\frac{\sin x}{x} \right) (n = 0, 1, 2, \dots, n \max),$$ and stores the results in the array s. The method of computation is based on the recurrence relation $$s_n(x) = (\sigma_n(x) - ns_{n-1}(x))/x$$ $(n = 1, 2, 3, \dots),$ where $\{\sigma_n(x)\}_{n=1}^{\infty} = \{\cos x, -\sin x, -\cos x, \sin x, \cos x, \cdots\}.$ The recurrence relation is applied in forward direction as long as $n \leq |x|$, and in backward direction for the remaining values of n, starting with an appropriately large $n = \nu$. A detailed discussion of the method will be published elsewhere. It is assumed that a global real procedure t(y) is available, which evaluates the inverse function t = t(y) of $y = t \ln t$ to low accuracy for $y \ge 0$. (See W. Gautschi, Algorithm 236, Bessel functions of the first kind, Comm. ACM 7 (Aug. 1964), 479 Gautschi, W. Computation of successive derivatives of f(z)/z, in press; begin integer n, n0, nu; real x1, d1, s1; array sigma [1:4]; ``` x1 := abs(x); sigma[1] := cos(x); \quad sigma[2] := -sin(x); sigma [3] := -sigma [1]; sigma [4] := -sigma [2]; n0 := entier(x1); \quad s[0] := if x \neq 0 then sigma [4]/x else 1; for n := 1 step 1 until if n0 \le nmax then n0 else nmax do s[n] := (sigma[n-4 \times ((n-1) \div 4)] - n \times s[n-1])/x; if n0 < nmax then begin s1 := 0; d1 := 2.3026 \times d + .6931; nu := if nmax \le 2.7183 \times x10 then 1 + entier (2.7183 \times x1 \times t(.36788 \times d1/x1)) else 1 + entier (nmax \times t(d1/nmax)); for n := nu step -1 until n0+2 do s1 := (sigma[n - 4 \times ((n - 1) \div 4)] - x \times s1)/n; if n \leq nmax + 1 then s[n-1] := s1 ``` end end end ssubn ALGORITHM 283 SIMULTANEOUS DISPLACEMENT OF POLYNO-MIAL ROOTS IF REAL AND SIMPLE [C2] Immo O. Kerner (Recd. 8 Sept. 1965 and 12 Nov. 1965) Rechenzentrum Universitaet Rostock procedure Prrs (A, X, n, eps); value n, eps; integer n; real eps; array A, X; **comment** Prrs (polynomial roots real simple) computes the n roots X of the polynomial equation $$A_n x^n + A_{n-1} x^{n-1} + \cdots + A_0 = 0$$ simultaneously. On entry the array X contains the vector of initial approximations to the roots and on exit it contains the vector of improved approximations to the roots. The initial approximations must be distinct. Accuracy is specified by means of a parameter eps. Iteration is continued until the Euclidean norm of the correction vector does not exceed eps. The convergence is quadratic; begin integer i, k; real x, P, Q; $eps := eps \uparrow 2;$ $W \colon Q := 0;$ for i := 1 step 1 until n dobegin x := P := A[n]; for k := 1 step 1 until n dobegin $x := x \times X[i] + A[n-k];$ $if k \neq i \text{ then } P := P \times (X[i] - X[k])$ end; X[i] := X[i] - x/P; $Q := Q + (x/P) \uparrow 2$ end; if Q > eps then go to Wend # CERTIFICATION OF ALGORITHM 9 [D2] RUNGE-KUTTA INTEGRATION [P. Naur et al., Comm. ACM 3 (May 1960), 318] Henry C. Thacher, Jr. (Recd. 28 July 1964 and 22 Nov. 1965) Argonne National Laboratory, Argonne, Ill. Algorithm 9 was transcribed into the hardware representation for CDC 3600 Algoriand run successfully. The following procedure was used for the global procedure comp: real procedure $comp\ (a,b,c)$; value a,b,c; real a,b,c; begin integer $AE,\ BE,\ CE$; integer procedure expon(x); real x; **comment** This function produces the base 10 exponent of x; $expon := \mathbf{if} x = 0 \mathbf{then} - 999 \mathbf{else}$ entier $(.4342944819 \times ln(abs(x)) + 1)$; comment The number -999 may be replaced by any number less than the exponent of the smallest positive number handled by the particular machine used, for this algorithm assumes that true zero has an exponent smaller than any nonzero floating-point number. Users implementing real procedure comp by machine code should make sure that this condition is satisfied by their program; ``` AE := expon(a); \quad BE := expon(b); \quad CE := expon(c); if AE < BE then AE := BE; if AE < CE then AE := CE; comp := abs(a - b)/10 \uparrow AE ``` This has the advantage of machine independence, but is highly inefficient compared to machine code. The procedure was tested using the two following procedures for FKT: procedure FKT (X, Y, N, Z); real X; integer N; array Y, Z; **comment** $(dy_1/dx) = z_1 = y_2$, $(dy_2/dx) = z_2 = -y_1$. With $y_1(0) = 0$, $y_2(0) = 1$, the solution is $y_1 = \sin x$, $y_2 = \cos x$; **begin** Z[1] := Y[2]; Z[2] := -Y[1] **end**; procedure FKT(X, Y, N, Z); real X; integer N; array Y, Z; **comment** $(dy_1/dx) = 1 + y_1^2$. For $y_1(0) = 0$, $y(x) = \tan x$; $Z[1] := 1 + Y[1] \uparrow 2$; The RK procedure was used to integrate the differential equations represented by the first FKT procedure from x=0(0.5)7.0, with $eps=eta=10^{-6}$, and with $y_1(0)=0$, $y_2(0)=1$. The actual step size h was .0625 for most of the range, but was reduced to .03125 in the neighborhood of $x=k\pi/2$, where one or the other of the solutions is small. The computed solutions at x=7.0 were: $y_1=6.5698602746 \times 10^{-1}$, $y_2=7.5390270246 \times 10^{-1}$, with errors -5.71×10^{-7} and 4.48×10^{-7} , respectively. Results for the second differential equation are summarized in Table I below. The efficiency of the procedure would be increased slightly on most computers by changing the type of the **own** variable s from real to integer. The error is estimated by comparing the results of successive pairs of steps with that of a single double step. This is somewhat more time-consuming than the Kutta-Merson process presented in Algorithm 218 [Comm. ACM 6 (Dec. 1963) 737-8]. However, the criterion for step-size variation in Algorithm 9 which effectively applies an approximate relative error criterion, eps, for |y| > eta, and an absolute error criterion $eta \times eps$, for |y| < eta, appears superior when the solution fluctuates in magnitude. # REMARK ON ALGORITHM 218 [D2] KUTTA-MERSON [Phyllis M. Lukehart, Comm. ACM 6 (Dec. 1963), 737] G. Bayer (Recd. 25 Oct. 1965) Technische Hochschule, Braunschweig, Germany Successive calls of *Kutta Merson* with $first \equiv false$ do not reach the upper bound t+h if the interval h is unequal to the interval h of the first call with $first \equiv true$. Proposed correction: - 1) declaration real hc, instead of own real hc; - 2) if first then begin for i := 1 step 1 until n do y0[i] := y[i]; $hc := h; \quad ploc := 1; \quad first :=$ false end else hc := h/ploc; instead of if first then begin · · · end; ## TABLE I [ALG. 9] | | η | $x = 0.5$ $h_{min} Absolute error Relative error$ | | | $x = 1.0$ h_{min} Absolute error Relative error | | | $x = 1.5$ h_{min} Absolute error Relative error | | | |----------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------| | 10 ⁻⁷
10 ⁻⁵
10 ⁻³ | $ \begin{array}{c} 10^{-3} \\ 10^{-3} \\ 10^{-3} \end{array} $ | .03125
.125
.25 | $ \begin{array}{ c c c c c c } \hline -1 \times 10^{-9} \\ -5 \times 10^{-7} \\ -1 \times 10^{-5} \end{array} $ | | .03125
.0625
.25 | $ \begin{array}{ c c c c c } \hline 9 \times 10^{-8} \\ 8 \times 10^{-7} \\ -2 \times 10^{-4} \end{array} $ | $ \begin{array}{c c} 6 \times 10^{-8} \\ 5 \times 10^{-7} \\ -1 \times 10^{-4} \end{array} $ | .0078125 | $ \begin{array}{ c c c c c } \hline -1 \times 10^{-6} \\ -2 \times 10^{-4} \\ -3 \times 10^{-2} \end{array} $ | -1×10^{-5} |