2¢+2. Romberg integration is normally given as the extrapola-
tion to the limit of the trapezoid rule. Let

1 1
T = h (Efo +fit s s fz"), and T
AT = T

4m — 1

H

then the Romberg quadrature rule gives

tn n
f F@ dt = TS = 3 w5,
to =0

wheren = 22, m = (p — 2)/2, and & = g—m. The left and right
endpoints must be in ¢[0] and ¢[n] respectively. The abscissas
are returned in £[0] to £[n] and the corresponding weights in
w[0] to win].

If p = 2 the Romberg rule is the same as the repeated trape-
zoid rule, and if p = 4, the same as the repeated Simpson rule.

For n = 128 and p £ 16, the numerical integration of powers
(less than p) of z on the interval [0, 1] gave answers correct to
one round off error in an 11-digit mantissa.
REFERENCE: Bauer, F. L., Rutishauser, H., and Stiefel, E.
New aspects in numerical quadrature. Proc. of Symp. in Appl.
Math., Vol. 15: High speed computing and experimental arith-
metic. Amer. Math. Soc., Providence, R. I., 1963, pp. 199-218;

begin integer 7, j, m, ml, m4, s;

real h, ¢ct; real array c[0: (p — 2)/2];
k= (t[n] — t[0])/n; w[0] := w[n] := 0;
for ¢ := n—1 step —1 until 1 do

begin w[i] := c[7] :=0; t[z] ;=17 X kh 4 ¢[0] end;

m = (p — 2)/2; ¢[0] :=1.0; s:=md:=1; ¢[n]:=0;
if m > In(n)/ln(2) then m := ln(n)/In(2);
for j := 1 step 1 until m do
begin m4 := 4 X m4; ml :=md —1;
for ¢ := j step —1 until 1 do
clz] := (md X cl[i] — ¢[t — 1])/ml;
¢[0] := ¢[0] X (m4/ml);
end;
for ¢ := 0 step 1 until m do
begin ¢z := c[i] X s;
for j := 0 step s until n do w[j] := wijl+ci;
s =2Xs
end;

w[0] := wln] := 0.5Xw|[0];
for j := 0 step 1 until n do w[j] := w[j] X A;
end rombergrule

ALGORITHM 282

DERIVATIVES OF e*/x, cos (x)/x, AND sin (z)/z*
[S22]

Wavrter GavurscHl (Reed. 19 Aug. 1965)

Argonne National Laboratory, Argonne, Ill,
* Work performed under the auspices of the U.S. Atomic Energy
Commission. Author’s present address is Purdue University.

procedure dsubn(z, nmaz, d);
value z, nmaz; integer nmax; real z; arrayd;
comment This procedure generates the derivatives

dn 2
du(z) = —(E‘> (n=0,12 -, nmax)
do* \ x

using the recurrence relation
dn(z) = (e® — ndn(2))/x

The results are stored in the array d. If z = 0, there is an error

(n= 1)2131 e)

272 Communications of the ACM

exit to a global label called alarm;
begin integer n; real ¢;

if z = 0 then go to alarm;

e := exp(z); d[0] := e/x;

for n := 1 step 1 until nmaz do
dln] := (e - n Xdn —1))/z
end dsubn;

procedure csubn(z, nmaz, ¢);
value z, nmaz; integer nmaz; realz; arrayc;
comment This procedure obtains the derivatives

dn
enlz) = (co: x) (n=0,12---, nmax)

da
from the recurrence relation
en(x) = (ro(z) — nena@))/x (n =1,2,3,--+),

where {ra(2)}n-1 = {—sinz, —cosz, sin x, cosz, —sin x, ++-}.
The results are stored in the array ¢. If £ = 0, there is an error
exit to a global label called alarm;
begin integer n; array taull: 4];
if z = 0 then go to alarm;
tau[l] := —sin(x); taul2] := —cos(x);
taul3] := —tau[l); taufd) :
¢[0] := tauld]/x;
for n := 1 step 1 until nmazx do
cln] := (lauln—4X ((n—1) + 4)] — nXc[n—1])/z
end csubn;
procedure ssubn(z, nmaz, d, 8);
value z, nmaz,d; integer nmaz,d; real z; array s;
comment This procedure generates to d significant digits the
derivatives

[
!
g
<
s

dr [sinx
so(z) = d—x"(-) (n =0,1,2,- -, nmax),
and stores the results in the array s. The method of computation
is based on the recurrence relation

su(@) = (on(z) — n8aa(@))/x n=1,23, ---),

where {0,(2)}n1 = {cos x, —sin z, —cos T, sin z, €OS T, -+ }.
The recurrence relation is applied in forward direction as long
as n = |z], and in backward direction for the remaining values
of n, starting with an appropriately large n = ». A detailed dis-
cussion of the method will be published elsewhere. It is assumed
that a global real procedure ¢(y) is available, which evaluates
the inverse function ¢ = ¢(y) of y = ¢ In ¢ to low accuracy for
y = 0. (See W. Gautschi, Algorithm 236, Bessel functions of
the first kind, Comm. ACM 7 (Aug. 1964), 479 Gautschi, W.
Computation of successive derivatives of f (2)/z, in press;
begin integer n, n0, nu; realzl,dl, sl; array sigma [1:4];

zl := abs(x);
sigma [1] := cos(z); sigma [2] := —sin(z);
sigma [3] := —sigma [1]; sigma [4] := —sigma [2];

n0 := entier (x1); s[0] := ifz # 0 then sigma [4]/z else 1;
for n := 1 step 1 until if n0 £ nmaz then 10 else nmax do

sln] := (sigmaln — 4 X ((n — 1) = 4)] — n X s[n — 1)) /z;
if n0 < nmaz then
begin

sl :=0; dl := 23026 X d + .6931;

nu = if nmaz £ 2.7183 X z1 0 then

1 4 entier (2.7183 X 21 X t(.36788 X dl/x1)) else
1 + entier (nmazx X t(dl/nmaz));
for n := ny step —~1 until 2042 do

begin
sl := (sigma[n — 4 X ((n — 1) = 4)] — = X sl)/n;
if n £ nmaz + 1 then s{n—1] := sl
end
end
end ssubn

Volume 9 / Number 4 / April, 1966

ALGORITHM 283

SIMULTANEOUS DISPLACEMENT OF POLYNO-
MIAL ROOTS IF REAL AND SIMPLE [C2]

Immo O. KernNeERr (Recd. 8 Sept. 1965 and 12 Nov. 1965)

Rechenzentrum Universitaet Rostock

procedure Prrs (A, X, n, eps); value n, eps;
integer n; real eps; array A, X;

comment Prrs (polynomial roots real simple) computes the n
roots X of the polynomial equation

Anx" + An—lx”_l + -+ A-O =0

simultaneously. On entry the array X contains the vector of
initial approximations to the roots and on exit it contains the
vector of improved approximations to the roots. The initial
approximations must be distinet. Accuracy is specified by means
of a parameter eps. Iteration is continued until the Euclidean
norm of the correction vector does not exceed eps. The con-
vergence is quadratic;
begin integer 7, k; real z, P, Q;
eps 1= epsT2;
W: @ := 0;
for 7 := 1 step 1 until n do
begin z := P := Aln];
fork := 1lstep 1 until n do
begin z := z X X[¢] + Aln — k];
ifk 52 7 then P := P X (X[7]—-XI[k])
end;
X[7] := X[i]—=z/P;
Q:=Q+ (/P)T2
end;
if Q@ > epsthengoto W
end

CERTIFICATION OF ALGORITHM 9 [D2]

RUNGE-KUTTA INTEGRATION [P. Naur et al,
Comm. ACM 3 (May 1960), 318]

Hexry C. THACHER, JR. (Recd. 28 July 1964 and 22 Nov.
1965)

Argonne National Laboratory, Argonne, Iil.

Algorithm 9 was transcribed into the hardware representation
for CDC 3600 ALgoL and run successfully. The following procedure
was used for the global procedure comp:
real procedure comp (a,b,c); valuea,b,c;
begin integer AE, BE, CE;
integer procedure expon(z); real z;
comment This function produces the base 10 exponent of z;
expon := if z = 0 then —999 else
entier (4342944819 X In(abs(z)) + 1);

comment The number —999 may be replaced by any number
less than the exponent of the smallest positive number handled
by the particular machine used, for this algorithm assumes
that true zero has an exponent smaller than any nonzero
floating-point number. Users implementing real procedure
comp by machine code should make sure that this condition

reala, b, c;

AE := expon(a); BE := expon(b);
if AE < BE then AFE := BE;
comp :=abs(a — b)/10 1 AE

end

CE := expon(c);
if AF < CE then AE := CE;

3

This has the advantage of machine independence, but is highly
inefficient compared to machine code.

The procedure was tested using the two following procedures
for FKT':

procedure FKT (X, Y, N, Z); real X; integer N; array
Y, Z;

comment (dy/dx) = 21 = y», (dyfdx) = 22 = —y, . With
y1(0) = 0, 1(0) = 1, the solution is y, = sinx, y» = cos z;

begin Z (1] := Y [2]; Z [2] := —Y [1] end;

procedure FKT (X, Y, N, Z); real X; integer N; array
Y, z;

comment (dyi/dx) = 1 + y. For 41:(0) = 0, y(z) = tanz;

Z[1]:=14Y[1112;

The RK procedure was used to integrate the differential equa-
tions represented by the first FKT procedure from z = 0(0.5)7.0,
with eps = eta = 1078, and with %,(0) = 0, ¥:(0) = 1. The actual
step size A was .0625 for most of the range, but was reduced to
.03125 in the neighborhood of £ = kx/2, where one or the other of
the solutions is small.

The computed solutions at 2 = 7.0 were: y; = 6.5698602746
X 107L, yo = 7.5390270246 X 1071, with errors —5.71 X 107 and
4.48 X 1077, respectively.

Results for the second differential equation are summarized in
Table I below.

The efficiency of the procedure would be increased slightly on
most computers by changing the type of the own variable s from
real to integer.

The error is estimated by comparing the results of successive
pairs of steps with that of a single double step. This is somewhat
more time-consuming than the Kutta-Merson process presented
in Algorithm 218 [Comm. ACM 6 (Dec. 1963) 737-8]. However,
the criterion for step-size variation in Algorithm 9 which effec-
tively applies an approximate relative error criterion, eps, for
lyl > ela, and an absolute error criterion eta X eps, for Jy| < eta,
appears superior when the solution fluctuates in magnitude,

REMARK ON ALGORITHM 218 [D2]

KUTTA-MERSON [Phyllis M. Lukehart, Comm. ACM 6
(Dec. 1963), 737]

G. Baver (Reed. 25 Oct. 1965)

Technische Hochschule, Braunschweig, Germany

Successive calls of Kutla Merson with first = false do not reach
the upper bound ¢+% if the interval & is unequal to the interval
h of the first call with firsi = true.

Proposed correction:

1) declaration real k¢, instead of own real hc;
2) if first then begin for 7 := 1 step 1 until n do y0[¢] := y[i];
he :=h; ploc :=1; first := false
end else hc := h/ploc;

is satisfied by their program; instead of if first then begin --- end;
TABLE I [ALG. 9]
x = 0.5 z = 1.0 x =15
7 bmin Absolute error Relative error Bmin | Absolute errvor | Relative error kmin Absolute ervor Relative error
107 1073 .03125 -1 X 107% | —2 X 107 .03125 9 X 108 6 X 1078 | .00390625 | —1 X 107¢ | —8 X 108
108 103 125 —5 X 1077 | -9 X 1077 0625 8 X 1077 5 X 1077 || .0078125 —2 X 10| —1 X 1075
1073 1073 .25 —1X 1075 | —2 X 1075 .25 —2 X 10| —1 X 10| .03125 —3 X102 | -2 X 10
VYolume 9 / Number 4 / April, 1966 Communications of the ACM 273

