ALGORITHM 284

INTERCHANGE OF TWO BLOCKS OF DATA [K2]

WirLiam FrLETcHER (Recd. 25 Oct. 1965 and 24 Nov.
1965)

Bolt, Beranek and Newman, Inc., Cambridge, Mass.

and

Roranp SiLvEr

The Mitre Corp., Bedford, Mass.

procedure interchange (a, m, n);
value m, n; integer m, n; array a;

comment This procedure transfers the contents of a[l1] - -- alm]
into a[n+1] -« - aln+m] while simultaneously transferring the
contents of alm + 1] - - - a[m + n] into a[l] - - - aln] without using
an appreciable amount of auxiliary memory.

The nonlocal procedure ged (z, y) has value the greatest
common divisor of the integers and y. The nonlocal procedure
swap (z, y) interchanges the values of the variables z and y.

Let G be the additive group of integers modulo m~+n. The
multiples 0, n, 2n, --- of = form a cyclic subgroup C of G. The
order of C is r = (m + n)/d, where d is the greatest common
divisor of m and n. The integers 1, --- , d belong to distinct
cosets C; --- Cyof C. These cosets form a disjoint covering of G.

The interchange procedure is based on the fact that if we start
with a member z of the coset C, , and add n repeatedly modulo
m + n, we will in r steps have generated each member of C,
just once;

begin
integerd, 7, 7, k, r;
real ¢;
d = ged (m, n);
r = (m+n) + d;
for i := 1 step 1 until d do
begin

Ji=1

t = alf];

for k := 1 step 1 until r do

begin

iffj<mthenj:=j+ nelsej:=j—m;
swap (¢, alj])

end k
end ¢

end interchange

Plan to attend:
ACM 66

SYSTEMS 66
LOS ANGELES

AvucusT 30-SEPTEMBER 1,

326 Communications of the ACM

ALGORITHM 285

THE MUTUAL PRIMAL—DUAL METHOD [H]
TroMmas J. Arp (Recd. 29 June 1964 and 5 Apr. 1965)
Wolf Research and Development Corporation

Manned Spacecraft Center

Houston, Texas

procedure Linearprogram (n, p, A, min, psol, dsol, bool);
value p, n; integer p, n; array A, psol, dsol; real min;
Boolean bool;

comment This procedure solves the linear programming prob-
lem by the Mutual Primal-Dual Simplex Method. The problem
is assumed to be in the following form:

AX +B <0
X2>0
minu = d + CTX

where A isp X n, Bisp X 1and Cisn X 1. The dual problem
is themn,

Y>o0
ATY 4+ C >0
maxv = d + BTY.

The matrix of coefficients, also called A4 is formed in the follow-
ing way:

d Cl 02 Tt Cn

by Ay An -+ A
A=|b Aa An --- A
Lb; Apl Ap2 e Apn

The input matrix A is declared [0: p, 0: n], min is the value of
the objective function, psol is the solution vector for the primal
problem, dsol is the solution vector for the dual problem, bool will
be set to true if an optimal solution is found, otherwise bool will
be set to false;
begin integer array row [0:2Xp,0:p], col [0:2Xp,0:n], norow,

nocol [0:2Xp], tndex [0:n-+pl;

integer ¢, 7, k, s, ¢;

procedure subschema (k); integer k;

comment This procedure defines an admissible sequence of

subschema Sip1 Sz, -+ , assuming that Si, S, .-+ S,
have already been defined;

begin integer count;

for i := 1 step 1 until p do if A[7,0] > 0 then go to
WORK;
forj := 1 step 1 until n do if A[0,5]] < 0 then go to

WORK; k :=0; go to RETURN;

WORK: if 2 X (k+2) = k then go to EVEN else go to ODD;
EVEN:
begin
if k. = 0 then
begin

for 7 := 1 step 1 until p do if A{:,0] > 0 then

Volume 9 / Number 5 / May, 1966

begin
row[1,0] := ¢; go to D3
end;
row[1,0] := 0; go to D3
end;
for j := 1 step 1 until nocollk] do
if Alrowl[k,0],collk,7]] = O then go to DI1;
go to RETURN;
D1: for ¢ := 1 step 1 until norowlk] do
if Afrowlk,z],collk,0]] > 0 then go to D2;
go to RETURN;
D2: rowlk+1,0] := rowlk,s];
collk4-1,0] := collk,0];
count := 0;
for j := 1 step 1 until nocollk] do
if Alrowlk,0],collk,j]] = 0 then

begin
count := count 4 1;
collk+1,count] := collk,j]
end;

nocolfk+1] := count;
D3: count := 0;
for 7 := 1 step 1 until norowlk] do
if Alrowlk,i],collk,0]] < 0 then
begin
count := count + 1;
rowlk+1,count] := rowlk,:)
end;
norowlk—+1] := count;
kE:=k+1;
go to ODD
end EVEN;
ODD:
begin
for 7 := 1 step 1 until norow[k] do
if Alrowlk,il,collk,0]] = 0 then go to Bl;
go to RETURN;
Bl: for j := 1 step 1 until nocol[k] do
if Afrow(k,0],collk,j]] < O then go to B2;
go to RETURN;
B2: collk+1,0] := collk,j];
rowlk+1,0] := rowlk,0];

count := 0;
for 7 := 1 step 1 until norowlk] do
if Alrowlk,i],collk,0]] = 0 then
begin
count := count + 1;
rowlk+1,count] := rowlk,?]
end;
norowlk-+1] := count;
count := 0;

for j := 1 step 1 until nocollk] do
if Afrowlk,0],collk,j]] = 0 then
begin
count := count + 1;
collk+41,count} := collk,j}
end;
nocollk+1] := count;
k:=k+1;
go to EVEN
end ODD;
RETURN:
end subschema;
procedure pivot (s,t); value s, {; integer s, ¢;
comment The procedure pivot performs the usual pivot opera-
tion on the matrix 4, Al[s,t] is the pivot element;
begin integer 1, j;
Als,t] := 1/Als,t];
for 7 := O step 1 until s — 1, s + 1 step 1 until p do

Volume 9 / Number 5 / May, 1966

begin
Aliyd] = —Alit] X Als,t];
for j := O step luntil ¢ — 1, ¢ + 1 step 1 until n do
if abs(AlL,j]+ Al tIXAls,j]) < abs(A[7,71X10—8) then
Afi,j} := 0
else Ali,j] := A[i,j] + Ali,t] X Als,j]
end;
for j := 0 step 1 until¢{ — 1,{ + 1 step 1 until » do
Als,jl 1= Als,j] X Als,t];
1 := index(t];
index(t] := index[n—+s];
index|n+ts] := 1

end pivot;
procedure pickapivot (k,s,t); integerk, s, t;
comment The procedure pickapivot will choose a pivot ele-

ment from S; or S;_; in a manner which will guarantee im-

provement in the goal vector;

begin real maz, test;

if 2 X (k+2) = k then go to EVEN else go to ODD;

ODD:

Al

A2:

A3:

begin

for j := 1 step 1 until nocollk] do
if Alrowl[k,0],colik,j]] < 0 then
begin
for ¢ := 1 step 1 until norow(k] do
if Alrowlk,i],collk,j]] > 0 then go to Al;
s := rowlk,0};
t := collk,jl;
k:=k—1;
go to RETURN;

end;
for j := 1 step 1 until nocol[k] do
if Afrowlk,0],colik,j]] < O then

begin
for i := 1 step 1 until norow(k] do
if Alrowlk,i],collk,j]] > 0 then
begin s := rowlk,z];
t := collk,jl;
mazx = Alrowik,:],col[k,0]}/ Alrowlk,i],collk,j11;
go to A2
end
end;
go to A3;

for ¢ := ¢ + 1 step 1 until norowlk] do
if Alrowlk,i],collk,j1] > 0 then
begin
test := Alrowlk,i),col(k,0]]/ Alrowlk,:],col(k,jli;
if test > maz then
begin
s 1= rowlk,t];
mazx = test
end
end;
k:i=k—1;
go to RETURN;
for j-:= 1 step 1 until nocol[k—1] do
if Afrowlk,0],collk—1,5]] < O then
begin
s = rowlk,0];
t := collk—1,j];
max = Afrowlk—1,0],collk—1,711/Arowlk,0],collk—1,5]];
go to A4
end;
s := rowlk,0];
t := collk,0];
k =k — 2
go to RETURN;

Communications of the ACM 327

A4: for j := j + 1 step 1 until nocolfk—1] do
if Alrowlk,0],collk—1,7]] < 0 then

begin
test = Alrow[k—1,0],collk—1,57]1/ Alrowlk,0],collk—1,51];
if test > max then
begin
t := collk—1,j];
max := test
end
end;
k:=k— 2;
go to RETURN
end ODD;
FEVEN:
begin
for i := 1 step 1 until norow(k] do
if Alrowlk,t],collk,0]] > 0 then
begin

for j := 1 step 1 until nocol[k] do
if Alrowlk,i],collk,j]] < O then

go to BIl;
s 1= rowlk,i];
t 1= collk,0];
k:=k—1;
go to RETURN;
Bl1:
end;
for ¢ := 1 step 1 until norowlk] do
if Alrowlk,i],collk,0]] > 0 then
begin

for j := 1 step 1 until nocollk] do
if Alrowlk,i],collk,jl] < 0 then
begin
s 1= rowlk,z];
t := collk,jl;
maz = Afrowlk,0],collk,j11/ Alrowlk,i],collk,j]];
go to B2
end
end;
go to B3;
B2: forj :=j+ 1 step 1 until nocollk] do
if Afrowlkz],collk,j]] < 0 then
begin
test := Alrow(k,0],collk,jll/ Alrowlk,:],collk,11;
if test > max then

begin
t := collk,jl;
max = test
end
end;
k:i=k—1;

go to RETURN;
B3: for i := 1 step 1 until norowlk—1] do
if Alrowlk—1,i],c0l[k,0]] > then
begin
s 1= rowlk—1,];
t := collk,0];
maz = Afrowlk—1,i],collk—1,0]]/Alrow[k—1,i],collk,0]];
go to B4
end;
s = rowlk,0];
t := collk,0];
k:=k—2;
go to RETURN;
B4: for i := 1 + 1 step 1 until norow[k—1] do
if Alrowlk—1,7},c0l[k,0]] > then
begin
test := Alrowlk—1,7],collk—1,01]/Alrowlk—1,:],col[k,01];

Il

328 Communications of the ACM

if test > max then
begin
s := rowlk—1,7};
max 1= lest
end
end;
k:=Fk— 2
go to RETURN
end EVEN;

RETURN:

end pickapivot;

for i := 1 step 1 until p + » do indez[?] := 1
for ¢ := 0 step 1 until p do rowl[0,] := 7;

for j := 0 step 1 until = do col[l,5] := j;

norow(0] := p; mnocol[l] :=n; k := 0;

comment This is a check on the row constraints;

NEXTPIVOT:

for 7 := 1 step 1 until p do
begin
if A4[2,0] < 0 then go to NEXTI;
for j := 1 step 1 until » do
if A[Z,7] < 0 then go to NEXTT;
comment Row constraints are incompatible;
bool := false;
go to FINISH,

NEXTI:

end;
comment This is a check on the column constraints;
for j := 1 step 1 until n» do
begin
if A[0,7] > 0 then go to NEXTJ;
for 7 := 1 step 1 until p do
if A[7,j] > 0 then go to NEXTJ;
comment Column constraints are incompatible;
bool := false;
go to FINISH;

NEX1J:

end;
subschema(k);
if k. = 0 then
begin
comment k = 0indicates that the present solution is opti-
mal. A4[0,0] is value of the objective function;
min := A[0,0];
for ¢ := 1 step 1 until p 4+ n do psol[i] := dsolfi] := 0;
comment Find the primal solution vector;
for v := 1 step 1 until p do
psollindex[n+1i]] := —Al1,0];
comment Find the dual solution vector;
for ¢ := 1 step 1 until n do
if index[t] > n then
dsol[index[i]—n] := Al0,7]
else
dsollindex|i]4p] := A[0,:];
bool := true;
go to FINISH;
end;
pickapivot(k,s,t);
ifs=0V1i?=0then

begin
comment No feasible solution;
bool := false;
go to FINISH;

end;

pivot(s,t);

go to NEXTPIVOT;

FINISH:

end Linearprogram

(Algorithms are conlinued on page 364)

Volume 9 / Number 5 / May, 1966

set, being formed of two proper tight sets; elements such
as A [4, 8] belong to neither so that further applications of
EXPAND are needed to determine the feasibility of ele-
ments in rows 4 through 9.

6. Timing

Suppose the array A has n rows with an average of m
nonzero elements per row, le., there are (mn) nonzero
elements in A. In the worst conceivable case each ele-
ment of A would require a separate application of EX-
PAND and each application of EXPAND would involve
the examination of the whole matrix, ie., the number
of operations would be of the order of (m n)2. However
there is a complex interaction between the actual number
of calls on EXPAND and the average number of rows
searched in a single application of EXPAND—the higher
the average number of rows searched per application, the
less the average number of applications, and vice versa;
so that it is difficult to estimate the exact dependence on
m and n. Empirical results seem to indicate that the above
estimate is conservative.

For the timetable problem m is always bounded by the
number of hours in a school day (about ten) and decreases
steadily during the calculation, and hence the number of
operations required is of the order of n2.

7. Conclusion

A practical algorithm based on the Hungarian Method
of H. Kuhn has been described for carrying out the exami-
nation and reduction of 2-dimensional arrays as required
in Gotlieb’s method for the solution of the timetable
problem. In addition, various devices to improve the effi-
ciency of the algorithm have been described.

REcEIVED DECEMBER, 1965

REFERENCES

1. GorLieB, C. C. The construction of class-teacher timetables.
Proc. IFIP Congress 62 (Munich), North Holland Publ. Co.,
1963, 73-77.

2. Ackorr, R. L. (ed.) Progress in Operations Research. Wiley,
1961, 149-150.

3. Kuan, H. W. The Hungarian Method for the assignment
problem. Nav. Res. Log. Quart. 2 (1955), 83-97.

4. FriEDMAN, L. ., and Yaspan, A. J. An analysis of stewardess
requirements and scheduling for a major domestic airline:
Annex A. The Assignment Problem technique. Nav. Res. Log.
Quart. 1 (1954) 223-229.

5. HaLn, P. On representatives of subsets. J. Lond. Math. Soc.
10 (1935), 26-30.

6. Csima, J. Investigations on a timetable problem. Ph.D.
Thesis, U. of Toronto, 1965.
APPENDIX
procedure expand (A, rowsolution, columnsolution, row, =,
infeasible);
value row, n; integer row, n; Boolean infeasible;

integer array A, rowsolution, columnsolution;
begin
comment This procedure performs one iteration of the Hun-
garian Method on the array A. A partial solution which does
not include an element in the row “row’’ is defined by the array
“columnsolution” (and equivalently by the array ‘‘rowsolu-
tion”’). The partial solution is rearranged to allow an additional
element taken from the designated, previously unrepresented
row to be incorporated in a new enlarged partial solution, when
this is possible. If the latter is not possible, the Boolean vari-
able “infeasible’’ is set to true;
integer j, k, marknext, marknew;
integer array reference [1:n], rowlist [1:n}];
infeasible := false; marknext := marknew := 0;
for j := 1 step 1 until » do reference [j] := 0;
newrow: for j := 1 step 1 until » do
begin if A [row, j] # 0 A reference [j] = 0 then
begin if columnsolution [j] = 0 then goto backtrack;
reference [j] := row;
marknew := marknew 4 1;
rowlist [marknew] := columnsolution [5]
end
end;
if marknext > marknew then goto nosolution;
marknext := marknext + 1;
row := rowlist [marknext};
goto NEWrow,;
backtrack: k = rowsolution [row];
columnsolution [j] := row; rowsolution [row] := j;
if k¥ = 0 then goto finis;
j 1= k; row := reference [kl;
goto backtrack;
nosolution: infeasible := true;
finis: end of expand

ALGORITHMS—cont’d from page 328

CERTIFICATION OF ALGORITHM 271 (M1)

QUICKERSORT [R. 8. Scowen, Comm. ACM 8 (Nov.
1965), 669]

CaarreEs R. Brair (Recd. 11 Jan. 1966)

Department of Defense, Washington, D.C.
QUICKERSORT compiled and ran without correction through

the ALDAP translator for the CDC 1604A. Comparison of

average sorting times, shown in Table I, with other recently pub-

lished algorithms demonstrates QUICKERSORT’s superior per-
formance.

354 Communications of the ACM

TABLE I. AveErace SorTING TIMES IN SECONDS
Algorithm 201 Algorithm 207 Algorithm 245 Algorithm 271
Number Shellsort Stringsort Treesort 3 Quickersort
of items
Integers | Reals | Integers | Reals | Integers | Reals | Integers | Reals
10 | 0.01] 0.01 0.03 | 0.03 | 0.02|0.02| 0.01]0.01
20 0.02 | 0.02 0.05 | 0.05 0.04 | 0.04 0.02 | 0.02
50 0.08|0.08| 0.200.20(0.11 |0.12| 0.06 | 0.06
100 | 0.19 [0.22 | 0.39 | 0.40 | 0.26 | 0.27 0.13 | 0.13
200 | 0.48 | 0.53 1.0 1.1 0.59 } 0.62 | 0.28 | 0.30
500 1.5 1.7 2.8 | 2.9 1.7 1.8 0.80 | 0.85
1000 | 3.7 | 4.2 6.6 | 6.9 3.7 | 4.0 1.8 1.9
2000 | 9.1 [10. 13. 14, 8.2 | 8.7 3.9 4.1
5000 | 27. 30. 40. 41. 23. 24. 11. 12.
10000 | 65. 72. 93. 97. 49. 52 23 25.

Volume 9 / Number 5 / May, 1966

