of 2% — 31, the sequence repeats after 2° — 39 integers
have been generated.

While testing the Lehmer gencrator we tried reversing
each 35-bit integer after it came out of the generator.
That is to say, bits 1 and 35 were interchanged, bits 2 and
34 were interchanged, ete. Hence the sequence of reversed
integers was tested for randomness. The impressive thing
about the Lehmer generator is that the sequence of re-
versed integers yields test results which are not signifi-
cantly different from the unreversed integers, indicating
that the least-significant bits of the integers are as random
(at least from the viewpoint of satisfying our test criteria)
as the most-significant bits. In both modulus 2° methods
the least-significant bits are periodically nonrandom.

The recipe for the Lehmer method is: (1) find the
largest prime p less than register capacity; (2) find a posi-
tive primitive root A of p, which has sufficiently (to be
determined by statistical tests) many digits; (3) start
with any positive integer Xo < p and generate the se-
quence of pseudorandom integers by the recursion relation:

Xz'+1 = AXA (mod p)

The sequence will repeat after p—1 integers have been

generated.

The Lehmer generator for the IBM 704/9/90/94 is:
LDQ = 3125 Multiplier = 55.
MPY X ACMQ = 5X;.
DVP = @377777777741 AC = 55Xi[mod (2%~31)] = Xyy .
STO X
ARS 8
ORA = 0200000000001 Insert characteristic and roundoff
FAD = 0.
TRA 1,4

b

Time on a 7094 Model I: 21 or 22 cycles.

3. Test Results

The generator was rather extensively tested. (A tabula-
tion of the test results is presented in [5]) and passed the
usual statistical tests (and some new tests) for random
number generators. However, the particular application
must be the ultimate criterion of the suitability of a se-
quence of pseudorandom numbers. Hence the user would
do very well to formulate his own tests depending on the
application and to test the sequence of pseudorandom
numbers used.

RecErvep FEBRUARY, 1966
REFERENCES

L Houww, T. B, anp A, R. Dosern. Mixed congruential random
number generators for binary machines. J. ACM 11 (1964),
31-40.

2. Huwy, T. E., aNp A. R. DOBELL.
SIAM Rew. 4 (1962), 230-254.

3. PeacH, Paur. Bias in pseudo random numbers. J. Amer.
Statist. Ass. 56, (1961), 610-618.

4. Luumer, 1. H. Mathematical methods in large-scale comput-
ing units. Ann. Comp. Lab. Harvard U. 26 (1951), 141-146.

5. Huromnson, Davip W. A new uniform pseudo-random num-
ber generator. File No. 651, April 27, 1965, Dept. Computer
Sciences, U. of Illinois, Urbana, Il1.

Random number generators.

Volume 9 / Number 6 / June, 1966

J. G. HERRIOT, Editor

ALGORITHM 286

EXAMINATION SCHEDULING {ZH]

J. E. L. Prcx axp M. R. Wittiams (Reed. 17 Mar. 1964,
25 Jan. 1965 and 1 Mar. 1966)

University of Alberta, Calgary, Alta., Canada

procedure partition (incidence) graph of order : (m) into : (n)
parts using weights : (w) bound : (max) preassignment :
{preassign) of number : (pren);

Boolean array incidence; integer array w, preassign;
integer m, n, maz, pren;

comment This is an heuristic examination time-tabling pro-
cedure for scheduling m courses in n time periods. It is essen-
tially the problem of graph partitioning and map coloring.

In the terminology of graph theory: Given a graph of m ver-
texes with a positive integer weight w(z] at the th vertex,
partition this graph into no more than n disjoint sets such
that each set contains no two vertexes joined by an edge,
and such that the total weight of each set is less than the
prescribed bound maz.

We represent the graph as an mXm symmetric Boolean matrix
tncidence whose 7,jth element is true if and only if vertex ¢ is
joined to vertex j by an edge (if a student is taking both course ¢
and course j), diagonal elements being assigned the value true.
The weight assigned to the ¢th vertex (number of students in the
tth course) is w(i]. We shall see below that preassignment is
permitted. The number of courses to be preassigned is given in
pren and the course preassign [¢, 1] is to be placed at the time
preassign (1, 2].

This procedure does not minimize the second order incidence
i.e. a vertex 7 being assigned to the set k, where the set k—1
contains a vertex j joined to ¢ (a student writing two consecutive
examinations), but this may be done by rearranging the sets
after the partitioning is completed. The procedure contains its
own output statements, but its driver should provide the input;

begin integer array row [1:m], number [1:n];
integer ¢, j, sum, course, time;

Boolean preset, completed;

INITIALIZE: preset:= false;
for j := 1 step 1 until n do number [j] := 0;
for i := ! step 1 until m do
begin sum := 0;

for j := 1 step 1 until m do
if incidence {7, j] then sum = sum -+ 1;
row {1] := sum

end INITIALIZE. Note that row [{] now containsg the multi-
plicity of, or number of edges at the vertex ¢ (number
of courses which conflict with the course ¢). Of course since the
ineidence matrix is symmetric, less than half (@ > j) need be
stored. However, this procedure, for the sake of simplicity,
is written for the whole matrix. Also note that row [i] will
eventually contain the negative of the set number to which
the 7th vertex is assigned (examination time for the 7th course)
and number [§] will contain the weight of the jth set (number of
candidates at time j). From here on we drop the allusions to
graph theory in the comments;

THE PREASSIGNMENT: forj := 1step 1 until pren do
begin comment preassignment of courses to times is now car-

Communieations of the ACM 433

ignment

ried out. If pren = 0, then there are no pre
q
comment We now attempt to assign this
time:
SCRUTINIZE: if ro
begin outsiring {1,
ourstring (1, ‘is already scheduled at 1ime’j;
o to NEXT

course 1= preassign 1j,1|; fime= prea

rse to the given

rurse| < G then

“his course’); ouiinleger (4, course};

oulinteger (1, — rowfcourselj;
end;
if number [lime) -+ wicowrse] > max then
begin outsiring (1, ‘Space i3 not available for cours
time’};

oulinleger (1, coursej; oulstring {1, ‘at
outinteger (1, time); go to NEXT
end;
for ¢ ;= 1 step 1 until m do
if row (i{ = — time then
begin if incidence [i, course] then
begin oufstring (1, ‘course number’j;
oulinteger (1, coursej; outsiring (1, ‘conflicts with’);
outinteger (1,0);
outsiring (1, ‘which is already scheduled at’);
oulinteger (1, lime),
go to NEXT
end if tncidence
end if row;

SATISFACTORY : row|course] 1= —Llime;
number [time] 1= nwmber {time| + w [course];
presel 1= lrue;

NEXT:

end THE PREASSIGNMENT;
MAIN PROGRAM: hegin Boolean arcay available [1:ni;
integer nest;
procedure check (course); inleger course;
This procedure renders un-
available those courses conflicting with the given course;
forj := | step 1 until m do
if incidence |course,j| then avcilable {7} := false
end of procedure check.
For each of the n time periods we select a suitable set of non-
conflicting courses whose students will fit the examination
room;
START OF MAIN PROGRAM:
for time := 1 step 1 until n do
if preset = number{time] > 0 then
begin comment The preceding Boolean equivalence di-
recis the attention of the program initially only to
those times where prescheduling has oceurred. We now
determine the available courses (i.e. unscheduled and
nonconflicting). If course ¢ 1s already scheduled, then
row|i] is negative;
completed := true;
for ¢ := 1 step 1 until n do if row [{] > 0 then
begin available {i] := true; completed := false end
else available (1] := false;
if completed then go to OUTPUT,
if preset then
begin comment

begin integer j; comment

Some courses were prescheduled at
this time. It is necessary to render their conflicts un-
available;

for i := 1 step 1 until » do
if rowele] = —time then check (i)
end prescheduled courses.
We now select the available course with the most con-
flicts, This is essentially the heuristic step and there-
fore the place where variations on the method may be
made;
AGAIN:

sum = 0;

434 Communications of the ACM

for i := | step I until i do

if arailobie > sum then

. row

begin next : end mosi conflic
if sum > 0 then

begin comment

5 Swhe r= row

There exists an available course,
we test it {viz 7ie

30

dze. IT 1t does not fit we look

for another;
available {next] 1=

if number (el + winert} > max then go to AGUIY:
{ P w i g
If we

comment are here the course will fit so we use ir;

row {next] = —time;

number (time] 1= number {(time] + winertl;
check (next); go to AGATYN
end sum > ()
end of the time loop;
if preset then
begin presel ;= false; go to START OF MLV
PROGRAM end
In case of prescheduling this takes us back to try the re.
maining time periods.

If we have reached here with compleled true then
courses are scheduled, but the converse may not bet
therefore;

if — completed then
begin completed = true;

for ¢ ;= 1 step 1 until m do
if row (] > 0 then compleled 1= false
end — completed and
end of the main program;
OUTPUT: if — completed then

begin comment The following for statement ouipitis the

courses that were not scheduled;
outslring (1, ‘courses not scheduled’);
for ¢
if row [> 0 then outinteger (1,1)
end not scheduled.
The following outputs the time period j, the number of 3
dents number{j] and the courses ¢ written at time j;
TIMETABLE: outstring(l, ‘time courses’);
for j := 1 step 1 until n do
begin outinteger (1,5i; owlinieger (1, number[jl);
for ¢ := 1 step 1 until m do
if row|i] = —j then outinteger (1,1)
end j.
The following outputs the courses, the times at which they are
written, and their eurolment;
outstring (1, ‘course time enrolment’);
for 7 := 1 step 1 until m do
if row [{]< 0 then owlinteger (1, i); outinteger (1, row [il};
owlinteger (1, wiz])
else
begin outinfeger{l,i); outstring(1, ‘unscheduled’);
outinteger (1, wiz])
end
end of the procedure

1= | step 1 until m do

enrolment

REMARK ON ALGORITHAI 279
CHEBYSHEY QUADRATURE [D1]
. R. A. Hopgood and C. Litherland
[Comm. ACM 9 (Apr. 1966), 270]
The 33rd line of the second column on page 270 should read:

ifm =4 N\ m s mmax /\ r 2> m — 4 then
A printing error showed A as 7433.

Volume 9 / Number 6 / June, 1960

