begin
ged :=d + ¢ ri=d— gdXeg
ged = ged X ¢; res i=r1es —r X ¢
end;
crossmpy = gab — ged + res <+ ¢
end crossmpy;
integer procedure abdivc(a,b,c,sum); value ab.c; integer
a,b,c,sum;
comment evaluates expressions of the form ¢ X b + ¢ by
performing divisions before multiplications, assigning the
quotient to abdivc and accumulating the remainder in sum;
begin integer g,rlemp;
if iabs(a) > tabs(b) then
begin g :=a + ¢; temp := ¢ X b;
ri=a—c¢cXg
g:=b=+c¢
abdive := temp 4 ¢ X 7;
sum = sum + (b—qgXe) X r

end

else

begin q := b + ¢; lemp := ¢ X g
r:=b—c¢cXg
q:=a -+ ¢

abdive := temp + ¢ X 13
sum := sum + (@a—gXc) X r
end
end abdivc;
procedure permb(b,r,n); value n;
ger n;
comment rearranges the elements of b{l:n] so that bfi] :=
blrlil}, e =1,2, -+, m;
begin integer ik,uw;
for i := n step —1 until 2 do
begin k := r[¢];

integer array b,r; inte-

L:
if k& # 7 then
begin
ifk > ¢ then begin k := 7 [k]; go to L end;
w = bli]; blE) := blk]; bK] = w
end
end
end permb;
m = 1;
for i := 1 step 1 until n do rli} := 1,
for i := 1 step 1 until n do
begin pivot := 0; 2zpiv := true;
for k := 1 step 1 until » do
begin aki := dabs(alr[kli]);
if zpiv A aki > 0V aki # 0 A\ aki < iabs(pivol) then
begin zpiv := false; pivi := k; pivot := a[r[k],i] end
end;
if pivot = 0 then begin det := 0; go to oul end;
ri = rlpivil; rlpwi] = rli}; rlt] = 1 if pivt # ¢ then
m = — m;
fork := ¢ 4+ 1 step 1 until n do
begin rk := rlkl; oki := alrk,l;
for j := ¢ + 1 step 1 until n do
alrk,j] := if ¢ = 1 then alrk,j] X pivol — aki X alri,j)
else crossmpylalrk,jl,pivot,aki,alri,jl,piv);
birk] := if i = 1 then b[rk] X pivot — aki X b[rt]
else crossmpy(blrkl,pivot,aki blri],piv)
end;
piv 1= prvot
end;
ri = r[nl;
if m 5 1 then
begin det := aki := — a[ri,n]; b[ri] := — b[ri] end
else det := aki := alri,n];
684 Communications of the ACM

fori := n — 1 step —1 until 1 do

begin ri := r[i]; arii := alrii];
sum := 0; piv := abdive®lri},aki,arii,sum);
sum 1= — sum;

for j := i + 1 step 1 until n do
piv = piv — abdive®lr[jllalri,jlarit,sum);

blri] := piv — sum + arit
end;
permb (b,r,n);
oul:

end exactle

ALGORITHM 291

LOGARITHM OF GAMMA FUNCTION ([S14]

M. C. Pikg AnD I. D. Hiu (Reed. 8 Oct. 1965 and 12 Jan.
1966)

Medical Research Council’s Statistical Research Unit,
University College Hospital Medical School, London,
England

real procedure loggamma (z);
value z; real z;
comment This procedure evaluates the natural logarithm of
gamma(zx) for all z > 0, aceurate to 10 decimal places. Stirling’s
formula is used for the central polynomial part of the procedure.;
begin
real f, 2;
if z < 7.0 then
begin f := 1.0; z := 2z — 1.0;
for z := z + 1.0 while z < 7.0 do
beginz :=z; f:=fXz
end;
z:=z+10; f:=— ()
end
else f := 0;
z:=10/z T 2;
loggamma := f + (x—0.5) X In(z) — = - .91893 85332 04673 +
(((—.00059 52380 95238 X z-+.00079 36507 93651) X z —.00277
TTTTT TT778) X 2+.08333 33333 33333)/x
end loggamma

REMARK ON ALGORITHM 178 [E4]

DIRECT SEARCH [Arthur F. Kaupe, Jr., Comm. ACM
6 (June 1963), 313]

M. Bern axp M. C. Pixe (Reed. 15 Nov. 1965 and 22
Apr. 1966)

Institute of Computer Science, University of London,
London, England, and Medical Research Council’s
Statistical Research Unit, London, England

Algorithm 178 has the following syntactical errors:
(1) The parameter list should read
(pst,K,DELT A ;rho delia,S).
(2) The declaration
integer K k;
should read
integer k;
(8) An extra end bracket is required immediately before end E;.

The algorithm compiled and ran after these modifications had
been made but for a number of problems took a prodigious amount
of computing owing to a flaw in the algorithm caused by rounding
error. This flaw is in procedure E and may be illustrated by the
one-dimensional case. Let S(x) = 1.6 — z{(z < 1.5), 32 — 4.5 (>

Volume 9 / Number 9 / September, 1966

1.5), and start at 0 with a step of 1. The first move puts pst [1] =
1, phi [1] = 2. The second move should then put phi {1] = 1 =
pst[1] resulting in a jump to label 1. On many machines, however,
E will put pht [1] = 1 4 ¢ (¢>0 and very small) so that direct
search begins to move away from 1 in very small steps. This is
clearly not desirable and may be avoided by altering the line

if 8S < Spst then go to 2 else go to 1 end;
to

if SS > Spsi then go to 1;

for k := 1 step 1 until K do

if abs (philk]-psilk]) > 0.5 X DELTA then go to 2

end;

To accelerate the procedure, direct search should take advan-
tage of its knowledge of the sign of its previous move in each of the
K directions. Take, for example, the one-dimensional case with
starting point zero and the minimum far out and negative; the
pattern moves will arrive there quite efficiently but each first move
of E on the way will be positive whereas the previous experience
of the search should lead it to suspect the minimum to be in the
opposite direction.

Finally, two changes which we have found very useful are (i)
some escape clause in the procedure to enable an exit to be made if
the procedure has not terminated after some given number of
function evaluations mazxeval, with a Boolean converge taking the
value true in general but false if the procedure has terminated
through exceeding this number of function evaluations; and (ii)
taking Sps? into the parameter list where it is called by name so
that on exit Spsi contains the minimum value of the function.

With these modifications the procedure now reads:

procedure direct search (pst,K,Spsi,DELT A rhodelta,S converge,

mazeral);
value K,DELTA rho,delia,mazeval; integer K maxeval;
array pst;
real DELTA rhodelta,Spsi; real procedure S; Boolean
converge;

comment This procedure locates the minimum of the function S of
K variables. The method used is that of R. Hooke and T. A.
Jeeves [““Direct search’ solution of numerical and statistical
problems, J. ACM. § (1961), 212-229] and the notation used is
theirs except for the obvious changes required by ALGOL. On
entry: psi[l:K] = starting point of the search, DELTA =
initial step-length, rho = reduction factor for step-length,
delta = minimum permitted step-length (i.e. procedure is termi-
nated when step-length < della), mazeval = maximum per-
mitted number of function evaluations. On exit: pst[1:K] =
minimum point found and Spst = value of S at this point,
converge = true if exit has been made from the procedure be-
cause a minimum has been found (i.e., step-length < delta)
otherwise converge = false (i.e. maximum number of function
evaluations has been reached);

begin integer k,eval; array phi,s[l:K];
procedure E;
for k := 1 step 1 until X do
begin philk] := philk] + slk]; Sphs

real Sphi,SS,theta;

= S(phi); eval := eval

+1;
if Sphi < 88 then SS := Sphi else
begin s[k] := — s{k]; philk] := philk] + 2.0 X sik};

Sphi := S(phi); eval := eval + 1;
if Sphi < SS then SS := Sphi else
philk] := philk] — s[k]
end
end E;
Start: for k := 1 step 1 until K do s[k] := DELTA;
Spst := S(psi); eval := 1; converge := true;
1: 88 = Spsi;
for k := 1 step 1 until K do phtlk] := psilk]; E;
if S8 < Spsi then
begin

Volume 9 / Number 9 / September, 1966

2: if eval > mazeval then

begin converge := false;
go to EXIT
end;
for k := 1 step 1 until K do
begin if philk] > psi[k] = s[k] < 0 then s[k] := —s[k];
theta := psilk]; psilk] := philk]; philk] := 2.0 X philk] —
theta
end;

Spsi := 88; SS := Sphi := S(phi);
if 8§ > Spst then go to 1;
for k := 1 step 1 until K do
if abs(phi[k]—psi[k]) > 0.5 X abs(s[k]) then go to 2
end;
3:if DELTA > delta then
begin DELTA := rho X DELTA;
for k := 1 step 1 until K do slk] := rho X slk];
end;
EXIT:
end direct search

eval := eval + 1; E;

3

gotol

REMARKS ON:
ALGORITHM 34 [S14]
GAMMA FUNCTION
[M. F. Lipp, Comm. ACM 4 (Feb. 1961), 106]
ALGORITHM 54 [S14]
GAMMA FUNCTION FOR RANGE 1 TO 2
[John R. Herndon, Comm. ACM 4 (Apr. 1961), 180]
ALGORITHM 80 [S14]
RECIPROCAL GAMMA FUNCTION
ARGUMENT
(William Holsten, Comm. ACM 5 (Mar. 1962), 166]
ALGORITHM 221 [S14]
GAMMA FUNCTION
[Walter Gautschi, Comm. ACM 7 (Mar. 1964), 143]
ALGORITHM 291 [S14]
LOGARITHM OF GAMMA FUNCTION
[M. C. Pike and I. D. Hill, Comm. ACM 9 (Sept. 1966),
684]
M. C. PixE a~p 1. D. Hinn (Recd. 12 Jan. 1966)
Medical Research Council’s Statistical Research Unit,
University College Hospital Medical School,
London, England

OF REAL

Algorithms 34 and 54 both use the same Hastings approxima-
tion, accurate to about 7 decimal places. Of these two, Algorithm
54 is to be preferred on grounds of speed.

Algorithm 80 has the following errors:
(1) RGAM should be in the parameter list of RGR.
(2) The lines

if z = 0 then begin RGR := 0;
and

if t = 1 then begin RGE :=1; go to EXTT end
should each be followed either by a semicolon or preferably by an
else.

(3) The lines

if z = 1 then begin RGR := 1/y;
and

ifz < — 1 then beginy := y X z; go to CC end
should each be followed by a semicolon.

(4) The lines

BB: if x = —1 then begin RGR := 0;
and

if z > —1 then begin RGR := RGAM (z);

go to EXIT end

go to EXIT end

go to EXIT end

go to EXIT end

Communications of the ACM 685

should be separated either by else or by a semicolon and this

second line needs terminating with a semicolon,

(5) The declarations of integer ¢ and real array B[0:13] in RGAM

are in the wrong place; they should come immediately after
begin real z;

With these modifications (and the replacement of the array B
in RGAM by the obvious nested multiplication) Algorithm 80 ran
successfully on the ICT Atlas computer with the ICT Atlas
ALGOL compiler and gave answers correct to 10 significant digits.

Algorithms 80, 221 and 291 all work to an accuracy of about 10
decimal places and to evaluate the gamma function it is therefore
on grounds of speed that a choice should be made between them.
Algorithms 80 and 221 take virtually the same amount of comput-
ing time, being twice as fast as 291 at x = 1, but this advantage
decreases steadily with increasing x so that at z = 7 the speeds are
about equal and then from this point on 291 is faster—taking only
about a third of the time at z = 25 and about a tenth of the time
at x = 78. These timings include taking the exponential of log-
gamma.

For many applications a ratio of gamma functions is required
(e.g. binomial coefficients, incomplete beta function ratio) and the
use of algorithm 291 allows such a ratio to be calculated for much
larger arguments without overflow difficulties.

CERTIFICATION OF:
ALGORITHM 41 [F3]
EVALUATION OF DETERMINANT
[Josef G. Solomon, Comm. ACM 4 (Apr. 1961), 171]
ALGORITHM 269 [F3]
DETERMINANT EVALUATION
[Jaroslav Pfann and Josef Straka, Comm. ACM 8
(Nov. 1965), 668]
A. BerasoN (Recd. 4 Jan. 1966 and 4 Apr. 1966)
Computing Lab., Sunderland Technical College,
Sunderland, Co. Durham, England

Algorithms 41 and 269 were coded in 803 ALGOL and run on a
National-Elliott 803 (with automatic floating-point unit).

The following changes were made:

(1) value n; was added to both Algorithms;

(i1) In Algorithm 269, since procedure EQUILIBRATE is only
called once, it was not written as a procedure, but actually written
into the procedure delerminant body.

The following times were recorded for determinants of order N
(excluding input and output), using the same driver program and
data.

N T T
Algorithm 41 Algorithm 269
(minutes)

10 0.87 0.78
15 2.77 2.18
20 6.47 4.78
25 12.47 8.99
30 21.37 14.98

From a plot of In(7}) against In(¥) it was found that
T; = 0.00104N2-92,
Similarly,
T,

Il

0.00153 V27,

From a plot of T against T, it was found that Algorithm 269
was 30.8 percent faster than Algorithm 41, but Algorithm 41
required less storage.

686 Communications of the ACM

CERTIFICATION OF ALGORITHM 251 [E4]
FUNCTION MINIMISATION [M. Wells, Comm. ACM
8 (Mar. 1965), 169]

R. FLercuer (Recd. 9 Aug. 1965 and 24 Mar. 1966)
Electronic Computing Lab., U. of Leeds, England

Two points need
FLEPOMIN.
(i) When the method has converged, either or both of the vec-
tors s and g can become zero, hence also the scalars sg and ghg,
causing division by zero when updating the matrix k.
(ii) The part of the procedure connected with the linear search
along s does not make use of the fact that the identifier 2 (in the
Appendix to the source paper Fletcher and Powell [1]) tends to 1
as the process converges. This knowledge must be included to
achieve the rapid convergence obtained by Fletcher and Powell.
However, the particular choice of # given there can also be in-
sufficient when its optimum value would be much greater than 1
(as happens for example in the minimization of f(x) = [H(x—1)]*
where 1 is the vector (1,1, ---, 1) and H is a segment of the Hil-
bert matrix, from an initial approximation x = (0, 0, ---, 0)).

An alternative approach is to estimate n by using its value at
the previous iteration, increasing or decreasing its value by
some constant factor when appropriate (I have arbitrarily used
4). This approach removes the need for the estimate est of the
minimum value of f(z).

The appropriate changes to be made are thus:

(i) omit est as a formal parameter,

(ii) include amongst the real identifiers at the head of the
procedure body the following:

step, ita, fa, b, ga, gb, w, 2, lambda
(iii) replace the statements from the label
start of minimisation

to the end of the program by the following:

correcting concerning the procedure

start of minimisalion:
conv := true; step := 1;
Junct(n,x,f,g);
for count := 1, count +1 while oldf > f do

begin
for ¢ := 1 step 1 until n do
begin sigmali] := z[i]; gammali] := g[i];
s[i] := —up dot(h,g,2)

end preservation of z,g and
formation of s;
search along s:
fo = f; gb := dot (g,5);
if gb > 0 then go to exit;
oldf :=f; 4la := step;
comment a change of ita X s is made in z and the function
is examined. ifa is determined from its value at the previous
iteration (step) and is increased or decreased by 4 where
necessary. It should tend to 1 at the minimum;
extrapolate: fa := fb; ga := gb;
for ¢ 1= 1 step 1 until n do z[Z] := z[7] +ila X s[z];
Junct (n,z.1,9);
Jb :=f; gb := dot(g,s);
if gb <0 A fb < fa then
begin ita := 4 X ila; step := 4 X step; go to exirapolaie
end;
interpolate: z := 3 X (fa—fb)/ita + ga + gb;
w = sqrt (z12—gaXgh);
lambda := ita X (gb+w—2z)/(gb—ga+2Xw);
for 7 ;= 1 step 1 until n do z[¢] := zl] — lambda X s[i];
funct (n,z.f.9);
it f > fa \/ f > fb then
begin step := step/4;
if fb < fa then

Volume 9 / Number 9 / September, 1966

begin for i := 1 step 1 until n do z[¢] := z[¢] + lambda X
slil; f = Jb
end else
begin gb = dot(g,s);
if gb < 0 A count > n A step <10-6 then go to exil;
fb = f; ita := ita — lambda;
go to tnterpolate
end;
skip: end of search along s;
for ¢ := 1 step 1 until n do

begin sigma [¢] := z [{] — sigma [i];
gammali] := g[i] — gammali]
end;

sg := dot(sigma,gamma);
if count > n then
begin if sqrt (dot(s,s)) < eps A sqri{dot(sigma,sigma)) <eps
then go to finish
end;
for 7 := 1 step 1 until » do s[] := up dot (h,gamma,i);
ghg := dol(s, gamma);
k:=1;
if sg = 0\/ ghg = 0 then go to lesi;
for ¢ := 1 step 1 until n do for j := 7 step 1 until n do
begin hlk] := Rlk] + sigmali] X sigmaljl/sg — s[i] X sljl/ghg;
k:i=k+1
end updating of h;
test: if count > limit then go to exit;
end of loop controlled by count; go to finish;
exit:conv := false;
Jfinish:
end of FLEPOMIN

With these changes the procedure was run successfully on a
KDF 9 computer on the first of the test functions used by Fletcher
and Powell, and the appropriate rate of convergence was achieved.
(The corresponding values in [1, Table 1, col. 4] being 24.200,
3.507, 2.466, 1.223, 0.043, 0.008, 4 X 107%). It could well be, however,
that these changes may still not prove satisfactory on some
functions. In such cases it will most likely be the search for the
linear minimum along s which will be at fault, and not the method
of generating s. It should not be necessary to evaluate the func-
tion and gradient more than 5 or 6 times per iteration in order to
estimate the minimum along s, except possibly at the first few
iterations.

I am indebted to William N. Nawatani of Dynalectron Corpora-
tion, Calif., for pointing out the discrepancies in the rates of con-
vergence, and to the referee for his calculations and comments
with regard to the Hilbert Matrix function.

REFERENCE

1. Fietoner, R., axp Powsern M. J. D. A rapidly convergent
descent method for minimization. Comput. J. 6 (July 1963),
163.

REMARK ON ALGORITHM 256 [C2]

MODIFIED GRAEFFE METHOD [A. A. Grau, Comm.
ACM 8 (June 1965), 379]

G. StERN (Recd. 8 Mar. 1965 and 24 Mar. 1965)
University of Bristol Computer Unit, Bristol 8, England

This procedure was tested on an Elliott 503 using the two
simplifications noted in the comments on page 380. When the 16th
line from the bottom of page 380, first column, was changed to read

hl :=aa T (1/(k—s+1));
(as suggested in a private communication from the author) correct
results were obtained.

Volume 9 / Number 9 / September, 1966

REMARK ON ALGORITHM 266 [G5]
PSEUDO-RANDOM NUMBERS [M. C. Pike and 1. D.
Hill, Comm. ACM 8 (Oct. 1965), 605]

L. Hansson (Reed. 25 Jan. 1966)

DAEC, Riso, Denmark

As stated in Algorithm 266, that algorithm assumes that integer
arithmetic up to 3125 X 67108863 = 209715196875 is available. Since
this is frequently not the case, the same algorithm with the con-
stants 125 and 2796203 may be useful. In this case the procedure
should read

real procedure random (a, b, y);
real a, b; integer y;

begin
y =125 X y;y := y — (y+2796203) X 2796203;
random = y/2796203 X (b—a) + a

end

The necessary available integer arithmetic is 125 X 2796203 =
348525375 < 2 1T 29. With this procedure body, any start value
within the limits 1 to 2796202 inclusive will do.

Seven typical runs of the poker-test gave the results:

start value all different 1 pair 2 pairs 3 34 pair 4 3
100001 129 199 39 31 2 0 0
1082857 115 206 45 31 2 1 0
724768 120 195 49 32 3 1 0
78363 130 198 36 31 5 0 0
1074985 127 189 44 34 4 2 0
2567517 124 193 50 28 3 2 0
2245723 119 202 49 24 4 1 1

Totals for 7 runs:
864 1382 312 211 23 7 1
Totals for 100 consecutive runs with first start value 100001 :

12023 20297 4301 2837 358 181 3

REMARK ON ALGORITHM 266 [G5]
PSEUDO-RANDOM NUMBERS [M. C. Pike and I. D.
Hill, Comm. ACM 8 (Oct. 1965), 605]

M. C. PixE anp I. D. Hion (Recd. 9 Sept. 1965)

Medical Research Council, London, England

Algorithm 266 assumes that integer arithmetic up to 3125 X
67108863 = 209715196875 is available, which is not so on many
computers. The difficulty arises in the statements

y 1= 3125 X y; y :=y — (y+67108864) X 67108864;

They may be replaced by

integer k;

for k ;= (for list) do

begin

y =k Xuy;
y 1=y — (y+67108864) X 67108864

end;
where the (for list) may be

125, 25 (requiring integer arithmetic up to less than 2)

25, 25, 5 (requiring integer arithmetic up to less than 2%)
or

5, 5,5, 5, 5 (requiring integer arithmetic up to less than 22)
according to the maximum integer allowable. The first is appro-
priate for the ICT Atlas. [And also for the IBM 7090, the second
for the IBM System/360 . . . Ref.]

Note. There are frequently machine-dependent instructions
available which will give the same values as the above statements
much more quickly, if speed is of much imaportance.

Communications of the ACM 687

