Acknowledgment. The author would like to express his
appreciation to K. R. Blake for many stimulating dis-
cussions on this subject. Also appreciated are valuable
comments by Prof. D. E. Knuth and the referees of this

paper.

Recervep FEBRUARY, 1966; REVISED May, 1066

REFERENCES

1. Revised report on the algorithmic language ALGOL 60. Comm.
ACM 6 (Jan. 1963), 1-17.

2. WirtH, N. A generalization of ALGOL. Comm. ACM 6 (Sept.
1963), 547-554.

3. IBM Operating System/360. PL/I: language specifications.
Form C28-6571, IBM Corp., 1966.

4. Mcluroy, M. DougLas. Macro extensions of compiler lan-
guages. Comm. ACM 38 (Apr. 1960), 214-220.

5. FErGUsoN, Davip E. The evolution of the meta-assembly
program. Comm. ACM 9 (March 1966), 190-193.

6. Caomsky, NoaM, AND MILLER, GEORGE A. Introduction to
the formal analysis of natural languages. Handbook of Mathe-
matical Psychology, Vol. II. John Wiley, New York, 1963,
pp. 283-306.

7. ScaorrE, D. V. Meta II. A syntax oriented compiler writing
language. Proc. ACM 19th Nat. Conf., Philadelphia, Pa.,
Aug. 1964, ACM Publ. P-64.

8. Conway, MeELvIN E. Design of a separable transition-diagram
compiler. Comm. ACM 6 (July 1963), 396-408.

LARSEN—cont'd from p. 789

an effective data processing technique. The physical reali-
zation of this concept has been seen to be highly modular
and suitable for programming implementation.

The Data Filter behaves as a two-port data filter within
an interpretive processing environment, and represents the
physical realization of the data filtering concept. This is
accomplished by associating format declarations with its
input and output ports which define its processing charac-
teristics. The desired data string is sequentially constructed
in the OUT buffer by filtering datum in the IN or HOLD
buffers through these format declarations. A Procedural
Controller is employed to synchronize loading of the IN
buffer and dumping of the OUT buffer to achieve specific
data processing results as implied by the job being proc-
essed.

Receivep FeEBRUARY, 1966; rREVISED JUNE, 1966

REFERENCES

1. Functional design specification of a data retrieval model
(ABACUS). SID 66-175-2, North American Aviation, Inc.,
Downey, Calif., March 1966, 156pp.

2. ABACTUS user’s manual. SID 66-175-1, North American Avia-
tion, Inc., Downey, Calif., March 1966, 148pp.

Volume 9 / Number 11 / November, 1966

J. G. HERRIOT, Editor

Algorithms Policy as revised in August, 1966 to include
FORTRAN appears on page 823.

ALGORITHM 292

REGULAR COULOMB WAVE FUNCTIONS
Warter Gavurscar (Reed. 8 Oct. 1965)

Purdue University, Lafayette, Indiana and Argonne

National Laboratory, Argonne, Illinois
Work performed under the auspices of the U. S. Atomic Energy Commission.
real procedure {(y); value y; real y;
comment This procedure evaluates the inverse function ¢t = #(y)
of y = tint in the interval y = ~1/e, to an accuracy of about
4 percent, or better. Except for the addition of the case
—1/e £ y < 0, and an error exit in casey < —1/e, the procedure
is identical with the real procedure ¢ of Algorithm 236;
begin real p, z;
if y < ~.36788 then go to alarm 1;
if y < 0 then ¢ := .36788 4 1.0422 X sqri(y + .36788) else
if y < 10 then
begin
p = 000057941 X y — .00176148; p :=y X p + .0208645;
pi=yXp—.120013; p:=yX p-+ 85777;
t:=y X p-+ 10125
end
else
begin
z = 1In(y) — 775; p:= (775—In(2))/(1+2);
p:=1/(+p); t:=y X p/z
end
end ¢;
procedure minimal (ela, omega, eps, lal, dm);
value efa, omega, eps; real ela, omega, eps, lal, dm;
comment This procedure assigns the value of A’ to lal, accu-
rately to within a relative error of eps, where {A.’} is the minimal
solution (normalized by Mo’=1) of the difference equation

L+1 Iy
L1 " T L@+

Ap+1— L A1 =0 (w0),
(For terminology, see [3].) If {A.} denotes the solution corre-
sponding to initial values N = 1, A\, = & — 7, the procedure also
assigns to dm the value A, — \,". The negative logarithm of
M — M| may be considered a measure of the “degree of mini-
mality”’ of the solution {A.};

begin integer L, nu; real eta2, r, ra;

eta2 := eta 1 2;
nu = 20; ra := 0;
Ll: r := 0;
for L := nu step —1 until 1 do
r = — (L1 2+eta2)/(LX ((2XL41)X omega— (L+1)Xr));
if abs(r—ra) > eps X abs(r) then
begin
ra :=71; nu:=nu -+ 10; go to Ll

end;
lal :=r; dm := omega — eta — r
end minimal;

Communications of the ACM 793

procedure Coulomb (eta, ro, Lmaz, d, F); comment Dynamic own array declarations are not per-

value ela, ro, Lmaz, d; integer Lmaz, d; real ela, ro; mitted in most of the current ALGOL compilers. It can be
array F; avoided here, at the cost of extra storage, if lambda is de-
comment This procedure generates to d significant digits the clared as an array of dimension [0:300] at the beginning of

the procedure Coulomb. The same remark applies to the
array Imin declared later in the block labeled M1;
go to coefficients [1];

regular Coulomb wave functions Fyr,(n, p) for fixed 5 % 0,20,
and for L = 0(1)Lmaz. (For notation, see [2, Ch. 14]). The

results are put into the array F. Letting L1: minimal (eta, omega, 10—m, r1, d1);
oLL ! QLg=TN2 | oL +1+ 1;,7)] comment The letter m in 10—m is a place holder for a ma-
Jo= m—) Fi(n,0), Ciln) = @L + D! , chine-dependent integer, namely one less than the number of
decimal digits carried in the precision mode (single, or
the procedure first obtains fi, as the minimal solution of the double precision) of the procedure minimal. Similarly for
recurrence relation the letter » in the next statement, which is a place holder
LUL + 1) +] L+ 1) LL+1) for tl}e integer m + 1. .BOth m and n are to be properly

— . g = | t—— |y +—=——"yr1 =0, substituted by the user;

(L +D@EL+3) P 2L -1 ifabs(d1 X epsilon) = 10—n then begini := 1; gotoL2end;

outstring (1, “The requested accuracy cannot be guaranteed.
Use of the procedure minimal in a higher precision mode
per = i’\LfL , A= ,L‘LP(lz;ﬂ,—iv)(__iw)’ appears indicated’);

Lo 2 :=3; mul :=0;

using for normalization the identity

M1: begin array Rra, lam[0:nu]; own array lmin[0:mnu];
mu = entier (1.25)Xnu);
for L := mul step 1 until nu do lam{L] := 0;

where P§® (z) denotes the Jacobi polynomial of degree L. The
parameter is so chosen as to avoid undesirable cancellation
effects. The final results Fy, are obtained recursively, by

M2: r:=0;
Filn,) = crfL, for L := mu step —1 until mul + 1 do
2L —1 2y \} begin
cL = m [L2 4 nPlteg (L = 1,2,3 --+), e = (e”’" — 1) . r = —(L1T24eta2)/(LX (2XL+1)X omega— (L+1)X7));
if L £ nu then Rra[L—1] := r
A detailed justification of the process is to appear elsewhere end;
([3]). For large positive n and p, the generation of the coefficients for L := mul + 1 step 1 until nu do
Az is subject to some loss of accuracy. If 0 < o £ 20,0 = p £ 20, Imin[L] := Rra[L—1] X Imin[L—1];
none, or only a few decimal digits will be lost, however. Writing for L := mul step 1 until nu do
the procedure minimal in double precision will resolve the if abs(min[L]—lam[L]) > epsilon X abs(imin[L]) then
problem for 5, p up to about 50, for normal accuracy require- begin
ments. In any case, if higher precision is desirable, the procedure for k := mul step 1 until nu do lam[k] := Imin[kl;
puts out a message to this effect. There is an error exit, if p < 0; mu = mu + 5;
begin integer L, nu, nul, mu, mul, i, k; if mu < 5 X nu then go to M2 else
real epsilon, rol, eta2, omega, d1, sum, r,rl, s, 1, 12; begin
array lambda, Imin(0:1], Fapproz, Rr{0:Lmaz]; outstring (1, ‘convergence difficulty in the generation of
switch coefficients := 1.2, L1, M1; the coefficients lambda sub L’);
if 70 < 0 then go to alarm?2; go to L5
if r0 = 0 then end
begin end;
for L := 0 step 1 until Lmaz do F[L} := 0; lam[0] := —rl; lamfl] :=1; 11 :=d1/(1 + r1712);
go to L5 for L := 2 step 1 until nu do
end; begin
epsilon := 5 X 107 (—=d); rol := 1/ro; eta2 := eta]2; lam{L] := ((2XL—1)XomegaXlam[L—1]+
i1 := if eta > 0 then .5 X ro/eta else 0; ((L—1) 7 2+-eta2) Xlam[L—2]/(L—1))/L;
omega := if eta < 1 then 0 else lambda[L] := lmin{L] 4 t1 X (lam[L]4+r1XImin{L})
if {1 = 1 then 1.570796327/(1 else end
(1.570796327 — arctan(sqrt(1/t1—1)) -+ sqre(t1X (1—11)))/¢1; end;
lambda 0] := min[0] := 1; lambda[l] := omega — eta; go to L3;
sum := ro X exp{omegaXro); L2: for L := nul step 1 until nu — 1 do
for L := 0 step 1 until Lmazx do FapproziL] := 0; lambda[L-+1] := ((2XL-+1)X omegaX lambda[L]+
dl := 2.3026 X d 4 1.3863; (L 1 2+-eta2) Xlambda[L—1]/L)/ (L+1);
il := 1.3591 X ro; L3:7:=s8:=0;
L := if Lmaz < t1 then 1 4 entier(fl) else Lmaxz; for L := nu step —1 until 1 do
tl := exp(1.5708Xeta); s := sqri(l+omegat2); begin
{1 := if omega = 0 then {1 + 1/i1 else tl = eta/(L+1);
exp(—etaXarctan(1/omega)); r = 1/(@XL=1)X ({1/L+rol— (14117 2) Xr/(2X L+3)));
{2 := omega + s; s 1= r X (lambda[L]+s);
r = 1.3591 X ro X 12; if L £ Lmazx then Rr[L—1] :=r
s 1= (d1+In(t1 X sqrt(t2/s))—omegaX ro)/r; end;
nu 1= if s = —.36788 then entier(rXi(s)) else 1; Fi0] := sum/(1+s);
nul := entier (LXt(.5Xd1/L)); for L := 1 step 1 until Lmaz do F[L] := Rr[L—1] X F[L-1];
nu 1= if nu < nul then nul else nu; comment The for-statement which follows is of purely
nul := 1; precautionary nature, making sure that the results have the
if omega = 0 then 7 := 1 else ¢ := 2; required accuracy. If speed is important, the statement
.L0: begin own array lambda[0:nul; may be omitted;

794 Communications of the ACM Volume 9 / Number 11 / November, 1966

for L := 0 step 1 until Lmaz do

if abs(F[L]—Fapproz[L]) > epsilon X abs(F[L]) then

begin

for k := 0 step 1 until Lmax do Fapprozlk] := Flk];
nul ;= mul := nu; nu = nu + 10;
if nu < 300 then go to LO else
begin
outstring (1, ‘convergence difficulty in Coulomb’);
go to L5
end

end

end;

t1 := 6.2831853072 X eia;

comment The constant 27 in the preceding statement must be

supplied more accurately if more than 11 significant digits are

desired in the final results;

if abs(tl) < 1 then

begin

2:=s8:=1; L:=1;

L4: L =L+ 1;

12 1= {1 X £2/L; s:= s+ 12;

if abs(i2) > epsilon X abs(s) then go to I4;

s 1= sqri(1/s)

end

else

s 1= sqri(tl/(exp({1)—1));

F[0] := s X F[0];

for L := 1 step 1 until Lmazr do

begin

s 1= (L—.5) X sqrt(L 1 2+eta2) X s/(LX (L+.5));

FIL] := s X F[L]

end;

L5: end Coulombd;

comment The procedure Coulomb was tested on the CDC 3600
computer, with the procedure minimal in single precision (un-
less stated otherwise). The tests included the following:

(i) Generation of ®1(1, p) = [CL(n)p ™" (n, p), L = 0(1)21,
to 8 significant digits (d=8) for 5 = 0, —5(2)5, p = .2,
1(1)5. The results were in complete agreement with values
tabulated in [4].

(ii) Computation of Fe(n,), Fo'(n,p) = (d/dp}Fe(n,p) to 6
significant digits for 5 = 0(2)12, p = 0(5)40, using
Fy = (o7 +n)Fy — (1494, . Comparison with [5]
revealed frequent discrepancies of one unit in the last
digit. In addition, beginning with » = 8, the results became
progressively worse for p = 30, 35, 40, being correct to
only 2-3 digits when 4 = 12, p = 40. With the procedure
minimal in double precision, however, these errors dis-
appeared.

(iii) Computation to 8 significant digits of Fo(n, p), Fo'(n, p) for
p = 29, p = .5(.5)20(2)50. The results agreed with those
published in {1} for p £ 16, but became increasingly in-
accurate for larger values of p. Complete agreement was
observed, however, when the procedure minimal was
operating in the double-precision mode;

REFERENCES:

1. ABramowirz, M., ANp RaBINowITZ, P. Evaluation of Coulomb
wave functions along the transition line. Phys. Rev. 96 (1954),
77-79.

2. AsramMowiIrtz, M., aNDp StEGUN, I. A. (Eds.). Handbook of
Mathematical Functions. NBS Appl. Math. Ser. 55, U. S. Gov’t.
Printing Off., Washington, D. C., 1964.

3. Gaurscur,W. Computational aspects of three-term recurrence
relations. SIAM Rev., to appear.

4. NATIONAL BUREAU OF STANDARDS. Tables of Coulomb Wave
Functions, Vol. I. Appl. Math. Ser. 17, U. S. Gov’t. Printing
Office, Washington, D. C., 1952.

5. Tusis, A. Tables of nonrelativistic Coulomb wave functions.

Volume 9 / Number 11 / November, 1966

LA-2150, Los Alamos Scientific Lab., Los Alamos, New Mexico,
1958.

CERTIFICATION OF ALGORITHM 257 [D1]

HAVIE INTEGRATOR [Robert N. Kubik, Comm. ACM
8 (June 1965), 381]

Kennere Hiustrom (Recd. 28 Feb. 1966, 29 Apr. 1966
and 15 July 1966)

Applied Mathematics Division, Argonne National Labora-
tory, Argonne, Illinois

Work performed under the auspices of the U.S. Atomic Energy Commission,

M Havie Integrator was coded in CDC 3600 Forrran. This rou-
tine and a ForrranN-coded Romberg integration routine based
upon Algorithm 60, Romberg Integration [Comm. ACM 4 (June
1961), 255] were tested with five and four integrands, respectively.

The results of these tests are tabulated below. (The ALgoL-
coded Havie routine was transcribed and tested for the two
integrands used by Kubik, with identical results in both cases.)

In the following table, A is the lower limit of the interval of
integration, B is the upper limit, EPS the convergence criterion,
VI the value of the integral and VA the value of the approxima-
tion,

Number
of
Integrand 4] B EPS VI Routine V4 Punc-
Evalu-
ations
cosz 0 w2 107 1.0 Havie 0.9999999981 1
Romberg 1.000000000 17
= 0 4.3 108 0.886226024 Havie 0.886226924 17
Romberg 0.886336925 65
Inz 1 10 10~ 14.0258509 Havie 14. 02585084 65
Romberg 14.02585085 85

(@)
—py) 0 20 107 5707276 Havie 5.770724810 32,769
ot Romberg 5.770724810 16,385
cos (4z) 0 T 1078 0.0 Havie 3.1415926536 38

8 Since in the Havie procedure, the sample points of the interval, chosen for
function evaluation, are determined by halving the interval and are, therefore,
function-independent, there are functions for which the convergence criterion is
satisfied before the requisite accuracy is obtained. An example is the integrand
f(x) = cos (4z) integrated over the interval [0, 7]. The value obtained from the
routine is = 7. The true value of the integral is 0.

This inherent limitation applies to all integration algorithms that obtain sample
points in a fixed manner.

REMARK ON ALGORITHM 286 [H]
EXAMINATION SCHEDULING [J. E. L. Peck and M.
R. Williams, Comm. ACM 9 (June 1966), 433].

The 6th and 7th lines from the end of the procedure should be
corrected by the insertion of a begin end pair so that they read
if row [7] < 0 then

begin outinteger (1, ©); outinleger (1, row [[1); outinteger

(1, wld])

end

1966 Algorithms Index will appear in the
December issue of Communications.

Communications of the ACM 795

