begin
yl o= y;
derfvyl = derivy;
w0 to zerostep
end shortcut
else
begin
lor{0] = y;
tor{l] 1= h X derivy;
square 1= h X h;
tor[2] s= 0.5 X square X x X {or{0};
yl = lor[0] + tor{l] + tor[2];
derteyl = tor{l] + 2 X tor{2};
for n := 3 step 1 until 10 do
begin
for[n] = square X (eXtor{n—2]4+-hXtor{n—3]1/
(th—1)Xn);
yl =yl -+ tor[n];
derioyl 1= deriryl
end;
derivyl = derivyl/h
end caleulation of coelficients ln series expansion;
zerostep:
end Taylor;
pt o= 3.14159 26536;
if conirol < 0 then
begin
Biiabl0] := 0.61492 66274;
Bidiab{0] := 0.44828 83574;
Aitab[33] 1= 215659 99525, — 6;

3

+ n X forn]

Ardtabi33] 1= --5.61931 9442, — 6;
xztab 1= 0;

for n := 0 step 1 until 32 do
begin

Taylor(Bi, Bid, ztab, 0.1, Bitabin], Bidtabin]);
Taylor(Bitabin-+1], Bzdlab{n+l] ziab-+0.1,0.1, B, Bid);
Taylor(Bi, Bid, —xtab, —0.1, Bilab{—n], Bzdmb;—n}),

Taylor (Bitabl—n—1], Bidiab{—n—1], —xtab—0.1, —0.1, B,

Bidy;
plab = xtab -+ 0.2
end setting up B tables;
for n 1= 33 step —1 until —32 do
begin
Taylor{ A1, Aid, ctab, —0.1, Ailebin], Addiabin]);
Taylor{litabln—1], Aidiabln—~1}, 2tab—0.1, —0.1,
atab = xlab — 0.2
end setting 47 tables
end;
ifabsiz) = 6.0 then
begin
Joi= 5 X 3
wtah = j/3;
h o= o — xlab;
scale (= cxp{—uin);
Taylor (A1, Add, wiab, b, Adlablg], Addiablj])
Tayler(Bi, Bid, xlub, h, Bilab{y}, Bidlab(j}
Av o= Ai/scale;
Add = Aad/scale;
Bi = Bi X scale;
Bid = Bid X scale;
go to finish
end interpolation in previously established table;
rtmdr o= sqri{ahs(zy);
zt = rimde T 3/1.5;
factor 1= 1/{12Xz1);
A] = 1/sqri{prXrimds);
7 o=

forn := 0 step) until 9 do

2992 Communications of the ACM

Az, Addy;

bhegin
A1

{

Foae o 6

= D3) Juelor X Andfrs

(xui catenlation of asymptotie sevies coctliciends:
if v <0 then go to noy;

HOJ A= 2]+ -‘H% i m; | M»‘r Aoy
B AT
seale o= erpiri--riad;
AL = e (2 sealed

Bi = (pq) X oscale;
a0 to conlinue,
neg:
p o= 0] 2] A A - A R R A 110];

s o= oxin (@l-pli);

= ol pi/dy;
seale = cxp(~—zia},
A= (pXs—gXe)/ seale;
Bi = (pXcet+qXs) X seale;
continue:
if control = 0 then go to finish
else it ¢ < 0 then

begiu

poi= o~ (rhmde/aly K
(23 A2] = 63 6] F8 A 8]~ 10X A{10]);
q = —{rimdr/zr) X

(A =3X ABIX AB]—T X AT]HIXALD;
lzz v e (rhind e X B30) f (scale X seale)y — 44/ (4Xx)
— (pXs—qgXc)/scale;
Bid = rtmdy X A1 X seale X
— (pXe+gXs) X scale;
2o to finish
end calculation of derivatives;
p o= (rimde/er) X
(20 A[2] 44X A H6X A [6]-H8X A [R]+10X A[10]);
q 1= —{rtmde/xi) X
(A3 AB]E5X A5+ A[T]+0X A[9]);
Ald = (p—g)/ (2% scale) — AL X (rimde-+1/(4X2));
Bid = (p-+q) X secale + Bl X (rtmde—1/{(4Xz));
finish:

end .liry

seale — Bi/{(4Xx)

ALGORITHAL 302

TRANSPOSE VECTOR

J. Boorunoynp (Reed. 12 Sept. 1966
6 Feb. 1967)

U, of Tasmania, Hobart, Tas.,

S’L()I ED ARRAY [K2)
. 28 Nov. 1966, and

Australia

procedure lranspose (o, m ny; value m, 7y integerm,n; avay
o, comment performs an in-sita transposition of an m X naray

Aftom, Lind atfm(l sv rows in the veetorallim X nl. Tt he method
f Windley [1], modified for use with vectors

J
is essentially
t lmux mbwn i bounds.

having uni

The algorithm processes only elements AL 2] through
1, 1 aned A, n] retain their mlg,mdl P"Sl
tions. Elerments Alg, p) of the trangposed matrix are meGd in

I
i

Al n—1] since A}

ali], in the orderi = 2,8, -+, mn — 2, by an ¢ sxchanging pmcl

! |
ess. AL the last step two elements are correctly ph aced whlcd
accounts for the value mn — 2 as the npper bound on 4. Vali

Lorigin
subseripts of the vector allimXn) are clements in the l-otig

\p. it 18 0re
. (,tam;m Lationally, however, 1018 m

m:ir*«!»’i,u,--' .
| mn—1]. Do

convenient to use the sero.origin set [0, 1, -+
-1y the corresponding sero-origin index g
alt], to be oceupied by Aly, pl, we haver = m(g -1) + (r-1)

The corresponding zero-origin index o of the Alp, ql clomer?

i!l;_{ i)y 7q ({y=

now in afj], which must be tensferred to ali], is:

Gom g Vs onlp—1) 4 (qe1) = n X i o a1

Veleoss 16/ Namher 3 / May 196

For cach vadue of 7 = 2, 4, -, mn — 2 (or #=

1,2, - nn - 3) we compude the index j of alj] and exchange
that the element oviginally in alj] is now elsewhere following
previous exchanges. Tls present position is given by the first
Fr 2 Zoin the series of zero-origin indices:

Jo, Jrat = n X g mod(nn-—1),

The two sequences modudo(mn—1) are generated by different
methods, An additive process generates the first, using % to
duplieate the function of 7, in case this is adjusted in the second
recurrence-gencrated sequence if 7 < 7.

Unlike the simitar problem [3], transposition does not appear
to be completely soluble on wholly group-theoretic lines. A
general discussion of transposition and a reference to its formu-
lation as a problem in Abelian-Groups is given in [2].

[1] P.F. Windley, Transposing matrices in a digital computer.

Comp. J. 2 (1959), 47-48. [2] (. A. Heuer, Control Data

Techunical Report T.R.53, pp. 3-5. [3] Fleicher, W., and

Silver, . Algorithm 284. Comm. ACM 9 (May 1966), 326;

begin integer 1, j, k, tlesst, mnlessl, done, jn, modlessn;
real (;

mnless 1 1= X n — 1; modlessn := mnlessl — n;
done = mnlessl — 1; k= 0; 4lessl 1= 1;
for ¢ := 2 step 1 until done do

begin comment compuies j = k = n X 7o mod (mn—1);
7=k = ifk = modlessn then k + n else b — modlessn;
test: if 7 < ilessl then
begin comment computes i = n X j» mod(mn—1);
gnoi= g X,
g = gn — in + mnlessl X mnlessl;
2o Lo lest
end;
comment avoid unnecessary exchanges;
if j # 2lessl then
begin j := j -+ 1;
b= alil; ale] = aljl; alf] = ¢
end;
ilessl 1= 1
end
end lranspose

REMARK ON ALGORITHM 28 [E2]
LEAST SQUARISS FIT BY ORTHOGONAL
POLYNOMIALS [John G. MacKinney, Comm. ACM 3
(Nov. 1960), 604]
G. J. Maxivsox (Reed. 30 Sept. 1965, 29 Aug. 1966 and
7 Nov. 1966)
University of Liverpool, Liverpool 3, England
There are three errors in the published procedure.
Line 32 ¢ 1= m + 2; should read i := m + 2;
Tine 56 delsq/(m—2~—1); should read delsq/(m—i—2);
Line 69 ;is missing from end of statement cpolyli+4-1] 1= sli+1];
Three improvements can be made to the procedure. In the case
of equally spaced points, it is possible to center them about the
origin; all alphas arve then zero. This is achicved by replacing the
statements on lines 32, 33, and 34 by deltax := 4/(m—1);
zone = —2; All statements involving alphas can then be re-
vised.
Another tmprovement can be made by deleting the two state-
ments on line 37 and all of lines 38, 39, and 40. These statements
are eompletely redundant.

Volume 10 / Number 3 / May, 1967

The third improvement is to rewrite line 71 to read

clastpli-+1] = 0; 9:

end of main
instead of

9: clastple+1] := 0 end of main

CERTIFICATION OF ALGORITHM 30 [C2]

NUMERICAL SOLUTION OF THE POLYNOMIAL
EQUATION [K. W. ELLENBERGER, Comm. ACM
3 (Dec. 1960), 643]

Joux J. Kornrerp (Recd. 31 Aug. 1964, 18 Nov. 1964 and
10 Nov. 1966)

Computing Center, United Technology Center, Sunny-
vale, Calif. 94088
The ROOT POL procedure was found to use the identifiers p, g,

without declaring them. They should be declared real.

The first Ancorn statement in Cohen’s Certification [Comm.
ACM 65 (Jan. 1962), 501 which reads:

if h; 7 0 then s ;= In (abs(h;))
should read:
if h; % 0 then s := In (abs(hy)) + s.
The next line could be simplified to read:
end; s := erp(s/(n+1));

The above corrections, as well as Algorithm 30 itself, are in
publication language Arncor. In order to translate the algorithm
to reference language Avrcor, which is now used in CACM, 10F
would need to be replaced by 10 T F, and k; would need to be re-
placed by & [7].

With these corrections and those contained in Alexander’s
Certification [Comm. ACM 4 (May 1961), 238], Ellenberger’s Al-
gorithm was adapted to B-5000 Avngor and successfully executed
on the Burroughs B-5000 computer at United Technology Center.
The results from the four examples used by Alexander are given
below.

Ezample 1
(1.0008)107%* — (9.8913310°3 — (1.0990)10%% -+ 10°% -+ 1 = (.

The roots are:
x —(0.201080185406
z = 0.140521622653 + 0.1639896092837
z = (—9.99989011230)107¢.

i

il

Ezample 2
at — 3u% 4 2022 + 44 + 54 =0
x = 247063897001 & 4.64053316164:
x = —0.970638970010 + 1.00580758903¢

Example 8
ab — 208 4 2+t 4 B2 — 6r -8 =10
z = —0.999999999990 == 1.000000000000¢
2 = 1500000000000 -+ 1.32287565553¢
2 = 0.500000000000 =+ 0.8660254037807

Example 4
gt~ 8x¥ — 1622 4 Tw 4+ 15 =0
3.00000000000
- 2.00000000000 + 1.00000000003:
~—0.,999999999990
2 = 1000000000000
These results agree substantially with those given in Alexander’s

i

it

i

T
€
T

i

Certifieation.

Communications of the ACM 293

CERTIFICATION O ALGORITHM 279 [D1]
CHEBYSHEV QUADRATURE [F. R. A. Hopgood and
C. Litherland, Comm. ACM 9, 4 (Apr. 1966), 270]
Kexyery Hiorsrros (Reed. 16 Dee. 1966 and 30 Jan.
1967)
Applied Mathematics Division, Argonne National Labora-
tory, Argonne, Ilinois
Work performed under the auspices of the US Atomic Energy Comumission

The 40th line of the first column on page 270 should read:
badda = 5 X (b+a);

So corrected, Chebyshev quadrature was coded in CDC 3600
AvrcoLn. A modified version of this quadrature scheme was coded
in 3600 Compass language. In this modification the cosine values
are program constants, with 3600 single-precision accuracy, as
opposed to program generated values, which tests show have
maximum absolute errors of 2735, These errors are carried into the
integrand argument evaluation, resulting in large relative errors
in the integrand evaluation, for functions bounded by unity over
the interval of integration, for example, e gyer (0, 4.3) and sin(x)
over (0, 2x), which in turm delays convergence.

Since 3600 Compass does not permit dynamic allocation of
storage, the dimension of the cosine array must be fixed. The
choice of 129 = 27 - 1 terms 18 based on the recommendation in
the comments of Algorithm 279, “A reasonable value for nmax is
probably 7.

The Chebyshev quadrature 3600 Aucorn program, the modified
3600 Compass routine, and 3600 Forrran-coded Romberg and
IHavie integration routines were tested with six integrands. The

TABLE I

Nwem-
ber
of
Roubine VA Junc-
tion
cvaliu-
ations

Integrand A B EPS v

Havie 0.886226924 | 17
0.886226924] Romberg 0.886220925 | 65
Chebyshev 0.886005576 | 129
Chebyshev (Rev.)| 0.886226926 | 17

Havie 6.268233308 | 129
sin (x) 4 1 0] 20 | 1075 | 6,283185308] Rowmberg 6.268233300 | 129
Chebyshev 6.282993876 | 129

Chebyshev (Rev.)] 6.283185309 5

5.034254231 | 129

e Havie
@ramia(z) o1 | 107 | 6.0 Romberg 5.034254231 | 120
Chebyshev 5.829597734 | 129

Chebyshev (Rev.)| 5.701177427 | 129

Tavie 14.02585084 | 65

o () 110 | 107% |14,02585088 | Romberg 1402585085 | 65

Chebyshev 14, 02585096 17

Chebyshev (Rev.)| 14,02585097 17

e Havie 1.979745104 | 129

In (,;) 01 [1078 2.0 Romberg 1.979745104 | 129

) Chebyshev 1.999599461 | 129
Chebyshev (Rev.)| 1.

997983436 | 129

Havie 1.582238946 17

o —1 |1 |10~¢ | 1.5822320% | Romberg 1.582238046 | 17

(A + 22 -+ 0.9) Chebyshev 1.582232067 | 17
i Chebyshev (Rev.)| 1.582232967 | 17

dx
@t ;;"_;T)‘g‘) = 15822329 is obtained from C.W. Clenshaw and
A. R. Curtis, ““A method for numerical integration on an automatic computer,”
Numer. Math. 2 (1960), 203.

. 1
& The value fil

204, Communications of the ACM

Romberg aud Havie routines are based upon Algorithm 60, Rom .
berg Integration [Comm. ACM 4, (June 1961), 2251, and Algorithry
257, Havie Integration [Comm. ACM 8 (June 1963), 3817,

The results of these tests are tabulated in Table I. In the table,
A is the lower imit of the interval of integration, B is the uppey
limit, £PS the convergence criterion, VI the value of the integral
and VA the value of the approximation.

Due to storage requirements, Chebyshev quadrature is re.
stricted to a maximum of 129 function evaluations. For reasons
of comparison, this limit is also imposed on Romberg and Havig
quadratures. Thus, in gsome cases the acenracy called for was nog
obtained,

Algorithms Policy + Revised August, 1966

A contribution to the Algorithms Department should be in the form of an
algorithm, a certification, or a remark. Contributionsshould be sent indupli-
cate to the editor, typewritten double spaced. Authors should carefully
follow the style of this department with especial attention to indentation
and completeness of references.

An algorithm must normally be written in the ALGOL 60 Reference
Language [Comm, ACM 6 (Jan. 1963), 1-17] or in ASA Standard FORTRAN
or Basic FORTRAN [Comm. ACM 7 (Oct. 1964), 590-625]. Consideration
will be given to algorithms written in other languages provided {he language
has been fully documented in the open literature and provided the author
presents convincing arguments that his algorithm is best described in the
chosen language and cannot be adequately described in either ALGOL 60
or FORTRAN.

An slgorithm written in ALGOL 60 normally consists of & commented
procedure declaration. It should be typewritten double spaced in capital and
lower-case letters. Material to appear in boldface type should be under-
lined in black. Biue underlining may be used to indicate italic type, but this
is usually best left to the Editor. An algorithm written in FORTRAN nor-
mally consists of a commented subprogram. It should be typewritten double
spaced in the form normally used for FORTRA N or it should be in the form
of a listing of a FORTRAN ecard deck together with a copy of the card deck.
Each algorithm must be accompanied by a complete driver program in its
language which generates test data, calls the procedure, and produces test
answers, Moreover, selected previously obtained test answers should be given
in comments in either the driver program or the algorithm. The driver pro-
gram may be publishedwith the algorithm if it would be of major assistance
to a user.

For ALGOL 80 programs, input and output should be achieved by pro-
cedure statements, using any of the following eleven procedures (whose body
is not specified in ALGOL) [See “Report on Input-Output Procedures for
ALGOL 60,” Comm. ACM ¥ (Oct. 1964), 628-629]:

insymbol inreal outarray ininieger
outsymbol outreal outhoolean oulinteger
length tnarray oulstring

If only one channel is used by the program for output, it should be desig-
nated by 1 and similarly a single input channel should be designated by 2.
Examples:
] oulstring (1, ‘w="); outreal (1,2);

for i := 1 step 1 until n do outreal (1,A4[1]);

ininteger (2, digit [17]):
For FORTRAN programs, input and output should beachieved as described
in the ASA preliminary report on FORTRAN and Basic FORTRAN.

It is intended that each published algorithm be well organized, elearly
commented, syntactically correct, and a substantial contribution to the
literature of Algorithms. It is necessary but not sufficient that a published
algorithm operate on some machine and give correct answers. It must also
communicate a method to the reader in a clear and unambiguous manner.
All contributions will be refereed both by human beings and by an appro-
priste compiler. Authors should pay considerable attention to the correctmess
of their programs, since referees cannot be expected to debug them.

Certifications and remarks should add new information to that already
published. Readers are especially encouraged to test and certify previousiy
uncertified algorithms. Rewritten versions of previously published sl
gorithms will be refereed as new contributions and should not be imbedded
in certifications or remarks.

Galley proofs will be sent to authors; obviously rapid and careful proof.
reading is of paramount importance.

Although each algorithm has been tested by its author, no liakility is
assumed by the contributor, the editor, or the Association for Computing
Machinery in connection therewith.

The reproduction of algorithms appearing in this department is explicitly
permitted without any charge. When reproduction is for publication pur-
poses, reference must be made to the algorithm author and to the Communi-
cations issue bearing the algorithm.—J.G . Herriot

Volume 10 / Number 5 / May, 1967

