and

[«
have been successfully mtcg,m ted with this procedure to
19, accuracy.

B. Functions having ah infinite number of zeros in the interval
of integration. Such integrals as

- d?/ F S D

1
[ dy vy sin (L5 1n y),

Jo
1

/ dy vV sin (0.5 1n y),
o

and

2 L
f dx / dy zy“« sin (x ln y),
1 0

have been successfully integrated with this procedure to
19, accuracy.

C. Functions having high-frequency oscillations or a large
number of discontinuities. The function

flo) = 2 if the least significant bit of z is 1
%)= 10 otherwise

is almost as discontinuous as can be represented in a binary

number computer. One hundred attempts at integrating this

function on the interval 0 to 1 gave an average of the abso-

lute value of the error = (.13,
The main limitation in integrating anomalous functions of the
above type is in the hardware or software of the particular ma-
chine being used. The procedure will fail when the interval is
subdivided to a point where it is smaller than the smallest in
magnitude nonzero number representable in the machine.

A histogram is given below of the errors in the evaluation of

the integrals

1
/ dy zy®™ sin (x In y)
o

and

1
j dy zy= cos (x In )
0

for z = 1.04(0.04)2.00, with error tolerances 1073 and 10,

0

Number of occurrences

|
0'1i1
! |

loge(e/ ) —5 4 =3 —2—~1 0 I 2 3 4 5

Here ¢ is the error requested, ¢ is the error obtained.

The formal parameter fx is an arithmetic expression dependent,
on . In translating to another language it may be desirable to
make this parameter a procedure identifier with appropriate
modifieations in the body of the program;

if a = b then Inlegral := 0
else
begin real fl, fr, ¢
real plocedur(' Int(a z, b, fx, fe2, error);

valuea, b, fc2, error;

veal a, z, b, fx, fe2, error;
begin real dz, dze, fcl, fc3;

error 1= error X 0.577;
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comment The factor 0.577 is an approximation to 1/4/3,
The assumption here is that error contributed by the indi-
vidual panels is random and not additive, thus the error
from three panels is agsumed to be /3 (oot 3) times the
error of one panel;

dee = (random number-+0.5) X (b—a)/3;

o o= (b—am(lwc)/‘z;

z = a + dz/2; fel :

x = b — du/2; fc; = fx;

Int :

if abs(d.zc)((fcl~2><f02+f03)) <
dr X (fel-+fe3) + dxe X fe2

else
Int (a, x, atdz, fx, fcl, error)
+Int (atdz, z, b—dz, fx, fe2, error)

“+Int (b—dx, z, b, fz, fc3, error)

end;

¢ = ¢ + (random number-+0.5) X (b—a)/2;

z = {ate)/2; fl := fx;

z o= (c+b)/2; fr = fz;

error = abs(error) X 14.6;

comment The factor 14.6 can be thought of as an empirical
constant. There is some theoretical justification for calculat-
ing an optimum value for this factor, but in practice it was
determined empirically;

Integral =
Inta, z, ¢, fx, fl, error)
+1Inte, =, b, fx, fr, error)

end

error then

ALGORITHM 304

NORMAL CURVE INTEGRAL [S15]

I. D. Hion anp S, A. Jovce (Reed. 21 Nov. 1966)

Medical Research Council, Statistical Research Unit,
115 Gower Street, London W.C.1., England

real procedure normal (x, wpper),;
value z, upper; real z; Boolean upper;

comment calculates the tail area of the standardized normul
curve, 1.e.,

,‘l,____ 12 gy
V2r
If wpper is true the limits of integration are x and «
If wpper is false the limits are —« and z.
If = lies in the central area of the curve the method used is the
convergent series

eltz?

¢ ) xh a7
e-(xl‘l)t‘ (l - + . + -
./o 3 X5 3 X 5 X7
(See {1, 26.2.11].)
If « lies in one of the tails the method used is the countinued
fraction

i/’ PRSI T R ——

o+ 2+ x4 2+ .z:+

/'°° 1 1 2 3 4
x

(See [1, 26.2.14].)
The changeover point between the two methods is at abs(z) =
3.5 if the required area is greater than 0.5. This value is chosen
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on grounds of speed. If, however, the required area is less than
0.5, a changeover as far out as 3.5 will lead to the loss of three
significant decimal figures due to cancellation error upon making
a subtraction. In this case speed is sacrificed to aceuracy and
the changeover point is at abs(x) = 2.32, chosen as the point at
which the area is 0.01. The value 2.32 may be changed to 1.28
(the point at which the area is 0.1) if the full accuracy of the
machine is desired over the range 1.28 < abs(x) < 2.32, but this
leads to a considerable loss of speed and the accuracy lost by
using 2.32 is only one decimal place.

Except for this subtraction error, the procedure works vir-
tually to the accuraey of the machine (provided that the constant
1/sqrt(27) is given to this accuracy) forz < 7 but to 1 decimal
place less than the accuracy of the machine forz > 7,

RerereNce: [11 ApramoviTz, M. axp Steaun, L A. Handbook
of Mathematical Functions, National Bureau of Standards,
Appl. Math, Ser. 55, US Government Printing Office, Wash-
ington, D.C., 1964,

if z = 0 then normal 1= 0.5 else
begin
real n, 22, y;
upper = upper =z > 0
z = abs(z); 22 1= x X z;
y = (.3989422804014 X exp (—0.5Xx2);
comment 0.3980422804014 = 1/sqri(2X=);
n =yl
if — upper N\ 1.0 — n = 1.0 then normal := 1.0 else
if upper A\ n = 0 then normal := 0 else

i

i

begin
real s, {;
if z > (if upper then 2.32 else 3.5) then
begin
real pl, p2, ql, ¢2, m;
ql = z; P2 :=y X z;
n o= 1.0; pl:=y;
G2 1= a2 4+ 1.0;
if upper then

begin
s 1= m = pl/gl;
t = p2/q2
end else
begin
s = m = 1.0 — pl/ql;
t = 1.0 — p2/q2
end;
forn := n + 1.0 whilem = { A\ s # { do
begin ‘

s =2 X p2 +n X pl;
pl 1= p2; P2 :=s;
si=1x X 2+ n X gl
gl = ¢2; q2 = s;
si=m; m = {
{ 1= if upperjthen p2/¢2 else 1.0 — p2/¢2
end;
normal 1= ¢
end else
begin
si=x:=y Xz, n:=10; t:=0;
for n := n -+ 2.0 while s # ¢ do

begin
t:=s8; x:=1x X x2/n;
s=35+uz
end;
normal = if upper then 0.5 — s else 0.5 + s
end
end

end normal
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REMARK ON ALGORITHM 179 [S 14]

INCOMPLETE BETA RATIO [Oliver G. Ludwig, Comm.
ACM & (June 1963), 314}

M. C. Pixg anp I D, Hint (Reed. § Oct. 1965 and 12
Jan. 1966) ’

Medical Research Council’s Statistical Research Unit,
University College Hospital Medical School, London,
England
Algorithm 179 has the following two typographical errors:

(1) the line
if 2 < 0.5 then alter = false else

should read
if z € 0.5 then allier 1= false else

(2) the line
end:end “ncompletebeta

should read
End:end incompletebela
With these changes Algorithm 179 ran successfully on the ICT

Atlas computer using Algorithm 221 [Walter Gautschi, Comm.

ACM 7 (Mar. 1964), 143], to evaluate the factorials required. A

minor improvement might be to call epstlon by value,

As the algorithm gtands, the permitted range of p and ¢ is die-
tated by overflow problems associated with finding the values of
factorials, For most machines this will mean that p-+q will have
to be less than about 70. In the statistical applications of this
algorithm which we describe below this restriction is very serious.
However, these factorials appear essentially only in the form of
ratios, and by making use of this fact the permitted range of p
and ¢ can be enormously extended. This is most simply accom-
plished by using the real procedure loggamma [Algorithm 291,
M. C. Pike and 1. D. Hill, Comm. ACM 9 (Sept. 1966), 684 ] modifv-
ing Algorithm 179 as follows: replace the instructions

temp = lempl = factorial(qrecur—1);
to

temp = x T p X (infsumXierm/(pXiemp)-+finsumXlerml X
(1—z) T ¢/ {gXtempl))/factorial (p—1);

inclusive, by

temp =z T p X (infsumXerp(loggamma(grecur+p)—loggamma
(qrecur) —loggamma{p-+1.0))+finsumX (L.0—z) T ¢
X exp{loggamma(p-+q) —loggamma(p) —loggamma(g+1.0))) ;.

Thig also means that the declarations of templ and terml are not
required. For even moderately large values of p or ¢ this will also
have the effect of speeding up the algorithm [see Remark on Al-
gorithm 291, M. C. Pike and I. D, Hill, Comm. ACM 9 (Sept.
1966), 685].

The following real procedures use this algorithm to evaluate
three of the most frequently required statistical distribution func-
tions.

real procedure Flail (k, f1, f2, epsilon);

value k, f1, f2, epsilon; real k, f1, f2, epsilon;

comment Flail evaluates the probability that a random variable
following an F distribution, on f1 and f2 degrees of freedom, ex-
ceeds a positive constant k;
Ftail := incompletebela(f2/(f24+f1Xk), 0.5X[2, 0.5Xf1, epsilon);

real procedure Student(k, f, epsilon);

value k, f, epsilon; real k, f, epsilon;

comment Student evaluates the probability that the absolute
value of a random variable following & ¢ distribution, on f de-
grees of freedom, exceeds a positive constant k;
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Student := incompletebeia(f/(f+k T 2), 0.5Xf, 0.5, epsilon);
real procedure Binomial(k, n, p, epsilon);
value k, n, p, epstlon; real k, n, p, epsilon;
comment Binomial evaluates the probability that a random
variable following a binomial distribution, with parameters n
and p, takes a value greater than or equal to k;
Binomial := incompletebeta(p, k, n—k-+1.0, epsilon);

CERTIFICATION OF ALGORITHM 253 [F2]

EIGENVALUES OF A REAL SYMMETRIC MATRIX
BY THE QR METHOD {P. A. Businger, Comm.
ACM 8 (April 1965), 217]

Joun H. WeLscr (Reed. 3 June 1965, 1 Aug. 1966 and
1 Mar. 1967)

Stanford Linear Accelerator Center, Stanford, California

The procedure symmetric QR 1 was transcribed into ALcor for
the Burroughs B5500 (39-bit mantissa) and tested with no syntax
or logic changes (except to change the tolerance from 2.25,,-22
to 3.35:0-24). The eigenvalues of the matrix in the example given
in the procedure declaration were found to 15 units in the 11th
significant place and in the order given.

Two defects of this algorithm have been found (personal com-
munication from Prof. W. Kahan); one concerning the conver-
gence, the other concerning the numerical stability.

The procedure symmeiric QR 1 was slow to converge on matrices
of large order with the form

01
1 01
101

1
10

The trouble is caused by a poor choice of the shift, lambda,
for accelerating convergence. The fault was corrected as described
in the Certification of Algorithm 254.

The second defect is not as easy to detect or correct. On matrices
of large order with pairs of eigenvalues of opposite sign, members
of the pairs were found to varying accuracy. Another indication
of an instability was a distinct jump in the computed values of
the eigenvalues of the matrix

z 1
11 1
1 —~z 1
1 -1

at ¢ = 1075, as z was given the values 107, 107, «-- | 10711,

It appears that the square-root-free QR Algorithm described
by Ortega and Kaiser (“The LL” and QR methods for symmetric
tridiagonal matrices,”” Compul. J. 6 (1963), 99-101) is numerically
unstable; therefore Algorithm 253 should be avoided. [Rutis-
hauser (Letter to the Editor, Comput. J. 6 (1963), 133) suggested a
modification which is also mentioned by Wilkinson (The Algebraic
Eigenvalue Problem, Clarendon Press, Oxford, 1965, p. 567). How-
ever, even with this modification the Algorithm is numerically
unstable as was pointed out in a private communication from
Wilkinson to Kahan (1966)—RE¥.]
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CERTIFICATION OF ALGORITHM 254 [12]

EIGENVALUES AND EIGENVECTORS O A REAL
SYMMETRIC MATRIX BY THE QR METHOD
[P. A, Businger, Comm. ACM & (April 1963), 218]

Joun H. Waiscrn (Reed. 3 June 1965, 1 Aug. 1966 and
1 Mar. 1967)

Stanford Linear Accelerator Center, Stanford, California

The procedure symmeiric QR 2 was transcribed into Avngor for
the Burroughs B5500 (39-bit mantissa) and tested with no syntax
or logic changes (except to change the tolerance from 1.5, — 11
to 1.835p — 12). The eigenvalues of the matrix given in the initial
comment of the procedure declaration were found to 8 units in the
11th significant place and in the order given. The componeunts of
the eigenvectors found by the procedure differed from those given
by at most 7 units in the 10th significant place and that ocourred
in the smallest component of X; . The computed vectors X; and
X were the negative of those given.

It was found (personal communication from Prof. W. Kahan,
University of Toronto) that symmelric QR 2 was slow to converge
on matrices of large order with the form

01
101
1 01

10

The trouble observed seems to be caused by a poor choice of the
shift, lambda, for accelerating convergence. The following change
corrects this fault and did not change the results of these tests
except that the eigenvalues are found in a different order. Replace
the 8 lines following the line labeled inspect by :

if abs(blk]) £ eps then

begin gim, m] := a[m]; m =k, go to inspect end,
for ¢ := ¢ — 1 while abs(d[i]) > epsdo k := 1;
comment find eigenvalues of lower 2 X 2;
b0 := blml] T 2; al := sqri({a[ml]~alm])124+4X060);
t = a[ml] X a[m] — b0; a0 := a[ml] + a[m];
lambda := 0.5 X (if a0z0 then a0+al else ad—al);
i := t/lambda; comment compute the shift;
if abs(t—mu) < 0.5 X abs(t) then mu := lambda :=
else if abs(lambda—mu) < 0.5 X abs(lambda) then mu := lambda
else begin mu := t; lambde := 0 end;
alk] := alk] — lambde; beta := blk];

The modified procedure (called QR 2 below) was compared with
the procedures given by J. H. Wilkinson [Numer. Math. 4 (1962),
354-376] of the Householder tridiagonalization, Sturm sequence
bisection, and inverse iteration algorithms, Evaluation of the
Sturm sequence caused exponent underflows and overflows, so the
procedures were modified (referred to as HSI below) by scaling
and overflow detection.

To measure the effectiveness of the procedures, two quantities,
E, and E;, were evaluated for each of eleven matrices used as
test data. These quantities are suggested by Prof. W. Kahan (in
“Inclusion Theorems for Clusters of Eigenvalues of Hermitian
Matrices,” University of Toronto, Feb. 1967) and are defined as
follows. Let A4 be a Hermitian matrix, A a diagonal matrix of its
approximate eigenvalues and V a matrix whose columns are ap-
proximate eigenvectors ordered to correspond with A. Define
W = V*V — Fand B = AV — VA, then

Eo= | W s and By = | B (o] Al
where | X i = maximum cigenvalue of X*X . Then it is shown

that the maximum absolute error in an eigenvalue is less than or
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equal to

Eyfalls .
e M By <1
V1T =By ]
The computation of W and B was done with double-precision inner

products.

The results of the tests are summarized as follows:

(a) Both QR 2 and HSI found the dominant eigenvalues to
better relative accuracy, but the same or worse absolute accuracy
than the other eigenvalues.

(b) QE 2 was on the average 1.8 times faster than HSI (QR 2
required 2.5 seconds on a Hilbert segment of order 15).

(¢} QR 2 always found orthogonal eigenvectors (B; ~ 10~ ;

{(d) in most cases E1 ~ 1071 for HSI also, but several times
HSI found two eigenvectors almost parallel (&, ~ 1.0).

(&) Ey ~ 1071 for both QR 2 and HSI with neither being con-
sistently better than the other.

Conelusions. The orthonormalized eigenvectors, speed, and
comparable accuracy would recommend symmetric QR 2 over the
Wilkinson procedures for finding all of the eigenvalues and eigen-
vectors of a real symmetric matrix. The latter procedures are good
for finding selected eigenvalues and eigenvectors.

REMARK ON ALGORITHM 296 [E2]
GENERALIZED LEAST SQUARES FIT BY
ORTHOGONAL POLYNOMIALS
[G. J. Makinson, Comm. ACM 10 (Feb. 1967), 87]
G. J. Makinson (Recd. 21 Mar. 1967)
University of Liverpool, Liverpool 3, England

The second sentence of the first comment should read “The
weights should be provided inversely proportional to the square
of the standard error of the observations.”
instead of

“The weights should be provided inversely proportional to the
standard error of the observations.”

REMARKS ON:

ALGORITHM 123 [S15]

REAL ERROR FUNCTION, ERF(z)
[Martin Crawford and Robert Techo Comm. ACM 5
(Sept. 1962), 483]

ALGORITHM 180 [S15]
ERROR FUNCTION—LARGE X
[Henry C. Thacher Jv. Comm. ACM 6 (June 1963), 314]

ALGORITHM 181 [S15]
COMPLEMENTARY ERROR FUNCTION—
LARGE X /

{Henry C. Thacher Jr, Comm. ACM 6 (June 1963), 315)

ALGORITHM 209 [S15]
GAUSS
[D. Ibbetson. Comm. ACM 6 (Oct. 1963), 616]

ALGORITHM 226 [S15]
NORMAL DISTRIBUTION FUNCTION
[S. J. Cyvin. Comm. ACM 7 (May 1964), 295]
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ALGORITHM 272 [815]
PROCEDURE FOR THE NORMAL DISTRIBUTION
FUNCTIONS

(M. D. MacLaren. Comm. ACM 8 (Dec. 1965), 789]

ALGORITHM 304 [S15]

NORMAL CURVE INTEGRAL
(I. D. Hill and 8. A. Joyce. Comm. ACM 10 (June
1967), 374]

L. D. Hiu anp 8. A. Jovce (Recd. 21 Nov. 1966)

Medical Research Council,

Statistical Research Unit, 115 Gower Street, London
W.C.1., England

These algorithms were tested on the ICT Atlas computer using
the Atlas AvcoL compiler. The following amendments were made
and results found:

ALGORITHM 123

(i) value z; was inserted.

(1) abs(T) € 1w—10 was changed to ¥ — T = ¥
both these amendments being as suggested in {1].

(iii) The labels 1 and 2 were changed to L1 and L2, the go to
statements being similarly amended.

(iv) The constant was lengthened to 1.12837916710.

(v) The extra statement z := 0.707106781187 X z was made
the first statement of the algorithm, so as to derive the
normal integral instead of the error function.

The results were accurate to 10 decimal places at all points
tested exceptz = 1.0 where only 2 decimal accuracy was found, as
noted in [2]. There seems to be no simple way of overcoming the
difficulty {3], and any search for a method of doing so would

" hardly be worthwhile, as the algorithm is slower than Algorithm

304 without being any more accurate.

ALGORITHM 180
(1) T := —0.56418958/z/exp(v) was changed to
T = —0.564189583548 X exp(—v)/z. This is faster and also
has the advantage, when ¢ is very large, of merely giving 0
as the answer instead of causing overflow,
(i) The extra statement z := 0.707106781187 X z was made
as in (v) of Algorithm 123,
(ili) form := m 4 1 was changed to form :=m + 2. m+1
is a misprint, and gives incorrect answers.
The greatest error observed was 2 in the 11th decimal place.

ALGORITHM 181
(1) Similar to () of Algorithm 180 (except for the minus sign).
(i1) Similar to (ii) of Algorithm 180.
(iil) m was declared as real instead of integer, as an alternative
to the amendment suggested in [4].
The results were accurate to 9 significant figures for z < 8,
but to only 8 significant figures for x = 10 and x = 20.

ALGORITHM 209 .
No modification was made. The results were accurate to 7 decimal

places.

ALGORITHM 226
(1) 10 T m/(480Xsqrt(2:X3.14159265)) was changed to
10 T m X 0.000831129750836.
(ii) for 7 := 1 step 1 until 2 X n do was changed to
m := 2 X n; fort := 1 step |l until m do.
(i) —(@EXb/m) T 2/8 was changed to —(@EXb/n) T 2 X 0.125.
(iv) ifZ=2Xn — 1 was changed to ifi =m — 1
(v) b/(6XnXsqrt(2X3.14159265)) was changed to
b/(15.0397696478 X n).
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Tests were made with m = 7 and m = 11 with the following
results:

Number of significant Number of dectmal
. figures correct places correct
m =7 m = 11 m =7 m = 11
~0.5 7 11 7 11
—1.0 7 10 7 10
—1.5 7 10 8 10
—~2.0 7 9 8 10
—~2.5 6 9 8 11
—3.0 6 7 8 9
—4.0 5 7 10 11
—6.0 2 1 12 10
—-8.0 0 0 11 9

Perhaps the comment with this algorithm should have referred
to decimal places and not significant figures. To ask for 11 sig-
nificant figures is stretching the machine’s ability to the limit,
and where 10 significant figures are correct, this may be regarded
as acceptable.

ALGORITHM 272
The constant .99999999 was lengthened to .9999999999.

The accuracy was 8 decimal places at most of the points tested,

but was only 5 decimal places at z = 0.8.

ALGORITHM 304
No modifieation was made. The errors in the 11th significant figure
were:

abs(z) x > 0 = upper z > 0 = upper
0.5 1 1
1.0 1 2
1.5 212(5) 2
2.0 254(0) 4
3.0 0 0
4.0 2 3
6.0 6 0
8.0 14

10.0 23 0
20.0 35 0

s Due to the subtraction error mentioned in the comment section
of the algorithm. Changing the constant 2.32 to 1.28 resulted in
the figures shown in brackets.

To test the claim that the algorithm works virtually to the
accuracy of the machine, it was translated into double-length
instructions of Mercury Autocode and run on the Atlas using the
EXCHLF compiler (the constant being lengthened to
0.398042280401432677939946). The results were compared with
hand calculations using Table II of [5]. The errors in the 22nd
significant figure were:

abs(x) z > 0 = upper x > 0 # upper
1.0 2 3
2.0 7 1
4.0 2 0
8.0 8 0
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Timangs. Timings of these algorithms were made in terms of
the Atlas “Instruction Count,” while evaluating the function 100
times. The figures are not directly applicable to any other com-
puter, but the relative times are likely to be much the same on
other machines.

Instrucrion Couxt ror 100 Evarvarions

Algorithm number

abs(z)
123 | 180 | 181 209 226 272 1 304 304
mo= T
0.5 58 8 97 24 25 24
1.0 65¢ 8 176 24 20 20
1.5 | 164 | 128 | 127 9 273 25 35 35

2.0 | 194 78 90 8 387 24 39 39
2.5 | 252 54 68 10 515 24 131

3.0 42 51 9 628 25 97

4.0 27 39 9 9004 | 25 67 44

6.0 15 30 6 14004 | 16 49 23

8.0 9 28 7 21004 | 18 44 11
10.0 10 25 5 27004 | 16 38 11
20.0 9 22 5 65004 | 16 32 11
30.0 9 9 5 1109004 | 16 11 11

* Readings refer to z > 0 = upper.

b Readings refer to x > 0 = upper.

: Time to produce incorrect answer. A count of 120 would fit a
smooth curve with surrounding values.

4100 times Instruction Count for 1 evaluation.

Opinion. There are advantages in having two algorithms
available for normal curve tail areas. One should be very fast and
reasonably accurate, the other very accurate and reasonably
fast. We conclude that Algorithm 209 is the best for the first
requirement, and Algorithm 304 for the second.

Algorithms 180 and 181 are faster than Algorithm 304 and may
be preferred for this reason, but the method used shows itself in
Algorithm 181 to be not quite as accurate, and the introduction
of this method solely for the circumstances in which Algorithm
180 is applicable hardly seems worth while,

Acknowledgment. Thanks are due to Miss I. Allen for her
help with the double-length hand calculations.
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