ALGORITHM 305

SYMMETRIC POLYNOMIALS [C1]}

P. Bratrey anp J. K. S, McKay (Reed. 23 Sept. 1966,
15 Feb. 1967 and 10 Mar. 1967)

Department of Computer Science,
Edinburgh, Edinburgh, Scotland

University of

real procedure express(b, unit, n);

integer array b; array unit;

comment express expresses the symmetric sum Zx?ix?ﬁx?:
over n variables as a sum of determinants in the unitary sym-
metric functions D &i&iZi, -+« i, . The non-negative ex-
ponents b; (¢ = 1, --- , n) are assumed to be in b[{1:n] on entry
to express. (The elements of this array are altered by the pro-
cedure.) The symmetric sum ig first expressed in terms of Schur
functions which are then evaluated as determinants in the
unitary symmetric functions. The Schur functions are generated
in the local array c¢[1:] with the sign in the local integer sig.
The unitary functions of degree r = 1, --- , n should be in
unii[1:n] on entry to express.

This procedure may be used to determine the coefficients of a
polynomial with roots the kth (k a positive integer) powers of
the roots of a given monic polynomial. Use is made of the
procedures determinant [Algorithm 224, Comm. ACM 12 (Apr.
1964), 243)] and perm [Algorithm 306, Comm. ACM 10 (July
1967), 450}
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begin integer array c, d[l:n];
integer sig, p, ¢, %, j; Boolean finish;
procedure sort (z, ¢, n); value n;

integer array z;
comment sorts the integer array z[1:n]into descending order.

¢ is set to &1 according to whether the number of transposi-

tions made is even or odd;
begin integer 1, j, k;

value n; integer n;

real sigma;
integer ¢, n;

c:=1;
La:1 :=1; k:=0; j:=z[l];
Ll:%:=1%41; if7 > n then go to L3;

if z{1] < j then
begin z[t—1] := j; j := z[i] end

else begin z[t—1] := 2[i]; k :=1; ¢ := —c¢ end;
go to L1;
L3:z[n] := j; if k # 0 then go to L4
end sort;

procedure conjugale(p, longl, g, long2); value longl;
integer array p, ¢; integer longl, long2;

comment conjugate forms in g[l:long2] the partition conju-
gate to that in p{l:longl};

begin
integer 1, 1, J;
long2 := 0;

for r := longl step ~1 until 1 do
begin ¢ := if r = longl then p[r] else p[r] — plr4-1};
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for j := 1 step 1 until ¢ do

begin long2 := long2 4+ 1; qllong2] := r end

end
end conjugate;
finish := true; sigma := 0;

sort (b, sig, n);
if b[1] = 0 then begin sigma := 1;
L3: perm (b, n, finish);
if finish then go to L99;
for ¢ := 1 step 1 until » do
begin c[?] := b[t] + n ~ 4
for j := 1 stepl until 7 — 1 do
if ¢fZ] = c[j] then go to L3
end;
sort (e, sig, n);
for 7 := 1 step 1 until n do
begin cl?] := c[i] + 7 — n;
if ¢[7] = 0 then
begint := 17 — 1;
end;
1 1= n;
comment each Schur function and its sign are to be found in
c[1:7] and sig respectively;
L7: conjugate (c, ¢, d, @);
begin
array z{l:q, 1:q];
for 7 := 1 step 1 until ¢ do
for j := 1 step 1 until g do
begin p := dli] — ¢ + J;
zlt, j1 ;= if p < 0/ p > n then 0 else
if p = 0 then 1 else unit{p]

go to L99 end;

go to L7 end

end;
sigma = sigma + sig X determinant (z, )
end;
go to L3;
L99: express := sigma

end express

ALGORITHM 306

PERMUTATIONS WITH REPETITIONS [G6]

P. BratLEY (Recd. 23 Sept. 1966 and 15 Feb. 1967)

Department of Computer Science, University of
Edinburgh, Edinburgh Scotland

procedure perm(a, n, last); value n;
integer array a; Boolean last;
comment ¢[l:n] is an integer array. Initially the elements of
a[l:n] must be arranged in descending order and last must be
set true. If the elements of a are not initially in descending
order the effect of the procedure is undefined. Successive calls of
perm generate in a all permutations of its elements in reverse
lexicographical order.
last is set false if the procedure has generated a new permuta-
tion, but if the procedure is entered after all the permutations

integer n;
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have been generated, last will be set true. Neither a nor n should
be altered between successive calls of the procedure;
begin integer 7, p, q, 7;
own integer m; own integer array b[l:mn];
if — last then go to L12; last := false;
for 7 := 1 step 1 until n do b[¢] := al7];
p = bln];
for ¢ := n step —1 until 1 do
if p £ b[Z] then
begin m := 7;
m := 0; go to L99;

go to L99 end;

L12: if m = 0 then go to L10;
p:=bml; ¢:=m; r:=0;
19: 7 :=m;

L4: if a[7] = p then go to L2;
if al?] < p then r := 7;

L5: 1:=1—1; gotolL4;

L2: a[i] :=bn] — 1; ifr = 0 then go to L8;

Ll: afrl :=p; g:=¢+1;

L3: r:=r41; ifr > n then go to L1l else if alr] > p

then go to L3;

L11: if b[q] = p then go to L1; r := 0;

L6: r:=r-+1; ifalr] > p then go to L6;
alr] := blgl; if ¢ = n then go to L7;
g:=q+1; gotolf;

L7: last := false; go to L99;

L8: g:=¢—1; if ¢ = 0 then go to L10;
if b[¢] = p then go to L5;
p = blgl; go to LY;

L10: last := true;
L99:
end perm

ALGORITHM 307

SYMMETRIC GROUP CHARACTERS [Al]

J. K. 8. McKay (Recd. 23 Sept. 1966, 15 Feb. 1967, and
10 Mar. 1967)

Department of Computer Science,
Edinburgh, Edinburgh, Scotland

University of

integer procedure character (n, rep, longr, class, longe, first);
value n, rep, longr, class, longc;
integer n, longr, longc; Boolean first;
integer array rep, class;

comment character produces the irreducible character of the
symmetric group corresponding to the partitions of the repre-
sentation and the class of the group S, stored with parts in
descending order in arrays rep[l:longr] and class[1:longc], re-
spectively. Both arrays are preserved. The method is similar
to that described by Bivins et al. [1]. Comét describes a later
method.

On first entry to character, first should be set true in order to
initialize the own array p{0:n, 0:n]. This single initialization is
sufficient for all symmetric groups of degree less than or equal
to n. character is intended for computing individual characters.
If a substantial part of the character table is required it is sug-
gested that procedure generate [Algorithm 263, Comm. ACM
8 (Aug. 1965), 493)] be used to produce the partitions prior to
use of character. If this is done, then the own array p should be
replaced by a suitable global array, and first should be set false
to avoid unwanted initialization. character uses procedures sel,
generate, and place [Algorithms 262, 263, 264, Comm. ACM 8
(Aug. 1965), 493].
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begin
integer procedure degree (n, rep, length);
integer n, length; integer array rep;
comment degree gives the degree of the representation of the
symmetric group on n symbols defined by the partition
rep[l:length] with parts in descending order;
begin
own integer array p[0:n, 0:n);
integer array g[l:length]; integer 7, j, deg;
integer procedure fac(n); value n; integer n;
fac := if n = 1 then 1 else n X fac(n—1);
for ¢ := 1 step 1 until length do
qli] := repli] + length — i;
deg := fac(n);
for 7 := 1 step 1 until length do
for j := 7 4+ 1 step 1 until length do
deg := deg X (qlil—-qlsD;
for i := 1 step 1 until length do

value n, length;

i

deg := deg =+ fac(qli]);
degree := deg
end degree;

if first then
begin set (p, n); first := false end;
begin
integer array pr{l:n], 7[0:1, 0:p[n, n]—1];
integer length, m, i, old, new, indez, ¢, char, k, coeff, u, pos,

J1, 52;

m = longc;

new := n;

index = 1;

for 7 := 0 step 1 until p[n, n] — 1 do
rlindez, ¢} := 0;

rlindex, place(p, n, rep)] := 1;
for t := 1 step 1 until m do
begin if class[t] = 1 then go to identily;
index := 1 — index; old := new; new := new — classt];
for 7 := 0 step 1 until plrew, new] — 1 do
rlindex, 1] := 0;
for u := plold, old] — 1 step — 1 until 0 do
begin if r[l — index, u] = 0 then go to B;
generale (p, old, u, pr, length);
k := length; jl :=1;
G: 72 = jl; coeff := r[l—index, u];
for 7 := 1 step 1 until £ do rep[i] := pr[i];
if rep[l] = old then go to H;
rep[j2] := rep{j2] — classlt];
if replj2] + k& — j2 < 0 then go to B;
E: if rep[j2] > if (j2 = k then O else rep[j2+1]) thengoto F;
if rep[j2+1]= rep[j2] + 1 then go to J;

1 1= rep[j2+41]; rep[j2+1]) := replj2] + 1;
replf2] := 7 — 1; coeff:= — 1 coeff; 372 := j2 + 1;
go to E;
H: rep(l] := rep[l]l — class[t];
F: pos := place(p, new, rep);
rlindex, pos] := rlindex, pos] + coeff;
J: j1:=41+1; ifj1 < k then go to G;
B:
end
end;
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A: char := rlindez, 0]; go to Z;
identity: char := 0;
for u := plnew,new] — 1 step — 1 until 0 do
begin if r[index, u] = 0 then go to BB;
generate(p, new, u, pr, length);
char := char + rlindex, u] X degree (new, pr, length);
BB:
end;
Z: character := char
end
end character

ALGORITHM 308

GENERATION OF PERMUTATIONS IN PSEUDO-
LEXICOGRAPHIC ORDER [G6]

R. J. Oro-Smrta (Reed. 11 Nov. 1966, 1 Dec. 1966, 28
Dec. 1966 and 27 Mar. 1967)

Computing Laboratory, University of Bradford, England

Lexicographic generation has the advantage of producing an
order easily followed by the user, but its real value in certain com-
binatorial applications is that a (k—1)-th intransitive subgroup
of permutations is generated before the kth element is moved. By
not insisting on strict lexicographic generation, though preserving
the latter property, an enormous reduction in the total number of
transpositions is obtained. The total number of transpositions in
this algorithm can be shown to tend asymptotically to (sinh 1) n!
which is less than in Algorithm 86 [J. E. L. Peck and G. F. Schrack,
Permute, Comm. ACM § (Apr. 1962), 208] and almost as good as
Algorithm 115 [H. F. Trotter, Perm, Comm. ACM § (Aug. 1962),
434]. The algorithm offers a further useful facility. Like several
others it uses a nonlocal Boolean variable called first, which may be
assigned the value true, toinitialize generation, On procedure call
thisis set false and remains so until it is again set true when com-
plete generation of permutations has been achieved. At any subse-
quent call after initializing generation of permutations of degree
n, one may set parameter n = n’ where n’ < n. Further calls with
this value may continue until the completion of the subgroup of
degree (n’ — 1) whenfirst will be set true. The process can be con-
tinued by resetting first false and calling with a larger value of n.
This gives the user complete control over the main attribute which
lexicographic order offers. There is no restriction on the elements
permuted. Table I gives results obtained for ECONOPERM.
Times given in seconds are for an ICT 1905 computer. The algo-
rithm has also been tested successfully on IBM 7094, Elliott 503
and STC Stantec computers. ¢, is the time for complete generation
of n! permutations. r» has the usual definition r, = t./ (% 1),

TABLE I
Algorithm ] is b s el 78 trgrﬁ'zzgstgm
ECONOPERM »0.85 6.2 50.6 ——l 1.04/ 1.02f —1.175n!

procedure ECONOPERM (x, n); value n; integer n;
array I;
begin own integer array ¢[2:n];
comment own dynamic arrays are not often implemented.
The upper bound will then have to be given explicitly;
integer k, I, m; real ;
l:=1 k:=2
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if first then
begin first := false; go to label end;
comment the above is the initialization process;
loop: if qlk] = k then
begin if k¥ < n then
begink := k + 1; go to loop end
else begin first := true; go to finish end
end;
n:i=k~1
comment note n called by value;
label: for m := 2 step 1 until n do ¢Im] := 1;
comment after the initialization the for statement sets all
elements of ¢ array to 1. Otherwise only the first k—2 elements
are reset 1;
glk] := glk] + 1;
transpose: t := z[ll; =z[l] := zlk]; =zlk] := ¢
l:=141; ki=k—1;
if I < k then go to transpose;
comment when k < 4 only one transposition occurs. On final
exit when first is reset true, no transposition occurs at all;
finish:
end of procedure ECONOPERM

REMARKS ON:

ALGORITHM 87 [G6]

PERMUTATION GENERATOR
[John R. Howell, Comm. ACM 5 (Apr. 1962), 209]

ALGORITHM 102 [G6]

PERMUTATION IN LEXICOGRAPHICAL ORDER
[G. F. Schrak and M. Shimrat, Comm. ACM & (June
(1962), 346)

ALGORITHM 130 [G6]

PERMUTE
[Lt. B. C. Eaves, Comm. ACM 5 (Nov. 1962), 551]

ALGORITHM 202 [G6]

GENERATION OF PERMUTATIONS IN

LEXICOGRAPHICAL ORDER
[Mok-Kong Shen, Comm. ACM 6 (Sept. 1963), 517]

R. J. Orp-Smrre (Recd. 11 Nov. 1966, 28 Dec. 1966 and
17 Mar. 1967)
Computing Laboratory, University of Bradford, England

A comparison of the published algorithms which seek to generate
successive permutations in lexicographic order shows that Algo-
rithm 202 is the most efficient. Since, however, it is more than twice
as slow as transposition Algorithm 115 [H. ¥. Trotter, Perm,
Comm. ACM 5 (Aug. 1962), 434], there appears to be room for im-
provement. Theoretically a ‘best’” lexicographic algorithm
should be about one and a half times slower than Algorithm 115.
See Algorithm 308 [R. J. Ord-Smith, Generation of Permutations
in Pseudo-Lexicographic Order, Comm. ACM 10 (July 1967), 452}
which is twice as fast as Algorithm 202.

ALGORITHM 87 is very slow.
ALGORITHM 102 shows a marked improvement.

ALGORITHM 130 does not appear to have been certified before.
We find that, certainly for some forms of vector to be permuted,
the algorithm can fail. The reason is as follows.

Volume 10 / Number 7 / July, 1967



At execution of A[f] := r; on line prior to that labeled schell, f
has not necessarily been assigned a value. f has a value if, and
only if, the Boolean expression B{k] > 0 A Blk] < Blm]is true for
at least one of the relevant values of k. In particular when matrix
A ig set up by A[Z] := 7; for each 7 the Boolean expression above is
false on the first call.

ALGORITHM 202 is the best and fastest algorithm of the
exicographic set so far published.

A collected comparison of these algorithms is given in Table I.
t, is the time for complete generation of n! permutations. Times
are scaled relative to # for Algorithm 202, which is set at 100.
Tests were made on an ICT 1905 computer. The actual time fs
for Algorithm 202 on this machine was 100 seconds. r. has the
usual definition rn = tu/(®-tr~).

TABLE 1
Algorithm ig t I3 78 [ r7 \ 8
87 118 — — — — —_
102 2.1 15.5 135 1.03 1.08 1.1
130 — - — — — —
202 1.7 12.4 100 1.00 1.00 1.00

CERTIFICATION OF:

ALGORITHM 258 [H]
TRANSPORT

[G. Bayer, Comm. ACM 8 (June 1965), 381]
ALGORITHM 293 [H]
TRANSPORTATION PROBLEM

(G. Bayer, Comm. ACM 9 (Deec. 1966), 869]

Lee S. Sivs (Recd. 21 Feb. 1967 and 17 Mar. 1967)
Kates, Peat, Marwick & Co., Toronto, Ont., Canada

Both of these algorithms were coded in Extended Arcon 60
and tested on a Burroughs B5500. Three problems were solved
correctly, one of them being of medium size (55 X 167). On this
larger problem transpl was found to be about twice as fast as
transport.

In coding and debugging franspl three apparent errors were
found. In the right-hand column on page 870, after line 27 which is

2 := lstulu]; nlvt := nlv[i];

a line is missing. This line should read

for s := (i—~1) X n 4+ 1 step 1 until nivt do
Also in the right-hand column, the line

s4:;
should be inserted ahead of line —12, which begins

comment Step 4. A column j with b[j] has been labeled, b[j]
On page 871, in the left-hand column, line —22 which reads

for s := 1 step 1 until = do
should read

for s := [ step 1 until » do
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CERTIFICATION OF ALGORITHM 285 [H]

THE MUTUAL PRIMAL-DUAL METHOD
[Thomas J. Aird, Comm. ACM 9 (May 1966), 326]

H. Spitu (Recd. 13 Feb. 1967)

Institut fiir Neutronenphysik und Reaktortechnik,

Kernforschungszentrum, Karlsruhe, Germany

The procedure Linearprogram has been translated into FORTRAN
II and successfully run on the IBM 7074 Computer. The fol-
lowing corrections had been made (the first two are merely
typographical errors).

1. P. 328, left column, 1 line after label B3:
reads:

if Afrowlk—1, 7],collk, 0]] > then
should read:

if Afrowk—1, Zl,collk, 0]] > 0 then

2. P. 328, left column, 1 line after label B4:
reads:

if Alrowlk—1, il,collk, 0]] > then
should read:

if Afrowlk—1, i],collk, 0]] > O then

3. P. 328, right column, after the end of the procedure pickapivot
and before the label NEXTPIVOT there must be inserted the
statement
col{0, 0] := 0;

Otherwise col[0, 0] has no assigned value when the procedure
subschema is entered for the first time.

REMARK ON ALGORITHM 301 [S20]

AIRY FUNCTION [Gillian Bond and M.L.V. Pitteway,
Comm. ACM 10 (May 1967), 291]

M.L.V. Pitteway (Recd. 19 May 1967)

Brunel University, ACTON, W.3., England

The initial minus sign has been omitted from the line immedi.
ately following the line
end calculation of derivatives;
The statement should read
p:= — (rtmdz/zi) X (2 X A[2] + 4 X Al4] + 6 X Al6]
+ 8 X A[8] 4 10 X Al10D);

ACM will be pleased to replace any copy of the Communi-
cations of the ACM that has been damaged in the mail.
Please return the damaged copy to ACM Headguarters in

New York with your request.
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