
A l g o r i t h m s P o l i c y • R e v i s e d A u g u s t , 1966

A contribution to the Algori thms D e p a r t m e n t should be in the form of an
algori thm, a certific ation, or a remark . Cont r ibut ionsshould be sent in dupli-
cate to the editor, typewr i t t en double spaced. Authors should carJfully
follow the style of th is d e p a r t m e n t wi th especial a t tent ion to indenta t ion
and coinpleteness of references.

An a lgor i thm m u s t normal ly be wri t ten in the A L G O L 60 Reference
Language [Comm. ACM 6 (Jan. 1963), 1-17] or in ASA Standard F O R T R A N
or Basic F O R T R A N [Comm. ACM 7 (Oct. 1964), 590-625]. Consideration
will be g iven to a lgori thms wri t ten in other languages provided ihe language
has been fully documonted in the open l i terature and provided the author
presents convincing a rguments tha t his a lgor i thm is best described in the
chosen language and cannot be adequately described in ei ther A L G O L 60
or F O R T R A N .

An algor i thm wri t ten in A L G O L 60 normally consists of a commented
procedure declaration. I t should be typewr i t ten double spaced in capital and
lower-case letters. Material to appear in b o l d f a c e type should be under-
lined in black. Blue under l ining m a y be used to indicate italic type, bu t this
is usually best left to the Editor . An a lgor i thm wri t ten in F O R T R A N nor-
really consists of a commented subprogram. I t should be typewri t ten double
spaced in the form normally used for F O R T R A N or it shouht be in the form
of a listing of a F O R T R A N card deck together with a copy of the card deck.
Eacil a lgor i thm m u s t be accompanied by a complete dr iver program in its
language whicll generates tes t data , calls the procedure, and produces test
answers. Moreover, selected previously obtained test answers should be g iven
in comments in ei ther the dr iver program or the algori thm. The dr iver pro-
g ram m a y be publishedwith the a lgor i thm if i t would be of major assistance
to a user.

For A L G O L 60 programs, input and output should be achieved by pro-
cedure s ta tements , using any of the following eleven procedures (whose body
is not specified in A L G O L) [See " R e p o r t on I n p u t O u t p u t Procedures for
A L G O L 60," Comm. ACM 7 (Oct. 1964), 628-629]:

insymbol inreal outarray ininleger
outsymbol outreal outboolean outinteger
length inarray outstring

i f only one channel is used by the program for output , i t should be desig-
nated by 1 and similarly a single i npu t channel should be designated by 2.
Examples :

outstring (1, ' x = ') ; outreal (l,x);
fo r i : = 1 s t e p 1 u n t i l n do outreal (l,A[i]);
inintsger (2, digit [171):

For F O R T R A N programs, inpu t and ou tpu t should be achieved as deecribed
in the ASA prel iminary report on F O R T R A N and Basic F O R T R A N .

I t is in tended tha t each published a lgor i thm be well organized, clearly
commented , syntact ical ly correct, and a substant ia l contr ibut ion to the
l i terature of Algori thms. I t is necessary b u t not sufficient tha t a published
a lgor i thm operate on some machine and give correct answers. I t m u s t also
communica te a method to the reader in a clear and unambiguous manner .
All contr ibut ions will be refereed both by h u m a n beings and by an appro-
priate compiler. Authors should pay constderablc a t tent ion to the correctness
of their programs, since referees cannot be expected to debug them

Certifications and remar l~ should add new informat ion to t h a i already
published. Readers are especially encouraged to test and cert i fy previously
uncertified algori thms. Rewri t ten versions of previously published al-
gor i thms will be refereed as new contr ibutions and should not be imbedded
in certifications or remarks .

Galley proofs will be sent to authors; obviously rapid and careful proof-
reading is of pa ramoun t importance.

Al though each a lgor i thm has been tested by its author, no l iabil i ty is
assumed by the contributor, the editor, or the Association for Compu t ing
Machinery in connection therewith.

The reproduction of a lgori thms appear ing in this de!6artment is explicit ly
permit ted wi thout any charge. When reproduction is~for publication pur-
poses, reference m u s t be made to the a lgor i thm author and to the Communi-
cations issue bearing the a lgor i thm.- - J .G.Her r io t

J. G. HERRIOT, Editor

ALGORITHM 309
GAMMA FUNCTION WITH ARBITRARY PRE-

CISION [S14]
A N T O N I N O M A C H A D O S O U Z A F I L H O A N D G E O R G E S S C H W A C H -

H E I M (R e c d . 12 A p r . 1966 a n d 14 A p r . 1967)

C e n t r o B r a s i l e i r o d e P e s q u i s a s F i s i ca s , R i o d e J a n e i r o ,

Z C 8 2 , B r a z i l

p r o c e d u r e gamma(z,y,msize,error) ;
v a l u e z, msize; r ea l z; i n t e g e r msize; l abe l error;

c o l n m c n t This procedure computes the value y of the gamma
funct ion for any real argument z for which the result can be
represented within the computer, working wi th msize decimal
digits. An exit is made th ru the label error when the argument is
a pole or is too large, while a zero resul t is re turned when the
a rgument is too small for a correct in terna l representa t ion of the
result.

This procedure is especially useful for var iable field length
computers and for double- or mult iple-precis ion computat ions,
when a simple power series a lgor i thm is no longer applicable.

I t computes the gamma funct ion th ru the Stir l ing asymptot ic
series for the logar i thm of the gamma funct ion wi th an argu-
men t increased by an appropr ia te in teger to insure the required
precision wi th the least computa t ion work.

Negat ive arguments are reduced to positive ones by:

7r

r (z) = sin (~rz) X r(1 -- z)

This procedure is not recursive and uses no own variable.
I t was t rans la ted to FORTRAN I I and run on an I B M 1620. The
errors were a t most of a few hundred uni t s in the las t digi t of tho
mant issa , being due to the use of logar i thms;

b e g i n
r e a l p r o c e d u r e loggamma (t); v a l u e t; r ea l t;
c o m m e n t The loggamma auxil iary procedure computes the

logar i thm of the gamma funct ion of a posit ive a rgument t.
If i ts a rgument is below a value train, loggamma first increases
the a rgument by an in teger value, using the relat ion:

k--1

In r (t) = In F (t+k) -- l n (I I (t A- i))

where In r (t -4- k) is computed by the procedure lgm.
The formula we use for train is a rough empirical re la t ion

to minimise computa t ion time.
Indeed an increase of k while decreasing the number of

terms of the series, results in more computa t ion for the fac-
tor In (I I i (t + i));

b e g i n i n t e g e r tmnin;
train := i f msize > 18 t h e n msize -- 10 else 7;
i f t > train t h e n loggamma := lgm(t)
else
b e g i n r e a l f ;

f : = t ;
L: t := t-+l;

i f t < tmin t h e n
b e g i n f : = f X t ;

go t o L
e n d ;

V o l u m e 10 / N u m b e r 8 / A u g u s t , 1967 C o m m u n i c a t i o n s o f t h e ACM 5 1 1

loggamma := lgm(t) -- In (f)
e n d

e n d of procedure loggamma;
r e a l p r o c e d u r e lgm(w); v a l u e w; r e a l w;
c o m m e n t This procedure evaluates the logar i thm of the

gamma funct ion according to the Stir l ing asymptot ic series:

In r (w) _~ (w -- ½) N In (w) -- w --b In ~¢ /~ --t- . z~_---- i

The coefficients e~ = B 2 d (2 i (2 i - 1)) , B2~ being the
Bernoull i numbers , are ra t ional numbers given here as irre-
ducible f ract ions .

T w e n t y terms are sufficient for a precision of up to 50
decimal digits;

b e g i n a r r a y c[1:20];
i n t e g e r i ;
c[1] := 1/12;
c[3] := 1/1260;
c[5] := 1/1188;
c[7] := 1/156;

r e a l w2, presum, const, den, sum;

c[2] := --1/360;
c[4] := --1/1680;
c[6] := --691/360360;
c~] := --3617/122400;

e[9] :=
c[ll] :=
c[13] : =
c[151 :=
c[16] :=
c[17] :=
c[181 :=
c[19] :=
c[20] :=

43867/244188; c[10] := --174611/125400;
77683/5796; c[12] := --236364091/1506960;
657931/300; c[14] : = --3392780147/93960;
1723168255201/2492028;
--7709321041217/505920;
151628697551/396;
--26315271553053477373/2418179400;
154210205991661/444;
--261082718496449122051/21106800;

const := .91893853320467274178032973640561763986139747363778;
c o m m e n t const = ln~/2~-;
den := w; w2 := w M w; p re sum := (w--.5) N ln (w) --
w ~ const;
for i := 1 s t e p 1 u n t i l 20 do
b e g i n s u m := presum ~ c[i]/den;

i f s u m = pre sum t h e n go to exit:
den := den X w2;
presum := s u m

end;
exit : lgm := s u m

e n d of procedure lgm;
c o m m e n t : main procedure gamma s tar ts here;
r e a l pi;
p i := 3.1415926535897932384626433832795028841971693993751;
c o m m e n t argov, argund, lnunder are hardware dependent con-

s tan t s t h a t are compared to the arguments of in te rmedia te
results, se t t ing error exit or zero result to prevent exponent
over or underflow. Should be replaced in the procedure by
the appropr ia te numbers ;

i f z > argov t h e n go to error e l se i f z = e n t i e r (z) t h e n
b e g i n i f z_< 0 t h e n go t o error ; y := 1;

i f z > 2 t h e n
b e g i n l oop : z := z - - 1; y := y M z;

i f z > 2 t h e n go to loop
e n d

e n d when z is in teger
e l se i f abs(z) < 10 T (- m s i z e) t h e n y := 1/z
e lse i f z < 0 t h e n
b e g i n i f z < argund t h e n y := 0

e lse
b e g i n c o m m e n t As the use of the sine subrout ine for large

a rguments might in t roduce errors, some reduct ions of
the a rgument are made before using i t ;

B o o l e a n procedure par i ty (m); r e a l m;
b e g i n i n t e g e r j ;

j := cut ter (m); pari ty : = j = j ÷ 2 X 2
e n d parity;

512 C o m m u n i c a t i o n s o f t h e ACM

r e a l p r o c e d u r e decimal(x); r e a l x;
b e g i n in t eger n;

n : ~ X;

decimal := a b s (x - n)
e n d decimal;
r ea l delta, ex;
delta := decimal(z) X pi;
ex := (i f delta <lO T (- m s i z e / 2) t h e n -- In(decimal(z)) else
l n (p i / (sin (delta)))) -- l o g g a m m a (1 - z) ;
y := i f ex < launder t h e n 0 e lse

i f par i ty (z) t h e n exp(ex) e l se
-- exp (ex)

e n d
e n d when z is negat ive
e lse y := exp(loggamma(z))

e n d of procedure gamma

CHAPIN Cont'd from p. 510
reasons for accepting or rejecting interrupts. Some data
available from an interrupt may not be processable until
certain other not yet complete processing work is finished.
Some processing work may lack certain items of data
required for it to be carried further. The decision table
covering checking, accepting, and analyzing interrupts
must include in its condition stub, or include by action
linkage, provisions to discriminate among all such situa-
tions.

When interrupt timing is not controllable, then the
parsing of the decision table must incorporate a status
analyzer and recorder. This can be simplified by a series of
pushdown stacks, with the actions of the analyzer and
recorder decision table pushing these down or popping
them up to establish changing sets of conditions to use in
the subsequent interrupt checking, accepting, and analyz-
ing decision table... Especially in real time environments,
parsing the decision table in this manner is very helpful in
providing accurate handling of the hundreds of different
situations that can arise.

Conclus ion

5luch of the resistance to the acceptance of decision
tables stems front their claimed cumbersomeness of use
on large jobs, and from their claimed lack of flexibility.
Parsing of decision tables using one or more of the tech-
niques cited here can result in overcoming some of these
claimed deficiencies.

Acknowledgmeni~. The author acknowledges the contri-
bution of Kenneth W. Kolenee (CDC) to the author's think-
ing on reflecting data organization in decision tables.
RECEIVED JANUARY, 1967; REVISED MARCH, 1967

R E F E R E N C E S

1. CHAPIN, NED. A guide to decision tab le u t i l iza t ion. In Da ta
Process ing Vol. IX, DPMA, Par ik Ridge Ill . , 1967,
pp. 327-329.

2. FISHER, D. L. Da ta , documenta t ion , and decision tables .
Comm. A C M 9 (Jan. 1966), 26-31.

3. POLLACK, SOLOMON L. Analys is of the decision rules in decision
tables. RM-3669-PR, The R A N D Corp., S a n t a M o n i c a , Calif.,
M a y 1963, 69 pp.

4. VEINOTT, SYRIL 6- P rogramming decision tables in F O R T R A N ,
COBOL, or ALGOL. Comm. A C M 9 (Jan. 1966), 31-35.

V o l u m e 10 / N u m b e r 8 / A u g u s t , 1967

