Algorithms Policy » Revised August, 1966

A contribution to the Algorithms Department should be in the form of an
algorithm, a certification, or a remark. Contributionsshould be sent in dupli-
cate to the editor, typewritten double spaced. Authors should carefully
follow the style of this department with especial attention to indentation
and completeness of references.

An slgorithm must normally be written in the ALGOL 60 Reference
Language [Comm. ACM 6 (Jan. 1963), 1-17] or in ASA Standard FORTRAN
or Bagic FORTRAN [Comm. ACM 7 (Oct. 1964), 590-625]. Consideration
will be given to algorithms written in other languages provided the language
has been fully documented in the open literature and provided the author
presents convineing arguments that his algorithm is best described in the
chosen language and cannot be adequately described in either ALGOL 60
or FORTRAN.

An algorithm written in ALGOL 60 normally consists of a commented
procedure declaration. It should be typewritten double spaced in capital and
lower-case letters. Material to appear in boldface type should be under-
lined in black. Blue underlining may be used to indicate italic type, but this
is usually best left to the Editor. An algorithm written in FORTRAN nor-
mally consists of a commented subprogram. It should be typewritten double
spaced in the form normally used for FORTRAN or it should be in the form
of u listing of a FORTRAN card deck together with a copy of the card deck.
Each algorithm must be accompanied by a complete driver program in its
language which generates test data, calls the procedure, and produces test
answers. Moreover, selected previously obtained test answers should be given
in comments in either the driver program or the algorithm. The driver pro-
gram may be publishedwith the algorithm if it would be of major assistance
to a user.

For ALGOL 60 programs, input and output should be achieved by pro-
cedure statements, using any of the following eleven procedures (whose body
is not specified in ALGOL) [See “Report on Input-Output Procedures for
ALGOL 60,” Comm. ACM 7 (Oct. 1964), 628-629]:

insymbol inreal oularray ininleger
outsymbol outreal outboolean outinteger
length inarray outstring

1f only one channel is used by the program for output, it should be desig-
nated by 1 and similarly a single input channel should be designated by 2.
Examples:

outstring (1, ‘z="); outreal (1,z);

for i := 1step 1 until n do sutreal (1,4[1]);

ininteger (2, digit (17]):
For FORTRAN programs, input and cutput should be achieved as described
in the ASA preliminary report on FORTRAN and Basic FORTRAN.

It is intended that each published algorithm be well organized, clearly
commented, syntactically correct, and a substantial contribution to the
literature of Algorithms. It is necessary but not sufficient that a published
algorithm operate on some machine and give correct answers. It must also
communicate a method to the reader in a clear and unambiguous manner,
All contributions will be refereed both by human beings and by an appro-
priate compiler. Authors should pay considerable attention to the correctness
of their programs, since referees cannot be expected to debug them

Certifications and remarks should add new information to that already
published. Readers are especially encouraged to test and certify previously
uncertified algorithms. Rewritten versions of previously published al-
gorithms will be refereed as new contributions and should not be imbedded
in certifications or remarks.

Galley proofs will be sent to authors; obviously rapid and careful proof-
reading is of paramount importance.

Although each algorithm has been tested by its author, no liability is
assumed by the contributor, the editor, or the Association for Computing
Machinery in connection therewith.

The reproduction of algorithms appearing in this department is explicitly
permitted without any charge. When reproduction is.for publication pur-
poses, reference must be made to the algorithm author and to the Communi-
cations issue bearing the algorithm.—J.G.Herriot

Volume 10 / Number 8 / August, 1967

J. G. HERRIOT, Editor

ALGORITHM 309

GAMMA FUNCTION WITH ARBITRARY PRE-
CISION [S14]

AnToNiNO MAcHADO SoUzA FiLHO AND GEORGES SCHWACH-
HEIM (Recd. 12 Apr. 1966 and 14 Apr. 1967)

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro,
ZC82, Brazil

procedure gamma(z,y,msize.error);
value 2, msize; real z; integer msize; label error;

comment This procedure computes the value y of the gamma
function for any real argument z for which the result can be
represented within the computer, working with msize decimal
digits. An exit is made thru the label error when the argument is
a pole or is too large, while a zero result is returned when the
argument is too small for a correct internal representation of the
result.

This procedure is especially useful for variable field length
computers and for double- or multiple-precision computations,
when a simple power series algorithm is no longer applicable.

It computes the gamma function thru the Stirling asymptotic
series for the logarithm of the gamma function with an argu-
ment increased by an appropriate integer to insure the required
precision with the least computation work.

Negative arguments are reduced to positive ones by:

T

sin (w2} X I'(1 — 2)

I(z) =

This procedure is not recursive and uses no own variable.

It was translated to ForTrAN II and run on an IBM 1620. The

errors were at most of a few hundred units in the last digit of the

mantissa, being due to the use of logarithms;

begin

real procedure loggamma (t); value {; reall;

comment The loggamma auxiliary procedure computes the
logarithm of the gamma function of a positive argument &
If its argument is below a value tmin, loggamma first increases
the argument by an integer value, uii?g the relation:

In T(t) = In T(t+k) — In(J] (¢ +)

where In T'(¢ + k) is computed by the procedure lgm.

The formula we use for tmin is a rough empirical relation
to minimise computation time.

Indeed an increase of k while decreasing the number of
terms of the series, results in more computation for the fac-
tor In (Ja(t + 7));

begin integer tmin;
tmin := if msize > 18 then msize — 10 else 7;
if ¢ > tmin then loggamma := lgm(l)
else
begin real f;
Ji=14
L: t:= t+1;
if { < tmin then
begin f := f X ¢;
go to L
end;

Communications of the ACM 511

loggamma := lgm(t) — In (f)
end
end of procedure loggamma;
real procedure lgm(w); value w; real w;
comment This procedure evaluates the logarithm of the
gamma function according to the Stirling asymptotic series:

InTw) ~(w— 3 XInw —w+In+2r + 2 :T—l
i
The coefficients ¢ = Bs/(20(26—1)), Bx being the
Bernoulli numbers, are rational numbers given here as irre-
ducible fractions.
Twenty terms are sufficient for a precision of up to 50
decimal digits;
begin array c[1:20]; real w2, presum, const, den, sum;
integer 7;

c[1l := 1/12; cf2] := —1/360;

c[8] := 1/1260; c[4] := —1/1680;

¢[b] := 1/1188; ¢[6] := —691/360360;

c[7] = 1/156; cl8] := —3617/122400;

¢[9] = 43867/244188; ¢{10] := —174611/125400;
c{11] := 77683/5796; ¢[12] := —236364091/1506960;
¢[13] : = 657931/300; c[14] : = —3392780147/93960;
c[15] := 1723168255201/2492028;

¢[16] := —7709321041217/505920;

cll7] := 151628697551/396;

c[18] := —26315271553053477373/2418179400;

¢[19] := 154210205991661,/444;;

¢[20] := —261082718496449122051/21106800;

const 1= .91893853320467274178032973640561763986139747363778;
comment const = Inv/2xr;
den = w; w2 := w X w; presum := (w—.5) X In(w) —
w + const;
for ¢ := 1 step 1 until 20 do
begin sum := presum + cli]/den;
if sum = presum then go to exit:
den := den X w2;
presum = sum
end;
exit : lgm := sum
end of procedure lgm;
comment: main procedure gamma starts here;
real pi;
pi = 3.1415926535897932384626433832795028841971693993751 ;
comment argov, argund, Inunder are hardware dependent con-
stants that are compared to the arguments of intermediate
results, setting error exit or zero result to prevent exponent
over or underflow. Should be replaced in the procedure by
the appropriate numbers;
if z > argov then go to error else if z = entier (z) then
begin if z < 0 then go to error; y :=1;
if z > 2 then
begin loop:z :=2—1; y:=y X z;
if z > 2 then go to loop
end
end when z is integer
else if abs(z) < 10 T (—msize) then y := 1/2
else if z < 0 then
begin if z < argund then y := 0
else
begin comment As the use of the sine subroutine for large
arguments might introduce errors, some reductions of
the argument are made before using it;
Boolean procedure parity (m); real m;
begin integer j;
j 1= entier(m); parity :=j=3j+-2X 2
end parity;

512 Communications of the ACM

real procedure decimal(z); real z;
begin integer n;
n = zx;
decimal 1= abs(z—mn)
end decimal;
real della, ex;
delta := decimal(z) X pi;
ex := (if delta <10 T (—msize/2) then — In(decimal(z)) else
In(pi/(sin(delia)))) — loggamma(1—2);
y := if ez < lnunder then 0 else
if parity (z) then expler) else
—exp(ex)
end
end when z is negative
else y := exp(loggamma(z))
end of procedure gamma

CHAPIN Cont'd from p. 510

reasons for accepting or rejecting interrupts. Some data
available from an interrupt may not be processable until
certain other not yet complete processing work is finished.
Some processing work may lack certain items of data
required for it to be carried further. The decision table
covering checking, accepting, and analyzing interrupts
must include in its condition stub, or include by action
linkage, provisions to discriminate among all such situa-
tions.

When interrupt timing is not controllable, then the
parsing of the decision table must incorporate a status
analyzer and recorder. This can be simplified by a series of
pushdown stacks, with the actions of the analyzer and
recorder decision table pushing these down or popping
them up to establish changing sets of conditions to use in
the subsequent interrupt checking, aceepting, and analyz-
ing decision table. Especially in real time environments,
parsing the decision table in this manner is very helpful in
providing accurate handling of the hundreds of different
situations that can arise.

Conclusion

Much of the resistance to the acceptance of decision
tables stems from their claimed cumbersomeness of use
on large jobs, and from their claimed lack of flexibility.
Parsing of decision tables using one or more of the tech-
niques cited here can result in overcoming some of these
claimed deficiencies.

Acknowledgment. The author acknowledges the contri-
bution of Kenneth W. Kolence (CDC) to the author’s think-
ing on reflecting data organization in decision tables.
RECEIVED JANUARY, 1967; REVISED MARCH, 1967

REFERENCES

1. CuapriN, NEp. A guide to decision table utilization. In Data
Processing Vol. IX, DPMA, Parik Ridge IIl., 1967,
pPp. 327-329.

2. Fisger, D. L. Data, documentation, and decision tables.
Comm. ACM 9 (Jan. 1966), 26-31.

3. PoLuack, SoLoMoN L. Analysis of the decision rules in decision
tables. RM-3669-PR, The RAND Corp., Santa Monica, Calif.,
May 1963, 69 pp.

4, VEINOTT, SYRIL G. Programmingdecision tablesin FORTRAN,
COBOL, or ALGOL. Comm. ACM 9 (Jan. 1966), 31-35.

Volume 10 / Number 8 / August, 1967

