
5t~(l(~tts were .~ectio~ted according to bot,h the no~> 
prefere~ce a~d preference algorithms, attd the Immber of 
times they received their preferred sections i** courses with 
m~ltjt)le sections was tMlied. The results show that whet~ 
the >o**prefer(!,~ee algorithm is used a student receives 
at)o~*t 40 percent of lhe sections for which he has a prefer- 
e**ce, arid whe~, the preference algorithm is used this per-. 
ce~ tage  i~tereases to :wound 72 pereet~t, 

B o t h  a lgo r i ; hms  m e e t  the  origit,al two r equ i r emen t s  of 

m:~chit,e seeCio~ting e q u a l l y  well. A. sub jec t ive  analysis  of 

ihe r e s u l t i n g  b a h m e e  of  sect ions  when the  p re fe rence  algo- 

r i t h m  was  used shows it  to be a lmos t  as good as t h e  non- 

p re fe rence  a lgor i thm.  R a r e l y  was the  imba lance  more  than  

oae s t u d e n t .  

5. C o n c l u s i o n s  

Bec~mse of t he  smal l  m tmber  of courses where  second 

p re fe rences  were  p e r m i t t e d ,  the  consequences  of a l t e rna t e  

courses  on  the  M g o r i t h m  canno t  be ful ly  de t e rmined .  T h e  

oa ly  ev idence  t h a t  subs ta r , t i a tes  its effeet iveness  is t h a t  

t)E sec t ions  were  ba l anced  as well as sect ions ill n o n - P E  

courses.  F u r t h e r  t e s t ing  will  p robab ly  show tha t  o rde r ing  

acco rd ing  to t h e  n u m b e r  of seats  left  is not  sufficient  bu t  

~hat t h e  o rde r ing  should  be done aeeord ing  to the ra t io  of 

~he n u m b e r  of  seats  left  to seats or ig ina l ly  ava i lab le .  

Because  of  t he  r e l a t ive  u n i m p o r t a n e e  of  second preferenees  

i ,  t h e  d a t a  tes ted,  o r d e r i n g  by  ra t io  was  not  t r ied .  

A la rger  peree t t tage  of r eques t s  will  p robab ly  decrease  

p e r f o r m a n c e  ach ieved  if  m o s t  reques t s  are cen te red  on  on ly  

~ few sections in eaeh course, sinee section sizes are limited. 
in the test data used this seemed to be the ease for some 
courses, l:'opular time periods may also cause trouble. For 
iastanee, there were only 811 requests for MWF at 8 
~/etoek classes while there were 1,390 requests for MWF 
at 9 o'clock classes. These numbers are only indicative of 
~}:~e trend, since the effects of the time schedule on requests 
is itot readily analyzed. 

From the test ease tried, it appears that it is possible to 
allow students to have section preference with machine 
:~eetioning. The results achieved show that a student re- 
~;'eives around 32 pereent more of his preferred sections 
using the preference Mgorithnt--yet the prineiple objec- 
tives of machine registration are still satisfied. 
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P t l I M E  NUSIBER GENE[IATOII 1 [At] 
B. A. Cmta~e~;s  ( I leed .  25 Oct.  1966 a~d 13 Apr. 1907) 
Computer Science Cet~ter, University of Virgi~ia, 
Charlottesville, Virginia 
i n t ege r  p rocedure  sievel@l, p); value m; in teger  m; i~l- 

teger  a r ray  p; 
c o m m e n t  sievel(m, p) generates the prime numbers less ihan 

or equal to m, and places them itt the array p, settir~g p[lt '~ 2, 
p[2t = 3, p[31 = 5, . . . ,  p[k] = (largest prime folmd). The value 
of the procedure is k, the numt)er of primes less bhat~ or equal to 
t?/..  

The niethod used is amodifieation of the;Stove of/l,ratos~he~ms. 
In its customary form this method requires a repe:~ted sweepi~g 
overm lmmbers (or m/2 odd numbm:s), crossing out all multiples 
of the i th prime on the ith sweep. The variation of the method 
used here condenses all these sweeps into olin. Whe~ the odd 
integer n is being tested ("if n=q[i]") to see whether it shotdd 
be crossed out ("t := false") ,  q[i], f o r /  = 3, 4, . . . , j ,  eor~Lains 
the smallest odd multiple of p[il which is no smaller tha~ either 
n or p[i] ~ 2. The sequence of values taken on by q[i] defi~ms the 
set of numbers crossed out because they are mult.iples of p[i]. 
The initial vahte of q[i] is p[i] T 2 because all smaller odd multi- 
pies of p[i] have at least one other odd prime factor smaller than 
p[i]. For the same reason, q[j+l] does Dot become active ( ' j  
:= j + l " )  until n has become equal to P[jl 'F 2. The dim¢msio~ of 
the arrays q and dq is therefore the numher of primes less tha~ 
or equal to the square root of m. Thus we have replaced repeated 
sweeps over the array p by (many more) repeated sweeps over 
part of the much smaller array q. This does Imt reduce the 
amount of eornputation, but does lead to a much more efficient 
computer implementation, as ordy the arrays q aml dq riced be 
held in a random access store.; 

begin 
i n t e g e r  ar ray  q, dq[2 : 2.7Xsqrl(m)/ln(m)J ~ 
i n t e g e r  i ,  j ,  k, n; 
B o o l e a n  t; 
p[1] := j := k := 2; p[2] := 3; q[2J := 9; dq[2] :~'~ 6; 
for  n := 5 s t e p  2 u n t i l  m do 
beg i  n 

t := true;  
for i := 2 s tep 1 u n t i l j  do 
begin  

i f n  = q[i] t hen  
begin  

q[i] := n + dq[i]; t := false; 
i f  i = j t hen  
b e g i n  

j : = j + l ;  q[jl := p{j]T2; 
dq[j] := 2 × p[j]; go to A 

e n d  
e n d  

end;  
i f  t t h e n  
beg in  

k : = k + l ;  p[k] := n 
e n d  ; 

A: end;  
sievel := k 

end sievel 
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ALGORITHM 311 
PRIME NUMBER GENERATOR 2 [All 
B. A. CHARTRES (Recd. 25 Oct. 1966 and 13 Apr. 1967) 
Computer Science Center, University of Virginia, 
Charlottesville, Virginia 

i n t e g e r  p r o c e d u r e  sieve2(m, p);  v a l u e  m; 
i n t e g e r  m; i n t e g e r  a r r a y  p; 

c o m m e n t  sieve2 is a faster version of sievel. Two changes were 
made to obtain higher speed. 

(1) The  multiples q[i] are sorted, smallest first, so tha t  each 
value of n does not  need to be compared with every  q[i]. The 
sorted order of the q[i] is indicated by an index array r. The 
i th  sorted element of q is q[r[i]]. I t  was found empirically tha t  
greater  speed is obtained when the q[r[i]] are not  kept con- 
s tant ly  sorted, but  are re-sorted only at the time a new prime is 
discovered. The i n teger j j  indicates wtfieh of the q[r [i]] are sorted:  
q[r[3]] througtl q[r[jj-1]] are out  of order, whereas q[r[jj]] through 
q[r[j]] are in order. Sorting is performed in two stages. A sif t  
sort first rearranges r[3] through r[jj-1] into rr[3] through 
rr[jj-1]. Then a single merge sort combines rr[3] through rr[jj-1] 
and r[jj] through r[j] into ri l l  through r[j]. 

(2) All multiples of 3 are at t tomatically excluded from con- 
sideration by stepping n a l ternate ly  by 2 and 4, and, in a similar 
way, by stepping q[i] al ternately by 2 X p[i] and 4 × p[i].; 

b e g i n  
i n t e g e r  a r r a y  q, dq, sq, r, rr[2: 2.TXsqrt(m)/ln(m) ]; 
i n t e g e r  i ,  j ,  j j ,  k, n, ir, j r ,  dn; 
B o o l e a n  t; 
p[1] : = d n  := 2; p[2] : = j  : = j j  : = k  := r[3] := 3; 
p[3] := 5; q[3] := 25; dq[3] := 10; sq[3] := 30; 
for  n := 7 s t ep  dn u n t i l  m do 
beg in  

t := t r u e ;  dn := 6 -  dn; 
for i := 3 s t ep  1 u n t i l j j  do  
beg in  

ir := r[i]; 
i f  n = q[ir] t h e n  
b e g i n  

q[ir] := n + dq[ir]; 
dq[ir] := sq[ir] - dq[ir]; 
t := fa l se ;  
i f i  = j j  t h e n  
beg in  

j j  := j j  + l; 
i f i r  = j t h e n  
b e g i n  

j := j + l; r[j] := j; 
q[J] := P[J] T 2; 
sq[j] := 6 X p[j]; 
dq[j] := sq[j] × ( l+(p[ j ]  + 3)) - 2X q[j] 

end  
e n d  

e n d  
e n d ;  
i f  t t h e n  
b e g i n  

k : = k + l ;  p[k] := n; 
A: i f j j  = 3 t h e n  go to  F ;  

j j  : = j j - 1 ;  
i f  q[r[jj]] < q[r[2+l]]  t h e n  go to A ; 
c o m m e n t  sift sort; 
rr[3] := r[3]; 
for  ir := 4 s t e p  1 u n t i l  j j  d o  
b e g i n  

i : = i r - - 1 ;  
B: i f  q[r[ir]] < q[rr[i]] t h e n  

b e g i n  
rr[i+l] :=  rr[i]; i := i -- 1; 

i £ i  > 3 t h e n g o t o B  
e n d ;  
r s [ i+ l ]  := r[ir] 

e , d  ; 

i :=  i?" := 3; jr  := j j +  1; 
C: i f  q[rr[ir]] < q[r[jr]] i :hen 

b e g i n  
r [ i ]  :=  r r [ i r ] ;  i r  :=  i r  + 1; 
i f i r  > j j t h e n g o  to  E 

e n d  

e lse  
b e g i n  

r[i] := r[jr]; jr  := j'r -4- 1; 
i f  j r  > j t h e n  go to  D 

e n d ;  
i :=  i +  1; go to  C; 

D: i : = i + l ;  r[i] :=  rr[ir]; ir :=  ir + 1; 
i f  it" .~ j j  t h e n  go to  D; 

E: jj :=3 
end ;  

F: end  ; 
sieve2 := k 

e n d  sieve2 

REMARKS ON: 

ALGORITHM 35 [All 
SIEVE IT. C. Wood, Comm. ACM 4 (Mar. 1961), 151] 
ALGORITHM 310 [All 
PRIME NUMBER GENERATOR 1 lB. A. Chartres, 

Comm. ACM 10 (Sept. 1967), 569] 
ALGORITHM 311 [All 
PRIME NUMBER GENERATOR 2 lB. A. Chartres, 

Comm. ACM 10 (Sept. 1967), 570] 

B. A. CHAR'ra~s (Reed. 13 Apr. 1967) 
Computer Science Center, University of Virginia, 
Charlottesville, Virginia 

The three procedures Sieve(m,p), sievel(m,p), and sieve2(m,p), 
which all perform the same operat ion of put t ing the  primes less 
than  or equal to m into the array p, were tested and compared for 
speed on the Burroughs B5500 at  the Univers i ty  of Virginia. The 
modification of Sieve suggested by J. S. Hilhnore [Comm. A C M  5 
(Aug. 1962), 438] was used. I t  was also found that  Sieve could be 
speeded up by a factor of 1.95 by avoiding the repeated evaluation 
of sqrt(n). The modification required consisted of declaring ar~ 
integer variable s, inserting the s ta tement  s := sqrt(n) immedi-  
ately after i := 3, and replacing p[i]_<sqrt(n) by p[i]~s.  

The running times for the computat ion of the first 10,000 primes 
w e r e :  

Sieve (Algoribhm 35) 845 sec 
Sieve (modified) 434 see 
sievel 220 sec 
sieve2 91 sec 

The t ime required to compute the first k primes was found to be, 
for each algorithm, remarkably accurately represented by a power 
law throughout the range 500 < k if< 50,000. The rumfing t ime of 
Sieve varied as k 1.4°, that  of sievel as k I'6a, and that  of sieve2 as 
k L~, Thus the speed advantage of sieve2 over the other  algorithms 
increases with increasing k. However,  i t  should be noted that  
sieve2 took approximately 33 minutes to find the  first 100,000 
primes, and, if the power law can be trusted for extrapolat ion past 
this point  (there is no reason known why i t  should be), it would 
take about 12 hours to find the first million primes. 
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