students were sectioned according to both the non-
preference and preference algorithms, and the number of
tsies they recelved their preferred sections in courses with
multiple sections was tallied. The results show that when
the nonpreference algorithm is used a student receives
about 40 percent of the sections for which he has a prefer-
ence, and when the preference algorithm is used this per-
contage increases to around 72 percent.

Both algorithms meet the original two requirements of
machine sectioning equally well. A subjective analysis of
the resulting balance of sections when the preference algo-
rithm was used shows it to be almost as good as the non-
preference algorithm. Rarely was the imbalance more than
one student.

5. Conclusions

Because of the small number of courses where second
preferences were permitted, the consequences of alternate
eourses on the algorithm cannot be fully determined. The
only evidence that substantiates its effectiveness is that
PE sections were balanced as well as sections i non-PE
courses. Further testing will probably show that ordering
sccording to the number of seats left is not sufficient but
that the ordering should be done according to the ratio of
the number of seats left to seats originally avaitlable.
Beecause of the relative unimportance of second preferences
inthe data tested, ordering by ratio was not tried.

A larger percentage of requests will probably decrease
performance achieved if most requests are centered on only
a few sections in each course, since section sizes are limtted.,
In the test data used this seemed to be the case for some
courses. Popular time periods may also cause trouble. For
mstance, there were only 811 requests for MWE at 8
o’clock classes while there were 1,390 requests for MW
at 9 o’clock classes. These numbers are only indicative of
the trend, since the effects of the time schedule on requests
15 not readily analyzed.

Trom the test ease tried, it appears that it is possible to
allow students to have section preference with machine
scetioning. The results achieved show that a student re-
zeives around 32 percent more of his preferred sections
using the preference algorithm-—yet the principle objec-
tives of machine registration are still satisfied.

Acknowledgments. The author would like to thank
Martin Faulkner and James King for their assistance in
modifying and using the Washington State University
machine registration program and for helpful discussions
during development of the preference algorithm.

Receivep FuBrUARY, 1967; REVISED May, 1967
REFERENCES

1. Favikner, M. Computer sectioning and class scheduling.
Datamation 11 (June 1965), 35-37.

2. Brockman, J. W. Jr. A guide to automated class seheduling,
Data Proc. Mag. 6 (Oct. 1964), 30-33.

3. Macon, N, anp WarLker, K. E. A Monte Carlo algorithm for
assigning students to classes, Comm. ACM 9,5 (May 1966},
339-340.

Volume 10 / Number 9 / September, 1967

J. G. HERRIOT, Editor
ALGORITHM 310
PRIME NUMBER GENERATOR 1 [A1]
B. A. Caartres (Reed. 25 Oect. 1966 and 13 Apr, 1967)
Computer Science Center, University of Virginia,
Charlottesville, Virginia
integer procedure sievel(m, p); value m; integer m; ine
teger array p;
comment stevel (m, p) generates the prime numbers less than
or equal to m, and places them in the array p, setting p{i] = 2
pl2] = 3, pl3} =5, ---, plk]l = (largest prime found). The value
of the procedure is k, the number of primes less than or equal to
m.
The method used is amodification of theSleve of Hiratosthenes.
In its customary form this method requires a repested sweeping
overm numbers (orm/2 odd numbers), erossing out all multiples
of the 7th prime on the ith sweep. The variation of the method
used here condenses all these sweeps into one. When the odd
integer n is being tested (““if n=¢[i]’’) to see whether it should
be crossed out (‘i := false’’), g[¢], fors = 3, 4, .-+, 7, contains
the smallest odd multiple of p(¢] which is no smaller than either
n or p{i] 12. The sequence of values taken on by ¢li] defines the
set of numbers crossed out because they are multiples of pli}.
The initial value of ¢[Z] is p[¢] T 2 because all smaller odd multi-
ples of p(7] have at least one other odd prime factor smaller than
pli]. For the same reason, ¢lj-+1] does not becore active ()
1= 5417) until n has become equal to ply) 1 2. The dimension of
the arrays g and dg is therefore the number of prices less than
orequal to the square root of m. Thus we have replaced repeated
sweeps over the array p by (many more) repeated sweeps vver
part of the much smaller array ¢. This does not reduce the
amount of computation, but does lead to a much more efficient
computer implementation, as only the arrays ¢ and dg need be
held in a random access store.;
begin
integer array ¢, dq(2 @ 2.7Xsqrt(m)/In{m}]-
integer ¢, j, k, n;
Boolean .
plif i= g o=k =2, p[2:=3; ¢2l:=9; dql2] 1= 63
for n := § step 2 until m do
begin
t 1= true;
for i := 2 step 1 untilj do
begin
if n = ¢[i] then
begin
qli] = n + dqle};
if 7 = j then
begin
J=j+1; qlf) = pll12
dqlj] == 2 X pljl; go to A
end
end
end;
if ¢ then
begin
ki=k+1;
end;
A4: end;
sievel =k
end sievel

{ := false;

plk] :==n

Communications of the ACM 309

ALGORITHM 311

PRIME NUMBER GENERATOR 2 [Al]

B. A. Cuarrres (Reed. 25 Oct. 1966 and 13 Apr. 1967)
Computer Science Center, University of Virginia,
Charlottesville, Virginia

integer procedure sieve2(m, p); value m;
integer m; integer array p;

comment sieve? is a faster version of stevel. Two changes were
made to obtain higher speed.

(1) The multiples ¢{Z] are sorted, smallest first, so that each
value of n does not need to be compared with every ¢[i]. The
sorted order of the ¢[i] is indicated by an index array r. The
tth sorted element of ¢ is ¢[r{¢]]. It was found empirically that
greater speed Is obtained when the ¢[r{{]] are not kept con-
stantly sorted, but are re-sorted only at the time a new prime is
discovered. The integer jj indicates which of the ¢{r{i]] are sorted:
¢[r(3]] through ¢{r{jj-1]] are out of order, whereas ¢(r{jj]] through
¢lr{s11 are in order. Sorting is performed in two stages. A sift
sort first rearranges r{3] through r[{j7-1] into r[3] through
rr{ij-1]. Then a single merge sort combines rr{3] through rr{jj-1]
and r{j7] through r{j] into r{1] through »[j].

(2) All multiples of 3 are automatically excluded from con-
sideration by stepping n alternately by 2 and 4, and, in a similar
way, by stepping ¢[¢] alternately by 2 X p[i] and 4 X p[].;

begin
integer array ¢, dq, sq, v, rr[2: 2.7Xsgrt(m)/in(m)1;
integer <, 7, 71, k, n, r, jr, dn;
Boolean ¢;
pll] :=dn :=2; p2]:=j:=jj:=k:=7r[3] :=3;
pl3l := 5; ¢l3] := 25; dq[3] := 10; s¢[3] := 30;
for n := 7 step dn until m do
begin
{:= true; dn := 6 — dn;
for ¢ := 3 step 1 until jj do

begin
ir o= p[t];
if n = ¢[ir] then
begin

qlir] := n + dqlirl;
dqlir] := sqlir] — dqlir];
t := false;
if ¢ = jj then
begin
Ji=g + 1
if r = j then
begin
J=341; iyl =g
ql7] == plil 125
sqljl = 6 X pljl;
dglj} := sqlj] X A+(plj] +8)) — 2X glj]

end
end
end
end;
if ¢ then
begin
ki=Fk+1; plkl = mn;
A: ifjj=3thengotoF;
io=J -1
if g[r{7il] < ¢lrlij+1]] then go to 4;
comment sift sort;
rr(3] = r[3];
for ir ;= 4 step 1 until jj do
begin -
1= dir — 1;
B: if ¢lrlir]] < ¢lrr[¢]) then
begin
CrrliFl o= oerfd]y =4~ 1
570 Communications of the ACM

if2 > 3 then go to B
end;
rr{i--1] 1= r[ir]
end;
comment merge sort;
Toi=dr 1= 3; groi=jj+1;
C: if qlrlir]] < ¢lrlyr]] then
begin
rli} o= rrldr]; ir = ar 4+ 1;
if ir > jj then go to £
end
else
begin
rle} = rlgrly Jro=gr 4+ 1;
if jr > j then go to D

end;
ti=1-+1; goto(C;
D: =14 1; rli] = erfir]y dro=dr 41

if ir < jj then go to D;

E: ji:=3
end;
F: end;
steve2 =k
end sieve2

REMARKS ON:

ALGORITHM 35 [A1]

Sreve [T. C. Wood, Comm. ACM 4 (Mar. 1961), 151]

ALGORITHM 310 [A1]

PRIME NUMBER GENERATOR 1 [B. A. Chartres,
Comm. ACM 10 (Sept. 1967), 569]

ALGORITHM 311 [A1]

PRIME NUMBER GENERATOR 2 [B. A. Chartres,
Comm. ACM 10 (Sept. 1967), 570]

B. A. CuartrEs (Recd. 13 Apr. 1967)
Computer Science Center, University of Virginia,
Charlottesville, Virginia

The three procedures Sieve(m,p), sievel(m,p), and sieve2(m,p),
which all perform the same operation of putting the primes less
than or equal to m into the array p, were tested and compared for
speed on the Burroughs B5500 at the University of Virginia. The
modification of Sieve suggested by J. S. Hillmore [Comm. ACM &
(Aug. 1962), 438] was used. It was also found that Sieve could be
speeded up by a factor of 1.95 by avoiding the repeated evaluation
of sgrt(n). The modification required consisted of declaring an
integer variable s, inserting the statement s := sgri(n) immedi-
ately after ¢ := 3, and replacing pli]<sqri(n) by pli1<s.

The running times for the computation of the first 10,000 primes
were:

Sieve (Algorithm 35) 845 sec
Sieve (modified) 434 sec
stevel 220 see
steve2 91 sec

The time required to compute the first k primes was found to be,
for each algorithm, remarkably accurately represented by a power
law throughout the range 500 < k < 50,000. The running time of
Sieve varied as k', that of sievel as k%, and that of sieve2 as
k%, Thus the speed advantage of sieve2 over the other algorithms
increases with increasing k. However, it should be noted that
steve? took approximately 33 minutes to find the first 100,000
primes, and, if the power law can be trusted for extrapolation past
this point (there is no reason known why it should be), it would
take about 12 hours to find the first million primes.

Volume 10 / Number 9 / September, 1967

