
5t~(l(~tts were .~ectio~ted according to bot,h the no~>
prefere~ce a~d preference algorithms, attd the Immber of
times they received their preferred sections i** courses with
m~ltjt)le sections was tMlied. The results show that whet~
the >o**prefer(!,~ee algorithm is used a student receives
at)o~*t 40 percent of lhe sections for which he has a prefer-
e**ce, arid whe~, the preference algorithm is used this per-.
ce~ tage i~tereases to :wound 72 pereet~t,

B o t h a lgo r i ; hms m e e t the origit,al two r equ i r emen t s of

m:~chit,e seeCio~ting e q u a l l y well. A. sub jec t ive analysis of

ihe r e s u l t i n g b a h m e e of sect ions when the p re fe rence algo-

r i t h m was used shows it to be a lmos t as good as t h e non-

p re fe rence a lgor i thm. R a r e l y was the imba lance more than

oae s t u d e n t .

5. C o n c l u s i o n s

Bec~mse of t he smal l m tmber of courses where second

p re fe rences were p e r m i t t e d , the consequences of a l t e rna t e

courses on the M g o r i t h m canno t be ful ly de t e rmined . T h e

oa ly ev idence t h a t subs ta r , t i a tes its effeet iveness is t h a t

t)E sec t ions were ba l anced as well as sect ions ill n o n - P E

courses. F u r t h e r t e s t ing will p robab ly show tha t o rde r ing

acco rd ing to t h e n u m b e r of seats left is not sufficient bu t

~hat t h e o rde r ing should be done aeeord ing to the ra t io of

~he n u m b e r of seats left to seats or ig ina l ly ava i lab le .

Because of t he r e l a t ive u n i m p o r t a n e e of second preferenees

i , t h e d a t a tes ted, o r d e r i n g by ra t io was not t r ied .

A la rger peree t t tage of r eques t s will p robab ly decrease

p e r f o r m a n c e ach ieved if m o s t reques t s are cen te red on on ly

~ few sections in eaeh course, sinee section sizes are limited.
in the test data used this seemed to be the ease for some
courses, l:'opular time periods may also cause trouble. For
iastanee, there were only 811 requests for MWF at 8
~/etoek classes while there were 1,390 requests for MWF
at 9 o'clock classes. These numbers are only indicative of
~}:~e trend, since the effects of the time schedule on requests
is itot readily analyzed.

From the test ease tried, it appears that it is possible to
allow students to have section preference with machine
:~eetioning. The results achieved show that a student re-
~;'eives around 32 pereent more of his preferred sections
using the preference Mgorithnt--yet the prineiple objec-
tives of machine registration are still satisfied.

Acknowle@ments. The author would like to thank
Martin Faulkner and James King for their assistance in
modifying and using the Washington State University
maehiae registration program and for helpful discussions
during development of the preference algorithm.

I(ECEIVED ~FEBRUARY, 1967; REVISED MAY, 1967

R E F E R E N C E S

I. FaULKNER, M. Computer sectioning and class scheduling.
Data,nation 1I (June 1965), 35-37.

2. STOCKMAN, J. W. Jm A guide to automated class scheduling.
Data Proc. Ma9. 6 (Oct. 1964), 30-33.

3, ~iA.CON, ~i., AND WALKER, E . E . A Monte Carlo algorithm for
assigning students to classes, Comm. A C M 9, 5 (May 1966),
339-340.

Volume 10 / N u m b e r 9 / Sep tember , 1967

J. G. HERRIOT, Editor
A I,GO1LITHM 310
P t l I M E NUSIBER GENE[IATOII 1 [At]
B. A. Cmta~e~;s (I leed . 25 Oct. 1966 a~d 13 Apr. 1907)
Computer Science Cet~ter, University of Virgi~ia,
Charlottesville, Virginia
i n t ege r p rocedure sievel@l, p); value m; in teger m; i~l-

teger a r ray p;
c o m m e n t sievel(m, p) generates the prime numbers less ihan

or equal to m, and places them itt the array p, settir~g p[lt '~ 2,
p[2t = 3, p[31 = 5, . . . , p[k] = (largest prime folmd). The value
of the procedure is k, the numt)er of primes less bhat~ or equal to
t?/..

The niethod used is amodifieation of the;Stove of/l,ratos~he~ms.
In its customary form this method requires a repe:~ted sweepi~g
overm lmmbers (or m/2 odd numbm:s), crossing out all multiples
of the i th prime on the ith sweep. The variation of the method
used here condenses all these sweeps into olin. Whe~ the odd
integer n is being tested ("if n=q[i]") to see whether it shotdd
be crossed out ("t := false") , q[i], f o r / = 3, 4, . . . , j , eor~Lains
the smallest odd multiple of p[il which is no smaller tha~ either
n or p[i] ~ 2. The sequence of values taken on by q[i] defi~ms the
set of numbers crossed out because they are mult.iples of p[i].
The initial vahte of q[i] is p[i] T 2 because all smaller odd multi-
pies of p[i] have at least one other odd prime factor smaller than
p[i]. For the same reason, q[j+l] does Dot become active (' j
:= j + l ") until n has become equal to P[jl 'F 2. The dim¢msio~ of
the arrays q and dq is therefore the numher of primes less tha~
or equal to the square root of m. Thus we have replaced repeated
sweeps over the array p by (many more) repeated sweeps over
part of the much smaller array q. This does Imt reduce the
amount of eornputation, but does lead to a much more efficient
computer implementation, as ordy the arrays q aml dq riced be
held in a random access store.;

begin
i n t e g e r ar ray q, dq[2 : 2.7Xsqrl(m)/ln(m)J ~
i n t e g e r i , j , k, n;
B o o l e a n t;
p[1] := j := k := 2; p[2] := 3; q[2J := 9; dq[2] :~'~ 6;
for n := 5 s t e p 2 u n t i l m do
beg i n

t := true;
for i := 2 s tep 1 u n t i l j do
begin

i f n = q[i] t hen
begin

q[i] := n + dq[i]; t := false;
i f i = j t hen
b e g i n

j : = j + l ; q[jl := p{j]T2;
dq[j] := 2 × p[j]; go to A

e n d
e n d

end;
i f t t h e n
beg in

k : = k + l ; p[k] := n
e n d ;

A: end;
sievel := k

end sievel

C o m m u n i c a t i o n s o f t i le ACM 569

ALGORITHM 311
PRIME NUMBER GENERATOR 2 [All
B. A. CHARTRES (Recd. 25 Oct. 1966 and 13 Apr. 1967)
Computer Science Center, University of Virginia,
Charlottesville, Virginia

i n t e g e r p r o c e d u r e sieve2(m, p); v a l u e m;
i n t e g e r m; i n t e g e r a r r a y p;

c o m m e n t sieve2 is a faster version of sievel. Two changes were
made to obtain higher speed.

(1) The multiples q[i] are sorted, smallest first, so tha t each
value of n does not need to be compared with every q[i]. The
sorted order of the q[i] is indicated by an index array r. The
i th sorted element of q is q[r[i]]. I t was found empirically tha t
greater speed is obtained when the q[r[i]] are not kept con-
s tant ly sorted, but are re-sorted only at the time a new prime is
discovered. The i n teger j j indicates wtfieh of the q[r [i]] are sorted:
q[r[3]] througtl q[r[jj-1]] are out of order, whereas q[r[jj]] through
q[r[j]] are in order. Sorting is performed in two stages. A sif t
sort first rearranges r[3] through r[jj-1] into rr[3] through
rr[jj-1]. Then a single merge sort combines rr[3] through rr[jj-1]
and r[jj] through r[j] into ri l l through r[j].

(2) All multiples of 3 are at t tomatically excluded from con-
sideration by stepping n a l ternate ly by 2 and 4, and, in a similar
way, by stepping q[i] al ternately by 2 X p[i] and 4 × p[i].;

b e g i n
i n t e g e r a r r a y q, dq, sq, r, rr[2: 2.TXsqrt(m)/ln(m)];
i n t e g e r i , j , j j , k, n, ir, j r , dn;
B o o l e a n t;
p[1] : = d n := 2; p[2] : = j : = j j : = k := r[3] := 3;
p[3] := 5; q[3] := 25; dq[3] := 10; sq[3] := 30;
for n := 7 s t ep dn u n t i l m do
beg in

t := t r u e ; dn := 6 - dn;
for i := 3 s t ep 1 u n t i l j j do
beg in

ir := r[i];
i f n = q[ir] t h e n
b e g i n

q[ir] := n + dq[ir];
dq[ir] := sq[ir] - dq[ir];
t := fa l se ;
i f i = j j t h e n
beg in

j j := j j + l;
i f i r = j t h e n
b e g i n

j := j + l; r[j] := j;
q[J] := P[J] T 2;
sq[j] := 6 X p[j];
dq[j] := sq[j] × (l+(p[j] + 3)) - 2X q[j]

end
e n d

e n d
e n d ;
i f t t h e n
b e g i n

k : = k + l ; p[k] := n;
A: i f j j = 3 t h e n go to F ;

j j : = j j - 1 ;
i f q[r[jj]] < q[r[2+l]] t h e n go to A ;
c o m m e n t sift sort;
rr[3] := r[3];
for ir := 4 s t e p 1 u n t i l j j d o
b e g i n

i : = i r - - 1 ;
B: i f q[r[ir]] < q[rr[i]] t h e n

b e g i n
rr[i+l] := rr[i]; i := i -- 1;

i £ i > 3 t h e n g o t o B
e n d ;
r s [i+ l] := r[ir]

e , d ;

i := i?" := 3; jr := j j + 1;
C: i f q[rr[ir]] < q[r[jr]] i :hen

b e g i n
r [i] := r r [i r] ; i r := i r + 1;
i f i r > j j t h e n g o to E

e n d

e lse
b e g i n

r[i] := r[jr]; jr := j'r -4- 1;
i f j r > j t h e n go to D

e n d ;
i := i + 1; go to C;

D: i : = i + l ; r[i] := rr[ir]; ir := ir + 1;
i f it" .~ j j t h e n go to D;

E: jj :=3
end ;

F: end ;
sieve2 := k

e n d sieve2

REMARKS ON:

ALGORITHM 35 [All
SIEVE IT. C. Wood, Comm. ACM 4 (Mar. 1961), 151]
ALGORITHM 310 [All
PRIME NUMBER GENERATOR 1 lB. A. Chartres,

Comm. ACM 10 (Sept. 1967), 569]
ALGORITHM 311 [All
PRIME NUMBER GENERATOR 2 lB. A. Chartres,

Comm. ACM 10 (Sept. 1967), 570]

B. A. CHAR'ra~s (Reed. 13 Apr. 1967)
Computer Science Center, University of Virginia,
Charlottesville, Virginia

The three procedures Sieve(m,p), sievel(m,p), and sieve2(m,p),
which all perform the same operat ion of put t ing the primes less
than or equal to m into the array p, were tested and compared for
speed on the Burroughs B5500 at the Univers i ty of Virginia. The
modification of Sieve suggested by J. S. Hilhnore [Comm. A C M 5
(Aug. 1962), 438] was used. I t was also found that Sieve could be
speeded up by a factor of 1.95 by avoiding the repeated evaluation
of sqrt(n). The modification required consisted of declaring ar~
integer variable s, inserting the s ta tement s := sqrt(n) immedi-
ately after i := 3, and replacing p[i]_<sqrt(n) by p[i]~s.

The running times for the computat ion of the first 10,000 primes
w e r e :

Sieve (Algoribhm 35) 845 sec
Sieve (modified) 434 see
sievel 220 sec
sieve2 91 sec

The t ime required to compute the first k primes was found to be,
for each algorithm, remarkably accurately represented by a power
law throughout the range 500 < k if< 50,000. The rumfing t ime of
Sieve varied as k 1.4°, that of sievel as k I'6a, and that of sieve2 as
k L~, Thus the speed advantage of sieve2 over the other algorithms
increases with increasing k. However, i t should be noted that
sieve2 took approximately 33 minutes to find the first 100,000
primes, and, if the power law can be trusted for extrapolat ion past
this point (there is no reason known why i t should be), it would
take about 12 hours to find the first million primes.

570 C o m m u n i c a t i o n s o f t i l e ACM V o l u m e 10 / N u m b e r 9 / S e p t e m b e r , 1967

