
ALGORITHM 311
PRIME NUMBER GENERATOR 2 [All
B. A. CHARTRES (Recd. 25 Oct. 1966 and 13 Apr. 1967)
Computer Science Center, University of Virginia,
Charlottesville, Virginia

i n t e g e r p r o c e d u r e sieve2(m, p); v a l u e m;
i n t e g e r m; i n t e g e r a r r a y p;

c o m m e n t sieve2 is a faster version of sievel. Two changes were
made to obtain higher speed.

(1) The multiples q[i] are sorted, smallest first, so tha t each
value of n does not need to be compared with every q[i]. The
sorted order of the q[i] is indicated by an index array r. The
i th sorted element of q is q[r[i]]. I t was found empirically tha t
greater speed is obtained when the q[r[i]] are not kept con-
s tant ly sorted, but are re-sorted only at the time a new prime is
discovered. The i n teger j j indicates wtfieh of the q[r [i]] are sorted:
q[r[3]] througtl q[r[jj-1]] are out of order, whereas q[r[jj]] through
q[r[j]] are in order. Sorting is performed in two stages. A sif t
sort first rearranges r[3] through r[jj-1] into rr[3] through
rr[jj-1]. Then a single merge sort combines rr[3] through rr[jj-1]
and r[jj] through r[j] into ri l l through r[j].

(2) All multiples of 3 are at t tomatically excluded from con-
sideration by stepping n a l ternate ly by 2 and 4, and, in a similar
way, by stepping q[i] al ternately by 2 X p[i] and 4 × p[i].;

b e g i n
i n t e g e r a r r a y q, dq, sq, r, rr[2: 2.TXsqrt(m)/ln(m)];
i n t e g e r i , j , j j , k, n, ir, j r , dn;
B o o l e a n t;
p[1] : = d n := 2; p[2] : = j : = j j : = k := r[3] := 3;
p[3] := 5; q[3] := 25; dq[3] := 10; sq[3] := 30;
for n := 7 s t ep dn u n t i l m do
beg in

t := t r u e ; dn := 6 - dn;
for i := 3 s t ep 1 u n t i l j j do
beg in

ir := r[i];
i f n = q[ir] t h e n
b e g i n

q[ir] := n + dq[ir];
dq[ir] := sq[ir] - dq[ir];
t := fa l se ;
i f i = j j t h e n
beg in

j j := j j + l;
i f i r = j t h e n
b e g i n

j := j + l; r[j] := j;
q[J] := P[J] T 2;
sq[j] := 6 X p[j];
dq[j] := sq[j] × (l+(p[j] + 3)) - 2X q[j]

end
e n d

e n d
e n d ;
i f t t h e n
b e g i n

k : = k + l ; p[k] := n;
A: i f j j = 3 t h e n go to F ;

j j : = j j - 1 ;
i f q[r[jj]] < q[r[2+l]] t h e n go to A ;
c o m m e n t sift sort;
rr[3] := r[3];
for ir := 4 s t e p 1 u n t i l j j d o
b e g i n

i : = i r - - 1 ;
B: i f q[r[ir]] < q[rr[i]] t h e n

b e g i n
rr[i+l] := rr[i]; i := i -- 1;

i £ i > 3 t h e n g o t o B
e n d ;
r s [i+ l] := r[ir]

e , d ;

i := i?" := 3; jr := j j + 1;
C: i f q[rr[ir]] < q[r[jr]] i :hen

b e g i n
r [i] := r r [i r] ; i r := i r + 1;
i f i r > j j t h e n g o to E

e n d

e lse
b e g i n

r[i] := r[jr]; jr := j'r -4- 1;
i f j r > j t h e n go to D

e n d ;
i := i + 1; go to C;

D: i : = i + l ; r[i] := rr[ir]; ir := ir + 1;
i f it" .~ j j t h e n go to D;

E: jj :=3
end ;

F: end ;
sieve2 := k

e n d sieve2

REMARKS ON:

ALGORITHM 35 [All
SIEVE IT. C. Wood, Comm. ACM 4 (Mar. 1961), 151]
ALGORITHM 310 [All
PRIME NUMBER GENERATOR 1 lB. A. Chartres,

Comm. ACM 10 (Sept. 1967), 569]
ALGORITHM 311 [All
PRIME NUMBER GENERATOR 2 lB. A. Chartres,

Comm. ACM 10 (Sept. 1967), 570]

B. A. CHAR'ra~s (Reed. 13 Apr. 1967)
Computer Science Center, University of Virginia,
Charlottesville, Virginia

The three procedures Sieve(m,p), sievel(m,p), and sieve2(m,p),
which all perform the same operat ion of put t ing the primes less
than or equal to m into the array p, were tested and compared for
speed on the Burroughs B5500 at the Univers i ty of Virginia. The
modification of Sieve suggested by J. S. Hilhnore [Comm. A C M 5
(Aug. 1962), 438] was used. I t was also found that Sieve could be
speeded up by a factor of 1.95 by avoiding the repeated evaluation
of sqrt(n). The modification required consisted of declaring ar~
integer variable s, inserting the s ta tement s := sqrt(n) immedi-
ately after i := 3, and replacing p[i]_<sqrt(n) by p[i]~s.

The running times for the computat ion of the first 10,000 primes
w e r e :

Sieve (Algoribhm 35) 845 sec
Sieve (modified) 434 see
sievel 220 sec
sieve2 91 sec

The t ime required to compute the first k primes was found to be,
for each algorithm, remarkably accurately represented by a power
law throughout the range 500 < k if< 50,000. The rumfing t ime of
Sieve varied as k 1.4°, that of sievel as k I'6a, and that of sieve2 as
k L~, Thus the speed advantage of sieve2 over the other algorithms
increases with increasing k. However, i t should be noted that
sieve2 took approximately 33 minutes to find the first 100,000
primes, and, if the power law can be trusted for extrapolat ion past
this point (there is no reason known why i t should be), it would
take about 12 hours to find the first million primes.

570 C o m m u n i c a t i o n s o f t i l e ACM V o l u m e 10 / N u m b e r 9 / S e p t e m b e r , 1967

