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i n t e g e r  p r o c e d u r e  sieve2(m, p);  v a l u e  m; 
i n t e g e r  m; i n t e g e r  a r r a y  p; 

c o m m e n t  sieve2 is a faster version of sievel. Two changes were 
made to obtain higher speed. 

(1) The  multiples q[i] are sorted, smallest first, so tha t  each 
value of n does not  need to be compared with every  q[i]. The 
sorted order of the q[i] is indicated by an index array r. The 
i th  sorted element of q is q[r[i]]. I t  was found empirically tha t  
greater  speed is obtained when the q[r[i]] are not  kept con- 
s tant ly  sorted, but  are re-sorted only at the time a new prime is 
discovered. The i n teger j j  indicates wtfieh of the q[r [i]] are sorted:  
q[r[3]] througtl q[r[jj-1]] are out  of order, whereas q[r[jj]] through 
q[r[j]] are in order. Sorting is performed in two stages. A sif t  
sort first rearranges r[3] through r[jj-1] into rr[3] through 
rr[jj-1]. Then a single merge sort combines rr[3] through rr[jj-1] 
and r[jj] through r[j] into ri l l  through r[j]. 

(2) All multiples of 3 are at t tomatically excluded from con- 
sideration by stepping n a l ternate ly  by 2 and 4, and, in a similar 
way, by stepping q[i] al ternately by 2 X p[i] and 4 × p[i].; 

b e g i n  
i n t e g e r  a r r a y  q, dq, sq, r, rr[2: 2.TXsqrt(m)/ln(m) ]; 
i n t e g e r  i ,  j ,  j j ,  k, n, ir, j r ,  dn; 
B o o l e a n  t; 
p[1] : = d n  := 2; p[2] : = j  : = j j  : = k  := r[3] := 3; 
p[3] := 5; q[3] := 25; dq[3] := 10; sq[3] := 30; 
for  n := 7 s t ep  dn u n t i l  m do 
beg in  

t := t r u e ;  dn := 6 -  dn; 
for i := 3 s t ep  1 u n t i l j j  do  
beg in  

ir := r[i]; 
i f  n = q[ir] t h e n  
b e g i n  

q[ir] := n + dq[ir]; 
dq[ir] := sq[ir] - dq[ir]; 
t := fa l se ;  
i f i  = j j  t h e n  
beg in  

j j  := j j  + l; 
i f i r  = j t h e n  
b e g i n  

j := j + l; r[j] := j; 
q[J] := P[J] T 2; 
sq[j] := 6 X p[j]; 
dq[j] := sq[j] × ( l+(p[ j ]  + 3)) - 2X q[j] 

end  
e n d  

e n d  
e n d ;  
i f  t t h e n  
b e g i n  

k : = k + l ;  p[k] := n; 
A: i f j j  = 3 t h e n  go to  F ;  

j j  : = j j - 1 ;  
i f  q[r[jj]] < q[r[2+l]]  t h e n  go to A ; 
c o m m e n t  sift sort; 
rr[3] := r[3]; 
for  ir := 4 s t e p  1 u n t i l  j j  d o  
b e g i n  

i : = i r - - 1 ;  
B: i f  q[r[ir]] < q[rr[i]] t h e n  

b e g i n  
rr[i+l] :=  rr[i]; i := i -- 1; 

i £ i  > 3 t h e n g o t o B  
e n d ;  
r s [ i+ l ]  := r[ir] 

e , d  ; 

i :=  i?" := 3; jr  := j j +  1; 
C: i f  q[rr[ir]] < q[r[jr]] i :hen 

b e g i n  
r [ i ]  :=  r r [ i r ] ;  i r  :=  i r  + 1; 
i f i r  > j j t h e n g o  to  E 

e n d  

e lse  
b e g i n  

r[i] := r[jr]; jr  := j'r -4- 1; 
i f  j r  > j t h e n  go to  D 

e n d ;  
i :=  i +  1; go to  C; 

D: i : = i + l ;  r[i] :=  rr[ir]; ir :=  ir + 1; 
i f  it" .~ j j  t h e n  go to  D; 

E: jj :=3 
end ;  

F: end  ; 
sieve2 := k 

e n d  sieve2 
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The three procedures Sieve(m,p), sievel(m,p), and sieve2(m,p), 
which all perform the same operat ion of put t ing the  primes less 
than  or equal to m into the array p, were tested and compared for 
speed on the Burroughs B5500 at  the Univers i ty  of Virginia. The 
modification of Sieve suggested by J. S. Hilhnore [Comm. A C M  5 
(Aug. 1962), 438] was used. I t  was also found that  Sieve could be 
speeded up by a factor of 1.95 by avoiding the repeated evaluation 
of sqrt(n). The modification required consisted of declaring ar~ 
integer variable s, inserting the s ta tement  s := sqrt(n) immedi-  
ately after i := 3, and replacing p[i]_<sqrt(n) by p[i]~s.  

The running times for the computat ion of the first 10,000 primes 
w e r e :  

Sieve (Algoribhm 35) 845 sec 
Sieve (modified) 434 see 
sievel 220 sec 
sieve2 91 sec 

The t ime required to compute the first k primes was found to be, 
for each algorithm, remarkably accurately represented by a power 
law throughout the range 500 < k if< 50,000. The rumfing t ime of 
Sieve varied as k 1.4°, that  of sievel as k I'6a, and that  of sieve2 as 
k L~, Thus the speed advantage of sieve2 over the other  algorithms 
increases with increasing k. However,  i t  should be noted that  
sieve2 took approximately 33 minutes to find the  first 100,000 
primes, and, if the power law can be trusted for extrapolat ion past 
this point  (there is no reason known why i t  should be), it would 
take about 12 hours to find the first million primes. 

570 C o m m u n i c a t i o n s  o f  t i l e  ACM V o l u m e  10 / N u m b e r  9 / S e p t e m b e r ,  1967 




