ALGORITHM 335

A SET OF BASIC INPUT-OUTPUT PROCEDURES
[15]

R. DE VocerLAERE (Reced. 8 Sept. 1966 and 18 Nov. 1966;
description revised 2 Nov. 1967)

Department of Mathematics and Computer Center, Uni-
versity of California, Berkeley, CA. 94720

By means of the primitives insymbol, oufsymbol and length,
as requested by this journal's Algorithms Policy [Comm. ACM
10 (Nov. 67), 729] a basic set of input-output procedures is
defined aiming at quadlity and flexibility. outreal, for in-
stance, is written as a derived procedure; it outputs using the
fixed point or the floating point representation, and rounds
properly. Variants can easily be written because of the explicit
call of the procedures decompose integer and decompose real.
The highly recommended practice of echoing input is made
easy with one subset of derived procedures lioi, ior, iob,
ioa). The documentation of output in the form of equivalent
ALGOL statements is also provided when use is made of the
subset ofi, otr, otb, ota. The Berkeley style of providing in-
formation on the form of output using prior calls of procedures
such as real format is defined. A use of the parameter out-
channel to provide information for simultaneous output to
several channels is suggested. Interrelationship between the
declared procedures is furnished in tabular form.

KEY WORDS AND PHRASES:
cedures, input echo, quality output, decompose integer, decompose real,
style, Berkeley style, procedures relationship, output documentation, equiva-
lent ALGOL statements, ALGOL, ALGOL 640, integer format, real format,
out integer, read real, input output Boolean, input output array, fixed point

input output, transput, input output pro-

representation, floating point representation, output channel interpretation
CR CATEGORIES: 4.0, 4.41

1. Introduction

The reader will find below a set of basic input-output proce-
dures. Let me state first some of the purposes for writing this set
and give a general description and specific information about
the procedures and their interrelationship.

In the October 1964 issue of the Communicaiions of the ACM
{1], a report on input-output procedures for ALgoL 60 was pub-
lished. This report was prepared by a working group (WG 2.1)
of the International Federation for Information Processing
(IFIP/TC2) and approved by its Council.

The approved primitives were:
insymbol, outsymbol, lengih, inreal, ouireal, inarray, oularray
In the examples the following derived procedures were defined:

outboolean, outsiring, ininteger.

Volume 11 / Number 8 / August, 1968

. % .
el

J. G. HERRIOT, Editor

It is stated therein that ““one needs, in practice, a fuller set of
input-output procedures’’ and it is observed also that ‘different
scheme of I/0 procedures can be defined in it, largely by means of
these primitives.”

Since then, a few procedures have been published (see for in-
stance [2, 3]) and the Algorithms Policy of this journal has re-
quested [6] the use of the primitives of [1] and the use of out-
boolean, ouistring, ininteger and outinteger for input-output.

The purpose of this algorithm is to present part of a consistent
scheme of input-output procedures. The set uses as primitives,
insymbol, outsymbol, and outsiring (or equivalently length).

First in integer, out inleger, in real, out real, in Boolean, out
Boolean are derived. in real is related to [2]; out integer and out real
call the more basic procedures decompose integer and decompose
real. out real allows not only for floating point representation [3]
but also for fixed point representation and for correct rounding.

Several sets of procedures, which point in several directions
and which call the more basic ones, are then introduced. One set
consists of parameterless input function designators akin to the
procedure read of the Amsterdam Mathematisch Centrum. One
set provides for echo of input to insure that the correct numbers
have been read in—a practice which I recommend highly; it also
provides for easy documentation of the output in the form of
equivalent ALGOL statements. Another set with the same docu-
mentation feature is for output only; the last set outputs num-
bers, but no text.

It is not suggested that the set of procedures of this algorithm
be used for quantity output. Its main purpose is for quality output.

2. General Description

2.1. The only primitives used are tnsymbol, outsymbol, and
length (through oulsiring). insymbol and ouisymbol assume that
the value —1 is associated with the symbol carriage return-line
feed (or new card), which is not a basic symbol of Arcor 60.
This is done in accordance with the convention of [1, See. 3].
oulstring could have been avoided with some loss of clarity in the
description of the procedures. insymbol, outsymbol, and outstring
are defined in [1].

inreal and oulreal are defined as in [2, 3] in terms of insymbol,
outsymbol, and outsiring. I do not believe that inreal and ouireal
should be primitives, firstly, because these procedures can be
defined in terms of other primitives, and secondly, because many
definitions will satisfy the requirements of [1]. On the other hand,
the requirements set forth in [1] are most desirable.

in channel and out channel must be declared as integers and as-
signed a value in accordance with the requirements of ¢nsymbol
and outsymbol [1].

I would like to observe in passing that the integer out channel
cannot only be interpreted as identifying a single channel, but
can also be interpreted as identifying a set of channels to all of
which the output is to be sent. (If the binary representation of out
channel is Y afi] X 27 1, the output is sent to channel 7 if a[{] = 1
and is not sent if a [¢] = 0.) Although this is not yet implemented
at Berkeley in this fashion, all output going to a terminal is now
also sent to the printer. When time-sharing becomes widespread
this interpretation will, I hope, be increasingly popular.

2.2. The more basic input-output procedures are in inleger,

Communications of the ACM 567

in real, and in Boolean; the first two use in symbol only through
the integer procedure symbol.
symbol recognizes only the following basic symbols:

O[112(3]415]6]7[819] - | — |+]o] | u

and carriage return-line feed (or new card).

in integer associates to the second parameter, which is of type
integer, the next integer read from channel (the first parameter),
Any number of consecutive spaces are ignored before the first
digit; after the first digit, termination occurs with two consecu-
tive spaces, a comma, or a carriage return-line feed. A comma
before the first digit or sign, a period, (10}, or any other illegal
symbol will call the procedure error.

in real associates to the second parameter, which is of type real,
the next real number read from channel (the first parameter).
Any number of consecutive spaces are ignored before the first
digit, period, or (10); after that, termination occurs with two
consecutive spaces, a comma, or & carriage return-line feed. A
comma before the first digit, sign, period, or (1), or any other
illegal symbol will call the procedure error. Communication be-
tween in integer, in real, and in symbol to take care of separation
between integers or reals requires the nonlocals 281000 and
28100bc.

in Boolean associates to the second parameter, which is of type
Boolean the next Boolean read from channel (the first parameter);
any number of leading spaces or carriage returns-line feed are
ignored; any illegal symbol will call the procedure error.

The procedure error has one parameter of type integer. It can
be written according to the wishes of a user or of a group of users,
An example with diagnostics in full is given below.

2.3. The more basic output procedures are out integer, out real,
and out Boolean. The information on the form of the output can be
given in various ways; the style used for these output procedures
is what I will call the Berkeley style by contrast with the style
used for output procedures at, for instance, the Amsterdam’s
Mathematisch Centrum or at Copenhagen’s Regnecentralen,
Call of these output procedures must be preceded by a call of
corresponding procedures integer format, real format and Boolean
formad.

The only parameter of ¢nteger format determines the field width
of any integer sent to the output channel. The parameters of
real format are a Boolean, which determines when the value is
true that fixed point representation is desired for the output of
real numbers and when the value is false that floating point repre-
sentation is desired. The second parameter determines the field
width, the third parameter determines the number of decimal
places and affects also the rounding of the number. The only
parameter of Boolean format determines the field width.

The following decisions were made for out tnleger, out real, and
out Boolean: If the field parameter is less than required, it is re-
placed by 20. The sign is outputed before the most significant
digit if the number is negative. In floating point form, the first
significant digit is immediately to the left of the decimal point.
The exponent is replaced by four spaces if it is zero; otherwise the
sign of the exponent is always outputed and the exponent is
restricted to the interval —99 to 99.

If the user wishes to write variants of the Berkeley style, for
ingtance if he wishes always to print the sign, or if he wishes to
output it as the first character of the field, or if he wishes to out-
put a space between every third or fifth digit, his task will be
greatly eased by the introduction of the procedures decompose
integer and decompose real which provide the basic information
about an integer (its sign, the number of significant decimal
digits, and the digits) or about a real (its sign, its size, the scale
factor such that the scaled number has its first significant digit
immediately to the left of the decimal point and the digits).

In decompose real, the size information determines if the num-
ber is too small; an integer declaration has been chosen instead
of a Boolean to provide for the possibility of another test, which

568 Communications of the ACM

would determine if the number is too large. The rounding for reals
is taken care of in decompose real.

Correct rounding is essential for a set of input-output pro-
cedures of quality. Although the point may be argued, I consider
incorrect the output of 2 to two decimals as 1.99 unless computer or
computations have only that precision. Examples:

real format (true, 5, 3); out real (1, 0.99099);

real formai (false, 10, 2); out real (1, —0.99099);
will output

0.991-9.9110 — 1.

2.4. Four more sets of input-output procedures follow; these
procedures do not require explicit calls of the format procedures:

read ¢, read r, read b are function designators without parameters
which can be used to input respectively an integer, a real or a
Boolean.

10t, ior, 10b are function designators and 7oa is a procedure to
input respectively an integer, a real, a Boolean or a real array and
to output an equivalent ALGOL statement.

This style, which I have introduced to give the output in the
form of parts of an ALcoL program in connection with the genera-
tion of the nonlinear equations satisfied by Runge-Kutta type
methods (to be published elsewhere), can also be used to describe
input and output within the conventions of the ALgoL language.

For 7oi, ior, 10b, the second parameter gives the string to be
outputted; the others give the parameters corresponding to those
of the format procedures. For ‘oq, the second and third parameters
are the first and last subscript of the element of the one dimen-
sional array to be read and the last parameters give the string to
be outputted as well as the format information. Examples:

tor(r, ‘@mewnuminules’, true, 5, 2);
toala, 1, 3, ‘hippopotamus’, true, 4, 1)
would output with appropriate input:
time in minutes := 21.05;
1 := 1; for hippopotamus [} := 15.1,6.2,70do ¢ := 7 + 1;

The next four procedures oit, otr, otb, and ofa are for output
only; the form of output is identical to that of 707, Zor, 70b, and
10a.

The last four procedures ouit, outr, outb, and oula are for output
only. They output an integer, a real, a Boolean, or a sequence of
reals, the format information being provided by the parameters
of these procedures.

3. Specific Information About Procedures, Their
Relationship, and the Nonlocal Parameters

To ease the local exchange of procedures and nonlocal iden-
tifiers of procedures between people at Berkeley, conventions
have been introduced which are examplified in the procedures of
this algorithm. All appropriate nonlocal identifiers are formed
using as first symbols the letter z followed by a digit associated
to the writer (I use 8) followed by 3 digits corresponding to the
number of the procedure in which the nonlocal identifier is first
used (my procedure symbol is number 100, in integer is number 101,
etc.) followed by an ordinary identifier.

The following declarations must be made in the same block as
that of this algorithm or in an outer block:

integer in channel, oul channel, 28106n, 28107n, 28107d, 28108n;

Boolean 28100b, 28100bc, 28107B;

procedure in symbol (channel, string, destination); (see Comm.
ACM 7 (Oct. 1964), 628-630)

procedure out symbol (channel, siring, destination);

procedure oul string (channel, string); (Idem)

in channel and out channel must be assigned an appropriate value
before a call of many of the input-output procedures (see Table I).

Table I indicates the relationship between the procedures
and the nonlocal variables. Moreover, an explicit call of out integer,
out real, and out Boolean requires a preceding call of the corre-
sponding format procedure integer formal, real format, and Boolean
format.

(Idem)

Volume 11 / Number 8 / August, 1968

80182

10182 ‘

PL0182 ~
#0182

90182

++

++
++

XXX

2900182 }

++

X X X

400182

|

00782 31y

XXXX XXXX XXXX

JpuuDy M0

XXX XXXX

X XX

19UUDYD? U3

I

013

601

801

L01

901

SOt

+ | + 921 D0
+ + A qno

+ |+ ye1 4no 61182
+ + + 54 yno
X + %21 D30
X + 121 q10

X =+ 031 410 61182
+ X + 611 %o
X X + X + + + 8TI Doz
X X + + + LT q0t

X + X + + + 911 402 a1i82
+ X + X + + + STI w02
X + + FI1 q poa4

X + |+ | er 4 pooad 21182
X + + =+ glt ¥ pvas

X X TIT unsj00y Mo 01182

X X 01T 124 1Mo 01182

X X X 601 49ba1us o 9018?
801 10ULIOf UDI)0OST

201 jouLLof oos 90182
90T wuLiof Laboqur
(<118 1024 980dU009D

0 $01 sabayur asoduosap $0182
0 X X 201 uDI00Yg UL

0 X + X g0t 1oL ug 00182
0 X + X 10T J2bo1ur ug
0 X X 001 10quufis
0 66 Buzyys mo

0 86 10quifis ymo 96082
0 1% 10quifis uy
0 40442

$01 £01 zo1 1ot 00T 66 86 6 4002 | raquinNg ampasorg ang

SATAVINVA TVOOINON ANV SHUNJEIOUJ NEEMIAG JIHSNOILVIAY T HIIV.L

569

Communications of the ACM

Volume 11 / Number 8 / August, 1968

In Table I, each of the procedures is identified by a number.
An X indicates that the procedure corresponding to the number
in the same column or the nonlocal identifier on top of the same
column is used explicitly (and perhaps also implicitly); + in-
dicates that the corresponding procedure or identifier is used
implicitly; 0 is placed in the column corresponding to the number
of the procedure. Related procedures are grouped together in a
file whose name appears in the first column. This information will
be used in further publications.

The following declaration can be used for the procedure error:

procedure error (i); value i; integer i;
begin procedure nler; outsymbol (channel, 7, —1);
nler;
if i = 8100 then out string (1,‘alsymbolltisUreadUwhichLiistinotUatldigitd-L,U
- —U-+holi(space)Ucarriagelireturn-linelfeed’) else
if ¢ = 810100 then out siring (1,‘whilel.lrea,dingl.lanUinteger,Lla,nLlillegalUsymbolLI
isireadUbeforellthellfirstldigit’) else
if ¢ = 810101 then out string (1,‘whileUreadingUanLlinteger,Uanuillegall.lsymbolu
isUreadUafterlitheUfirstiidigit’) else
if i = 810200 then out string (1,‘whilélreadinglallreal,Uanlkillegaltisymbolld
istireadUwhilelireadingUtheldecimalllfraction’} else
if i = 810201 then out string (1,‘whilélUreadingUalireal Uanthilegalllsymbolliistt
readUbeforelithellfirstUdigitUperiodioridio’) else
if 2 = 810202 then out string (1,‘whileUreadingUaLlreal,Uanuillegall.lsymboll.lisu
readUwhilellreadingUthellezponentUpart’) else
if ¢ = 810203 then out string (1,‘al.lrealLlnumberl.lisl.limpraperlyuterminated’)
else
out string (1 ,‘whileUreadinngaLlBooleanUaUsymbolUwhichuisUnatutrueLlorufalse,
isUreadtdbeforetiter mination’);
nler
end error

Acknowledgment. The implementation of the procedures in
this paper has been made possible by the existence of an ALcowL
interpreter, which is the responsibility of many (see [4]). The
editor, Q.E.D., used to prepare the program on the SDS 930,
has been planned and implemented by Peter Deutsch and Butler
Lampson. I especially thank Mr. Deutsch for the inclusion of
requested features to copy part of a line until a given character
noninclusive and to delete part of a line until a given character
noninclusive. I thank my colleague R. S. Lehman for the use of
his syntax checker and transliterator to BC-AvncoL.

Machine time for the preparation and implementation of the
procedures and their tests was furnished by Project Genie of the
Computer Center operating under Contract SD-185 with the
Advanced Research Project Agency and by the Berkeley Campus
Committee on Research.

REFERENCES

1. Report on input-output procedures for ALGOL 60. Comm.
ACM 7 (Oct. 1964), 628-630.

2. McKeeman, W, M. Algorithm 239, Free Field Read. Comm,
ACM 7 (Aug. 1964), 481.

3. Wirte, N. E. Algorithm 249, Outreal n. Comm. ACM 8 (Feb.
1965), 104.

4. BC ALGOL Manual. U. of California, Computer Center,
Berkeley, Oct. 1966 (Third Ed.).

5. AncLuin, D. C., Drutsch, L. P. Reference manual, Q.E.D,,
time-sharing editor. Doc. 30.60.30, Jan. 26, 1967, Contract
SD-185, Office of the Secretary of Defense, ARPA, Wash-
ington, D. C.

6. Revised Algorithms Policy. Comm. ACM 7 (Oct. 1964), 586.

integer procedure symbol(s); integer s;

comment symbol := s := the integer representation of the
next symbol read, 0 to 9 for the integers, 10 for ‘-, 11 for
«—7 12 for ‘4’, 13 for “0’, and 14 for ¢ or for carriage
return (or new card) represented by —1 when processed by
in symbol or for two consecutive spaces when the nonlocal
Boolean 281006 is false. When 281005 is true any number of
consecutive spaces are ignored. Any other symbol will call a
nonlocal procedure error with parameter equal to 8100;

570 Communications of the ACM

begin
read: in symbol(in channel, ‘0123456789.—-t1ou,’, 8);
if s = —1 A 28100bc then go to read;
if s = 15 then
begin
if 281000 then go to read
else in symbol(in channel, 0123456789.— +10u,’, s)
end;
ifs = —1V s = 16 then symbol := s 1= 14
else
begin if s < 0 then error(8100); symbol := s := s — 1 end
end symbol;
procedure in integer(channel, i); value channel;
integer channel, ;
comment i := the next integer read from channel, any number of
consecutive spaces are ignored before the first digit, after the
digit termination occurs with two consecutive spaces, a comma
or & carriage return, any illegal symbol will call a nonlocal
procedure error with parameter equal to 8100 or 810100 or
810101;

begin
integer s; Boolean negative;
negative := false; 28100b := 28100bc := true;
in channel := channel;
symbol(7); 28100bc := false;
if ¢ = 12 then symbol(?)
else if ¢ = 11 then begin negative := true; symbol(i) end;

if ¢ = 10 then error(810100);
281006 := false;

L1: if symbol (s) < 10thenbegini:=10X i+s; goto Llend;
if s # 14 then error(810101);
if negalive then 7 := —17

end in inleger;

procedure in real{channel, r); value channel;
integer channel; real r;

comment 7 := the next real number read from channel, any num-
ber of consecutive spaces are ignored before the first digit.
After the first digit termination occurs with two consecutive
spaces, a comma oI a carriage return. Any illegal symbol will
call a non local procedure error with paramater equal to 8100
or 810200 or 810201 or 810202 or 810203. The main differences
with ALGORITHM 239 of W. M. McKeeman [2] are the substi-
tution of his integer procedure CHAR by symbol, the introduc-
tion of the Boolean z8100b, the introduction of a parameter in
the nonlocal procedure error and the change of type of a few
declarations;

begin
real sig, fp, d, ep, ip; integer esig, ch;
real procedure unsigned integer;

begin
real u;
u = ch;
K: if symbol(ch) <10 then begin u:=u X 10 +ch; go to K end;
unsigned inleger 1= u

end unsigned integer;
sig := 1.0; ep := fp := 0;
in channel := channel;
symbol(ch); 28100bc := false;
if ch = 12 then symbol(ch)
else if ch = 11 then begin sig := —1.0;
281000 := false;
if ch = 10 then
begin
ip := if ch < 10 then unsigned integer else 0;
if ch = 10 then

281000 := 2z8100bc := true;

symbol(ch) end;

begin
if symbol(ch) = 10 then error(810200);
fp :=0; d:=01;

Volume 11 / Number 8 / August, 1968

M: fpi=fp+chXd; d:=dX01;
if symbol(ch) < 10 then go to M
end decimal fraction
end decimal number
else if ¢ch = 13 then ip (=1
else begin error(810201); ip := 1 end;
if ch = 13 then
begin esig 1= 1;
if symbol(ch) = 12 then symbol(ch)
else if ¢ch = 11 then begin esig := —1; symbol(ck) end;
if ch < 10 then ep := unsigned inleger X esig
else begin ¢rror(810202); ep := 0 end
end exponent part;
if ch # 14 then error(810203);
r := sig X (ip+fp) X 100 T ep
end in real;
procedure in Boolean{channel, b); value channel;
integer channel; Boolean b;
comment b := the next Boolean read from channel, any number
of spaces or carriage returns are ignored, any other symbol will
call a nonlocal procedure error with parameter equal to 8103;
begin
integer ¢;
L:in symbol(channel, ‘true falsew’, 7);
ifi =3V 7= —1then go to L;
if 7 < 0 then error(8103);
b:i=7=1
end in Boolean;
procedure decompose integer(i, negative, n of digits, digit);
value ¢; integer 7, n of digils; Boolean negalive;
integer array digit;
comment negative 1= 1 < 0, n of digils := the number of decimal
digits of ¢ (if ¢ = 0 then n of digits := 0), digit [0: n of digits — 1]
:= the decimal digits of ¢ starting from the right;
begin
integer j;
if ¢ < 0 then begin negative := true; 7 := —i end
else negative := false;
n of digits := 0;
L:
if 7 > 0 then
begin
j 1= 1+ 10; digilln of digits] := ¢+ — j X 10;
n of digits := nof digits +1; i:=j5; gotolL
end
end decompose integer;
procedure decompose real(r, maz n of digits, negalive, size, exponent,
digit);
value r; integer max n of digils, stze, exponent;
Boolean negative;

real r;
integer array digit;
comment negalive := r < 0, size := —1 if r is too small, i.e. is
such that when abs(r) is multiplied repeatedly by 10 it does
not become eventually larger than one, size := 0 otherwise,
exponent := the power of 10 by which r is to be divided to ob-
tain a number whose first significant digit is immediately to
the left of the decimal point, digit [0: maz n of digits — 1] :=
the decimal digits of r starting with the first significant digit
to the left;
begin
integer 2, k, m;
Boolean procedure oo small(r); real r;
too small := abs(r) < 2 T (—127);
comment this procedure should be replaced appropriately;
negative := false;
if too small (r) then
begin size := 1; go to end decompose end
else size := 0;

Volume 11 / Number 8 / August, 1968

if r < 0 then begin negative := true; r := —r end;
if r < 1 then
begin
exponent = —1;
scale up: r 1= r X 10;
if r < 1 then
begin exponent := exponent — 1; go to scale up end
end
else
begin

exponent 1= 0;
test:
if r = 10 then
begin exponent := exponent + 1; r :=r X 0.1;
go to lest end
end;
m 1= maz n of digits;
ri=r4+5X017T m;

1 1= entier(r);
if 2 = 10 then
begin
i :=1; ezponent := exponent +1; m:=m+1; r:=r/10
end
else if i = 0 then 7 := 1;
digit[0) := i
for k := 1 step 1 until m — 1 do
begin

roi= (r—i) X 10; 1 := entier(r);
1 := digitlk] := if ¢ < 0 then 0 else if ¢ = 10 then 9 else ¢
end;

end decompose:
end decompose real;
procedure integer format(n); integer n; 28106n := n;
procedure real format(B, n, d); integer n, d; Boolean B;
begin

281078 := B; z8107n := n; 28107d := d
end real format;
procedure Boolean formai(n); integer n; z8108n := n;

procedure oul integer(channel, 7);
integer channel, 7;

comment the style of this procedure and of the out real and out
Boolean procedures given below is what I will call the Berkeley
style by contrast with that used for output procedures at the
Amsterdam Mathematisch Centrum or at the Copenhagen
Regnecentralen, for instance. It is characterized by the use of
a field width parameter n and for real numbers, by the use of a
parameter B which decides if the fixed point (value true)
or the floating point representation (value false) is requested
and by the number of digits d after the decimal point. The
sign is outputed just before the most significant digit, if the
number is negative. In floating point form the first significant
digit is immediately to the left of the decimal point. If the
field parameter is less than required, it is replaced by 20. These
procedures pair with the corresponding input procedures if the
field width is at least two units greater than required;

begin
integer n of digits, j, k; Boolean negative;
integer array digit[0: 19];
decompose inleger(i, negative, n of digits, digit);
if n of digits = 0 then
begin n of digits := 1; digiil0] := 0 end;
j 1= n of digits + (if negative then 1 else 0);
for k := (if >28106n then 19 else z8106n—1)

step —1 until j do out string(channel, ‘U0’);
if negative then out siring(channel, ‘—’);
for k := n of digits —1 step —1 until 0 do
out symbol(channel, 0123456789’ digitlk]+1)
end out integer;

value channel, 7;

Communications of the ACM 571

procedure out real(channel, r);
integer channel; real r;
comment this procedure outputs r properly rounded to channel
using the Berkeley style. In this variant, the exponent part
in the floating point form is replaced by 4 spaces if the exponent
is zero. The sign of the exponent is always outputed, for com-
patibility with ¢n real. The exponent 1s restricted to the interval
—99 to 99;
begin
integer j, k, size, exponent; Boolean negative;
integer array digii[0: z8107d-+14-(if z8107B then
entier (In(abs(r)+1)X0.4343) else 0)];
procedure out digit(d); integer d;
begin
out symbol(channel, ‘0123456789, d-1-1)
end oul digit;
if 28107B then
begin
decompose real(r, if 28107d4-exponent<0 then 1 else 1+
28107d+- exponent, negative, size, exponent, digit);

value channel, r;

if size = —1 then

begin
exponent := if 28107d = 0 then 0 else —2z8107d — 1;
digiti0] := 0

end

else if 28107d = 0 A exponent < 0 then
begin exponent := 0; digitl0] := end;
7 = (if negative then 3 else 2) +
(if 28107d = 0 then —1 else z8107d) +
(if exponent = 0 then exponent else —1);
for k := (if 7>28107n then 19 else 28107n—1) step —1
until j do out string(channel, ‘uw’);
if negative then out siring (channel, ‘~'});
for k := 0 step 1 until exponent do
out digit(digitlk]);
if 28107d > 0 then
begin
out string(channel, ¢-7);
for k := exponent 4~ 1 step 1 until exponent + 28107d do
if £ < 0 then out string(channel, ‘0’) else out digit(digiilk])
end
end fixed point representation
else
begin
decompose real(r, z8107d-+1, negative, size, exponent, digit);
if size = —1 then
begin
exponent := 0;
for k& := 0 step 1 until 2z8107d do digiilk] := 0
end;
7 =6 + (f 28107d=0 then —1 else 28107d)+-
(if negative then 1 else 0);
for k := (if j>28107n then 19 else 28107n—1)
step —1 until j do
out string{channel, ‘W’);
if negative then out string(channel, ‘-’);
out digit (digit [0]);
if 28107d # 0 then out siring(channel, ‘-°);
for k := 1 step 1 until z8107d do out digit(digitlk]);
if exponent = 0 then out string(channel, ‘Luun’)
else
begin
out string(channel, ‘10’);
comment This procedure assumes that 10 takes one space,
if not, the preceding statement should be modified;
if exponent = 0 then out string(channel, ‘)
else

572 Communications of the ACM

begin out siring(channel, ‘—’);
exponent .= —exponent
end;

j = exponent + 10;
if j = 0 then out string(channel, ‘1’)
else out digit(5);
out digit(exponent—jX10)
end
end floating point representation
end out real;
procedure oui Boolean(channel, b); value channel;
integer channel; Boolean b;
begin
integer k, j;
j := if b then 4 else 5;
comment this procedure assumes that true and false take
respectively 4 and 5 spaces, if not the preceding statement
should be modified;
for k := (if j>28108n then 19 else 28108n—1) step —1 until
j do out string(channel, ‘W’);
out symbol(channel, ‘true false’, j—3)
end out Boolean;
integer procedure read 7;
begin
integer ¢;
in integer(in channel, ©); read ¢ := 1
end read 7;
real procedure read r;
begin
real r;
in real(in channel, r); readr :=r
end read r;
Boolean procedure read b;
begin
Boolean b;
in Boolean(in channel, b); read b := b
end read b;
integer procedure 70i(i,5,n); strings; integer i, n;
comment this and the next 3 procedures input respectively an
integer, a real number, a Boolean or a one dimensional array,
they output an equivalent Algol statement;

begin
out string(out channel, s); out siring(out channel, ‘u := v’);
in integer(in channel, 1); ot := 1;

integer format(n); out integer(out channel, 1);
out siring(out channel, ‘;u’)
end <oi;
real procedure tor(r, s, B, n, d);
real 7; string s; Boolean B; integer n, d;
begin
out string(out channel, s);
out stringlout channel, ‘u 1= u’);
in real(tn channel, r); <or :=r;
real formai(B, n, d); out real(out channel, r);
out string(out channel, *;u’)
end ior;
Boolean procedure 10b(B, 5, n); Boolean b; string s;
integer n;
begin
outl string(out channel, s);
out string(out channel, ‘U := u’);
in Boolean(in channel, B); iob := B;
Boolean format(n); out Boolean(out channel, B);
out stringlout channel, *;u’)
end 7ob;
procedure foala, I, u, s, B, n, d);
integer I, u, n, d; array a; string s; Boolean B;

VYolume 11 / Number 8 / August, 1968

begin
integer i;
if I > u then go to end t0a;
real formal(B,n,d); oti(l,*’,3);
out string(out channel, ‘uforu’);
out string(out channel, s);

out string(out channel, ‘[i]u ;= uv’);
for ¢ := | step 1 until u do
begin

in real(in channel, a[t]); out real(out channel, a[i]);
if © < u then out string(out channel, ‘,u’)
else out string (out channel, ‘udouiu := win+ul;u’)
end;
end ioa:
end 7og;
procedure oti(z¢, s, n); value ¢, n; integer i, n; string s;
comment this and the following 3 procedures output Algol
statements compatible with those of the input output procedures
101, tor, t0b, toa;
begin
out string(out channel, s);
out stringlout channel, ‘u = u’);
integer format(n); out integer(out channel, 7);
out stringlout channel, “;u’)
end oli;
procedure olr(r, s, B, n, d);
realr; strings; Boolean B; integer n,d;

begin
out stringlout channel, s);
out string(out channel, ‘u := W’);

real format(B, n, d); out real(out channel, r);
out string(out channel, “;u’)
end oir;
procedure oib(B, s,n); Boolean B; string s; integer n;
begin
out string(out channel, s);
oul stringlout channel, ‘u := u’);
Boolean format(n); out Boolean{out channel, B);
out string (out channel, ‘; U’)
end otb;
procedure olala, 1, u, s, B, n, d);
integer I, u, n, d; array a;
begin
integer ¢;
if I > u then go to end oia;
real formal(B, n, d); oti(l, ‘0, 3);
out string(out channel, ‘uforu’);
out string(out channel, s);
out string(out channel, ‘[iJu := ’);
for 7 := | step 1 until « do
begin
out real(out channel, a[i]);
if ¢ < u then out string(out channel, ‘,u’)
else out string (out channel, ‘udouiu:=uiu--ul;u’)
end;
end ola:
end ola;
procedure outi(i, n); integer ¢, n;
comment this and the following 3 procedures output integers,
real numbers, Booleans or one dimensional arrays using format
as indicated in out integer;
begin
integer format(n);
out integer(out channel, ©)
end oulz;
procedure outr(r, B,n,d); realr; Boolean B; integern,d;

string s; Boolean B;

Volume 11 / Number 8 / August, 1968

begin
real formai(B,n;d);
out real{out channel, r)
end oulr;
procedure outb(B, n); Boolean b; integer n;
begin
Boolean format(n);
out Boolean(out channel, B)
end outb;
procedure oulala,l,u,B,n,d); integer !, u, n, d; array a;
Boolean B;
begin
integer 7;
if I > u then go to end ouia;
real format(B, n, d);
for ¢ := I step 1 until u do ou! real(out channel, ali]);
end outa:
end ouia

REMARK ON ALGORITHM 217 [H]

MINIMUM EXCESS COST CURVE [William A. Briggs,
Comm. ACM 6 (Dec. 1963), 737]

Joun F. Mura (Recd. 26 Dec. 1967)

Michigan State University, Fast Lansing, MI 48823

KEY WORDS AND PHRASES: critical path scheduling, PERT,
cost/time tradeoffs, network flows

CR CATEGORIES: 3.59, 5.41.

Algorithm 217 was transliterated into ForTrAN and successfully
run on the CDC 3600 system at Indiana University after the fol-
lowing changes were made:

(1) 1In the first Boolean expression of the program the term:
Jlm] = Jim+1]
was replaced by the term:
Ilm] = Ilm+1] A Jlm] = Jlm+1])
(2) The line:

A3: labl[J[m], 2] := lex;
was replaced by:
A3: labl[J[m], 3] := lex;

(38) In the statement labeled B1, the symbols:
[m,2] =0
were replaced by:
flm, 2] = 0

(4) Two statements before the statement labeled A was replaced
by
nivl 1= ntv := ord := 0
where nivl was an additional integer variable. The third
statement before ANS was replaced by:
ord := (tb-node[sink]) X ntvl Ford; ntvl i= niv;

Communications of the ACM 573

