accuracy. The real procedure gauss computes the area under

the left-hand portion of the normal curve. Algorithm 209 [3]

may be used for this purpose. If f < Oorifdfl < lorifdf2 <1

then exit to the label error occurs.

National Bureau of Standards formulas 26.6.4, 26.6.5, and
26.6.8 are used for computation of the statistic, and 26.6.15 is
used for the approximation [2].

Thanks to Mary E. Rafter for extensive testing of this proce-
dure and to the referee for a number of suggestions.

REFERENCES:

1. Dorrer, Econ. Algorithm 322, F-Distribution. Comm.
ACM 11 (Feb. 1968), 116-117.

2. Handbook of Mathematical Functions. National Bureau of
Standards, Appl. Math. Ser. Vol., 55, Washington,
D.C., 1965, pp. 946-947.

3. IeBETsoN, D. Algorithm 209, Gauss. Comm. ACM 6
(Oct. 1963), 616.

4. SNEDECOR, GEORGE W. Statisiical Methods. Iowa State U.
Press, Ames, Iowa, 1956, pp. 244-250;

begin

if dfl <1V df2 <1V f <0.0then go to error;

if f = 0.0 then prob := 1.0

else

begin

real f1, f2, z, ft, vp;

f1 :=dfy; f2 :=df2; ft:=0.0;

z = f2/(f2+f1Xf); vp = fl + f2 ~ 2.0;

if 2 X (df1+2) = dfl A\ dfl < mazn then

begin
real zz; 2z := 1.0 — z;
for f1 := f1 — 2.0 step — 2.0 until 1.0 do
begin

vp 1= vp — 2.0;
ft := zz X vp/fl X (1.04+f1)
end;
ft ;= z10.5Xf2) X (1.04f1)
end
else if 2 X (df2 + 2) = df2 A df2 £ mazn then
begin
for f2 := f2 — 2.0 step — 2.0 until 1.0 do
begin
vp = vp — 2.0;
ft =z X vp/f2 X (1.04+f1)
end;
ft := 1.0 — (1.0—=z) T (0.5Xf1) X (1.04f1)
end
else if dfl + df2 < mazn then
begin
real theta, sth, cth, sts, cts, a, b, 2, gamma;
thela := arctan(sqri(f1Xf/12));
sth := sin(thela); cth := cos(thela);
sts 1= sth12; ects: = cth12;

a:=b := 0.0;
if df2 > 1 then
begin

for f2 := f2 — 2.0 step — 2.0 until 2.0 do
a = cts X (f2—1.0)/f2 X (1.0+a);
a := sth X cth X (1.0+a)
end;
a := thela 4+ a;
if dfl1 > 1 then
begin
for f1 := f1 — 2.0 step — 2.0 until 2.0 do
begin
vp = vp — 2.0;
b := sts X vp/fl X (1.0+b)
end;
gamma := 1.0; f2 := 0.5 X df2;

Volume 12 / Number 3 / March, 1969

for z¢ := 1.0 step 1.0 until f2 do
gamma := zt X gamma/{xt—0.5);
b := gamma X sth X cth1df2 X (1.0+b)
end;
ft := 1.0 + 0.636619772368 X (b—a);
comment 0.6366197723675813430755351 -+ - = 2.0/x;
end
else
begin
real cbrf;
f1:=20/09.0 X f1); f2:=2.0/(9.0Xs2);
cbrf := f10.333333333333;
ft := gauss(— (1.0—f2)Xcbrf+f1-1.0)/
sqri(f2X cbrf T 24+71))
end;
prob := if ft < 0.0 then 0.0 else ft
end
end Flest

ALGORITHM 347

AN EFFICIENT ALGORITHM FOR SORTING WITH
MINIMAL STORAGE [M1]

Ricuarp C. SiNgLETON* (Reced. 17 Sept. 1968)

Mathematical Statistics and Operations Research De-
partment, Stanford Research Institute, Menlo Park,
CA 94025

* This work was supported by Stanford Research Institute with
Research and Development funds.

KEY WORDS AND PHRASES: sorting, minimal storage sort-
ing, digital computer sorting
CR CATEGORIES: 5.31

procedure SORT(A, ¢, j7);
value 7, j; integer 7, j;
array A;

comment This procedure sorts the elements of array A into
ascending order, so that

Ak] < Ak+1)l, k=4,74+1,---,5— L

The method used is similar to QUICKERSORT by R. S. Scowen
[5], which in turn is similar to an algorithm given by Hibbard
[2, 3] and to Hoare’s QUICKSORT [4]. QUICKERSORT is used
as a standard, as it was shown in a recent comparison to be the
fastest among four ACM algorithms tested [1]. On the Bur-
roughs B5500 computer, the present algorithm is about 25
percent faster than QUICKERSORT when tested on ran-
dom uniform numbers (see Table I) and about 40 percent
faster on numbers in natural order (1, 2, --., n), in reverse
order (n, =n—1,---, 1), and sorted by halves
2,4,---,n,1,8,--- ,n—1). QUICKERSORT is slow in sorting
data with numerous “tied’’ observations, a problem that can be
corrected by changing the code to exchange elements alk] > ¢
in the lower segment with elements afq] < ¢ in the upper seg-
ment. This change gives a better split of the original segment,
which more than compensates for the additional interchanges.
In the earlier algorithms, an element with value ¢ was selected
from the array. Then the array was split into a lower segment
with all values less than or equal to t and an upper segment with
all values greater than or equal to ¢, separated by a third seg-
ment of length one and value {. The method was then applied

Communications of the ACM 185



TABLE I. SortiNg TIMES IN SECONDS FOR SORT aND
QUICKERSORT, oN THE Burrouvaas B5500
CoMPUTER—AVERAGE OF FiveE TRIALS
Algorithm
QUICKERSORT

Original order and number of items SORT

Random uniform:

500 0.48 0.63
1000 1.02 1.40
Natural order:
500 0.29 0.48
1000 0.62 1.00
Reverse order:
500 0.30 0.51
1000 0.63 1.08
Sorted by halves:
500 0.73 1.15
1000 1.72 2.89
Constant value:
500 0.43 10.60
1000 0.97 41.65

recursively to the lower and upper segments, continuing until
all segments were of length one and the data were sorted. The
present method differs slightly—the middle segment is usually
missing—since the comparison element with value ¢ is not re-
moved from the array while splitting. A more important differ-
ence is that the median of the values of A[¢], A[(z+7)=2], and
Alj]is used for ¢, yielding a better estimate of the median value
for the segment than the single element used in the earlier
algorithms., Then while searching for a pair of elements to
exchange, the previously sorted data (initially, A{Z]<t<Alj])
are used to bound the search, and the index values are compared
only when an exchange is about to be made. This leads to a small
amount of overshoot in the search, adding to the fixed cost of
splitting a segment but lowering the variable cost. The longest
segment remaining after splitting a segment o~ n has length
less than or equal to » — 2, rather than » — 1 as in
QUICKERSORT.

For efficiency, the upper and lower segments after splitting
should be of nearly equal length. Thus ¢ should be close to the
median of the data in the segment to be split. For good statis-
tical properties, the median estimate should be based on an odd
number of observations. Three gives an improvement over one
and the extra effort involved in using five or more observations
may be worthwhile on long segments, particularly in the early
stages of a sort.

Hibbard [3] suggests using an alternative method, such as
Shell’s [6], to complete the sort on short sequences. An experi-
mental investigation of this idea using the splitting algorithm
adopted here showed no improvement in going beyond the final
stage of Shell’s algorithm, i.e. the familiar “sinking’’ method of
sorting by interchange of adjacent pairs., The minimum time
was obtained by sorting sequences of 11 or fewer items by this
method. Again the number of comparisons is reduced by using
the data themselves to bound the downward search. This
requires

Ali~-1] < A[k], ¢<k<.

Thus the initial segment cannot be sorted in this way. The
initial segment is treated as a special case and sorted by the
splitting algorithm. Because of this feature, the present al-
gorithm lacks the pure recursive structure of the earlier al-
gorithms.

For n elements to be sorted, where 28 < n < 21, 3 maximum
of k elements each are needed in arrays IL and IU. On the B5500
computer, single-dimensional arrays have a maximum length
of 1023. Thus the array bounds [0:8] suffice.

186

Communications of the ACM

[3NelaXel

This algorithm was developed as a FORTRAN subroutine, then
translated to ALcoL. The original FOrRTRAN version follows:

SUBROUTINE SORTUA,IT,JJ)
SORTS ARRAY 4 INTD INCREASING ORDER, FROM A(II) TN A(JJ)
ORDERING IS BY INTEGER SUBTRACTION, THUS FLOATING POINT

NUMBERS MUST BE IN NORMALIZED FDRM.

ARRAYS TU(K) AND TL(K) PERMIT SORTING UP TO 2##(K#l)-1 ELEMENTS

DIMENSION A(1),IUT16),IL(16)

INTEGER A,T,TT

M=1

I=11

J=Jg
5 IF{I .GE. J) GG TO 70O
10 K=1

TJ=(J+T}72

T=A(10)

IF{ALT) .LE. T) 6D TO 20

AT =ALT}

ALT)=T

T=A(14}
20 L=J

IF(A(J) «GE. T} GO TO 40

AlLTUY=ACD)

ALJ)=T

T=A{(1J)

IF(A{I) .LE. T) GO TO 40

AlTJ)=ALT)

AlT)=T

T=A(1J)

GO TD 40
20 A({L)=A(K)

ALK)=TT
40 L=L-1

IF(ALL) .GT. T) GO TO 40

TT=A(L)
S0 K=K+l

TIF{A(K) .LT. T) GO YO 50

IF(K +.LE. L) GO TO 30

IF{L-T .LE. J-K) GO TO 60

ILim)=1

TuiMm)=L

1=K

M=M+1

G0 TO 80
60 TLIM)I=K

1UiMI=J

J=L

M=M4]

GO Tn 80
70 M=M-1

IF{M (EQ. 0) RETURN

I=TL{M)

J=1utm)
80 IF(J-1 .GE. 11) GO TO 10

IF{I .EQ. II) GO YO 5

I=1-1
90 I=T+1
IFt1 .EQ. J) GO YO 70
T=A(1+1)
IF(A(I) .LE.
K=1
A(K+1}=AL1K)
K=K~1
TFLT LLT.
ATK+1)=T
GO TO 90
END

T) GO YD 90
100

A{K)) GO TO 100

This ForTRAN subroutine was tested on a CDC 6400 computer.
For random uniform numbers, sorting times divided by n log: n
were nearly constant at 20.2 X 107¢ for 100 < n < 10,000, with
a time of 0.202 seconds for 1000 items. This subroutine was also
hand-compiled for the same computer to produce a more efficient
machine code. In this version the constant of proportionality
was 5.2 X 107, with a time of 0.052 seconds for 1000 items. In
both cases, integer comparisons were used to order normalized
floating-point numbers.

REFERENCES:

. Buair, CuarLes R. Certification of algorithm 271. Comm.
ACM 9 May 1966), 354,

. Hisearp, TuomMas N. Some combinatorial properties of cer-
tain trees with applications to searching and sorting. J.
ACM 9 (Jan. 1962), 13-28,

. HiBBARD, THOMAS N. An empirical study of minimal storage
sorting. Comm. ACM 6 (May 1963), 206-213.

. Hoarg, C. A. R. Algorithms 63, Partition, and 64, Quicksort.
Comm. ACM 4 (July 1961), 321.

. Scowen, R. 8. Algorithm 271, Quickersort. Comm. ACM &
(Nov. 1965), 669.

. SueELL, D. L. A high speed sorting procedure. Comm. ACM 2
(July 1959), 30-32;

Volume 12 / Number 3 / March, 1969



begin
real 1, i;
integer 2, ij, k, L, m;
integer array IL, IU[0:8];
m:=0; 17 :=14; go toL4;
L1: 4 := (+4) + 2; t:= Aljl; k:=14; L:=j;
if A[{] > { then
begin A[ij] :=
if Alj] < ¢ then
begin
Alig) == Al7]; Aljl :=¢; t:=
if A[¢] > t then
begin A[ij] :=
end;
L2: L:=L —1;
if A[L] > (¢ then go to L2;
= A[L];
L3: k:=k+1;
if Alk] < t then go to L3;
if £t < L then
begin A[L] := Alk]; Alk] := t{; go to L2 end;
1fL—-’L>_7—-kthen
begin IL[m] := i; IU[m] := L 1 :=k end
else
begin IL[m] := k; IU[m] := j; j := L end;
m :=m+1; .
L4: if j — 7 > 10 then go to Ll;
if 7 = 71 then
begin if ¢ < j then go to Ll end;
for 7 := 7 4- 1 step 1 until j do
begin
t:= A[t]; k:=1—1;
if Afk] > { then

Ali]; AlG] := = A[%j] end;

Algl;

A[Z]; Al :=t; ¢ := Alij] end

begin
L5: Alk+1) := Alk]; k:=k —1;

if A[k] >t then go to L5;
Alk+11 :=
end

end;

m:=m—1; ifm > 0 then

. begin 7 := IL[m]; j:= IU[m]; go to L4 end -

end SORT

REMARK ON ALGORITHM 329 [G6]
DISTRIBUTION OF INDISTINGUISHABLE OB-
JECTS INTO DISTINGUISHABLE SLOTS [Robert
R. Fenichel, Comm. ACM 11 (June 1968), 430]
M. Gray (Recd. 20 Sept. 1968)
Computing Science Department, University of Adelaide,
South Australia
As the procedure stands it is incorrect. Preceding
end skip 99,189,198, etc.
the following statement should be inserted:
if glk] = O then LeftmostZero := k + 1
Thus the compound statement becomes:
begin
LeftmostZero := LeftmostZero —1;
glk] := glLeftmostZero] — 1;
g{LeftmostZero] := 0;
glLeftmostZero—1] := g{LeftmostZero—1] + 1;
if glk] = O then LeftmostZero := k 4 1
end skip 99, 189, 198, etc.

Volume 12 / Number 3 / March, 1969

REMARK ON ALGORITH 339 [C6]

AN ALGOL PROCEDURE FOR THE FAST FOURIER

TRANSFORM WITH ARBITRARY FACTORS
[Richard C. Singleton, Comm. ACM 11 (Nov. 1968),
776]

Ricuarp C. SingLETON (Reed. 27 Nov. 1968)

Stanford Research Institute, Menlo Park, CA 94025

KEY WORDS AND PHRASES: fast Fourier transform, complex
Fourier transform, multivariate Fourier transform, Fourier
series, harmonic analysis, spectral analysis, orthogonal poly-
nomials, orthogonal transformation, virtual core memory,

permutation
CR CATEGORIES. 3.15, 3.83, 5.12, 5.14

On page 778, column 2, the 7th and 6th lines from the bottom
should be corrected to read

LJ: jj := Cli—21+ jj; if jj = Cli—1] then

begin ¢ := % — 1; jj := jj — C[f]; go to LJ end;
On page 779, column 1, the 9th and 8th lines from the bottom
should be corrected to read:

(LX: jj:= Dlk+1] + jj; if jj 2 D[k] then

begin ]] =jj— Dlkl; k:=k-+1; goto LX end;
In both cases jj was originally used as the controlled variable of
a for clause and thus was undefined after exit; the corrections
preserve the value of jj for later use.

If the user prefers to compute constants with library functions,
line 5 in column 2 on page 777 may be replaced by:

rad := 8.0 X arctan(1.0); ¢30 := sqri(0.75);

Algorithms 338 [Comm. ACM 11 (Nov. 1968), 773] and 339 were
punched from the printed page and tested on the CDC 6400
ArgoL compiler. After changing a colon to a semicolon at the end
of line 37 in column 2 on page 775, the test results agreed with
those obtained earlier with this compiler.

When computing a single-variate Fourier transform of real
data, procedure REALTRAN may be used with procedure FFT
(Algorithm 339) to reduce computing time. Two versions of
REALTRAN have been given (Algorithms 338 and 345 [Comm.
ACM 12 (Mar. 1969), 179-184]); the first version is the faster of
the two, but the second should be used if arithmetic results for
real quantities are truncated rather than rounded.

In describing the evaluation of a real Fourier series, in the
middle of column 2 on page 776, the necessary steps of reversing
the signs of the B array values both before and after calling FFT
were omitted. The correct steps, including scaling, are as follows:

REALTRAN (A B, n, true);

forj :=n — 1 step —1 until 0 do B[j] := —B[j];

FFT(A, B, n, n, n);

forj := n — 1 step —1 until 0 do

begin Afj] := 0.5 X A[j]; B[j] := —0.5 X B[j] end;

The policy concerning the contributions of algorithms to
Communications of the ACM appears, most recently, in the
January 1969 issue, page 39. A contribution should be in the
form of an algorithm, a certification, or a remark. An al-
gorithm must normally be written in the ALGOL 60 Refer-
ence Language or in USASI Standard FORTRAN or Basic
FORTRAN.

Communications of the ACM 187





