ALGORITHM 348

MATRIX SCALING BY INTEGER PROGRAMMING
(I'1]

R. R. KumvpeL (Reed. 4 Mar. 1968, 13 June 1968, 16 Oct.
1968 and 21 Nov. 1968)

Computation Research Laboratory, The Dow Chemical
Co., Midland, MI 48640

KEY WORDS AND PHRASES: integer programming, linear
algebra, mathematical programming, matrix condition, matrix
scaling

CR CATEGORIES: 5.14, 541

procedure scale (a, m, n, g, u, v);
value m, n, g; integer m, n; real g;
real array a; integer array u, v;

comment The use of scaling to precondition matrices so as to
improve subsequent computational characteristics is of con-
siderable importance. To measure the scaling condition of a
matrix, a;; (¢i=1, --- ;mand j=1, --. , n), Fulkerson and Wolfe
[1] suggested the ratio of the matrix entry of largest absolute
value to that of the smallest nonzero absolute value. This
procedure implements the method of [1], i.e. finding multipli-
cative row factors, r;, and column factors, s;, which, when ap-
plied, minimize the above condition number. The minimization
problem can be expressed as an equivalent additive discrete
problem by taking logarithms and defining:

%

s Y
e =g

85 =¢%9, by = log, (abs(a:;))
and taking ¢;; to be the least integer greater than or equal to
b;; . Thus the formulation becomes: minimize an integer w
subject to the constraints 0 < u; + v; + ¢;; < w where u; and
v; are unrestricted and integral in value. The effect of decreasing
the value of the base g would be to more accurately approximate
the continuous secaling problem by the discrete form.
REFERENCE:
1. FuLkerson, D. R., anp Wowrrg, P. An algorithm for scaling
matrices. STAM Rev. 4 (1962), 142-146;
begin
integer array c[l:n, 1], ri[l:m], si[l:n}];
real val;
integer max, store, markr, markc, num, nopt, , j;
nopt 1= 0;
comment Create initial integer matrix ¢, Due to machine
round-off errors, it may be desirable for some problems to
insert a tolerance when checking for zero values of the input
matrix and for matrix entries which are exact integral powers
of the base g;
for ¢ := 1 step 1 until m do
for j := 1 step 1 until n do
begin
if (alZ, 71=0) then
begin
cli, j1 := 0;
go to inlf
end;

212 Communications of the ACM

R 0 &

J. G. HERRIOT, Editor

val := In(abs(al?, j1))/In(g);
cl¢, g1 := entier(val) + 1;
if ((clz, j]—1)=val) then c[z, 7] := ¢f¢, j] — 1;
inif:
end;
comment Select initial values of u; and »; that satisfy con-
straints of discrete formulation;
for i := 1 step 1 until m do
begin
ult] 1= c[z, 1};
for j := 2 step 1 until n» do
if (c[Z, jl<ulz]) then ulf] := c[¢, j];

ult] = —ul]
end;
for j := 1 step 1 until n do
begin

v[7] = efl, j] + w[l];

for ¢ := 2 step 1 until m do
begin
store := clz, j] + ulz];
if (store<v[j]) then v[j] := store;
end;
olj] i= —oljl;
end;
comment Step one. Initialize row and column markers with
unmarked rows and columns denoted by a 1 in r¢[¢] and si[j],
respectively. Locate and mark maximum entry of current
working array;

remag: max = 0;
for 7 := 1 step 1 until m do
begin
rifd] 1= 1;
for j := 1 step 1 until n do
begin

if (¢ = 1) then si[j] := 1;
if (nopt=0) then c[i, j] := u[z] + »[f] + clz, j1;
if (c[z, j]>max) then

begin
markr 1= ;
marke := j;
mazx 1= c[7, j]
end
end
end;
nopt 1= 1;
rifmarkr] := —1;

comment Repeat steps two and three in succession until
there are either no freshly marked rows or no freshly marked
columns. Any row or column marked in the immediately pre-
ceding application of step one, two, or three is called freshly
marked and denoted by —1 in the appropriate indicator
vector. Previously marked rows and columns that are not
freshly marked are denoted by zero values;

comment Step two;

rmarks: num := 0;
for 7 := 1 step 1 until m do
begin

if (ri[{]>—1) then go to rmarkf;

Yolume 12 / Number 4 / April, 1969

rifz] := 0;

num = num + 1;
for j := 1 step 1 until n do
if (stljl=1) A (cls, j1=0) then si[j] := —1;
rmarkf:
end;

if (num=0) then go to change;
comment Step three;

num = (;
for j := 1 step 1 until n do
begin
if (s¢[j]> —1) then go to cmarkf;
stljl := 0;

num = num + 1;
for i := 1 step 1 until m do
if (rif]=1) A
((cli, jl=maz) V(c[i, j]= (maz~1))) then
ri[i] ;= —1;
cmarkf:
end;
if (num=0) then go to rmarks;
comment Step four. Modify integer scaling factors u and v
and adjust current working matrix (c:;+u;+v;);
change: if (stfmarkc]<1) then go to finis;
for ¢ := 1 step 1 until m do
if (ri[7]<1) then
begin
ult] 1= wuli] — 1;
for j := 1 step 1 until n do
cle, j1 :=clz, g1 — 1
end;
for 7 := 1 step 1 until n do
if (si[j]1<1) then
begin
o[j) = olj] + 1;
for ¢ := 1 step 1 until m do
cli, jl := clz, j1 + 1
end;
go to rcmag;
finis:

end

ALGORITHM 349

POLYGAMMA FUNCTIONS WITH ARBITRARY
PRECISION* [S14]

ApiLsoN TADPEU DE MEDEIROS AND
Guorges ScHWACHHEIM (Recd. 15 Mar. 1968, 1 July
1968, 28 Oct. 1968 and 3 Dec, 1968)

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro,
ZC 82, Brasil

* This work was supported by the Conselho Nacional de Pesquisas
and the Banco Nacional do Desenvolvimento Economico of Brasil.

KEY WORDS AND PHRASES: polygamma function, psi
function, digamma function, trigamma function, tetragamma
function, pentagamma function, special functions

CR CATEGORIES: 5.12

procedure polygamma (n, z, nd, polygam, error);
value n, z, nd; real z, polygam; integer n, nd; label error;
comment This procedure assigns to polygam the value of the
polygamma function of order n for any real argument z. For
n = 0, we have the psi or digamma function, for n = 1 the tri-

Volume 12 / Number 4 / April, 1969

gamma function, for n = 2 the tetragamma function, and so on.
For arguments that are poles of the function (nonpositive
integer values), an exit is made through the label error. The
parameter nd gives the requested relative precision expressed
in number of decimal digits.

It computes the polygamma function through the asymptotic
series

+ G 2 B G e

- (n — 1! n! hd 2k 4+ n — 1)!
P(z) ~ (—=1)" [7—‘ Py d——:l

except for n = 0, when the first term is —In (2).
If the simple empirical relationship

22 > n + nd

is true, as well as z > n, one enters directly into the asymptotic
series with the original argument. Otherwise, the computation
of small arguments is reduced to that of sufficiently large argu-
ments, applying repeatedly the recurrence relation:

PO (1) = P () + (=1ymit

To save computation time, the argument, once larger than n,
is increased just to the point when the minimum term of the
asymptotic expansion is sufficiently small so as not to alter the
value of the result within the chosen precision.

The order of the minimum term is estimated by the first order
approximation

T2 — n/2,

and the corresponding absolute value by the approximation
formula

2m)* exp (—2=z).

Negative arguments are related to positive ones through the
reflection formula:

(=D p(1 — 2) = p(2) + r%cot 2

The nth-order derivative of the cotangent is computed by
term by term differentiation of the tangent or cotangent series
after the convenient trigonometric reductions of the argument’s
value.

This procedure is not recursive and uses no own variable;

begin

real pt, pf, soma, 2q, t1, fac, prec, w, sab, pv;
integer pr, nl, k1, ml1;
real procedure fat (n);
value n; integer n;
begin
real f; integer 7;
Ji=1;
for ¢ := n step —luntil 2do f := f X ¢;
fat :=f ’
end of fat;
procedure inc (s, z1, L);
real s, r1; label L;

begin
real sant;
sant :=s; s := 8§+ zl;

if abs (s—sant) < abs (prec X s) then go to L

end of inc;

comment The procedure polygamma uses a table of coeffi-
cients sb for its series with the value

i (— 1)1 /g2

| Bai | = -~
(20! a2 — 1) — (2nE’

sb(d) =

Communications of the ACM 213

the last being an asymptotic value for large ¢. The compu-

tation of these coefficients need not to be repeated at each

procedure call; so it is convenient to transfer the declaration

and block below to the main program and execute it just once.
One should replace flund by the smallest positive real

number within the machine representation, and ms by the

number of decimal digits of the mantissa;

array sb [l : entier (272 X In(2/flund))};
begin

real piq, sm, pipo, ptwo, dp?, sa;

integer sg, in, k2, imaz;

array ir, q[2 : entier (10T (ms/22))--1];

imaz = entier (.272 X In(2/flund));

pig 1= 9.86960440108935861883449099987615113531369940724079;

pipo := pig T 11; plwo := 2097152; dpi := 4 X pig;

sb [1] := 1/12;

sb [2) := 1/720;

sb [3] := 1/30240;

sb [4] := 1/1209600;

sb [5] := 1/47900160;

sb [6] := 691/1307674368103;

sb [7) := 1/74724249600;

sb [8] := 3617/1067062284288104;

sb [9] := 43867/5109094217170944103;

sb [10] := 174611/8028576626982912105;

sm = 1; sg:= —1;
for in := 2, in + 1 while sm # sa do
begin

glin] := 1/(tn X in);
tritn] := sg X ¢lin] T 11; sa := sm;
sm = sm + trlin]; sg := —sg
end;
sb[11] := sm/(pipo X (ptwo—1));
for k2 := 12 step 1 until 9maz do

begin
sm = 1; i :=1;
B: in 1= tn + 1; trlin] := trlin] X ¢lin]; sa := sm;
sm = sm + trlin]; if sa # sm then go to B;

pipo = pipo X pig; ptwo := piwo X 4;
sb[k2] := sm/(pipo X (ptwo—1));
if in = 2 then go to L
end;
go to 4;
L: for k2 := k2 + 1 step 1 until imaz do
sblk2] := sb[k2—1]/dpz;
A: end of sb coefficients computation;
pi = 3.14159265358079323846264338327950288419716939937510;
prec := 10 T (—nd); fac := fat (n);
pr:=ifn + 2 X 2 = n then 1 else — 1;
pf := pr X fac; nl :==n +1;
if 2z < 0 then
begin
if z = entier(z) then go to error
else
begin
real z, y; integer d, l; Boolean C;
kl :=pr; d:=2z2; z:=d— z;
ifz > 0then! :=1

else
begin z := —z; [:= —pr end;
C:=2> .25 y:= pi X (if C then (5—z) else z);
if n = 0 then
soma := 1 X pi X (if C then sin(y)/cos(y) else cos(y)/
sin(y))
else
begin

integer m, np, 7, ¢; integer array ft [1:4];

214 Communications of the ACM

real 42, p, f, ¢, 5, v;

m:=mn-+2; np :=mX 2;

ft1] i=np + 1; fi2] := np; fi[3] := pr;
ftl4] :=0; y2:=yXy; ji=m+1;

f = fatlnp+1); p:=4 1T (m+1);

t := if pr = —1 then 1 else y;

s := if C then 0 else pf/y T nl;

E: v := if C then p X (1—p) else p;

ine(s, -sb[j] X f X ¢ X v, D);
for 7 := 1 step 1 until 4 do
fili] = filel + 2;
fi=F X ftll] X ftl2} X y2/(fi[3] X ft14]);
pi=4Xp; ji=j+1

go to E;
D: soma :=1 X pt T nl X (if C then s X pr else 8)
end
end;
zi=1—2z; w:=21 n;

pv := if n = 0 then In(2) else fac/(n X w);
sab := abs(soma);
if pv < sab then nd := nd — 434 X In(sab/pv)
end
else
begin soma :=0; k1l :=1; w:=2 1 nend;
if nd < 0 then go to L;
if2Xz<n-+ndVz<nthen

begin
real term, cond;
term = —pf/(z X w);

inc(soma, term, L);
cond 1= (n X 1.8378—In(abs(term)) + 2.3025 X nd) X .1591;
if cond < n then cond := n;
ifcond < zthenz:=2z+1
else
begin

integer ip, k;

ip 1= cond — z + 1;

if ip < 1 then go to L;

for k := 1 step 1 until ip do

inc(soma, —pf/(z-+k) Tnl, L);

z:i=z2+4+1ip+1
end
w:=2zTn
end;

inc(soma, if n=0 then In(z) else —pf/(n X w), L);
inc(soma, —pf X .5/(z X w), L);
zq =z X z; tl:=pf X nl/(w X 2zq);
for ml := 2 step 2 until 6.283 X z 4+ n do
begin
inc(soma, —t1 X sblml-+2], L);
1 := —t1 X (nl4ml) X (n+ml)/zq
end;
L: polygam := soma X kl
end of polygamma

The policy concerning the contributions of algorithms to
Communications of the ACM appears, most recently, in the
January 1969 issue, page 39. A contribution should be in the
form of an algorithm, a certification, or a remark. An al-
gorithm must normally be written in the ALGOL 60 Refer-
ence Language or in USASI Standard FORTRAN or Basic
FORTRAN.

Volume 12 / Number 4 / April, 1969

