must be left as standard floating-point numbers in two
designated registers.
ExerciseE AMB
The following function In* (1 4+ X) is an approximation
forln (1 + X)in therange 0 < X < 1:
In* (1 4+ X) = 0.9974,442X
— 0.4712,839X?
+ 0.2256,685X3
— 0.0587,527X*

Compute the error term, i.e. In (1 + X) — In* (1 + X),
for X = 0(0.02)1.0. Set

z = the mean of their absolute values;

y = the absolute value of the greatest error.
Draw (by hand) a graph of the error against X.
ExercIsE AWE

Declare a real procedure

Simpint (f, a, b, n)
which integrates the function f over the range (a, b)
using Simpson’s rule with n intervals. This rule is given
by the approximation

(h/3) X (f(a) + 4f(a + k) + 2f(a -+ 2h) + 4f(a + 3h)
+ -+ 4 2f(b — 2h) + 4f(b ~ h) + f(b))

where h = (b — a)/n and n is even.
Declare the real procedure

trap (z) = 0.92 X cosh (z) — cos (z)
and integrate it over (—1, 1) using 2, 4, 8, 16, -+ - in-
tervals until two successive results differ by less than
107°. Set
x
Y
Print out the results of the successive approximations:

what would the result have been if the accuracy required
was 107%? Any comments?

ExErcisE AT4

Read an integer n from data, followed by an n X n
matrix 4 listed by rows (floating-point). Denote by R;(C;)
the sum of the absolute values of the elements in row %
(column 7). Set
trace (A),ie. Au+ Ao+ -+ + Ang;
ot Ry, Cy, Cyyenr Co).

(z = sum of eigenvalues, ¥y = upper bound on magnitude
of eigenvalues.)

the final result;
the final number of intervals.

It

It

z
y = maximum (&, R,

Recrivep AvugusT, 1968; REVISED NOVEMBER, 1968
REFERENCES

1. HoLLINGSWORTH, J. Automatic graders for programming clas-
ses. Comm. ACM 3,10 (Oct. 1960), 528-529.

2. NaUr, P. Automatic grading of students’ ALGOL program-
ming. BIT 4 (1964), 177-188.

3. ForsYTHE, G. E. AND WirTH, N. Automatic grading programs.
Comm. ACM 8, 5 (May 1965), 275-278.

4. TemperLY, J. F. ANpD SmiTH, B. W. A grading procedure for
PL./1 student exercises. Comput. J. 10 (Feb. 1968), 368-370.

Volume 12 / Number 5 / May, 1969

" 3 . §% p}q‘
J. G. HERRIOT, Editor

The following algorithm by Bartels and Golub relates to the paper by the
same authors in the Numerical Analysis department of this i8sue, on pages
266-268.

This concurrent publication in Communications follows a policy an-
nounced by the Editors of the two departments, J. G. Herriot and J. F.
Traub, in the March 1967 issue.

ALGORITHM 350

SIMPLEX METHOD PROCEDURE EMPLOYING

LU DECOMPOSITION* [H]

Ricuarp H. BArTELS AnD GENE H. GoLuB (Recd. 2 Aug.
1967 and 5 June 1968)

Computer Science Department, Stanford University,
Stanford, CA 94305

* This project was supported in part by contracts NSF GP948
and ONR NR 044 211.

KEY WORDS AND PHRASES: simplex method, linear pro-
gramming, LU decomposition, round-off errors, computational
stability

CR CATEGORIES: 541

procedure linprog (m, n, kappa, G, b, d, z, 2, ind, infeasible, un-
bounded, singular);
value m, n; integer m, n, kappa;
array G, b, d, z; integer array ind;
bounded, singular;
comment linprog attacks the linear programming problem:

real z;
label infeasible, un-

maximize d7z
subject to Gz = b and z > 0

Details about the methods used are given in a paper by Bartels
and Golub [Comm. ACM 12 (May 1969), 266-268].

The array G[0:m—1, 0:n—1] contains the constraint coeffi-
cients. Array b[0:m—1] contains the constraint vector, and
d[0:n—1] contains the objective function coefficients (cost
vector). The computed solution will be stored in z[0:n~—1], and
z will have the maximum value of the objective function if
linprog terminates successfully. Error exit singular will be taken
if a singular basis matrix is encountered. Error exit infeasible
will be taken if the given problem has no basic feasible solution,
and exit unbounded will be taken if the objective function is
unbounded. If kappa = 0, problem (2) of the referenced paper
will be set up and phase 1 entered. If 1 < kappa < m — 1, prob-
lem (4) of the paper will be set up and phase 1 entered. The last
kappa columns of G will be preceded by the first m — kappa
columns of the identity matrix to form the initial basis matrix.
If kappa = m, phase 2 computation will begin on problem (1)
with variables numbered ¢nd[0], --- , tnd[m—1] as the initial
basic variables and variables numbered tnd[m], - - - , tnd[n—1] as
the initial nonbasic variables. Hence each component of ind must
hold an integer between 0 and n — 1 specified by the user. Fi-
nally, if kappa > m, problem (3) will be set up, and phase 2
computation will begin with variables numbered ¢nd[0], --- ,
ind[m] as the initial basiec variables and variables numbered
indim—+1], ---, ind[n+kappa—m—1] as the initial nonbasic
variables. This option is of interest only because linprog, upon
successful termination, leaves all variable numbers recorded in

Communications of the ACM 275



ind in their final order and provides kappa with an appropriate
value. This permits linprog to be reentered at the phase 2 point
after modifications have been made to G, b, or d. An understand-
ing of the simplex method and the accompanying paper by Bar-
tels and Golub will make clear what modifications can be per-
mitted. If phase 1 is to be executed, ind must have array bounds
[0:m+n—kappa] to allow for artificial variables. Otherwise, ind
must have bounds [0:n+kappa—m—1]. The values in array b
must be nonnegative if phase 1 is to be executed. The contents
of m, n, G, b, and d are left unchanged by linprog;

begin

real procedure ip2(i, ll, uu, aa, bb, cc);
value uu; integer 7, ll, uu; real aa, bb, cc;
begin
comment ip2 must produce a double-precision, accumulated
inner product. Jensen’s device is used. The main statement in
p2 is
for 77 := Ul step 1 until vu do sum := sum + aa X bb
where the local variable sum has been initialized by cc. How-
ever, the multiplication aa X bb must produce a double-pre-
cision result, so sum represents a double-precision accumu-
lated sum. After all products have been summed together, sum
is to be rounded to single-precision and used as the value of
p2;
end 7p2;
procedure irisolv(fis, fid, fie, sis, sie, fi, st, sol, vhs, mat, piv);
value fid, fie; integer fis, fid, fie, sis, ste, fi, st; real sol, rhs,
mat, piv;
comment {risolv solves a triangular system of linear equa-
tions. The off-diagonal part of the system’s coefficient matrix
is given by mat, the diagonal part by piv, and the right-hand
side of the system by rhs. The solution is developed in sol.
By appropriately setting the first five parameters, either an
upper or a lower triangular system can be treated. Column by
column LU decomposition of a matrix can be compactly ex-
pressed using irisoly;
begin real i, pv;
for fi := fis step fid until fie do
begin it := —ip2(si, sts, sie, sol, mat, —rhs);
st = fi; pv = piv;
sol := if pv = 1.0 then (¢ else tt/pv
end
end (risolv;
array q, h, w, y, v[0:m], P[0:m, 0:m];
integer array 1z[0:m+n], ro{0:m];
integer mu, nu, alpha, beta, gamma, gml, iml, ¢, j, k, 1;
real t1, 2, infinity, prevz, ela;
real procedure Gmat(ri, ci);
value rt, ¢i; integer 71, ¢i;
Gmat := if i = m then (if ¢z < n then 0 else 1.0)
else if ¢ < n then G[ri, ct]
else if ¢t — n = r7 then 1.0 else 0;
real procedure dvec(ii); value 7i; integer i1;
dvec := if 77 < n then d[i7] else 0;
procedure decompose (mat, bottom, top);
value bottom, lop; integer bottom, top; real mai;
comment This procedure performs a column-by-column re-
duction of the matrix given by mai, forming an upper and a
lower triangular matrix into the array P. (Each diagonal ele-
ment of the lower triangular matrix is 1.) Interchanges of rows
take place so that the largest pivot in each column is em-
ployed. If P already contains the LU decomposition of a
matrix differing from mat in only the (beta)-th column, ad-
vantage is taken of this. The parameters bottom and fop enable
decompose to concentrate on a lower right-hand submatrix of
mat. This feature saves computation during phase 1. If mat
is singular, exit singular is taken;
begin

276 Communications of the ACM

for ¢ := bela step 1 until mu do
begin
iml =1 — 1; 1 :=wzld];
trisolv(if 1=bela then botltom else top, 1, tml, bottom, 3 — 1,
J, k, Plro[kl, ], mat, Plroljl, k], 1.0);
trisolv(¢, 1, mu, bottom, tml, j, k, Plro[k], 1], mat,
P[roljl, k], 1.0);
i1 :=0;
for j := 1 step 1 until mu do
begin
12 := Pflrolj], ¢];
if abs(fl) < abs(i2) then begin 1 := 12; k := j end
end;
if {1 = 0 then go to singular;
if 7 = mu then go to decompover;
j = rolil; role] := rolkl; rolk] := j;
for j := 7 + 1 step 1 until my do P[rofj], 7] :=
Pfroljl, #1/i1
end;
decompover:
end decompose;
procedure findbeta;
comment This procedure determines which of the basic
variables is to become nonbasic;
begin
tl .= infinity;
for 7 := 0 step 1 until mu do
begin
if y[2] > 0 then
begin
£2 := hitl/ylel;
if {2 < t1 then begin {1 := {2; beta := 7 end
end
end
end findbela;
procedure findalpha(mat, vec); real matl, vec;
comment This procedure determines which of the nonbasie
variables is to be made basic;

begin
t1 := infinity;
for 7 := mu -+ 1 step 1 until nu do
begin
k = igt];

2 1= ip2(j, 0, mu, mat, w(jl, vec);
if 2 < {1 then begin alpha := 7; {1l := {2end
end
end findalpha;
procedure refine(mat, rhs, od, Ip, up, vec, fi, si, ord, ill); value
ord; integer ord,fi, st; real mat, rhs, od, Ip, up, vec; label
il
comment This procedure makes an iterative refinement of
vec, which is the solution of the matrix equation mat X vec =
rhs. The matrix mat has order ord. The LU decomposition of
mat is specified by od, lp, and up. Bxit ¢l is taken if mat is too
ill-conditioned for the refinement process to be successful.
Note the global identifier eta, whose value and purpose are
given in the next comment;
begin
array cor[0:0rd]; real cnorm, snorm, eps, ti; integer cni;
cnt := 0; eps := 5 X ela;

loop:

cnorm = snorm = 0; ecnt = ¢nt + 1;

for fi := 0 step 1 until ord do

begin
corlfi] := —ip2(si, 0, ord, mat, vec, —rhs);
st i=fi; tt:= abs(vec);
if tt > snorm then snorm = it

end;

trisolv(0, 1, ord, 0, i—1, fi, st, cor[si], cor[fi], od, Ip);

Volume 12 / Number 5 / May, 1969



trisolv(ord, —1, 0, i1, ord, fi, st, cor[si], cor[fi], od, up);
for st := 0 step 1 until ord do
begin
tt := cor[si];
vec 1= vec + ii;
if abs(it) > cnorm then cnorm := abs(it)
end;
if ¢cnt > 15 then go to ill;
if snorm # 0 then
begin if cnorm/snorm > eps then go to loop end
end refine;
comment At this point, infinity and eta are set to special
values. Set infinity to the largest positive single-precision
floating-point number. Set efa to the largest positive floating-
point number such that 1.0 4 eta = 1.0 — efa = 1.0 in single-
precision arithmetic. The convergence of the iterative re-
finement process which is applied in refine is determined using
ela;
prevz := —infinily;
for 7 := O step 1 until m do rofz] := 7;
comment Determine from kappa whether phase 1 is to be
skipped;
if kappa > m then
begin
nu = n + kappa — m—1; 1l :=0;
for 7 := 0 step 1 until nu do
begin
Ji=1ndld]; ifj> nthenl:=1; dz[f] :=j
end;
mu = if l = 0 then m — 1 else m;
go to phase 2
end;
mu :=m — 1; gamma := m — kappa; gml := gamma — 1;
nui=mn-+gml; l:=n— m;
comment Set up the appropriate phase 1 problem;
for i := 0 step 1 until gml do

begin
zlt] 1= n 4+ 1;
Pi, 7] := 1.0;

for j := ¢ + 1 step 1 until gml do P[z, j] := P[j, ] := 0;
for j := gamma -+ 1 step 1 until mu do P[i, j] := G[Z, l+j]
end;
for i := gamma step 1 until mu do

begin

wzlt] =1 4 1

for j := Ostep 1 until gml do P[Z,j] := 0
end;

for ¢ := m step 1 until nu do iz[i] := 7 — m;

beta := gamma;

go to no removal;

new phase 1 cycle:;

comment Begin a new simplex step on the phase 1 problem.
Check the phase 1 problem objective function;

if ip2(z, 0, mu, wiz], b{{], 0) = 0 then go to phase 2;

comment Determine which nonbasic variable is to become
basic;

findalpha(Gj,k1,0);

if t1 > 0 then go to infeasible;

j := iz[alphal;

comment Solve a linear system for a vector y;

trisolv(gamma, 1, mu, gamma, I — 1, 1, k, vk], Giro{l],j],
Plro[l} k], 1.0);

trisolv(mu, —1, gamma, l 4+ 1, mu, 1, k, y[k], v{1],
Plrolll,k], Plro(il]);

for 7 := 0 step 1 until gml do

begin
l:=rolz];
yli] := —ip2{k, gamma, mu, y[k], PILKk], —G[,5])

Volume 12 / Number 5 / May, 1969

end;

comment Use the vector y to determine which basic variable
becomes nonbasic. If the variable which has become non-
basic is an artificial variable, remove it entirely from the
problem and make an appropriate rew and column inter-
change upon the basis matrix P;

findbela;

if beta > gamma then

begin
k = izlalphal; izlalpha] := ix[beta]; iz[beta] := k;
go to no removal

end;

k := ro[gml]; ¢ := rolgml] := rolbetal]; ro[beta)] := k;

Plk, beta] := 1.0; Pz, bela] := 0;

izlbeta] := ix[gml]; iz[gml] := iz(alphal; beta := gml;

for ¢ := alpha + 1 step 1 until nu do iz[i—1] := iz[i];

gamma = gml; gml := gml — 1; nu := nu — 1;

no removal:;

comment Produce the LU decomposition of the new basis
matrix;

k := iz[beta];

for 7 := 0 step 1 until gml do P[rol<],betal := Glroli],k];

decompose(Glroljl,ll, gamma, gamma);

comment Find the basic solution A;

trisolv(gamma, 1, mu, gamma, j — 1, 7, k, v(k],
blro[jl], Plro[jl,k], 1.0);

trisolv(mu, —1, gamma, j + 1, mu, j, k, h{k], v[j],
Plro[j1,k], Plroljl,jD);

for i := 0 step 1 until gml do

begin
k := rolt};
k] := —ip2(j, gamma, mu, k(j], Plk,jl, —blkl);
wlk] := —1.0

end;

comment Solve a linear system for the veector, w, of simplex
multipliers;

for ¢ := gamma step 1 until mu do

begin
= 0
for j := 0 step 1 until gml do {1 := {1 4+ Plro[jl,:];
v[e] := {1

end;

trisolv(gamma, 1, mu, gamma, ¢ — 1, <, 7, v[jl, 0[],
P[rol3], 7] Plrolilsl);

trisoly (mu, — 1, gamma, © + 1, mu, ¢, §, wlrolJll, vlz], PlrolJl, 1],
1.0);

go to new phase 1 cycle;

phase 2 ;

comment Set up the appropriate phase 2 problem and make
an initial LU decomposition if necessary ;

beta:=0;
if kappa < m then
begin
if gamma > 0 then
begin
kappa := m; nu := nu + 1; mu := m;
1x[nu] = iz[mul; iz[mu] :=n 4+ m
end
end;

if kappa > m then go to decomp
else trisolv(0, 1, mu, 0, j ~ 1, 7, k, ¢lk], if ro[j] = m then 0 else
blroljll, Plrolj1,k], 1.0);

new phase 2 cycle: ;

comment Begin a new simplex step. on the phase 1 problem.
Solve a linear system for the vector, w, of simplex multipliers;

trisolv(0,1, mu, 0,7 — 1,2, 7, v[7], dvec(iz[2]), Plrol41,2], Plro[il,i]);

trisolv(mu, —1, 0, ¢ -+ 1, mu, 2, §, wlro(jl, v(¢], Plroljl,7], 1.0);

Communications of the ACM 277



comment Determine which nonbasic variable is to become
basic;
Sfindalpha (Gmat(j k), —dvec(k));
comment Check whether the solution has been found;
if {1 > O then go to finished;
not done yet:
i := ix[alphal;
comment Solve a linear system for a vector y;
trisolv(0, 1, mu, 0, j — 1, 7, k, v[k], Gmat(ro[j1,5), Plroljl,k], 1.0);
trisolv(mu, —1, 0, j + 1, mu, j, k, y[k], »[7], Plroljl k], Plroljl,i]);
comment Use y to determine which basic variable is to be-
come nonbasic;
Jindbeta;
if {1 = ¢nfinity then go to unbounded;
k = iz[betal; ix[beta] := izlalphal; ixlalphal := k;
decomp: ;
comment Produce the LU decomposition of the new basis
matrix;
decompose(Gmat(roljl,1), 0, bela);
comment Compute the basic solution h;
trisolv(beta, 1, mu, 0, j — 1, j, k, qlk], if 7o[j] = m then 0 else
blro[jl], Plrolj1k], 1.0);
trisolv(mu, —1,0, j + 1, mu, §, k, h[k, g[j], Plroljl,k], Plrol5],]);
go to new phase 2 cycle;
Sfinished: ;
comment Refine w and the basic solution k. Compute the
objective function. Check the refined results to determine
whether the optimum has been reached. If the check indicates
nonoptimality but the objective function is less than any
value previously computed for it, return the best basic solu-
tion obtained so far and print a warning that the solution
has doubtful validity;
refine(Gmat(ro[j],izlil), dvec(iz[z]), Plroljl,il, Plro[¢]Z], 1.0,
wlrolfll, ¢, j, mu, singular);
z 1= 1p2(z, 0, m — 1, w[z], b[¢], 0);
if z < prevz then
begin comment Print out ‘““doubtful solution’’; end
else
begin
prevz := z;
refine(Gmat(rolj], izlk]), if ro[j] = m then 0 else blroljl],
Plroljl,kl, 1.0, Piroljl,jl, hikl, j, k, mu, singular);
l:=n—1;kappa := nu + 1;

for ¢ := 0 step 1 until ! do z[/] := 0;
for ¢ := 0 step 1 until nu do ind[¢] := iz[t];
for i := 0 step 1 until mu do
begin
J 1= iz];
if j < n then z[j] := Ali]
end;

Sfindalpha (Gmat(j k), —dvec(k));
if {1 < 0 then go to noi done yet
end
end linprog

The policy concerning the contributions of algorithms to
Communications of the ACM appears, most recently, in the
January 1969 issue, page 39. A contribution should be in the
form of an algorithm, a certification, or a remark. An al-
gorithm must normally be written in the ALGOL 60 Refer-
ence Language or in USASI Standard FORTRAN or Basic
FORTRAN.

278 Communications of the ACM

CERTIFICATION OF ALGORITHM 292 [822]

REGULAR COULOMB WAVE FUNCTIONS [Walter
Gautschi, Comm. ACM 9 (Nov. 1966), 793]

AND OF

REMARK ON ALGORITHM 292 [S22]

REGULAR COULOMB WAVE FUNCTIONS [Walter
Gautschi, Comm. ACM 12 (May 1969), 280]

K. 8. Koueie (Recd. 10 Oct. 1967)

Applied Mathematies Group, Data Handling Division,
European Organization for Nuclear Research (CERN),
1211 Geneva 23, Switzerland

KEY WORDS AND PHRASES: Coulomb wave functions,
wave functions, regular Coulomb wave functions
CR CATEGORIES: 5.12

Both the original and the revised version of the procedure
Coulomb have been translated into ForTrAN and tested on a Con-
trol Data 6600 computer. It became apparent that the following
changes in the original version are necessary:

1. The second sentence in the comment following the statement
labeled L1 in procedure Coulomb should be replaced by:

Similarly for the letter n in the next statement, which is a place
holder for the number of digits carried in the main program.

2. The second statement after this comment (beginning “out-
string . . .”’) should be changed to

if abs(dl X epsilon) < 10-m-1 then

outstring (1, ‘The requested accuracy cannot be guaranteed.
Use of the procedure minimal in a higher precision mode ap-
pears indicated.’);

Since the original version of Coulomb is to be superseded by
the revised one (see Remark), detailed test results are given here
only for the latter. Most of the tests have already been described
in the Algorithm itself or in the Remark. Those presented here
are obtained on a different machine, and the results differ slightly
in some cases from the previous ones. The tests included the
following:

(i) Generation of ®(1,0) = [CL(n)e" ™ Fr(n,0), L = 0(1)21,
to 8 significant digits (d = 8) for n = —5(1)5, p = .2(.2)5. The
results were in complete agreement with the values tabulated in
[4] of Algorithm 292. In the cases where more than 8 significant
digits are tabulated, the highest discrepancy was one unit in the
last digit; e.g. for L = 0, n = 5, p > 3.4, 10 to 11 correct signifi-
cant digits have been found.

(ii) Computation of Fo(n,p), Fo'(n,0) = (d/dp) Fo(n,p) to 5 sig-
nificant digits for y = 0(2)12, p = 0(5)40, using F/y = (p7! + 5)Fo —
(14t F1. Comparison with [5] of Algorithm 292 revealed
frequent discrepancies of one unit in the fifth digit. For 4 = 2,
p = 40 the discrepancy in Fy is 80 units of the fifth digit. This is
probably an error in the table.

(iii) Computation to 8 significant digits of Fo(n,0), Fo'(n,0)
for p = 29, p = .5(.5)20(2)50. The results agreed completely with
those published in [1] of Algorithm 292.

(iv) Computation (with d = 10) of the miscellaneous values of
Fo(n,p) and &,(n,p) given in the Remark on Algorithm 292. The
results obtained differ slightly from those given in the Remark.
In the worst case, 7 = 50, p = 120, the discrepancy is 16 units
in the tenth digit.

(v) After changing the dimensions of the arrays lambda, Imin
into [0:600] and adjusting the upper limit for nu to 600 (see Re-
mark on Algorithm 292), F1(5,p) has been calculated with d = 6
for » = —200(20) 200, p = 20(20) 200, Lmax = 0(50)100 merely to
test whether overflow occurs or not. The following table indi-

Volume 12 / Number 5 / May, 1969



cates where overflow, indefinite results, or convergence difficulties
in the generation of Ay (see Algorithm 292) have been observed.

7 pz
20 200
40 200
60 180
80 100

100 80
120 60
140 60
160 60
180 40
200 40

(vi) Calculation of F(g,p) for L = 0(50)100 withd = 7 forn =1,
p = 10, n = —20(1)—1. Underflow occurred for L = 50, n < 5;
L = 100, n < 2. The valid results have been compared with those
obtained by summation of the power series for ®.(n,0) (see [4,
(1.3) and (4.4)] of Algorithm 292). Agreement has been found
to 7 significant digits.

(vii) Calculation of ®1(n,p) to 13 significant digits (d=13) for
p = 5,7 = 001)5, L = 0(10)100. The results have been compared
with those obtained by summation in double-precision mode
(27 digits) of the power series mentioned in (vi). Agreement was
found to at least 12 significant digits. The constant 27 in the
statement {1 := ... on page 795 of Algorithm 292 was supplied
here with 14 significant digits, as required by the comment.

Acknowledgment. T wish to thank Professor Gautschi for use-
ful remarks and comments.

CERTIFICATION OF ALGORITHM 300 [S22]

COULOMB WAVE FUNCTIONS [J. H. Gunn, Comm.
ACM 10 (Apr. 1967), 244]

K. S. Kousic (Recd. 8 Feb. 1968)

Applied Mathematics Group, Data Handling Division,
European Organization for Nuclear Research (CERN),
1211 Geneva 23, Switzerland

KEY WORDS AND PHRASES: Coulomb wave functions, wave
functions

CR CATEGORIES: 5.12

The procedure Coulomb was checked for a few parameter
values using the Argor compiler of the CDC 3800 computer at
CERN. 1t was found that for p = 5 better results were obtained if
the first line of the second if statement was altered to read:

iftho < (5 X eta — 15)/3 \V rho < eta then

It was also necessary to correct a misprint in the first constant
following the comment “G[0] and Gd[0] are calculated on the
transition line for thom = 2 X ela, ref. formulas 10.3-10.4, Fro-
berg.” The line following this comment should read:

G[0] := 1.223404016 X eta T (36) X (1 + 0.0495957017/eta T (%5)

The procedure was then translated into ForTraN and tested in
more detail on a CDC 6600 computer. The tests included the fol-
lowing:

(i) Generation of ®1(n,p) = [CL()p™ ™ Frlne), L = 0(1)21
for » = 1(1)5, p = 5. The results were compared with values
tabulated in [1]. In most cases, 6 to 7 significant digits agreed,
except for y = 1, where agreement was found to 3 to 4 significant

Volume 12 / Number 53 / May, 1969

digits. It is interesting to compare some results for p = n = 5
obtained with and without the first of the above corrections:

Table [1] and

L \<I> L Without correction With correction Gautschi [2]
0 6.554097103 6.552297,03 6.552292,43
5 1.865738,,1 1.865226,,1 1.865225101

10 5.3549531,0
20 2.440859:,0

5.353482,,0
. 2.440188440

5.353478100
2.440187100

(ii) Computation of Fo(n,p), Fo'(n,p) = (d/dp)Fo(n,p) for 4 =
2(2)12, p = 5(5)30. Comparison with the table of Tubis (3] re-
vealed frequent discrepancies of 1 (occasionally 2) units of the fifth
significant digit. However, disagreement was observed in many
fewer cases when comparing the calculated results with those
obtained by Gautschi’s algorithm [2].

(iii) Computation of Fo(n,p), Fo'(n,0), Go(n,0), and Go'(n,p) for
p = 2, p = 5(.5)20(2)30. Comparing the results with the table of
Abramowitz and Rabinowitz [4] or with the values obtained with
Gautschi’s algorithm, the following discrepancies were found in
units of the seventh decimal place:

Iy —frequently 1, occasionally 2, units for p < 10;
Fo'—frequently 1 unit for p < 8.5;
G —for p < 8 up to 40 units, for 8 < p < 14.5 up to 2 or 3 units;

Go'—for p < 7.5 up to 13 units.

(iv) Calculation of Go(n,0), Go’(n,p) for n = .5(.5)20, p = 5(1)20.
The results have been compared with the tables given by Abramo-
witz [5]. Agreement was found in most cases to 5 significant
digits. Discrepancies of 1, occasionally more, units of the fifth
significant digit were found, mainly for arguments near a line
separating two methods used in the algorithm. In some cases (in
the immediate neighborhood of a zero of Gy or Gy’) there was
agreement to only 2 or 3 significant digits.

(v) Generation of Fy(mp), Fr'(n,e), GL(n,e), Gr'(n,p), or(n)
for L = 0(1)10, p = 5,10, » = 1(1)5,10,25. As a first step, the results
were compared with values given in a table by Lutz and Karvelis
[6). Since important discrepancies were noted for = 1, p = 5
and 7 > 4, the values for F; and F.’ were also calculated by
Gautschi’s algorithm, known to be correct by checking it against
the table [1]. Lutz and Karvelis give 6 significant digits, but
without commenting on a possible error tolerance, They state,
“we test [the generated functions] to see how closely the
Wronskian relation F'Gr, — Fp G’ = 1 is obeyed.”” Comparison
of their values with those obtained from Gautschi’s algorithm
shows, for o < 4, occasional discrepancies of 1 unit in the sixth
significant digit. For 4 > 4 [disregarding some obvious misprints,
e.g. for G1(2,10) and G10(10,10)] there are discrepancies which in
a few cases exceed a 100 units in the sixth significant digit. Be-
cause of this, the table of Lutz and Karvelis was used for check-
ing the procedure Coulomb only for 5 < 4. For 5 > 4 check values
were obtained from Gautschi’s algorithm (Fp and F.p’ only).
The following discrepancies were found in units of the sixth
significant digit:

n=1,p= 5: Fr—up to119 units (L = 8).
Fr'—up to 87 units (L = 0).
Gr—up to 350 units (L = 2).
G''—up to 247 units (L = 0).

n=1p= 107

n =23 : 1 or 2 units in several cases, exceptionally more;
one isolated case G3(3,10) with 23 units. Compari-
son with Gautschi’s values (where possible)
gives better agreement,

n >4 Occasionally 1 unit for Fr and Fr' .

o1, (1) nearly always agreed to 6 significant digits for all tested .
To complete the check, values of the functions-at 4 = 1, p = 5,

Communications of the ACM 279



and 7 = p = 5 were calculated using the ArLgoL procedure. The
results agreed with those calculated by the FORTRAN program to
the 6 significant digits which were compared.

REFERENCES:

1. NATIONAL BUREAU OF STANDARDS. Tables of Coulomb Wave
Functions, Vol. I. Appl. Math. Ser. 17, U.S. Govt. Printing
Office, Washington, D.C., 1952.

2. Gavurscur, W. Algorithm 292. Regular Coulomb wave func-
tions. Comm. ACM 9 (Nov. 1966), 793-795.

3. Tusis, A. Tables of Nonrelativistic Coulomb Wave Functions.
LA-2150, Los Alamos Sci. Lab., Los Alamos, New Mexico,
1958,

4. ABramowiTz, M., anxp Rasinowitz, P. Evaluation of
Coulomb wave functions along the transition line. Phys.
Rev. 96 (1954), 77-79.

5. —, AND StecuN, I. A. (Eds.) Handbook of Mathematical
Functions. NBS Appl. Math. Ser. 55, U.S. Govt. Printing
Office, Washington, D.C., 1965.

6. Lutz, H. F., anp KarveLls, M.D. Numerical calculation of
Coulomb wave functions for repulsive Coulomb fields.
Nucl. Phys. 43 (1963), 31-44.

REMARK ON ALGORITHM 292 [822]

REGULAR COULOMB WAVE FUNCTIONS [Walter
Gautschi, Comm. ACM 9 (Nov. 1966), 793]

WaLter GavurscuHl (Recd. 5 July 1967)

Computer Sciences Department, Purdue TUniversity,
Lafayette, Indiana, and Argonne National Laboratory,
Argonne, Illinois
* This work was performed under the auspices of the United

States Atomic Energy Commission.

KEY WORDS AND PHRASES: Coulomb wave functions, wave
functions, regular Coulomb wave functions
CR CATEGORIES: 5.12

The following changes are suggested to eliminate the need for
multiple-precision arithmetic. The underlying theory will be
published in Aequationes Math.

1. Remove the procedure minimal.

2. Change the statement (near the bottom of page 794)
nu 1= if s > —.36788 then eniter (rXi(s)) else 1
to read:
nu = if s > —.36788 then entier (rXi(s)) else r/2.7183

3. Change the statement labeled L1 to read
L1: dl := 2 X eta/(exp(2XetaXarctan(l/omega))—1)
and rephrase the comment following this statement to read:

comment The letter n in the following statement is a place
holder for a machine-dependent integer, namely, the number
of (equivalent) decimal digits carried in the mantissa of
floating-point numbers. This integer must be properly sub-
stituted by the user;

4. Omit the output statement

outstring (1, “The requested accuracy cannot be guaranteed.
Use of the procedure minimal in a higher precision mode ap-
pears indicated’);

5. Insert the statement

rl := Iminfl];

280 Communications of the ACM

between the two lines

end;

and

lam{0] := —rl; 1l :=d1/(1+4r112);
6. Change the line (near the middle of page 795)

s 1= sqri(il/(exp(t1)—1));

to read

s 1= exp(—t1/4)/sqrt((exp(t1/2) — exp(—1i1/2))/tl);

(These statements are mathematically equivalent, but the lat-

lam[l] :=1;

ter delays overflow as the value of {1 becomes large.)

7. If large values of lnl and/or p, say exceeding 100, are contem-
plated, it may be necessary to increase the dimension of the ar-
rays lambda and Imin (if they are declared at the beginning of
the procedure Coulomb) and to correspondingly increase the
upper limit for nu in the conditional clause

if nu < 300
near the top of page 795. The user, in this case, should also be
prepared to encounter overflow difficulties, especially in the
later entries of the array lam.

With these revisions the algorithm produced correct results on
the CDC 3600 for the three tests described at the end of Algorithm
292. It was also used (with input parameter d = 10) to compute
miscellaneous values of Fo(y, p) and (3, p) published in a paper
by C. E. Froberg (Numerical treatment of Coulomb wave fune-
tions. Rev. Mod. Phys. 27 (1955), 399-411). The results are sum-
marized in the table below.

n p Algorithm 292 (revised) Froberg

9 50 Fo = 9.357085680;0 — 1 9.3570855;0 — 1
50 80 Fo = 1.203662491;, — 3 1.203665,, — 3
50 120 Fo = 2.002599349;0 — 1 2.00255,, — 1
100 4 ® = 5.722985154,,21 5.7229851551021
200 1 P = 7.236604732,014 7.236604731,014

In addition, the algorithm was run (with d = 6, and lambda,
Imin being declared as arrays of dimension [0 : 600]) for » =
—200(20)200, p = 20(20)200, Lmaz = 0(50)100. Apparently valid
results were obtained as long as » < 100, though no tables seem to
exist to check these results against. Overflow was observed in some
of the entries of the array lam, for » = 120, p > 120; » = 140,
p>60; 5 =160, p > 40; and n = 200, p > 20. (For the pur-
pose of this test, a number is considered to overflow if its modulus
exceeds 10300.)

REMARK ON ALGORITHM 331

GAUSSIAN QUADRATURE FORMULAS [D1] [Walter
Gautschi, Comm. ACM 11 (June 1968), 432]

I. D. HiLu (Recd. 12 Sept. 1968)

Medical Research Council, Computer Unit (London),
London, N.1, England

KEY WORDS AND PHRASES: quadrature, Gaussian quadra-
ture, numerical integration, weight function, orthogonal poly-
nomials

CR CATEGORIES: 5.16

1. On pages 434 and 435 there are five strings, all of which have
identical opening and closing string quotes.' and' should be re-
placed by ‘and’ in each case.

2. No space symbols appear in these strings. u should be in-
serted in each space. Otherwise, no spaces will appearin the printed
messages.

Volume 12 / Number 5 / May, 1969



3. In the second string, the hyphen in the word ‘“violated”
should be deleted.

4. In the first column of page 433 there appear:

kmaz := entier(capn/2);
and
if capn/2 # kmazx then
Both these are critically dependent upon rounding error in the real
division. Presumably,
kmaz 1= capn + 2;
and
if capn # 2 X kmazx then
are intended.

5. A semicolon is necessary before the final end (on page 436).
As things stand, this end is part of the comment, and the algo-
rithm never finishes.

Alternatively, the semicolon after end Gauss, two columns
earlier, could be deleted (in which case the symbol comment
could also be deleted if desired, but need not be). If this were done,
the final end would terminate the comment without the need for
a preceding semicolon.

REMARK ON ALGORITHM 334 [G5]

NORMAL RANDOM DEVIATES {James R. Bell,
Comm. ACM 11 (July 1968), 498]

R. Knop* (Reed. 5 Aug. 1968 and 8 Nov. 1968)

Physics Dept., University of Maryland, College Park,
MD 20742

This work was supported in part by an Atomic Energy Commission
contract.

* Present address: Physics Dept., Rutgers University, New
Brunswick, NJ 08903

KEY WORDS AND PHRASES: normal deviates, normal dis-
tribution, random number, random number generator, simula-
tion, probability distribution, frequency distribution, random

CR CATEGORIES: 5.13, 5.5

Algorithm 334 produces pairs of normally distributed random
deviates with zero mean and unit variance by the method of Box
and Muller [1]. The sine and cosine required by the Box-Muller
method are calculated by the von Neumann rejection technique
[2]. This technique allows the calculation of the sine and cosine of
an angle uniformly distributed over the interval (0, 2r) without
referencing the sine, cosine, or square root functions. We note
however, that Algorithm 334 require as square root calculation in
inverting the distribution function of the radius (equal to L X S
in the notation of the algorithm).

We suggest that since the square root calculation seems un-
avoidable, it can be used to obtain the required sine and cosine by
more conventional means. Thus we propose sampling points from
a density uniform over the unit disk in the X, Y-plane and cal-
culating the sine and cosine from their definition in terms of the
legs and hypotenuse of a right triangle. The following changes in
Algorithm 334 are then necessary:

a. Replace X :(=Rby X :=2X R -1

b. Replace L := sqri(—2XIn(R))/S by

L := sqgrt(—2XIin(R)/S)
c. Replace D1 := (XX—YY) X Lby Dl := X X L
d. Replace D2 :=2X X X Y X LbyD2:=Y X L

Acknowledgment. The author thanks B. Kehoe for comments
concerning this algorithm.
REFERENCES:

1. Box, G., AND MULLER, M. A note on the generation of normal
deviates. Ann. Math. Stat. 28 (1958), 610.

2. Von NeumanN, J. Various techniques used in connection with
random digits. In Nat. Bur. Standards Appl. Math. Ser. 12,
US Govt. Printing Off., Washington, D. C., 1959, p. 36.

Volume 12 / Number 5 / May, 1969

REMARK ON ALGORITHM 340 [C2]

ROOTS OF POLYNOMIALS BY A ROOT-SQUARING
AND RESULTANT ROUTINE [Albert Noltemeier,
Comm. ACM 11 (Nov. 1968), 779]

ALBERT NoLTEMEIER (Recd. 6 Jan. 1969)

Technische Universitdt Hannover, Rechenzentrum, Han-
nover, Germany

KEY WORDS AND PHRASES: rootfinders, roots of polynomial
equations, polynomial zeros, root-squaring operations, Graeffe
method, resultant procedure, subresultant procedure, testing
of roots, acceptance criteria

CR CATEGORIES: 5.15

The following misprints were found in the algorithm and should
be corrected as indicated:

1. In the comment, in the first column on page 780, the last line
before the paragraph beginning with the word ‘“Parameters’ ends
with a semicolon; it should end with a period.

2. In the seventh line following the word ‘‘Parameters’’ the ab-
breviation CDC should appear in capital letters.

3. In the procedure body, in the second column on page 780,
the line before the label SQUARING OPERATION is missing. It
should read as follows:

for j := 0 step 1 until d do alj, 0] := c[j];

Corrigenda
INDEX BY SUBJECT TO ALGORITHMS 1960-1968

In this index [Comm. ACM, 11 (Dec. 1968), 827-830], 10 lines
were omitted from the classification G6. The complete classifica-
tion G6 should appear as follows:

G6 PERMUTATIONS AND COMBINATIONS

o 71 PERMUTATIONS 11-61(497),4-62(2091,
Gé6 71 8-62(439)

G6 55 PERMUTATIONS 4-62{(208) 44-62(209},
Go6 86 3-62(640)

G6 €7 PERMUTATION GENERATOR 4-62{209),8-62(440),

66 R7  10-62{5141,7-67{452}

Go6 54 COMBINATIONS 6-62{344},11-62(557},
G5 54 12-¢21606)

G6 102 PERMUTATIONS IN LEXTCe ORDEP 6~62(3661,10-62(514),
G6 102 T-67(452)

G6 115 PERMUTATIONS 8-62(434),10-62(5141),
G6 115 12-62(606)

G6 130 PERMUTE 11-62{551),7-6T7 (452}
G6 152 COMBINATIONS 2-63(68),7-63(335)

Gé

154

COMBINATION IN LEXIC. ORDER

3-63(103),8-63( 449)

G6 155 COMBINATION IN ANY ORDER 3-63(103),8-63(449}
Gé6 156 ALGERRA OF SETS 3-63(103),8-63(450)
G6 16N CCM2, OF M THINGS M AT A TIME 4=63(161)48-63(450),
56 160 10-63(518)

G6 161 COMBS. 1,2,UP TO N AT A TIMF 4-63(161),8-63(450},
G616l 10-£3(619)

Go6 202 PERMUTATIONS IN LEXIC. GROER 9-63(5171,49=-65{ 5556},
G6 202 T7-670452)

G6 235 RANDOM PERMUTATION T~64(420), 7651445}
Go 242 PERMUTATIONS WITH REPETITIOMS 10-641(585)

G6 250 INVERSE PERMUTATION 2-651104),11-65(670)
G6 306 PEIMUTATIONS WITH REPETITIONS 7-67{450)

G6 308 PERMUT.IN PSEUNGLEXIC.ORDER T-67(452}

GO 317 PERMUTATIUN 11-67(729)

G6 323 PERMUTATIONS IN LEXIC ORDER 2-68(117)

G6 329 NISTR OF INDISTIMGUISHABLE ORJ  6-68(430)

G6 ALL FERMUTATTONS OF N OBJECTS COMPLBULL.VI( 104}

Gé6 PERMUTNS (OF VEETOR-LEXIC ORDER COMP.J.V10Q(311)

Go6 PERMUTN (F VECTOR COMPLJeVIO(311)

Ge FAST PERMUTN OF VECTOR COMPaJdaV10(311)

rithm 333 and the line should read

In addition in Classification H, Algorithm 332 should be Algo-

H 333 MINIT ALGORITHM FOR LIN PROG 6-68(437)
Thanks are due to Louis C. Semprebon, Dartmouth College, for
calling attention to these errors.

Communications of the ACM 281



