
sine in tegral .  Le t  us define R s ,  the  round-off  error,  b y  

D~ = ( ~ ) *  + Rs, (68) 

and  le t  us recall ,  eqs. (4) a n d  (39), t h a t  

S = ~ + K s , s ,  (69) 

where  a second subsc r ip t  has  been  a d d e d  to t he  t r u n c a t i o n  
error  E ,  to  denote  i ts  dependence  on j .  T h e n  the  i nequa l i t y  
(67) can  be wr i t t en  

IEs,¢ + Rs - E.,¢_i  --  R¢-xl < e(1 + I(~¢)*l) .  (70) 

W e  see before  us the  h e a r t  of the  difficulty.  The re  is no 
in t r ins ic  reason w h y  the  expression on the  lef t  could  no t  
be v e r y  small ,  even zero, t h rough  cancel la t ion;  hence  
sa t i s fac t ion  of t he  inequaf i ty  for  a pa r t i cu l a r  e can  h a r d l y  
gua ran tee  a useful  u p p e r  b o u n d  on the  t o t a l  error,  Es .s  -4- 
R e .  W e  choose to bypass  this  diff icul ty in t he  fol lowing 
crude  way :  on the  basis  of eq. (36) we assume 

E. ,~  - -  Es.~_l ~ - - E . , i _ i  ~ - -8Es,~,  (71) 

and  on the  basis  of eq. (65) we assume 

R~ - -  Rs-1 ~ R~.  (72) 

Then  eq. (70) becomes 

I-8E..¢ + R¢I < ~(1 + [(~,~)*1); 
hence 

8 IE~,s A- RsI - -  9 IRe! < e(1 -4- t ( ~ ) * ] ) ,  
and 

IE.,~ + 

(73) 

(74) 

(75) R¢ l < (e/8)(1 -4- [(~¢)*1) + (9/8)]RsI, 

and,  finally, w i th  the  help of eq. (65), 

IEo,s + R~l < (e/8)(1 + l(Sp~)*l) --k 9 . 2 s - I p M ~ .  (76) 

N o w  (,.~¢)*, p, M0 are  all  quan t i t i e s  which  one can roughly  
e s t ima te  or  ge t  rough  u p p e r  bounds  for, a n d  j can  be  re- 
p laced  b y  M A X  - 4 if necessary ;  hence we have  a rela-  
t ion be tween  e and  the  t o t a l  error,  E , ,¢  + R¢ .  As  a l r e a dy  
noted ,  t he  resul t  for  t he  cosine in tegra l  is exac t ly  the  same,  
rep lac ing  S b y  C in eq. (76). This  i n e q u a h t y  can  be used  
to  de te rmine  e so as to  achieve a b o u n d  on the  t o t a l  e r ror  
of the  resul t  r e t u r n e d  b y  this  rout ine .  However ,  t he  
crudeness  of t he  a r g u m e n t  lead ing  to  th is  resul t  should  
warn  the  user  to  t r e a t  this  e s t ima te  wi th  caut ion .  
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The following algorithm by Chase and Fosdlck relates to the paper by the 
same authors in the Numerical Analysis  department of this issue, on pages 
~53-457. 

This concurrent publication in Communications /ollows a policy an- 
nounced by the Editors of thv two dtpartments, J. G. Hvrriot and J. F. 
Traub, in  the March 1967 issue. 
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comment FSER1 evaluates the integrals 

f f0' C = F(X)  cos (M~rX) dX,  S = F(X)  sin (M~-X) dX 

using the Filon quadrature algorithm. The user may request an 
evaluation of C only, S only, or both C and S. FSER1 contains 
an automatic error-control feature which selects an integration 
step size on the basis of an error parameter supplied by the user. 
The Filon quadrature formulas, truncation error, rounding error, 
and automatic error control are described in a companion paper 
[1] by the authors. 

The calling parameters for this subroutine are defined as fol- 
lows. F is the name of a FUNCTION subprogram F(X),  supplied 
by the user, which evaluates F ( X )  appearing in the integrand. 
EPS is the name for e appearing in inequalities (45) and (46) of 
[1]. I t  is used in the error control portion of the algorithm. The 
error in the computed values of C and S is related to e by the in- 
equality (76) given in [1]. The user must assign a value to EPS 
before calling FSER1. MAX specifies the maximum number of 
halvings of the step size that  are allowed. The minimum step size, 
h in equation (16) of [1], is 2 --~Ax. The user must assign a value to 
MAX before calling FSER1. M is the parameter appearing in 
the argument M~-X of the cosine and sine functions. The user 
must assign a value to M before calling FSER1. C is the value 
of the cosine integral determined by FSER1. S is the value of the 
sine integral determined by FSER1. LC is used on entry as a signal 
that  the user does want C evaluated (LC = 1) or does not want 
C evaluated (LC = 0). I t  is used on exit to report the value of h 
used by the subroutine to evaluate C, this value being 2 -Lc. The 
user must assign a value of 1 or 0 to LC before calling FSER1, 
and if LC = 1 on entry, then the subroutine will assign a new value 
to LC related to the step size by 2 -Lc. LS is used on entry as a 
signal that the user does want S evaluated (LS = 1) or does not 
want S evaluated (LS = 0). I t  is used on exit to report the value of 
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h used by the subroutine to evaluate  S, this value being 2 -LB. 
The user must  assign a value of 1 or 0 to LS before call ing FSER1,  
and if LS = 1 on entry,  then the subroutine will  assign a new 
value  to LS related to the s tep s ize  by 2 -Ls. 

FSER1 calls a subroutine E N D T 1  which is also l isted below. 
The purpose of E N D T 1  is to perform the end test  described by  
inequalit ies  (45) and (46) of [1]. 

R E F E R E N C E S  : 

1. FOSDICK,  LLOYD I ) . ,  AND C H A S E ,  S T E P H E N  M .  A n  a lgor i thm 
for F i lch  quadra ture .  Comm. A C M  1~ (Aug. 1969), 453-457. 

SUBROUTINE FSERIIF,EPS,MAX,M, C, S~ LC, LS) 
PI = 3 . 1 4 1 5 9 2 6 5 3 5 8 9 8  
XM = M 

C F1 = COS(M~PII TEMPORARY. 
F I  = I - 2 ~ ( M- (M/2 ) ~ 2 ) 
FO = F(O.O) 
FI  = F ( I .O )  * F I  

C 'CIR~ WILL BE USED THROUGHOUT THESE COMMENTS TO STAND FOR ~SIN= OR 
C 'COS' WHEREVER THOSE TWO SYMBOLS MAY OCCUR. 
C NOW DEFINE SUMCIR OF THE ENDPOINTS. 

SUMCOS : (F i  + FO ) * .5 .  
SUMSIN = O.O 
B1 = 2 .  / 3 .  

'C TMAX IS THE SWITCH-OVER POINT IN THE ANGLE T. 
C OUR" ANALYSIS INDICATES THAT TMAX : I / 6  IS THE BEST FOR THE ILLIAC IT 
C WHICH HAS A 44 BIT FLOATING POINT MANTISSA. 

TMAX : 0 . 1 6 6  
C N IS THE NUMBER OF THE ITERATION. NOTE THAT WE START AT THE 
C FOURTH ITERATION STEP. 
C ACTUALLY, THE FIRST EVALUATION OF AN INTEGRAL IS AT N = 5~ AND 
C THEREFORE, THE FIRST COMPARISON OF VALUES IS AT N= 6.  

N = 4 
C BOTH TMAX AND N MAY BE CHANGED IF THE MACHINE FOR WHICH THIS 
C ROUTINE IS INTENDED HAS GREATER OR LESS ACCURACY THAN ILLIAC IT .  
C IF N IS CHANGED , THEN THE CORRESPONDING CHANGES MUST BE MADE 
C IN THE ASSIGNMENTS OF H AND NSTOP. 

H = i .  / 16. 
C H = 2 *~ - N .  

NSTOP = 15 
C NSTOP = 2**N - i 

T = H * X M  
TP = T * PI 
NST = I 
ASSIGN 67 TO MSWTCH 

C LLC AND LLS ARE USED BY THE ROUTINE IN COMPUTED-GO-TO STATEMENTS. 
C AS SOON AS LLS AND LLC HAVE BEEN DEFINED,'WE CAN USE LS AND LC 
C AS RETURN PARAMETERS (SEE ABOVE). 

IF ( LS I~ I, 2 
I LLS = 2 

GO TO 3 
2 LLS = 1 

LS = MAX 
3 I F  ( LC 4 ,  4, 5 

LLC = 2 
GO TO 7 

5 LLC : 1 
LC = MAX 

7 LN = I 
C ALL OF THE ABOVE IS EXECUTED ONLY ONCE PER CALL. 
C NOW THE ITERATION BEGINS. 

I 0  ODCOS = O.  
DDSIN = O, 

C BEGIN SUMMATION FOR ODCOS AND ODSIN. 
DO 65 I = I ,  NSTOP, NST 

xt = I 
THA = XI ~ T 

C THA~PI IS THE ANGLE USED IN THIS ITH TERM. 

(Continued-see next column) 

The policy concerning the  cont r ibu t ions  of a lgor i thms to 
Communications of  the A C M  appears,  most  recently,  in the 
J a n u a r y  1969 issue, page 39. A con t r ibu t ion  should be in the 
form of an algori thm, a certification, or a remark.  An al- 
go r i thm mus t  normal ly  be writ ten in the ALGOL 60 Refer-  
ence Language or in USASI S tanda rd  F O R T R A N  or Basic 
FORTRAN.  

(Conclude) 

C C I R ( I ~ T * P I I  IS CALCULATED HERE USING THE IDENTITY 
C CIR ( INTEGER MULTIPLE OF PI + FRACTIONAL MULT OF PI } 
C = COS(INTEGER*PI) * CIR(FRAC*PI) 
C = I+  OR - )  ~ CIR(FRAC*PI) .  

FRAC = THA 
IN = THA 
THA = IN 
FRAC = (FRAC - THA) ~ PI 

C THA'IS A FLOATING POINT INTEGER, FRAC IS THE .FRACTIONAL PART * P I .  
COSIP = I - 2 * ( I N  - 2 " ( I N / 2 ) )  
TEMPI = COSIP * F(XI*H)  

C TEMPI = COS(INTEGER PART) • F I T * H ) .  
GO TO ( 50 , 55 ) , LLS 

50 ODSIN = TEMPi ~ SIN(FRAC) + DDSIN 
55 GO TO ( 60 , 65 ) , llC 
60 ODCOS = TEMPI * COS(FRAC) + ODCOS 
65 CONTINUE 

GO TO MSWTCH,(67,70) 
67 NST = 2 

C NOW HAVE MADE UP FOR THE FIRST 4 ITERATION STEPS, SO RESET THESE 
C TWO NUMBERS TO LOOK LIKE THE GENERAL CASE. 

NSTOP = I6 
C NSTOP = 2~N (IN CASE YDU CHANGE STARTING VALUE OF N). 

ASSIGN 70 TO MSWTCH 
GO TO 92 

?O TSO = T P * T P  
IF (T -TMAX) 74, 74, 75 

C 74 IS THE POWER SERIES FOR SMALL T, 75 IS THE CLOSED FORM USED WITH 
C LARGER VALUES OF T. 
C THE POWER SERIES ARE (WITH 'TN'  = TP*mN) 
C h = ( 2 . / 4 5 . } ~ T 3  - ( 2 . / 3 1 5 . ) * T 5  + ( 2 . / 4 7 2 5 . ) ~ T 7  
C B = ( 2 . / 3 . )  + ( 2 . / I 5 . I ~ T 2  - ( 4 . / 1 0 5 . ) ~ T 4  + ( 2 . / 5 6 7 . ) ~ T 6  
C - ( 4 . / 2 2 2 7 5 . ) * T 8  
C G = ( 4 . / 3 . )  - ( 2 . / 1 5 . ) * T 2  + ( I . / 2 1 0 . ) . * T 4  - ( I . / I I 3 4 0 . ) * T 6  
C THE NEXT TERM IN G IS TO0 SMALL. IT IS ( I . / 9 9 7 9 2 0 . ) * T 8  

74 A = TP * TSO * ' ( I .  L TSO * ( I .  - TSQ / 15. )  / 7 . )  / 22 .5  
B2 = B i  ~ TSQ* .2 
B3 = B2 ~ T S O ' *  2 , / 7 .  
B4 = B3 * TSO / 10.8 
B5 = B4 ~ TSO * 14./275. 
B = BI+ B2 - B3 + B4 - B5 
G = 2.*Bi - B2+ B3/ 8. - B4/40. 

C G = 2.~BI - B2 + B3/8. - B4/40° + 5.*B5/896.'. IF YOU WANT THE T8 
C TERM INCLUDED IN G. 

GO TO 80 
C CLOSED FORM OF THE COEFFICIENTS, WHERE AGAIN =TN= MEANS TP#~N. 
C A = I./TP + COS(TP)*SIN(TP)/T2 - 2.*(SIN(TP))~2/T3 -" 
C B = 2.*((1 + (COS(TP))~2)/T2 - 2.~SIN(TP)~COS(TP)'/T3) 
C G = 4.*(SIN(TP)/T3 - COS(TP)/T2) 
75 IN = T 

TEMPI = I - 2 ~ ( IN - 2 • ( IN / 2 ) ) 
TEMP2 = IN 

C TEMPi IS COS ( INTEGER PART OF TP)~ TEMP2 IS FRACTIONAL PART OF TP.. 
TEMP2 =IT - TEMP2 ) * PI 
S i  = TEMPI • SIN (TEMP2) 

C S i  = SIN(TPI 
CI = TEMPI ~ COS (TEMP2) 

C CI = COS(TP) 
P = Sl ~ Cl 
SISO= SI • Si 
A = {((-2.*SiSO/TP) + P)/TP +I.)/ TP 
B = 2° * ((-2.* P/ TP)+ 2. -SISO) / TSO 
G = 4. • (SI / TP - CII/ TSQ 

BO GO TO IBI, 85), LLS 
C HAVE CALCULATED THE COEFFICIENTS, NOW READY FOR-THE INTEGRATION 
C FORMULAS. 
8I T2 = H~ (A * IFO - FI) + B • SUMSIN + G • ODSIN) 

C ENDTI IS A SUBROUTINE WHICH CHECKS FOR THE CONVERGENCE OF THE 
C ITERATIONS. ENDTi REOUIRES THE PRESENT VALUE TO AGREE WITH THE 
C PREVIOUS VALUE TO WITHIN EPS2, WHERE 
C EPS2 = (I.O + ABSF(PRESENT VALUEI)~EPS 
C EPS IS SUPPLIED BY THE USER. 

CALL ENDTI (PVT2, T2~ EPS, S, LLS, LN) 
GO TO ( 85, 84 ), LLS 

84 LS = N 
85 GO TO (86 ,90 I ,LLC 

C THIS IS THE COSINE INTEGRAL. 
86 TI  = H * ( B ~ SUMCOS + G * ODCOS) 

CALL ENDTI (PVTI, T i ,  EPS, C, LLCt LN) 
GO TO ( 90~ 89 ) ,  LLC 

89 LC = N 
90 LN = 2 

C NOW TEST TO SEE I F  DONE. 
I F  {LLC  + LLS - 3 )  9 2 ,  9 2 ,  l O 0  

92 N = N + I  
C THIS IS THE BEGINING OF THE ITERATION. 

IF IN-MAX) 95~ 95,100 
95 H : . 5  * H 

T = o 5 * T  
TP = . 5  • TP 
NSTOP = 2 ~ NSTOP 
SUMSIN = SUMSIN + ODSIN 
SUMCOS = SUMCOS + ObCOS 
GO TO IO 

I00 S = T2 
C : TI  
RETURN 
END 
SUBROUTINE ENDTI (PREVOT, OUANTtEPS, VALUE, LI, L2) 
GO TO ( 29, 2 0 ) ,  L2 

20 REPS = EPS • ( I .O + ABS(DUANTII 
23 IF (ABS(PREVOT - QUANT) - REPS) 25~ 25~ 29 
25 VALUE = OUANT 

L1 = 2 
GO TO 30 

29  PREVOT = OUANT 
30 RETURN 

END 
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