sine integral. Let us define R; , the round-off error, by

Spj = (Spj)* + Ri » (68)
and let us recall, eqs. (4) and (39), that
S=28,, +E,;, (69)

where a second subseript has been added to the truncation
error E, to denote its dependence on j. Then the inequality
(67) can be written

|E..; + B; — E.jo1 — Ria| < e + [(Sp)*). (70)

We see before us the heart of the difficulty. There is no
intrinsic reason why the expression on the left could not
be very small, even zero, through cancellation; hence
satisfaction of the inequality for a particular ¢ can hardly
guarantee a useful upper bound on the total error, E,,; +
R;. We choose to bypass this difficulty in the following
crude way: on the basis of eq. (36) we assume

E,;—E,; .= —E, ;1= —8E,,;, (71)

and on the basis of eq. (65) we assume

R;,—R; 1=R;. (72)
Then eq. (70) becomes
|—=8E,.; + Rj| < e(1 4+ [(8,,)*)); (73)
hence
81E.;+ Ril — 9 Ryl < (1 +[(S,)*), (74)
and

|E..; + Ril < (¢/8)A + [(5,)*) + (9/8) IR, (75)
and, finally, with the help of eq. (65),
|E,; + Ril < (¢/8)1 + [(5,)*) + 9-27oM,. (76)

Now (S,,J.)*, p, M, are all quantities which one can roughly
estimate or get rough upper bounds for, and j can be re-
placed by MAX — 4 if necessary; hence we have a rela-
tion between e and the total error, E, ; + R;. As already
noted, the result for the cosine integral is exactly the same,
replacing S by C in eq. (76). This inequality can be used
to determine e so as to achieve a bound on the total error
of the result returned by this routine. However, the
crudeness of the argument leading to this result should
warn the user to treat this estimate with caution.
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comment FSERI evaluates the integrals
1 1
C = f F(X)cos MxX)dX, 8= f F(X) sin (M=X) dX
] o

using the Filon quadrature algorithm. The user may request an
evaluation of C only, S only, or both C and S. FSERI1 contains
an automatic error-control feature which selects an integration
step size on the basis of an error parameter supplied by the user.
The Filon quadrature formulas, truncation error, rounding error,
and automatic error control are described in a companion paper
[1] by the authors.

The calling parameters for this subroutine are defined as fol-
lows. F is the name of a FUNCTION subprogram F(X), supplied
by the user, which evaluates F(X) appearing in the integrand.
EPS is the name for ¢ appearing in inequalities (45) and (46) of
[1]. 1t is used in the error control portion of the algorithm. The
error in the computed values of C and S is related to ¢ by the in-
equality (76) given in [1]. The user must assign a value to EPS
before calling FSER1. MAX specifies the maximum number of
halvings of the step size that are allowed. The minimum step size,
h in equation (16) of [1], is 2-MAX, The user must assign a value to
MAX before calling FSER1. M is the parameter appearing in
the argument M=zX of the cosine and sine functions. The user
must assign a value to M before calling FSERL. C is the value
of the cosine integral determined by FSERI1. S is the value of the
sine integral determined by FSER1. LC is used on entry as a signal
that the user does want C evaluated (LC = 1) or does not want
C evaluated (LC = 0). It is used on exit to report the value of &
used by the subroutine to evaluate C, this value being 2-1C. The
user must assign a value of 1 or 0 to LC before calling FSER1,
and if LC = 1 on entry, then the subroutine will assign a new value
to LC related to the step size by 271C. LS is used on entry as a
signal that the user does want S evaluated (IS = 1) or does not
want S evaluated (LS = 0). It is used on exit to report the value of
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h used by the subroutine to evaluate S, this value being 2718,
The user must assign a value of 1 or 0 to LS before calling FSER1,
and if LS = 1 on entry, then the subroutine will assign a new
value to LS related to the step size by 2718,

FSER1 calls a subroutine ENDT1 which is also listed below.
The purpose of ENDT1 is to perform the end test described by
inequalities (45) and (46) of [1].

REFERENCES:

1. Fospick, Luoyp D., anp CHasg, StepHEN M. An algorithm
for Filon quadrature. Comm. ACM 12 (Aug. 1969), 453-457.

SUBROUTINE FSERI{F,EPS,MAX,M, Cy S, LC, LS)
PI = 3.1415926535898
XM = M
C F1 = COS(M%PI) TEMPORARY.
Fl=1-2 % ( M~ (M/2 ) % 2)
FO = F(0.0)
Fl = F(1.0) *. F1
'CIR' WILL BE USED THROUGHOUT THESE COMMENTS TO STAND FOR 'SIN' OR
*COS' WHEREVER THOSE TWO SYMBOLS MAY OCCUR.
NOW DEFINE SUMCIR OF THE ENDPODINTS,
SUMCOS = (F1 + FO ) * .5,
SUMSIN = 0.0
Bl = 2. / 3.

[eReXal

‘C TMAX IS THE SWITCH-OVER POINT IN THE ANGLE T.
C ODUR ANALYSIS INDICATES THAT TMAX = 1/6 IS THE BEST FOR THE ILLIAC II
C WHICH HAS A 44 BIT FLOATING POINT MANTISSA.
TMAX = 0.166
C N 1S THE NUMBER OF THE ITERATION, NOTE THAT WE START AT THE
C FOURTH ITERATION STEP.
C ACTUALLY, THE FIRST EVALUATION OF AN INTEGRAL IS AT N = 5, AND
C THEREFORE, THE FIRST COMPARISON OF VALUES IS AT N= 6.
N = 4
C BOTH TMAX AND N MAY BE CHANGED IF THE MACHINE FOR WHICH THIS
C ROUTINE IS INTENDED HAS GREATER OR LESS ACCURACY THAN ILLIAC II.
C IF N IS CHANGED , THEN THE CORRESPONDING CHANGES MUST BE MADE
C IN THE ASSIGNMENTS OF H AND NSTOP.
H= 1./ 16
CH=2#x -N,
NSTOP = 15
€ NSTOP = 2%%N - 1
T =H#* XM
TP =T % pI
NST = 1
ASSIGN 67 TO MSWTCH
C LLC AND LLS ARE USED BY THE ROUTINE IN CUMPUTED-GO-TO STATEMENTS.
C AS SOON AS LLS AND LLC HAVE BEEN DEFINED, WE CAN USE LS AND LC
C AS RETURN PARAMETERS (SEE ABOVE).
IF (LS ) 1, 1, 2
1 LLS = 2
60 TO 3
2 LLS = 1
LS = MAX
3 IF { LC ) 4, 4, 5
4 LLC = 2
GO TO 7
5 LLC = 1
LC = MAX
7 LN = 1

C ALL OF THE ABOVE 1S EXECUTED ONLY ONCE PER CALL,
C NOW THE ITERATION BEGINS.
10 0DCOS = 0.
QDSIN = 0.
C BEGIN SUMMATIUN FOR 0DCOS AND ODSIN,
00 65 I = 1, NSTOP, NST
Xl =1
THA = XI * 7T
C THA%PI IS THE ANGLE USED IN THIS ITH TERM.

(Continued-see next column)

The policy concerning the contributions of algorithms to
Communications of the ACM appears, most recently, in the
January 1969 issue, page 39. A contribution should be in the
form of an algorithm, a certification, or a remark. An al-
gorithm must normally be written in the ALGOL 60 Refer-
ence Language or in USASI Standard FORTRAN or Basic
FORTRAN.
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C CIR(I*T*PI) IS CALCULATED HERE USING THE IDENTITY
C CIR ( INTEGER MULTIPLE OF PI + FRACTIONAL MULT GF PI )
C = COS({INTEGER*PI) * CIR(FRAC*PI)
C = {(+ OR -) * CIR(FRAC*PI).
FRAC = THA
IN = THA
THA = IN

FRAC = (FRAC - THA) * PI
C THA IS A FLDATING POINT INTEGER, FRAC IS THE FRACTIONAL PART *PI.
CaSIP = 1 = 2*(IN — 2%{IN/2))
TEMPYL = COSIP * F{XI*H)
C TEMPL = COS{INTEGER PART) * F(I*H},
GO TO ¢ 50 4 55 ) 4 LLS

50 O0SIN = TEMPL * SIN(FRAC) + ODSIN
55 GO TO ( 60 , 65 ) , LLC

60 0DCOS = TEMP1 * COS(FRAC) + 0DCOS
65 CONTINUE

GO TO MSWICH,{67,70)
67 NST = 2
€ NOW HAVE MADE UP FOR THE FIRST 4 ITERATIUN STEPS, SO RESET THESE
C TWO NUMBERS TO LOOK LIKE THE GENERAL CASE.
NSTOP = 16
C NSTOP = 2%xN (IN CASE YOU CHANGE STARTING VALUE OF N).
ASSIGN 70 TO MSWTCH :
GO TO 92
70 TSQ = TP*Tp
IF (T —TMAX) 74, 74, 75
C 74 1S THE POWER SERIES FOR SMALL T, 75 IS THE CLOSED FORM USED WITH
C LARGER VALUES OF T,
THE POWER SERIES ARE (WITH 'TN' = TP*%N)
A = (2./45.)%T3 = (2./315.)%T5 + (2./4725.)%T7
B = (2./3.) + (2./15,)%T2 — (4,/105.)%T4 + (2./567.)%T6
— (4./22275.)%T8
6 = (4u/3.) = (2./15.)%T2 + (1./210.)3%T4 = {1./11340,)*T6
THE NEXT TERM IN G IS TOO SMALL. [T IS (1./997920.)%T8
T4 A = TP % TSQ #* (1. = TSO * {l. ~ TSQ / 15.) / 7.} / 22.5
B2 = Bl * TSQ* .2
B3 = B2 * TSO'® 2./7.
B4 = B3 * TSO / 10.8
B5 = B4 * TSQ * 14./275.
B = Bl+ B2 - B3 + B4 - B5
G = 2.%B1 - B2+ B3/ 8. - B4/40

[sNsXsEaNeXe]

C G = 2.%Bl - B2 + B3/8. - B4/40. + 5.%85/896.~ IF YOU WANT THE 78
C TERM INCLUDED IN G.
GO Y0 80
o} CLOSED FORM OF THE COEFFICIENTS, WHERE AGAIN 'TN' MEANS TP#%N.
C A = 1,/TP + COS(TPI*SIN(TP}/T2 — 2.%{SIN{TP))%%2/T3 "~
c8 = 2 ({1 + (COSU{TP))I*%2)/T2 ~ 2.%SIN(TP)*COS(TP)Y/T3)
€ G = 4.%(SIN(TP)/T3 - COS{TP)/T2)

75 IN=T
TEMPL = 1 - 2 * ( IN -2 % ( IN/ 2} }
TEMP2 = IN

C TEMPL IS COS ( INTEGER PART OF TP), TEMP2 IS FRACTIONAL PART OF TP, .
TEMP2 =(T - TEMP2 ) * PI
S1 = TEMP1 * SIN (TEMP2)

C S1 = SIN(TP)
€l = TEMP1 * COS (TEMP2)

€ Cl = COS{TP)
= S1 * C1
0 =81 * §1
(({=2.%S1SQ/TP) + PY/TP +1.)/ TP
2. % {(=2.% P/ TP)+ 2. ~515Q) / TSQ
4. * (S1 / TP - C1)/ TSQ
80 G0 TO (81, 85), LLS
C HAVE CALCULATED THE COEFFICIENTS, NOW READY FOR-THE INTEGRATION
€ FORMULAS.
81 T2 = H* (A * (FO - F1) + B % SUMSIN + G * (QDSIN)
ENDT1 IS A SUBROUTINE WHICH CHECKS FOR THE CONVERGENCE DF THE
ITERATIONS. ENDT1 REQUIRES THE PRESENT VALUE TO AGREE WITH THE
PREVIOUS VALUE TO WITHIN EPS2, WHERE
EPS2 = {1.0 + ABSF(PRESENT VALUE})*EPS
EPS IS SUPPLIED BY THE USER.
CALL ENDT1 (PVT2, T2, EPS, S, LLS, LN}
GO TO ( 85, 84 ), LLS
84 LS = N
85 GO TO (86,90}),LLC
o THIS IS THE COSINE INTEGRAL.
Tl = H % ( B * SUMCOS + G * 0ODCOS)
CALL ENDT1 (PVTLl, Tl, EPS, C,y LLC, LN}
GO TO { 90, 89 ), LLC
89 Lc = N
90 LN =
C NOW TEST TD SEE T1F DONE.
IF {LLC + LLS - 3) 92, 92, 100
N =N+ 1
C THIS IS THE BEGINING OF THE ITERATION,.
IF (N-MAX) 95, 95,100

1

QUKD
[T

[z XsNeNel

95 H = .5 %H
T= 52T
TP = .5 % TP
NSTOP = 2 * NSTOP

SUMSIN = SUMSIN + ODSIN
SUMCOS = SUMCOS + 0DCOS
60 T0 10
100 S = 72
c=T1
RETURN
END
SUBROUTINE ENDT1 (PREVQT, OUANT,EPS, VALUE, L1, t2}
GO TO ( 29, 20), L2
20 REPS = EPS # (1.0 + ABS(QUANT})
23 IF (ABS{PREVQT - QUANT) - REPS) 25, 25, 29
25 VALUE = QUANT
L1 = 2
GO TO 30
29 PREVOT = QUANT
30 RETURN
END
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