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AN ALGORITHM FOR GENERATING ISING CON-
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procedure Ising (n, z, {, S); integer n, z, [; integer array S;

comment Ising generates n-sequences (S;, - -, S.) of zeros and
ones where z = 2 218 and ¢t = Y15 | Siy: — Si | are given.
The main idea is to interleave compositions of z and n — =
objects and resort to a lexicographic generation of composi-
tions. We call these sequences Ising configurations since we
believe they first appeared in the study of the so-called Ising
problem (See Hill (1], Ising {2]). The number R(n, x, t) of dis-
tinet configurations with fixed n, z, ¢ is well known [1, 2]:

R(n,x,l=2m+1)=2($—1><n_x_1)
m m

Now define a block of 1’s (or zeros) in the sequence as a set
of a maximum number of consecutive 1’s (or zeros) eventually
consisting of a single element. For given n, z, {, the number p
of blocks of 1’s may easily be deduced from £, as well as the num-
ber g of blocks of zeros. In fact, a block of I’s including either
S: or S, yields one variation and each one of the others yields
two variations; henceweget p = ¢ = m + lwhent =2m 4 1
(t odd requires S; = S,) and either p =m + 1, ¢ =m (8, =
Ss=1,orp=m,gq=m=+1 (S =8 =0) when ¢ = 2m.
Clearly, there is a 1-1 correspondence between the compositions
of z with p parts and the distributions of the z 1’s into p blocks.
And for each distribution of 1’s, distinet distributions of the
n — z zeros into g blocks correspond to distinet configurations.

The main body of the algorithm is compose, which generates
compositions of an integer = with k parts and stores them in the
array L. The role of sort and bisort is to form the final sequence
(Si, -+, Su) from the structure of one-blocks L; and zero-
blocks M; . .

The Ising problem was brought to my attention by Dr. B.
Dejon during an informal visit to the IBM Research Laboratory
in Zurich. Thanks are also due to Prof. Paul Erdés for pointing
out to me reference (1] and to Prof. A. A. Zykov for correspond-
ence. The procedure was tested on the NCR 4130 of the Labora-
tério de Célculo Automdtico, Universidade do Porto. Thanks
are also due to the Director and his Staff.
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begin

integer %; integer arrvay L, M[1 : {+24-1];
procedure sort (L, M, z); integer array L, M; integer z;
begin

integer 7, 7, j, m, zb;

for m := 1 step 1 until n do S{m] = z;
ri=g:=1 2b:=1—g;

AA: ji=1r+ Ll -1
for m := r step 1 until j do S[m] := 2b;

if7+ 1<k then
beginr :=j+ Ml +1; 7:=¢+41; goto AA end;
comment Insert here an output procedure such as out-
array (1, S);
end sort;
procedure bisort (L, M); integer array L, M;
begin sort (L, M, 0); sort (M, L, 1) end bisort;
procedure compose (x, k, L, p); value z; integer z, k;
integer array L; procedure p;
begin
integer %, a;
if x < k then go to CC;
L)l i=z —k+1;
for 7 ;= 2 step 1 until k do L[{] := 1;

p;
if £ £ 1 then go to CC;
a:=1;

BB: if Lig] > 1 then

begin
Lia) := Lla} — 1; Lla+1] := Lla+1] + 1; p;
ifa#k— 1thena:=a+41; goto BB
end;
Lia) := Lla+1); Lle+1]) :=1; a:=a—1;
if ¢ > 1 then go to BB;

CcC:

end compose;

k:=1(+2+41;

if t # (t+2) X 2 then

begin
procedure pl; bisort (L, M);
procedure p2; compose (n—z, k, M, pl);
compose (z, k, L, p2)

end

else

begin
procedure p3; sort (L, M, 0);
procedure p4; compose (n—z, k—1, M, p3);
procedure p5; sort (M, L, 1);
procedure p6; compose (n—=z, k, M, p5);
compose (z, k, L, p4);
compose (z, k—1, L, p6)

end

end Ising
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procedure PRIME(IP, m); value m;
integer m; integer array IP;

comment This procedure finds the first m > 4 elements of the
infinite sequence 2, 3, 5, 7, 11, - .. of prime numbers and stores
them in IP[1], IP[2], - --, IP[m]. The method of distinguishing
primes from composite numbers is similar to that used by B. A.
Chartres [1]. A counter value n is compared with the smallest
value in a list IQ of odd multiples of primes less than or equal
to +/n. If unequal, n is a prime and is added to the output list
IP. Otherwise, the matching elements of IQ are incremented,
based on the corresponding entries in the list JQ. Both » and
the composite numbers in IQ are incremented so as to omit
multiples of 2 and 3.

This procedure differs from Algorithm 311 in the method of

finding the smallest entry in IQ. Here the list IQ is kept partially
ordered as a tree, i.e.

QR =2 IQli + 2] for2 <7 <7,

thus the base element IQ[1] is always smallest. The variable
ig¢ holds the current value of IQ[1l], and jg¢ the negative of
JQI1). If n = 4qi, then 7¢¢ is incremented by jgt + jgi if jo7 > 0
or by —jqi if jgi < 0. Then IQ is reordered to bring the next
smallest element to the base and to return the new value of 7¢¢
to the tree, using 2 method similar to Williams’ procedure
SWOPHEAP [3]. The tag list JQ is permuted along with 7Q.
The treesort principle, used in SWOPHEAP, is well suited to
the present task of finding the smallest element of a changing
list.

In Algorithm 311, five working-storage arrays serve the func-
tion of the two used here, and the information is totally ordered
each time a prime is found. Between primes the unordered seg-
ment of the information is searched to locate the smallest ele-
ment. The method used here is both simpler and more efficient.

On the Burroughs B5500 computer, this procedure finds the
first 10,000 primes in 53 se¢. For other values of m, time is pro-
portional to m!-#. Corresponding times for Algorithm 311 were
91 sec for m = 10,000, with time proportional to m!-% for
other values of m. However, another algorithm [2] finds the
first 10,000 primes in 14 sec on the B5500 and has times propor-
tional to m!-1¢ for other values of m.

REFERENCES:

1. CHARTRES, B. A. Algorithm 311: Prime number generator
2. Comm. ACM 10 (Sept. 1967), 570.

2. SINGLETON, R. C. Algorithm 357: An efficient prime num-
ber generator. Comm. ACM 12 (Oct. 1969), 563-564.

3. WiLriams, J. W. J. Algorithm 232: Heapsort. Comm. ACM
? (June 1964), 347;

begin

integer array IQ, JQ[O : sqrt(m)];

integer 1, ij, inc, 1q%, §, ji, J@, k, n;

IP[1] := j := 2;

IP[2] :=k := 3;
IP{3] :=n :=5;
Jj = 1igi 1= 25; jgi := —10;
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1Q[2] := 49; JQ[2] := —14;
inc 1= 4;
go to Le¢;

La: igi := if jgi > 0 then i¢i 1+ jgr + jqu else 1qi — jgi;
1:=1;
comment Reorder the tree, bringing the smallest element to

the bottom;
for 7j := 7 + 7 while 7j < j do
begin

if IQlij] > IQlij + 1] then 4 := 4§ + 1;
if IQfj] > i¢i then go to Lb;
QU] = IQUj1; JQU = JQlij]; i :=4j
end;
if i¢i < jj then go to Lb; jj := IQ[j};
comment Add a new entry to the top of the tree;
Ji=j-+1; ¢:=1IP[j+2]
QU] =14 T 2; JQI :=14j + ij;
if (¢ (ij+3)X3) = 1 then JQ[j] := — JQ[j];
comment Return igi and jg¢ to the tree and fetch a new pair
from the bottom;
Lb: IQ[7] := igi; i := IQ1];
JQET = jgi; jgg := — JQII;
if n = 4¢7 then go to La;
comment Increment n and compare with the next smallest
composite number;
Le: inec := 6 — inc; n := n + inc;
if n = igi then go to La;
k:=k+ 1; IPlk] := n;
if & = m then go to Lc;
end PRIME

ALGORITHM 357

AN EFFICIENT PRIME NUMBER GENERATOR
(A1)

Ricaarp C. SiveLETON* (Reed. 28 Jan. 1969 and 11 June
1969)

Stanford Research Institute, Menlo Park, CA 94025

* This research was supported by the Stanford Research Insti-
tute out of Research and Development funds.

KEY WORDS AND PHRASES: prime numbers, factoring,
number theory

CR CATEGORIES: 3.15, 5.30

integer procedure NPRIME(IP, m, jlim); value m, jlim;
integer m, jlim; integer array IP;

comment This procedure finds the next m primes and stores
them in IP[i], IP[2], :--, IP[m]. IP{m-+1], IP[m+2], ---,
IP[jlim] are used for working storage, where jlim > m. On the
first entry, I P[1] must have a value less than 0 as a flag to set
initial conditions. Also, m must be greater than or equal to 2
on first entry and greater than or equal to 1 on subsequent en-
tries. The arrays IQ and J@Q must be large enough to hold all
primes less than or equal to the square root of the maximum
number scanned in looking for primes. To generate the first
million primes, approximately 550 entries are needed in each of
these two lists. The lists are extended as needed, using a sec-
ondary prime number generator similar to Wood’s [3], and the
current upper index is returned as the value of NPRIME.

The method used is the familiar sieve of Eratosthenes. The
elements of the upper portion of array IP are set to zero, and
correspond to a sequence of consecutive odd integers. The com-
posite numbers are crossed off by entering the smallest prime
factor in the corresponding cell, leaving zeros for primes. (At
this point, the array IP contains the equivalent of a factor
table, i.e. the smallest factor for each composite odd integer.)
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The list of primes is then constructed by storing the consecutive
prime numbers in the lower portion of IP. Whenever the infor-
mation in the upper portion of IP is exhausted, a new sequence
of odd numbers is scanned as described above. On exit, the un-
used portion is left for use in the next call.

As compared with another algorithm [2] based on comparing
a counter value with the next smallest composite number, and
not working ahead in a scratch storage, the present algorithm
was found to be faster, even for jlim = m - 1. Efficiency im-
proves with added working storage. The improvement is sub-
stantial at first but is slight beyond jlim = 2m. For jlim = 2m,
time to find the first » primes on the Burroughs B5500 or the
CDC 6400 computer was proportional to n'-14. On the B5500
computer, it took 13.5 sec to find the first 10,000 primes, gen-
erating them 500 at a time in an array length of 1022. On the
CDC 6400 computer, with the algorithm coded in machine lan-
guage, it took less than 98 sec to find the first million primes,
generating them 1000 at a time in an array of length 10,000.
Timing within this run, with jlim = 10m, was proportional to
n1®, Tt is interesting to note that Chartres estimated a time
of 12 hours on the B5500 for this task, using Algorithm 311 [1}.

This algorithm can be expressed in either ALaoL or FORTRAN,
and gains no special advantage from machine language coding.
However, if we plan to produce very large tables of primes for
future use, machine language shift operations may be useful in
compressing the data for storage. One method of compression
is to use a single bit to indicate that an integer is a prime, e.g.
0 = composite and 1 = prime. By omitting multiples of 2, 3,
and 5 from the corresponding sequence of integers, 8 bits suffice
to identify the primes in each 30 consecutive integers.

REFERENCES:

1. CHARTRES, B. A. Algorithm 311: Prime number generator

2. Comm. ACM 10 (Sept. 1967), 570.
2. SiNgLETON, R. C. Algorithm 356: A prime number gener-
ator using the treesort principle. Comm. ACM 12 (Oct.
1969), 563.
3. Woop, T. C. Algorithm 35: Sieve. Comm. ACM 4 (Mar.
1961), 151;
begin
own integer array IQ, JQ[0 : 600]
own integer ij, ik, inc, j, nj;
integer 7, jqt, k, ni;
k:=0; ifIP[1] > 0then go to Lf;
comment Set initial conditions;
IP[1] := JQI1] := ik := inc := 2;
IQ12] := 9; JQI2] := IQ[1] := 4j := 3;
IQ3] := 25; JQI3) :=nj:=5; k:=1;
comment Prepare to delete a sequence of composite numbers;
La: j:=k+1; ni:=1IQ[}—j—3j;
IQ11] := jlim + jlim + ni;
for ¢ := j step 1 until jlim do IP[i] := 0;
Lb: 7 :=45; if IQ[i7] > IQ[1] then go to Le;
comment Extend the list of primes in array J@Q counting so
as to omit multiples of 2 and 3;
Le: nf := nj + ine; tnc := 6 — inc;
if JQUk + 1] T 2 < nj then ik := itk 4 1;
for j := 3 step 1 until 7k do
if (nj + JQUD X JQ[j] = nj then go to Lc;
i =4 + 1; JQI] := nj; IQlij] :=nj T 2;
go to Lb;
comment If j -} j 4 n? is composite, enter its smallest prime
factor in IP[j]. If j 4 j + n¢ is prime, then IP[j] = 0;
Ld: IP[j}:= jgi; § =7+ jai;
if j < jlim then go to Ld;
Qi) := 7+ 7 + n3;
Le: ©1:=1—1; j¢i :=JQ[); 7 := (IQ[] — n) = 2;
if j < jlim then go to Ld;
if 2 > 1 then go to Le; j:=k;
comment Pack the next m primes in IP[1], ..., IP[m];
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Lf: j:=j+41; if IP[j] # 0 then go to Lf;
if j = jlim then go to La;
k:=k+1; IPk]:=74+ 7+ ni;
if & # m then go to Lf;
comment The current length of the tables in arrays IQ and
J@Q is returned;
NPRIME := ij
end NPRIME

ALGORITHM 358

SINGULAR VALUE DECOMPOSITION

OF A COMPLEX MATRIX [F1, 4, 5]

PeETER A. BusiNngER AND GENE H. GorLus (Reced. 31 Jan.
1969 and 18 June 1969)

Bell Telephone Laboratories, Inc., Murray Hill, NJ 07974

Stanford University, Stanford, CA 94305
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CSVD finds the singular values a1 > g2 > --+ > oy of the com-
plex M by N matrix (M > N) which is given in the first N columns
of the array A. The computed singular values are stored in the
array S. CSVD also finds the first NU columns of an M by M
unitary matrix U and the first NV columns of an N by N unitary
matrix V such that ||A — UZV*| is negligible relative to ||Al},
where £ = diag (s:). (The only values permitted for NU are 0,
N, or M; those for NV are 0 or N). Moreover, the transformation
U* is applied to the P vectors given in columns N + 1, N + 2, .-+,
N + P of the array A. This feature can be used as follows to find
the least squares solution of minimal Euclidean length (the pseu-
doinverse solution) of an overdetermined system Az = b: Call
CSVD with NV = N and with columns N 4+ 1,N 42, ---, N+ P
of A containing P right-hand sides b. From the computed singu-
lar values determine the rank r of Z and define Z* = diag (17},
ol +oe, 071, 0, -+-, 0). Now z = VZ+b, where b = U*b is fur-
nished by CSVD in place of each right-hand side b.

CSVD can also be used to solve a homogeneous system of linear
equations. To find an orthonormal basis for all solutions of the
system Az = 0 call CSVD with NV = N. The desired basis con-
sists of those columns of V which correspond to negligible singular
values. Further applications are mentioned in the references.

The constants used in the program for ETA and TOL are ma-
chine-dependent. ETA is the relative machine precision, TOL
the smallest normalized positive number divided by ETA. The
assignments made are valid for a GE635 computer (a two’s
complement binary machine with a signed 27-bit mantissa and a
signed 7-bit exponent). For this machine, ETA = 2% = 1 5E-8
and TOL = 27%/27% = 1 B.31.

The arrays B, C, and T are dimensioned under the assumption
that N < 100.

The authors wish to thank Dr. C. Reinsch for his helpful sug-
gestions.
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Algorithm 304 may be made faster by using the continued frac-

tion
1 -1

—6

—20 —42 =72

21+

tinued fraction

normal curve integral, proba-

& + 3+ & + 7+ 2* + 11+ 2 +15+ 2 + 10+

whose convergents are equal to alternate convergents of the con-

z+ 4+ 2+ 2+ o+
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used in the original algorithm when % lies in one of the tails. This
requires two extra statements in the iteration loop, which, how-
ever, will only be performed about half as many times.
The alteration required to implement this improvement is to
replace the 19 lines between
if z > (if upper then 2.32 else 3.5) then
and
gl := ¢2; @2 :=s;
by
begin
real pl, p2, ¢1, ¢2, al, a2, m;
al := 2.0; a2 :=00;
n := 22 + 3.0;
pl :=1y; ql = z;
p2:=(n—10) Xy; 2:=nXz;
m = pl/gl; t:= p2/q2;
if — upper then

begin
m:=10—m; ¢t:=10—1
end;
forn :=n -+ 4.0,n 4+ 4.0 whilem = { A s ¢ { do
begin

al :=al — 8.0; a2 := al + a2;
s:=a2 X pl + n X p2;

pl 1= p2; p2:=s;
s:=a2 X gl +n X ¢2;

This also incorporates the alterations suggested in [1] below.

Comparison of the two versions using an ICL1903 (37-bit
floating-point mantissa), showed that the number of iterations
was approximately halved, and that the results differed only to
the extent to be expected from rounding error.

The original Algorithm 304 contains in its comment, ‘“The
value 2.32 may be changed to 1.28 --- if the full accuracy of the
machine is desired.”” However a test of the two versions taking
arguments in the sequence 2.34 step —0.01 showed that the origi-
nal version ran into overflow at 1.44, and the new version at 1.58,
on a machine allowing exponents up to 107.

REFERENCE
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REMARK ON ALGORITHM 345 [C6)

AN ALGOL CONVOLUTION PROCEDURE BASED

ON THE FAST FOURIER TRANSFORM [Richard C.
Singleton, Comm. ACM 12 (Mar. 1969), 179]

Ricaarp C. SincLETON (Reed. 15 May 1969)

Stanford Research Institute, Menlo Park, CA 94025

KEY WORDS AND PHRASES: fast Fourier transform, com-
plex Fourier transform, multivariate Fourier transform, Fourier
series, harmonic analysis, spectral analysis, orthogonal poly-
nomials, orthogonal transformation, convolution, autocovari-
ance, autocorrelation, cross-correlation, digital filtering, per-
mutation

CR CATEGORIES: 3.15, 3.83, 5.12, 5.14

On page 180, column 2, the 3rd and 2nd lines from the end of
procedure CONVOLUTION must be interchanged, i.e. the final
four lines should read:

begin Cin—j] := scale X (C[j] — Dl1);
Clj] := scale X (Clj] + D[]
end

end CONVOLUTION;

The procedures included in Algorithm 345 were punched from
the printed page and tested on the CDC 6400 ArgoL compiler.
After making the one correction the test results agreed with those
obtained earlier with this compiler.
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Algorithms Policy « Revised September, 1969
(Includes ALGOL, FORTRAN, and PL/I)

A contribution to the Algorithms department should be in the form of an
algorithm, a certification, or a remark. Contributions should be sent in dupli-
cate to the editor, typewritten double-spaced. Authors should carefully
follow the style of this department paying especial attention to the indenta-
tions and to the completeness of references.

An algorithm must normally be written in the ALGOL 60 Reference
Language [Comm. ACM 6 (Jan. 1963), 1-17] or in ASA Standard FORTRAN
or Basic FORTRAN [Comm, ACM 7 (Oct. 1964), 590-625). Consideration
will be given to algorithms written in other languages gmvided the language
has been fully documented in the open literature and provided the author
presents convincing arguments that his algorithm is best described in the
chosen language and cannot be adequately described in either ALGOL 60
or FORTRAN. For example, an algorithm may be published in PL/I. Until
such time as a standard language definition is approved, the language accept-
able to any PL/I translator in common use will suffice.

An algorithm written in ALGOL 60 normally consists of a commented
procedure declaration. It should be typewritten double-spaced in capital and
lowercase letters, Material to appear in boldface type should be under-
lined in black. Blue underlinirg may be used to indicate italic type, but this
is usually best left to the editor.

An algorithm written in FORTRAN normally consists of a commented
subprogram. It should be typewritten double-spaced in the form normally
used for FORTRAN, or it siould be in the form of a listing of a FORTRAN
card together with a copy of the card deck.

An algorithm written in PL/I normally consists of a commented procedure
declaration. It should be typewritten double-spaced in capital and lowercase
letters. Keywords (which will appear in lowercase boldface type) should be
underlined in black and should not be abbreviated. Blue underlining may be
used to indicate italic type, but this is usually best left to the editor. In order
to increase the readability of PL/I programs, the Algorithms department
suggests that the following conventions be observed. Variables should all be
declared. Default determination of base and scale should be avoided, as
should all contextual declarations. Identifiers should be mnemonic; the use of
keywords as identifiers should be avoided. Excessive use of go to statements
should be avoided. A standard amount of indentation (say three spaces)
should be used throughout the program as follows: (1) each new statement
should begin a new line; (2) labels should appear on a separate line and be
“outdented” from the current program position; (3) if a statement extends
beyond one line, the continuation on the next line should be indented; (4) the
statements within a procedure block, a begin block, or a do group should be
indented to the right of the keyword procedure, begin, or do. The matching
end should explicitly appear directly beneath the beginning keyword.

Each algorithm must be accompanied by a complete driver program in its
language which generates test data, calls the procedure, and produces test
answers. Moreover, selected previously obtained test answers should be given
in comments in either the driver program or the algorithm. The driver pro-
gram may be published with the algorithm if it would be of major assistance
to a user.

For ALGOL 60 programs, input and output should be achieved by pro-
cedure statements, using any of the following eleven procedures (whose body
is not specified in ALGOL) [See “Report on Input-Output Procedures for
ALGOL 60, Comm. ACM 7 (Oct. 1964), 628-630}:

tnsymbol  inreal outarray ininteger
outsymbol outreal outboolean outinteger
length inarray oulstring

If only one channel is used by the program for output, it should be desig-
llllated bly 1, and similarly a single input channel should be designated by 2.
ixamples:

outstring (1, ‘z="); outreal (1,2);
for ¢ := 1 step 1 until n do outreal (1,A[:});
ininteger (2, digit [17]):

For FORTRAN programs, input and output should be achieved as described
in the ASA preliminary report on FORTRAN and Basic FORTRAN. For
PL/I programs, input and output should be achieved by means of the com-
monly used input/output statements.

It is intended that each published algorithm be well organized, clearly
commented, syntactically correct, and a substantial contribution to the
literature of algorithms. It is necessary but not sufficient that a published
algorithm operate on some machine and give correct answers; it must also
communicate s method to the reader in a clear and unambiguous manner.
All contributions will be refereed both by human beings and by an appro-
priate compiler. Authors should pay considerable attention to the correctness
of their programs, since referees cannot be expected to debug them.

Certifications and remarks should add new information to that already
published. Readers are especially encouraged to test and certify previously
uncertified algorithms. Rewritten versions of previously published algo-
rithms will be refereed as new contributions and should not be embedded in
certifications or remarks.

Galley proofs will be sent to authors; obviously rapid and careful proof-
reading is of paramount importance.

Although each algorithm has been tested by its author, no liability is
assumed by the contributor, the editor, or the Association for Computing
Machinery in connection therewith.

The reproduction of algorithms appearing in this department is explicitly
permitted without any charge. When reproduction is for publication pur-
poses, reference must be made to the algorithm author and to the issue of
Communications.—J. G. HERRIOT
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