APPENDIX
BNI Definition of APAREL’s Syntax Language
arse-request) i= (parse-delimitator)(parse-request-name):
<pursc—:\lIornutive—list)(p:u‘sc«lulimiru‘lm')
arse-alte wwnative-list) @
(parse-: alternative- nmnc)(pamo element- llbt)j
(parsc-: alternative-name)(parse-clement-list)'|'
(parse-alternative- llst)
arse-clemen tlist) - © = (parse-elemen t)|
(purse-element); (parse-time-routine-name)|
(p- e-clemen t)(parse-element-list)|
(par-c-clement). (parse-clement-list)|
(parse-elemen L) (parse-clement-list)
(parse- -clement) y = (parse-atom)|(parse-group)
arse-group) i ="' (pased ternativelis ¢y’
'("{parse- equost name) :(parse-alternative-list)')'
<parse-umm) :: = (parse-name)|(text-literal)|
(primitive-parse-request-function)|(empty)
(parse—n:).me) = (parse-request—nume)|
(pm‘se-rcqucst-seqnwnce-n:xme)
(parsc-alternative-name) : : = ((PL/1 identifier))|{empty)
(parst delimitator):: =1 :
(parse-l ime-routine-name) : : =
(name of o PT/1 bit valued function) (arguments)
(parse-request-name) : : = (PL/1 identifier)
(parse-request -sequence-name) © : = (PL/1 identifier)
(primitive-parse-request-function) @ 1 =
(reservod PL/1 identifier) (n,rguynents)
(arguments) 1 = ({argument-list))|[{cmpty)
(argument-list) : 1 = (parse-atom)|(parse-atom),

(argument-list)

RECEIVED StrreMbBrr 1968; Revisep May 1969
REFERENCES

1. PL,/I Language Specificat ion. Form C28-6571-4, IBM Corp.

2. BarLzir, R. M. Dataldss programming. Proc. AFIPS 1967 Fall
Joint Comput. Conf., Thompson Book Co., Washington,
D.C., pp. 535-544. Also RM-5290-ARPA, Rand Corp.,
July 1967.

3. strachey, C. (Ed.) CPL Working Papers. London Institute
of Computer Science and the University Mathematical
Laboratory; Cambridge, England, 1966.

4. LEAVENWORTH, B. M. Syntax macros and extended tranda-
tion. Comm. ACM, 9, 11 (Nov. 1966), 790-793.

5. Backus, J. W. The syntax and semantics of the proposed
international algebraic language of the Zurich ACM-GAMM
Conference. Proe. Intl. Conf. on Information Processing,
UNESCO (1959), pp. 125-132.

6. cueateam, T. E. The introduction of definitional facilities
into higher level programming languages. Proc. AFIPS 1966
Fdl Joint Comput. Conf., Spartan Books, New York,
pp. 623-637.

7. Fareer, D. J.,, Griswop, R. E. aw PoLonsky, I. P. “The
SNOBOL3 programming language,” Bell Syst. Tech. J. 45,
6, (July-Aug. 1966), 895-944.

8. Feloman, J. A., D Greis, D. Trandator writing systems.
Comm. ACM 11, (Feb. 1968), 77-113.

9. GuLEr, B., AD Perurs, A.J. A proposa for definitionsin
ALGOL. Comm. ACM 10, 4 (Apr. 1967), 204-219.

0. |paws, ET.A syntax directed compiler for ALGOL 60.
Comm. ACM 4, 2 (Jan. 1961), 51-55.

I. MO.wre, R. M. TM6—A syntax-directed compiler. Proe.
ACM 20th Nat. Conf., 1965, pp. 262-274.

2, MonpscurIN, L. VITAL compiler-compiler reference
manual. TN 1967-1, Lincoln Lab., MIT, Lexington, Mass.,
Jan. 1967.

» Vol ume 12 / Number 11 / November, 1969

“LLoYD D. rosoucx. Editor

ALGORITHM 359
FACTORIAL ANALYSIS OF VARIANCE* [G1]
Joun R. Howerr (Reed. 2 Aug. 196S and 12 May 1969)
Department of Biometry, Medical Center, Virginia Com-
monwealth University, Richmond, VA 23219
* This investigation was supported in part bv Publie Health
Service Research Grant R 00016-05, from the National
Institutes of Health.

KEY WORDS AND PHRASES:
variance, Statistical analysis
CR CATEGORIES : 55

factorial variance analysis,

CoMMENTS. This subroutine transforms 3 vectory y, observed
in 2 balanced complete {;X (X . .. X L factorial experiment, in to
an interaction vector z, whose elements incliude mean and main
effects.

The experimental observations 7., (8 = (st, 2, .. -, sa); 5 = 0,
1, -+, b =10 =1,2 -+, n) are assumed to be stored in the
array Y in increasing order by the composi te base integer s.
After the transformation, the array 7 will contain the interactions
in natural order.

The method used is Good’s [1, 2] modification of Yates's [5] in-
teraction algorithm. In [1, p. 367], the interactions are expressed
in the form 2z = (M, ® My ® - .. ®M.,)y, where M. is a t:X &
matrix of normalized orthogonal contrasts and where ® denotes a
direct (Kronecker, tensor) product. The interactions can aso be

written z = (CiC; .. . Ca)y, where
Cl = 1‘!1 ® 112 ® ®[l,‘
C, = It[@M ® - ®11,,
Cn = I:l ® [:2 Q.- ®A/[n

and where I,; is the {;X{; identity matrix.
By performing elementary operations (row and column inter-

changes) on the C: we get z = (DD .. . Da)y, Where
My ® ® Ma
Di= (M2 ®0 Ma
Mu; ® ... ® My;

and where M;; isrowj of M; . The symbol @ denotes a direct sum.
For an example of this for an unnormalized matrix, see Good
[1, p. 362].

Since each row of D; consists of arow of M and zeros, we only
need M, for forming z. The subroutine forms first Day, then this
result is premultiplied by D,_, , and so on until we obtain z, The
elements of z are the required interactions.

This method can be mechanized for hand computation in the
following way. (The subroutine was written from this point of

Communications of the ACM 631

view.) Write the observations in the order specified above. Write
row one of M. down the right edge of a strip of paper using the
same spacing as for the observations. Now place this movable
strip alongside the observation vector so that the top element on
the paper strip is opposite the top element of the observation
vector. Multiply adjacent elements and write the sum of these
products at the top of a new column. Now slide the paper strip
down ¢, spaces. Form the indicated inner product as before and
write the result in the new column below the previous entry. Con-
tinue in this manner until al the observations have been used.

Now write row two of M, on astrip of paper and proceed as before.

If we continue this process with all the rows of M. we will get a

new vector z, whose elements are linear transformations of the

observation vector y. The dimension of z, is the same gg that of

y. Similarly form zn_, from 2z, and M._, . Continuing this process

we finaly obtain z; = z which is the desired interaction vector.

In al the foregoing we used the normalized contrast matrices;
thus the sums of squares are the squares of the elements of z, For
hand computation, one might prefer using the unnormalized con-
trast matrices, since their elements are integers. But then we need
a vector of divisors; it is obtained by performing the same opera-
tions on a column of ones as on y, except that we use the squares
of the elements of the contrast matrices. Then the ith sum of
squares equals z;? divided by the corresponding divisor.

This method might be called a “paper strip method” for analy-
sis of variance and is similar to paper strip methods used for
operations with polynomials. For examples o this, see Lanczos
[3] and Prager [4].

We require 21,1, .. . t. locations for storing y and z plus sup(t
{2, -+, t,) locations for storing a row of M, . The number of mul-
tiplications required is (Tt:) O t: + 1).

ACKNOWLEDGMENTs: The author wishes to thank Dr. A. E.
Brandt for initiating his interest in programming analysis of
variance. | le wishes to thank Dr. W. I1l. Carter, Jr., and the
referee, for hel pf ul commen ts.

REFERENCES!

1. Goopo, 1. 3. The interaction algorithm and practical Fourier
analysis. J. Roy. Statist. Soc. {B} 20, 2 (1958), 361-372.

2. Goon, I. J. The interaction algori thm and practical Fourier
analysis: An addendum. J. Roy. statst. Soc. {B] 22, 2 (1960).
372-375.

3. Lanczos, C, A pplied A nalysis.
Clifls, N.J., 195G.

4. Puracrr, W. Introduction t o Basic Fortran Programming and
Numerical Methods. Blaisdell, Wal tham, Mass., 1965.

5. Yares, F. The design and analysis of factorial experiments.
Imperial Bureau of Soil Science, Ilarpenden, England, 1937.

Prentice-Hall, Englewood

SUBRQUT INE FNCVA SUBROUT INE AROW

C (Y42 +ROW NS 1 2E sNCLSINFCTR) FERARREBRINENN S
' Y2ZsROWrM ’ " + (ROWINRNCsJ)
.CI“LNSION Y(1)1e020))y DIMENS’ION R‘Oh’(l)
< LOOP FOR N::Th; IC)O.V\:‘TSRXAZSET”M)ATRICES ¢ R
CO 5 NF = 1sNFCTR ”U “3'3;13;{Nc
| [A EL
C GETs 1z E OF THEMATRIX DO 2 I :' 524332”“
K t NFCTR=NF+) 2 ROW(|)=E L
NRNC 3 MSIZE(K) ¢ AND
33 3 3 = 14NRNC RETURN
C ROWOF A CONTRAST MATRIX . ELSE
CALL AROWIROWINRNCJ) 3 JM1 v Je]
C OFRFORM THE 'PAPERS TR | P ° 4 i
< OPERATION FOR A MATRIX ROW A -
D0 2 K 3 1sNCLSWNRNC ;L . S{?‘;I‘RJ'RJ R
2(1) 3 C. DO 4 I 1 JM
DO 1 L ® 1sNRNC 4 ROW(1)= é[!
KLl ' Kel=]
1 201 = ti1 J+ROW (L) ®Y(KL]) 5 oo zow]“:o')'.NRNc
2 | e |+ -
H CONTINUE mSé’{‘”" Hlemfa)/a
¢ MOVE 2 INTO Y END
DO 4 J ® 14NCLS
“ ') x 2(J)
5 CONTINUE
0C & 3 = 1aNCLS
6 YiJ) 3 Y(J)eY(J)
RFTURY
iNC
632 Communications of the ACM

ALGORITHM 360 3
SHORTEST-PATH FOREST WITH TOPOLOGIC
ORDERING [H]
RoeerT B. DiaL (Recd. 21 Nov. 1968, 27 Nov. 1968 ﬂmd
30 Apr. 1969) »
Alan M. Vdorhées and Associatés, Inc.; 1 . McLean. VA 99101
and Department of Civil Engmeermg University of‘
Washington, Seattle, WA 98105 4

KEY WORDS AND PHRASES: shortest path, tree, network;i'
directed graph :
CR CATEGORIES: 5.32, 5.42

procedure MOORE (INDEX, J, D, ma:od, n, DIST,
LAST, mazdist, ROOT, m);
value mazd, n, mazdist, m;
integer array INDEX, J, D, DIST,
integer maxd, n, maxdist,m;

comment Given a subset (called “roots’) of the nodes (num-
bered from 1 to n) spanned by a directed graph composed of
arcs of known length, MOORE finds for each node in.the network
the shortest path connecting it to its closest root node. The
result is a digjoint set of shortest-path trees, referred to here as

a “shortest-path forest.” MOORE's output describes al the 4

paths in the forest and gives their lengths. It also provides two

lists which seguence the nodes spanned by the forest in forward
and backward topological order. In the agorithm's terminology,

“forward topological order” is a sequence in which any given
listed after any other node which lies on the pah be
tween it and its root node. Conversely, the “backward topo-
logical order” has the nodes arranged in dccrensing distance
from their ncarest root node.

The procedure Mow implements a well-known, widely-used
algorithm by 15, F. Moore [1] and is particularly suited for a
large, sparsc network whose arc lengths ae short and which
have a small variance, e.g. an urban highway system. As an
indication of its cfficiency, an Assembly Language routine pat-
terned after MOORE for the IBM 3G0 model G5 found al short-
est paths from a single root node to the remaining 12,000 nodes
o a 36,000-arc network (i.e. built a minimum-pnth tree) in one
(1) second. In general, for a connected graph, MOORE's ‘‘run-
ning time’ is directly proportional to the number of arcs iy the
network and is independent of the number of roots. The¢ me
chanics of the dgorithm are summarized in the following
three steps :

0. Mark each root node r “reached but not scanned” and asso-
ciate with it a distance of zero (DIST[r]=0). Mark each
nonroot node 7 “not reached” and associate with it a distance
of infinity (i.e. DIST[¢)=mazdist). Go to Step 1.

1. From among the nodes marked “reached but not scanned,”
select the node i whose distance is smalest. If there is N0
node so marked, the forest is complete. Otherwise go to Step

2.

. For cach ac (i, j7) in the network (i.e. al arcs exiting the
selected node i), Compare DIST[j] with the sum of DISTH
and the arc length of (i, j). Whenever this latter sum is less
than the former quant|ty, set DIST[j] equal to it, mark
node j “reached but not scamned” and put the ac (i, j) "
the forest, removing any other arc whose final node is)
When all ares exiting node 7 have heen so examined mark
node i “reached and scanned’ and go to Step 1.

While Moore’s algorithm possesses the important attribute of

examining each are in the network only once, the speed achie wved

in its implementation depends primarily on its efliciene: 1P

I, NEXT,

I, NEXT, LAST, ROOT;

node IS

o

Volume 12 7 Number 11 / November, -969

<tep 1. To facilitate this node selection, the procedure below
<cs a topological ordering of the final nodes of the arcs in the
artial forest. It effects Step 1 by referring to a forward-order-
ing list, NEST, to determine which node should be selected
next from the “reached but not scanned” category. A backward-
ordering list, LAST, aids updating the ordering when a previ-
ously found path to a node is superseded by a newly found,
shorter one. Also used in this updating process are two short
local vectors, HEAD and T'.1/L. HEAD(d] and TAIL[d] contain
the first and last node of a sublist of nodes, whose associated dis-

tance is riot less than the distance of the node selected in Step 1

-ud 5 congruent to ¢ modulo the net’s maximum arc length.
he use of these latter two arrays becomes clear while studying

vne ALGOL below.

Besides the m root nodes stored in ROOT(1], --- ,ROOT[m], in-
put to YOORE consists of a network description in three vectors,
J,D,and /NDEX, together with thescalar parameters n, mazd,
and maxdist. The array J contains the final node numbers of all
arcs in the network stored in ascending sequence with respect
to their initial node number, The second vector, D, is parallel
to the array J and holds the corresponding arc lengths — against
which paths are to be minimized. /N DEX][:] points to the first
¢'ement of J representing an arc exiting node . /NDEX is di-
: »nsioned from 1 to n + 1, where the parameter n is the highest
node number in the network, and INDEX[n+1) contains one
plus the total number of arcs in the network. The arc lengths
stored in the array D must be positive integers strictly less than
the parameter maxd. Similarly, as maxd exclusively limits the
length of an arc, so does the other input scalar parameter
mazdzst limit the length of a path. MOORE only considers paths
which are shorter than mazdist.

The algorithm’s output describes the minimum-path forest
in two vectors, | and DIST. [(j] contains the initial node of the
f rest’s unique are whose final node ij. Thus the sequence of
:»des representing the shortest path from the nearest root
toj is found in reverse order by looking at I[j], I{I[jl], etc.,
until a root node is encountered. DIST(;] returns the minimized
distance from,the closest root node toj. If j is not reachable
from any root node via a path shorter than mazdist, MOORE
returns with DIST[j] = mazdist and /(j} = 0. The forest’s topo-
logical orderings are returned in list form in the pointer vectors
NEXT and LAST.N¥EXT is acircular successor list. The number
of the node closest to its root node is stored in NEXT{ROOT1}].
The next closest node is contained in NEXTINEXTIROOTI1}]],
e =, until ROOT{1] is encountered in some NEXT[;), where j is
the number of the node farthest from its root node. Similarly,
LAST is a circular predecessor list. The backward topological
order is obtained by starting at LAST{ROOTI1]}, which contains
the number of the most distant node. LAST(LAST{ROOT(1}]]
has the next most distant,, etc., until LAST(j] = ROOT{l|, j
being the closest node to its root. When no path shorter than
maxdist exists between a root node and j, then j appears in
neither the NEXT nor the LAST list.

REFERENCE:

1. Moorg, E.F. Theshortest path through a maze. In Inter-
national Symposium on the Theory of Switching Proceedings.
Harvard U. Press, Cambridge, Mass., Apr. 1957, pp. 285-292;

begin

integer procedure mod(d, w d) ; value d, mazd; integer
d, mazd; mod :=d — mazd X entier(d+mazd);
integer array HEAD(0:mazd—1], TAIL{0:mazd—1}; integer

1, pt, k, v, §, q, ¢t;
for< := 1step 1 until mazd—1 do HEAD{] := TAIL{z] '= 0;
for ¢ := 1step 1 until n do
begin DIST(i] := mazdist;
for? := 2 step 1 until m do

IlZ] .= 0 end;

Volume 12 / Number 11 / November, 1%9

begin
NEXT(ROOT{i—1]] := ROOT{i]; LAST[ROOTL)] := ROOT
(=1
DIST(ROOT(}| =0

end;

LAST{ROOT(1]] 1= NEXTROOT(m]] :

pt =0,

i = HEAD(O] := ROOT(]; TAIL[O] := ROOT|m];
comment Examine all exits from selected node (Step 2 above);
ri fork := INDEXT[:i] step 1l until INDEX[;+1] — 1 do

begin

v := DISTH) + D)y | 1= Jikl;
if v < DIST[;] then

DISTIROOT(1)] =

begin
comment Path toj via ¢ isshortest so far— put arc (i, j)
in forest;
if DIST|j) = maxsdist then
begin

comment Delete node j from its prior sublist;
q = mod(DIST(;}], maxd);
if HEAD{q] =] then HEAD[q)
else
begin

if TAIL[q) =] then

= NEXT(j}

begin TAIL[q] := LAST(j]; NEXTILAST{) = 0
end
else
begin LASTINEXTI(j)] := LAST(jl; NEXT[LAST
71} 1= NEXTI{j] end
end
end;
comment Hook j to its new sublist, and put arc (i, j) in
forest;

q := mod (v, maxd);
if HEAD{q] = 0 then
begin HEADIq] :=]; LAST(j} := 0end
else
begin LAST[j] := TAILlq); NEXT|TAILg)} :=] end;
comment Update forest and forward ordering;
Ilj] 1= i; DIST{) :=v; TAILlq] :=j; NEXT(;} =0
end
end;
comment Select next node ¢ whose exit arcs are to be examined
(Step 1 above);
if NEXT{] # 0 then
begin
comment Sublist containing i not empty — use successor of
t;1 = NEXTl), gotor
end;
comment Sublist containing i empty — use first node in next
nonempty sublist;

HEAD[pt) :=0;
for d := 1step 1 until mazd — 1 do
begin

pt 1= mod(pit+1, mazd);
if HEAD{pt] # 0 then
begin
comment Found a nonempty sublist— hook it to lists;

LASTIHEAD(pl)) = 4; 1 := NEXT[] := HEADp!];
gotor
end;
end;
comment All sublists empty, forest built—circularize lists
and quit;
LAST(ROOT(L}]) .= i; NEXT{i] = ROOT(1]
end MOORE
Communications of the ACM 633

ALGORITHM 361

PERMANENT FUNCTION OF A SQUARE

MATRIX | AND II [G6)

BRUCE SHR1VER, P. J. EserLEIN, AND R. D. Dixon (Recd.
19 Feb. 1969, 7 Mar. 1969 and 9 July 1969)

State University of New York at Buffalo, Amherst, NY
14226

KEY WORDS AND PHRASES:

nant
CR CATEGORIES: 5.30

matrix, permanent, determi-

real procedure perl (4, n);
integer n; array A;

comment Let A be ann X n real matrix, n > 1. The perma-
nent function of A, denoted per(4), is computed by H. J.
Ryser’s [1} expansion formula:

n—1 r
per(4) = :2:,0 (=1y e; 1;11-'5{

where Tj,j =n,n=1,-.- ;2 1,is the set of vectorsx = (),
i =1,2,...,nwhich are obtained by adding j columns of A

together in all(j) possible ways. To effect the sum over vectors

in T;, n — 1sums are computed. The natural 1-1 map from the

binary integers to all r-combinations, r = 1,2, ... ,n — 1,is

used to increment the sums over the sets T;,
REFERENCE :

1. Ryser, H. J. Combinatorial Mathematics, Carus Monograph
%14, Wiley, New York, 1963, p. 27;

begin

real siy, pera, prod, rowsum;

integer number, limit,mod, gen, g, i,j, r;

array sum(0:mm—1};

integer array d{l:n);

sig := —1; pera :=0; imit := (27n) = 1;
for r := Ostep 1 until n — 1do sumlr] := 0;
for number := 1 step 1until limit do

begin

r :=0; gen := number;

for mod :=1 etep 1 until n do

begin
g :=gen «~ 2; if (gen—¢gX2) = 1 then
beginrt =1 +1; dlr) := mod end;
gen =g

end;

prod :=1;

for 7 := 1 step 1 until ndo

begin
rowsum :=0;

forj := 1step 1 until » do
rowsum := rowsum T A[7, d(jlj;
prod := prod X rowsum

end;
sumln—r] 1= sumn—r) + prod
end;
forr := 0step Luntiln — 1do
begin sig := —stg; pira :=pera T sig X sumlr) end;
per := pera

end of real procedure perl,

real procedure per2(4, n);
integer n; array A;

comment Let A be an n x nreal matrix, n > 1. The permanent
function of A, denoted by per(4) is computed by Jrirkat and
Ryser’s [1] method of inductively generating the vectors
p1, ", p. Where p, is the vector of permanents of by » sub-

matricesof the first » rowsof A. Thisvector has 7:) components

634 Communications of the ACM

indexed by the r-combinations of {1, --- ,n}. The naturg) 11
map from the binary integers {1, --. ,2%tn—1} to the r-com.
binations of {1, -+ ,n} forr = 1, -.- ,nisused to indey the

p’s and thus they are generated in an order somewhat dif’arent
from that of Jurkat and Ryser.
REFERENCE:
1. JURKAT, W. B. anp Ryser, H. J. Matrix factorizations 0
determinants and permanents. J. Algebra 8 (1966), 1-27;
begin
integer number, limit, mod, gen, g, r, dig, sub,j ;
array list[1:21 n-1];
limit :=21tn = 1;
comment Initialize list aa accumulators;
forj := 1step 1 until limit do list [j] := 0;
forj := 1step luntil ndolist [2 1 (j~1)) := A, 5);
for number := 1 step 1until limit do
begin
if list [number}= O then
begin
r := 1; gen := number;
for mod := 1step 1l until ndo

begin
g :=gen + 2,
ifgen —2x g =1thenr :=r +1;
gen =g

end count of 1’s in number;
dig 1= 1; gen := number;
for mod := 1step luntil ndo

begin
gi= gen + 2;
if gen — 2% ¢ = 0 then
begin
sub := number + dig; l
list {sub] := list [sub) T list (number) X A [r, mod]
end;

gen :=g; dig :=2 X duy
end computations with list [number];
end
end;
per := list [limit]
end of real procedure per2;

Note. On the Permanent Function of a Square Matrix | and II:
Program | is slower than Program II. However Program IT uses
approximately 2* more locations of store. The running times for
both programs double when n is incremented by 1.

ALGORITHM 362

GENERATION OF RANDOM PERMUTATIONS [G6)

J. M. Roeson (Recd. 1 Apr. 1969)

Programming Research Group, 45 Banbury Road, Oxford,
England

KEY WORDS AND PHRASES:

tation, transposition
CR CATEGORIES: 55

permutation, random permu-

procedure perm(n, r, A); value n, r; reger
array A;

comment This procedure produces in the vector A a permut-
tion on the integers 1,2, --- , n, each of the n! permumiorgs
being given by one value of r between 1and n!inclusive. It 1
thus similar in effect to the procedure given in [1] but it is c0My
siderably faster, especially for large values of », since it uses
single loop rather than a double one.

A permutation is generated as the product of n — 1 transP®

sitions of which the jth transposes A(n+1—j) and Azl 0
somez < n+1—j.

integer n, I';

Volume 12 / Number 11 / Novemb: » 196°

- the line
f¢ 7 :=1step luntil ndo A[t] := i
s vmitted the procediire will permute the originnl values
A|t], -»+ , A{r] in the same manner.
REFERENCE!:
1. ROBINSON, C. L. Algorithm 317, Permutation. Comm. ACM 10
(Nov. 1967), 720;

pegin
integer &, , Y]
for i := 1lstep Luntil n do Ali} :
for ¢ := n step —1until 2 do
b fin
== i) Xit1; oy =r %1
= Afzly; Alz] = Ali]; A[] =y
end
end

ALGORITHM 363
COMPLEX ERROR FUNCTION* [S15]
WaLTER GauTscHi (Recd. 11June 1969)

Con Huter Sciences Department, Purdue University, La-
favette, IN 47907
* Work supported, in part, by the National Aeronautics and
Space Administration (NASA) under grant NGR 15-005-039
and, in part, by Argonne National Laboratory.

KEY WORDS AND PHRASES: error function for complex
argument, Voigt function, Laplace continued fraction, Gauss-
Hermite quadrature, recursive computation

CR CATEGORIES: 5.12

proc- dure wofz(x, y, re, vm); valuez,y; real z,y, re, im;

comment This procedure evaluates the real and imaginary
part of the function w(z) = exp(~z*%erfc(—1z) for argument-*
z =z + 1y in the first quadrant of the complex plane. The accu
racy is 10 decimal places after the decimal point, or better.
For the underlying analysis, see W. Gautschi, “Efficient com-
putation of the complex error function,” to appear in SIAM
J. Math. Anal.;

begin
integer capn, nu, n, npl;

. real h h2, lambda, rl, r2, s, sl, s2, 11, 12, c;

~ Boulean 6;

tify <429 Az <533 then

hegin

= (1-y/4.29) X sqrt(l—z X £/28.41);

h:=16Xs; h2:=2Xh;
mpn :=6 +23xs; nu:=9+2 xs

y end
else

. lbeginh := 0; capn :=0; nu :=8end;

if h > 0 then lambda :=h2 1 capn;
b.=h=0Vlambda =0;

ol =12 = 8] = 82 = 0

= forn :=nustep — luntil 0 do

~ Ibegin

3 npl :=n+1;

=y +nh h+n npl X rl; 2 :=1 = npl X r2;

= 5/(1 X tl 4+ 12 X (2);

rl =cXtl; 2 :=CX 12

lfh> 0 A n S capn then

begin
= lambda +s|; sl =71 X tl —r2 X s2;
32 :=r2X 1 +r1 X s2;
lambda := lambda/h2
end

Yolume 12 / Number 11 / November, 1969

end;
re := if y = 0 then exp(—zXz) else
1.12837916709551 X (if & then rl else s1);
um = 1.128879113700551X (if b then r2 else §2)
end wofz

CERTIFICATION OF ALGORITHM 47 [S16]
ASSOCIATED LEGENDRE FUNCTIONS OF THE
FIRST KIND IFOR REAL OR IMAGINARY
ARGUMENTS [John R. Herndon, Comm. ACM 4
(Apr. 1961), 178]
S. M. Cong (Recd. 6 Feb. 1969, 12 May 1969 and 9 July
1969)
The Plessey Co. Ltd.,
England
KEYWORDS AND PHRASES. Legendre function, associated

Legendre function, real or imaginary arguments
CR CATEGORIES: 5.12

Roke Manor, Romsey, Hants,

This procedure was tested and run on the I.C.T. Atlas com-
puter.

In addition to the errors mentioned in the certification of August
1963 2] the following points were noted.

l. The requirement that when n <m p := 0 must take prece-
dence over p := 1 when n = 0. Hence the order of the first two
if statements must be interchanged.

2. Most computers fail on division by zero. Hence the state-
ment beginning if z = 0 then and ending with go to last
end; should be inserted betweenw :=1; andy := w/(&Xz).

3. Whenz =0, if the argument of the Legendre function is to
be considered as real p must be multiplied by (=1):. This is
achieved by inserting after the statement beginning p := Gamma
[m+n-+1]) the if statement

iff thenp :=p X (-1) T%;

(For a change in the meaning of r see item 5 below.)

4, After the label last in the compound statement begin-
ning if » # 0 the statement ¢ := n — n+4; is wrong. This
should read
i ==n—4X (n+4);

5. Since r is used only as an indicator it is better that it be
declared & Boolean. It can then be given the value true if the
argument of the Legendre function is z and false if it is 7z. The

following program changes are then necessary. The statement
beginning

if r = 0 then

becomes

if r then

The statement beginning
if r % 0 then

becomes

if 1 r then

6. Computing time can be saved in several ways. First we
should declare another integer k and set it equal ton — m. The
first statement of the procedure is then

k:=n-m;
The next statement will begin
if k <0 then

(This replaces if n < m then whose position has been changed
in accordance with item 1above.)

Communications of the ACM 635

n — m is then replaced by k in the lines
for i := 1step L untiln — mdo

and
if G+1) = (n—m) then

Removing j as suggested in the previous certification leaves it
free to be set to k <+ 2. This requires the following modification:
instead of the unnecessary statement if n = m then go to main

put
j i=k=+2;
In the statement beginning if £ = 0 then replace the line
begini := (n—m)+ 2;
by
begin a :=j;

In the for loop beginning for ¢ := 1 step 1 until 12do a
furthersmall saving in computer time could be achieved by setting
k to n — i. The loop thus becomes

for 7 := 1 step 1 until 12 do
begin if ; T 1 <1 then go Lo last;
k:=n-i;
= p T Gamma[2Xk+3] X z/Gammali] X Gammalk+2] X
Gammalk—1i—m+3));
zi=zXy
end

For real argument the program was tested as follows.

(i) = =00.1)1, m =03, n =03
(i) z =120228 m =0Q1)2, n =0(1)2
(iii)m =0,n = 9,z = 0(0.2)1, 2(2)10.

For imaginary argument we used
z = 000.2)2, m =0(1)2, n = 0(1)2.

Checking for real argument was carried out where possible
using [1], ngreement being obtained in all eases to the maximum
number of figures availuble, which varied between i and 8. For all
other cases (3] had tu be u%d giving ouly a 5 figure check

REFERENCES:

1. Asramowrrz, M., anp Strcun, 1. A. Handbook of mathe.
matical functions. AMS 55, Nat. Bur. Stand. US Govt. Print-
ing Off., Washington, D.C., 1964.

2. Georgr, R. Certification of Algorithm 47. Comm. ACM 6

. {Aug. 1963), 446.

3. Morse, P. M., anp FesBacu, H. Methods of Thearetical
Physics Pt. II. MeGraw Hill, New York, 1953.

CERTIFICATION OF ALGORITHM 255 [CG]
COMPUTATION OI' FOURIER. COEIFFICIENTS
[Linda Tcijclo, Comm. ACM & (May 1963), 279]
GiLLiaN HALL™ anp Varemie A. Ray} (Recd. 31 Mar.
1969 and 1 July 1969)
National Physical Laboratory, Teddington,
England
* M.R.C. team, Division «f Computer Science (formerly of Di-

vision of Numerical and Applied Mathematics).
T Division of Numerical and Applied Mathematics,

KEY WORDS AND PHRASES:
coefficients, Filon’s method
CR CATEGORIES: 5.16

Middlesex,

numerical integration, Fourter

The algorithm was translated using the KDF9 Kidsgrove
ALcor compiler, and needed the following correction.

636 Communications of the ACM

The tests for convergence on lines 51 and 83 should yeaq re-
spectively:
if abs(prevint2—1ini2) < eps X abs(int2) A n > 5 then
if abs(previntl—intl) < eps X abs(zntl) A n > 5 then

With this alteration, the program was tested successfully on g
series of functions F(z) using a range of values of m and eps fm_
each function. The parameter subdivmaz was set at the recop.
mended value, 10. For F(z) = z?, for which the method is exact,
results were obtained correct to machine accuracy, i.e. 104 deci-
mal places.

Remarks. (i) It would be better to declare the identifier g3
as type integer, i.e. to replace lines 20 and 21 of the text py:

0, cl, s0, s1, inil, int2, previntl, prevint2, {3, temp;
integer n,i,tnl; Boolean bool;

(it) There is no indication, after execution of the algorithm,
whether the computation was terminated because of apparent
convergence or because the number of times, n, that, the interva]
was halved became greater than subdivmaz. The following modifi
cation provides such an indication; it has the effect that cosine
and sine will retain their entry values except in the case where
cosine or sine has the value true on entry and n becomes greater
than subdivmaz in the course of computation. In this case the value
on exit will be false.

Line 3 becomes:

value eps, subdivmaz, m;
Line 57 becomes:

real eps, cint, sinl;

sinl 1= int2; sine
Line 88 becomes:
cosine go to ezt end;

(iii) To avoid the repeated evaluation of (F(0),
following modification is suggested:

Declare a new variable terml of type real on line 20.

Replace lines 23 and 24 by :

:= false; go lo L0

;= false;
F(1.0) the

terml = F(1.O)X cos(k);
sumcos := (F(0)+terml) X 0.5;
sumsine = 0;

terml .= 2 X (sumcos—terml),

Replace lines 44, 45 and 49, 50 by:

prevint2 = (aXierml+bXsumsine+gXoddsine) X 0.5;
begin nt2 :=h X (aXterml4-bXsumsine+gXaddsine);

Replace lines 76, 77 and 81, 82 by:

(b X sumcos+gXoddcos) X 0.5;
= h X (bXsumcos-+gXoddcos);

The work described above has been carried out at the National
Physical Laboratory.

previntl =
begin inil

CERTIFICATION OF ALGORITHM 296 (E2]

GENERALIZED LEAST SQUARESFIT BY

ORTHOGONAL POLYNOMIALS [G.J. Makinson,
Comm. ACM 10 (I'eb. 1967), 87]

WavNE T. WaTsoN (Recd. 11Feb. 1969 and 21 NMar ‘=9'69)

Service Bureau Corp., Development Laboratory, 11+ est
St. John Street, Sari .Jose, CA 95113

KEY WORDS AND PHRASES: least squares, curve fitting

orthogonal polynomials, three-term recurrence, polynomial 1€

gression, approximation, Forsvthe’s method

CR CATEGORIES: 5.18, 5.5

0

LSFITUW was compiled and tested in CALL/300:PL/L. N
maodifications were made to the algorithm, and the (ompmatl‘mt
were made in long precision (about 15 significant float poin

. . 9
Volume 12 / Number 11 , Noveml: & 196

.. zits). In addition, POLYS [2]was used to transform the results
ot LSFITUW from the interval (—2,2) to the interval (zi ,z..).

To generally test the algorithm, several small sets of data were
used with LSFITUW and the resrilts were compared with those
obtained from an independently written polynomiual curve fitting
algorithm which does rot use the method of orthogonal poly-
nomials. Only polynomials of degree less than 5 were used to fit
the data. Agreement between coefficients and standard errors was
ood.
i As a more comprehensive test of the algorithm, all experiments
t+ +t could be duplicated from the article by Ascher and Forsythe
(I were performed; a slight modification to LSFITUW was re-
quired to transform the data to the interval (=1, Djinstead of
(—2,2). Briefly, the experiments included:

(1) For certain equally spaced data, a comparison of the a;and
g; calculated by the program against those values of a;and 8:
obtained from known formulas («:=0 for equally spaced data).

(2) A fit of the function f(z) = | z | over the interval (=1,1)
forequally spaced data for polynomials of degree as high as 30.

(3) A fit of the function f(z) = e* for unequally spaced data
inside the interval (=1,1) for polynomials of degree as high as 32.

“he results of experiment (Dshowed that LSFITUW produced
vaines of B: differing only in the last significant digit (15)from
those calculated by the known formula. The values of «: produced
were in the range of the floating point round-off error (107%).
The results of duplicating experiments (2) and (3) were better
than those reported in [1] because of the greater precision used in
the calculations (about 10.8versus about 15 significant floating
digits). While conducting the last two experiments, it was noted
that for data values of z symmetric about the origin, the value of
b in the transformation equation z = af + 6 may be computed to
be « number in the floating point cound-off range instead of exactly
zer - When fitting polynomials of a sufticiently high degree, this
may cause an underflow at line 4 of POLYS, the transformation
routine. The user may find it desirable to branch on an underflow
in POLYX and reset 6 to zero.

To check the computations of the ¢«? obtained by the recursive
definition of ¢* used in the algorithm, the x* were compared
with results computed directly from the equation

wt = X (= (@) (m=k=1) ™)

whe re y is the best fitting polynomial of degree k for the data
z; , f, . Experience with the algorithm indicates that & loss of
accuracy in computing o2 occurs at smaller values of k when using
the recursive definition than when using (*). If the values of o+*
are of importance to the user, he may find it useful to compute
them using (*) instead.

A comprehensive test of the algorithm's feature which uses the
o to automatically select the best fitting polynomial was not
made, but the feature did work properly for the polynomials used.
In connection with this feature, the user should be aware, though,
of the possible difficulty mentioned above in computing ¢&* ac-

. tur:tely using the recursive definition. In this case, the user

should not expect the algorithm to select the best fitting poly-

nomial. This difficultywas experienced several times while testing
the algorithm, but was circumvented by using (*) to calculate

@2, In order to detect a possible loss in accuracy, the ¢x? should

- be examined carefully or compared with those obtained by (*).

§f Comprehensive tests were not made using weights; however,

: no problems were encountered with a moderate usage of this

feature.

- REFERENCES:

L 1. Ascuer, M., AnD Forsyrre, G.E. SWAC experiments on the
use of orthogonal polynomials for data fitting. /. ACM 6
(Jan. 1958), 9-21.

- MacKINNEY, JOHN G. Algorithm 29, Polynomial transformer.
Comm. ACM 3 (Nov. 1960), 604.

TR

Yolume 12 / Number 11/ November, 1969

REMARK ON ALGORITHNM 178 [E4]

DIRECT SEARCH [Arthur F. Kaupe, Jr., Comm. ACM
6 (June 1963), 313]; [as revised by M. Bell and M. C.
Pike, Comm ACM 9 (Sept. 1966), 634]

I, IX. Tomuin axp |, B. Smith (Reed. IT May 1968, 9
Sept. 1968 and 30 June 1969)

Stanford Research Institute, Menlo Park, CA 94025, arid
CERN, DD Division, Geneva, Switzerland

KEY WORDS AND PHRASES:

direct search
CR CATEGORIES: 5.19

function mimimzation, search

The procedure DIRECT SEARCH, as modified by M. Bell and
M. C. Pike {1], does not always provide the determined minimum.
In addition, the maximum number of function evaluations per-
mitted is almost always exceeded whenever the step-length is
greater thandella at the time tht: number of function evaluations
is greater than or equal to mazeval. Finally, the label 3 B not
used.

To insure that the determined minimum is always provided,
the test on the number of evaluations should be moved to a point
where the minimum has been properly provided.

In [2] DeVogelaere remarks correctly that the procedure does
not exit asspecified and gives changes which will indeed cause the
procedure to terminate when the number of function evaluations
exceeds the specified limit (and not some number of evaluations
later). However it & felt that DeVogelaere's solution to this
problem causes excessive testing. Therefore the test should be

performed after an exploratory move as in [1] but it should also

be performed when the step-length is reduced. This method of
testing violates the letter of the specified rise of wazeval but not
the intent, which & to provide an escape from excessive calcula-
tion.

To obtain the determined minimum, to provide a means for
reducing the number of function evaluations when step-length
is greater than delta, and to eliminate the unused label:

(DThe lines
2. if eval > mazeval then
begin converge := false
go to EXIT
end;
should be removed.

(2) The line (16th line from the end of the procedure given

in (1])

for k := 1step 1 until K do
should be changed to
2: fork := lstep 1 until K do

(3) The line
Spsi :=88; SS := Sphi := S(phi); eval := eval +1; E;
should have the following code inserted after the statement
Spsi := 88S;
if eval > mazeval then

begin
3: converge := false;

go to EXIT

end;

(4) The line
3: if DELTA > delta then
should be changed to
if DELTA > delta then

(5) The line

Communications of the ACM 637

begin DELTA := rho X delta;
should be changed to

begin if eval > mazeval then go to 3 else
DELTA := rho X delta;
REFERENCES :
1. BELL, M. anD Pikg, M. C. Remark on Algorithm 178. Comm.
ACM 9 (Sept. 1966), 684.
2. DeVogereLaERE, R. Remark on Algorithm 178. Comm. ACM 11
(July 1968), 498.

REMARK ON ALGORITHM 178 [EX]

DIRECT SEARCH [Arthur F. Kaupe, Jr., Comm. ACM
6 (June 1963), 313; as revised by M. Bell and M. C.
Pike, Comm. ACM 9 (Sept. 1966), 684]

LyLe B. SmITH* (Recd. 9 Sept. 1968)

Stanford Linear Accelerator Center, Stanford, CA 94305

® Present address. CERN, Data Handling Division, 1211
Geneva 23, Switzerland

KEY WORDS AND PHRASES:
direct search
CR CATEGORIES: 5.19

function minimization, search,

Algorithm 178, as modified by Bell and Pike [1], has been
used successfully by the author on a number of different problems
and in a variety of languages (e.g. Burroughs Extended Arcor on
a B5500, Susangor on an IBM 7090, and Fortran on the
IBM/360 series machines). A modification which has been found
to be useful involves tailoring the stepsize to be meaningful for a
wide variation in the magnitudes of the variables.

As currently specified {1}, each variable is incremented (or de-
cremented) by DELTA as a minimum is sought. For a function
such that the values of the variables differ by several orders of
magnitude at the minimum, a universal step size causes some pa-
rameters to be essentially ignored during much of the searching
process. For example, if a function of two variables has a minimum
near {100.0,0.1), astepsize of 10.0will be useful in minimizing with
respect to the first parameter, but it will be meaningless with re-
spect to the second parameter until it has been reduced to near
0.01. On the other hand, a step size of 0.01 would be useful on the
second variable but on the first variable it would take an undesir-
ably large number of steps to approach the minimum.

A modification to direct search which circumvents this scaling
problem involves the use of a different step size for each variable.
This is easily implemented since an array is already used to hold
the signed step size for each variable. The change is accomplished
by removing the statement labeled Start and replacing it by the
following statement:

Start: for k := 1step 1 until K do
begin s(k) := DELTA X abs (psi(k));
if s(k) = 0.0 then s(k) := DELTA;

end;

This change sets the step size for each variable to DELTA times
the magnitude of the starting value, or if the starting value is 0.0
the step size is set equal to DELTA. Thus DELTA is the fraction
of the original value of each variable to be used as an initial step
size. Subsequent reductions in step size are haudled correctly
without further modifications to the procedure.

As an example of the usefulness of the above madification, con-
sider the function

FOX X, Xy = (X, - 0002 X, — 1.0 (. - 100.0)2

638 Communications of the ACM

with a minimum at (0.01, 1.0, 100.0). The following table shows tpe
results Of using directsearch on this functionwith and withoyt, the
modified step size. The results were computed on an IBM 360/75
computer using single precision with rho = 0.1, delig :
0.001, DELTA = 0.2 for the modified step size (giving 20 percepy ;
of initial value for initial step size) and DELTA = [averagey_xagni_ %
tude of initial guesses for the variables] for the algorithm as pyp,.

lished.

e

T

TABLE 1.7 = (X; = 0.01)? 4+ (X; — 1.0)* + (X5 - 100.0)

Number of Minimum Final values of the voriables ‘
DELTA | function value of § |————"T———— __
evaluations X ’ X, ‘ X,

For initial values of (0.0,0.0, 200.0) :

Direct seareh 6. 6667 153 0.841 X 1077 |0. 00999895 0. 999905 106. 09
Modified direct
search 2 112 0.597 X 10-7 |0.00999998i0. 999990'100. 00p
For initial values of (0.05, 5.0, 500.0) :
Direct search 168.36 174 0.934 X 1077 {0.0100263 |0.998958° 99.09e9
Modified direct ‘
search .2 75 0.659 X 10-* 0.00909988]0.999998| 99,9093

Note that the modified method will tend to yield the same rela-
tive accuracy for each parameter, whereas with a fixed sten size
direct search will tend to give the same absolute accuracy ior all
parameters. In most cases a relative accuracy is probably more
desirable than an absolute accuracy.

REFERENCES
1. BELL, M., AND Pixx, M. C.

ACM 9 (Sept. 1966}, 684.

Remark on algorithm 178. Comm

\

REMARK ON ALGORITHM 308 [G6]

GEYERATION OF PERMUTATIONS IN PSt""DO-

LEXICOGRAPHIC ORDER [R. J. Ord-Smith, omm.
ACM 10 (July 1967), 452

R. J. Orp-SmitH (Recd. 21 May 1969)

Computing Laboratory, University of Bradford, England

KEY WORDS AND PHRASES: permutations, lexicographic

order, lexicographic generation, permutation generation
CR CATEGORIES: 5.39

Following the construction of the very fast lexic xraphic
permutation Algorithm 323 [1] it has become clear that 1}, ::ermu-

tation sequence generated by the Algorithm 308 can be obtained
more quickly. In fact, replacement of
rstart:m := glkl; ¢ :=z{m]; zlm) = zlk); zk] = ¢
glk) i =m + 1, k:i=k —1;
by
trstart: glk] .= glk) T+ 1;
in Algorithm 323 produces the ECONOPERM sequence of Al
gorithm 308.
The times are as follows on an ICT 1905, in seconds

15 1y

Algorithm 323 G 47
New ECONOPERM 5.9 45
Old ECONOPERM 6.2 50.6

RurFERENCE: -
1. Onp-Smrry, It. J. Algorithm 323: Generation of permutation
i lexicographic order. Comm. ACM 11 (Feb. 1968), 117

. 9
Volume 12 / Number 11 / Novem 196

