
~psrS~-demc:r~ t-lis t) : : = (pwsc-elernerl t)l
(p;llwlemefI t,); (p3rsc-tirr~c-r~~~t,if~~~-f~~~m~j~
(p:i’ (:-dcrnor~ t)(r)~lrsc:-(~l~~rn(:rll-list)j
(p:l~~..(:-~:lerr~~~f~tj. (p:rrse-element-list)1
(p~rse-elernerl t> - (p:trsc-clement-list)

(pa~~e-clcmcr~tJ : : = (I>:lrs~?-utom)l(p:lt’se-gr(~r.lp)
(parse-grOllp~ 1: = ’ ’((parse-d ternative-lis t)‘)’ 1

~(t(p~~rse-rec~~~cst.-r~ame):(p:~rse-:~iterrrut,ive-list)’)’
(pa~se-atoIll) 1 1 = (parse-name)[(text-1iter:d)l

(primit ivct-I,;Lrse-recl~lest-f~tnct,ioll)j(cmpt,y)
(parse-n:Lme) : : = (parse-request-tame)/

(p:trsc?-recl~rest-se~~~ef~~~e-rlnme)
(parsc~.:Ilterrl:L(,ivc-thyme} : : = ((PL/l identifier))I(ernptyj
(parsl -delimit:~tor) : : = : :
(parse*-I iIne-rorlt,irlc-n:lmc) : : =

(nantc? of : L PT,,/l bi t vd~wtf function) (arguments)
(parse-r.ecl~Iest-r~tlme) : : = (PI,/1 ideutifer)
(parse-re(1IICSt -sccluencc-nnmc) : : = (IX/l identifier)
(primitivcl-parso-rt!cltlest-f~~rlctic,n) : : =

(reservcti PL/l itlcntificr) (:wgrunerk3)
(argumcfltS) : : = ((:rrb’rlment-list))I(cmpt,y)
(argument-list,) : : = (pwse-iktornjl(p;wse-utornj, (;wgurnent-list)

1. PL,‘I La~lguuge Specific:tt ion. Form C28-6571-4, IBM Corp.
2. BALZI~, R. M. Dataldss programming. Proc. AFIPS 1967 Fall

Joint Comput. Conf., Thompson Book Co., Washington,
DC., pp. 535-544. Also RM-5290-ARPA, Rand Corp.,
July 1967.

3. STRACHEY, C. (Ed.) CPL Worlcing Papers. London Institute
of Computer Science and the University iMathematical
Laboratory; Cambridge, England, 1966.

4. LKAVENWORTH, B. M. Syntax macros and extended transla-
tion. Comm. ACM, 9, 11 (Nov. 1966)) 790-793.

5. BACKUS, J. W. The syntax and semantics of the proposed
international algebraic language of the Zurich ACM-GAMM
Conference. Proc. Intl. Conf. on Information Processing,
UNESCO (1959), pp. 125-132.

6. CHEATEAM, T. E. The introduction of definitional facilities
into higher level programming languages. Proc. AFIPS 1966
Fall Joint Comput. Conf., Spartan Books, New York,
pp. 623-637.

7. FARBER, D. J., GRISWOLD, R. E. AND POLONSKY, I. P. “The
SNOBOL3 programming language,” Bell Syst. Tech. J. &
6, (July-Aug. 1966), 895-944.

8. FELDMAN, J. A., AND GREIS, D. Translator writing systems.
Comm. ACM 11, (Feb. 1968), 77-113.

9. GALLER, B., AND PERLIS, A. J. A proposal for definitions in
ALGOL. Comm. ACM 10,4 (Apr. 1967), 204-219.

10. IRONS, E. T. A syntax directed compiler for ALGOL 60.
&mm. ACM 4, 2 (Jan. 1961), 51-55.

N MCCLURE, R. M. TM6-A syntax-directed compiler. Proc.
ACM 20th Nat. Conf., 1965, pp. 262-274.

l2. MONDSCHEIN, L. VITAL compiler-compiler reference
i manual. TN 1967-1, Lincoln Lab., MIT, Lexington, Mass.,

Jan. 1967.

LLOYD 0. FOSDICK, Editor

KEY WOItlXj AND P~lRASES: fwtorid vnrituwc ,zrdysis,
v:wi:uwe, statistical analysis
PfC Ci~TEGORIES : 5.5

COMMI~;NTS. This subroutine tr:ulsforms :t vwtory y, observed
in :k bttlnncetl complete 11X/& . . . X 1,, fncttorid experiment, ill to
,zn intcrtlction vector z, whose elements inclde mean and main
ctTcc!ts.

The cxperiment:Ll 0bserv:ltions I/,, (s = (~1 , +cz , . . s, St,); *c; = 0,
1, .a., ti - 1; i = 1, 2, a-., fn) we :usumecl to be storccl in the
:wr:ly Y in increasing order by the wmposi te hsc integer s .
After the transformation, the :irr,zy % will contain the intcr:kctions
in natural order.

The method used is Good’s [l, 21 rnodificzltion of Y:ttcs’s 15) in-
teraction algorithm. In [l, p. 3(i7], the interactiorls :lre expressed
ill ttlc form z = (M* @ �If, @ - l l @M,,)y, where .I& is tt tiX 1;
matrix of normalized orthogonal contrasts and where @ denotes a
direct (Kronecker, tensor) product. The interactions can also be
written z = (C& l . l C,)y, where

. .

and where Iii is the t&ti identity matrix.
By performing elementary operations (row and column inter-

changes) on the Ci we get z = (D& l . l &)y, where

D; = Mi2 @ l l l $ Mi2
- - - - a - - - - - -
. - - - - - - - - - - -

Miti $ l l l $ Miti

and where Mii is rowj of Mi . The symbol $ denotes a direct sum.
For an example of this for an unnormalized matrix, see Good
[1, p. 3621.

Since each row of D; consists of a row of lvi and zeros, we only
need Mi for forming z. The subroutine forms first D,y, then this
result is premultiplied by Dn-l , and so on until we obtain z. The
elements of z are the required interactions.

This method can be mechanized for hand computation in the
following way. (The subroutine was written from this point of

iQ
i”;

0 ume 12 / Number 11 / November, 1969 Communications of the ACM 631

view.) Write the observations in the order specified above. Write
row one of IL down the right edge of a strip of paper using the
same spacing as for the observations. Now place this movable
strip alongside the observation vector so that the top element on
the paper strip is opposite the top element of the observation
vector. Multiply adjacent elements and write the sum of these
products at the top of a new column. Now slide the paper strip
down t, spaces. Form the indicated inner product as before and
write the result in the new column below the previous entry. Con-
tinue in this manner until all the observations have been used.
Now write row two of MD on a strip of paper and proceed as before.
If we continue this process with all the rows of Mn we will get a
new vector zn whose elements are linear transformations of the
observation vector y, The dimension of z,, is the same as that of
y. Similarly form znBl from Zn and &-I . Continuing this process
we finally obtain z1 = z which is the desired interaction vector.

In all the foregoing we used the normalized contrast matrices;
thus the sums of squares are the squares of the elements of z. For
hand computation, one might prefer using the unnormalized con-
trast matrices, since their elements are integers. But then we need
a vector of divisors; it is obtained by performing the same opera-
tions on a column of ones as on y, except that we use the squares
of the elements of the contrast matrices. Then the ith sum of
squares equals 2; 2 divided by the corresponding divisor.

This method might be called a “paper strip method” for analy-
sis of variance and is similar to paper strip methods used for
operations with polynomials. For examples of this, see Lanczos
[3] and Pragcr [4].

We require 21J2 l . . t,, locations for storing y and z plus sup(ll ,
t ‘2, “‘, 1,‘) locations for storilq a row of iV, . The number of mul-
tiplicntions rcquircxl is (nli) (r1i + 1).

AC~;NO\~LI:DGMI:NTS: The author wishes to thank Dr. A. E.
Brxndt for initirlting h i s intcrcst in programming analysis of
vwiancc. I It! wishes LO t,h:~& Dr. W. I l . Carter , J r . , and the
rcf(lrcbc, for 1~4 pf ul (*oinm(fil ts.

Ii 1~:~1~:1~I~:Nc!l:s :
1. GOOI), 1. J. ‘I’hc intcr:~.ction ulgorithm und practical FouricI

mdysis. J. lb?/. S,c(utl.s/.. Sot. 113) 20, 2 (1958), 361-372.
2. Gow, I. ,J. The intcractio11 :\.lgori thm :md prnctictll Fouricl

mdysis: AI) :~ddcnd~~rn. ,I. Il’o~~. Stat is t . Sot. [I31 $2, 3 (l!KO).
372-375.

3. LANCZOS, CA /1 pphd 4A nah~sis. l’rcM,icc-I1:111, Englcwood
Cliffs, N.J., 195G.

4 . ~RAGIX, w’. hlroduction t o Ihsic I~ortrw~ l’royrunttt~i~rg tmd
Xu?~rcricul Melds. Bl:lisdcll, M’al tllam, l'hss., 19G5.

5 . YATIS, F. The des ign and an:tlysis of fttctoritll csperimcnts.
Imperial Bureau of Soil Science, II:~rper&n, England, 1937.

SUPRCUT INE FYCVA
l *tt+***t++t,.***

C
l ryr2~ROwrMSI2E~NCLS~NFCTR)

SI’+JENSION Y(llrZ(l)r
l f?CW(l)*MSIZELl~

L O O P F O R KfCTR C O N T R A S T M A T R I C E S
C

CO 5 kr = 1tNFCfR
I = 1

SET S I Z E OF THE MATRIX
Y = NFCTR-NF+l
NRNC = h’SItE(K) C

33 3 J = 1 tNRNC
ROk O F A C O N T R A S T M A T R I X C
C A L L AMOk (ROk*NRNC*Jl
DERFORN THE ‘PAPER S T R I P ’
OPERATIOI~ F O R A M A T R I X ROW
22 2 K = 1tNCLSrNYNC

Z(I) = 0.
33 1 L = 1rNRNC

KLl = K+L-1
1 #?(I) = ZLI)+ROk(L)*Y(KLl)

2 I = I+1

3 C O N T I N U E
HOVE 2 INTO Y
DO ~1 J * 1gNCLS

L Y ’ (J) = Z(J)
r,_ CONTIuuF

3C 6 J = 1thCLS

6 V(J) = Y(J)*Y(J)
k r Tyu’,

i hC

SuBROUT INE AROW
*****+I*********

* (R0WtNRNC.J)
DIMENS ION ROWf 11

IF ROW ONE

IFfJ-113rlt3

1 A = N R N C
EL = l./SORTdA)

DO 2 I = 1,NRNC

2 ROW(I I= E L
AND
R E T U R N
E L S E

3 3Ml = 3-l

R J . J
A = SORT(RJ+RJ-RJI

E L 0 1./A
DO 4 I = ltJM1

4 ROWf I)= E L
DO5 1 = JINRNC

5 ROb/sl(I)= 0 .
RObI(11.~T\J)/A

RE Tu’?‘v
kYD

ALGORITHM 360

30 Apr. 1969)
Alan M. Voorhees and Associates, Inc., 1 . __ -----, . __ -yI

and Department of Civil Engineering, University
Washington, Seat-de, WA 98105

KEY WORDS AND PHRASES: shortest path, tree, network4
directed graph 5%
CR CATEGORIES: 5.32, 5.42

SHORTEST-PATH FOREST WITH TOPOLOG1
ORDERING [H]
ROBERT B. DIAL (Recd. 21 NOV. 1968, 27 NOV. 1968 an

procedure MOORE (INDEX, J, D, d, n, DIST, I, NEXT,
LAST, wuzxdist, ROOT, m);
value n-w&, n, ??MZdiSt, m;

integer array INDEX, J, D, DIST, I, NEXT, LAST, ROOT;
integer ?rlilxd, n, VUlXdiSt, m;

comment Given a subset (called “roots”) of the nodes (num-
bered from 1 to n) spanned by a directed graph composed of
arcs of known length, MOORE finds for each node in&he network
the shortest path connecting it to its closest root node. The
result is a disjoint set of shortest-path trees, referred to here 88
a “shortest-path forest.” MOORE’S outpurt describes all the
paths in the forest and gives their lengths. It also provides two
lists which sequence the nodes spanned by the forest in forward
and backward topological order. In the algorithm’s terminology,
“forward topological order” is a sequence in tihich any given
node is listed after any other node which lies on the path be-
tween i t and i ts root node. Conversely, the “backward topo-
lo+nl o r d e r ” has the nodes arranged iu dccrensing distance
from their ncarcst root node.

The proccdurc M o w implements : L well-kllown, widely-used
algori thm by 1’. F. Moore [l] rind is p,zrti(*ulnrly suited for a
large, sparse network whose arc lengths are short ttnd which
hltve a small variance, e.g. an urbti11 highwlty system. As an
indication of its cliiciency, ail Assembly Langri:~ge routine pat-
terned after MOORE for the IBM 360 model 65 found all short-
est paths from a single root node to the rem,zining 12,O nodes
of a 36,000-arc network (i.e. built :t minimum-pnth tree) in one
(1) second. In general, for a connected graph, MOORE’s %m-
ning time” is directly proportional to the number of arcs i!l the
network and is independent of the number of roots. The me-
chanics of the algorithm are summarized in the following
three steps :

Mark each root node r “reached but not scanned” and asso-
ciate with it a distance of zero (DrSTjr]=O). Mark each
nonroot node i “not reached” and associate with it a distance
of infinity (i.e. DIST(i]=mazdist). Go to Step 1.
From among the nodes marked “reached but not scanned,”
select the node i whose distance is smallest. If there is no
node so marked, the forest is complete. Otherwise go to WP
3d.
For each arc (i, j) in the network (i.e. all arcs exiting the
selected node i), compare DIST[j] with the sum of MS’T[il
and the arc length of (i, j>. Whenever this latter sum is less
than the former quanti ty, set nIs’l’[j] equal to i t , mark

’node 1 “rc:tched but not scanned,” and put the arc (i, j) in
the forest, removing any other :trc whose final node is j.
When :tll arcs exi t ing node i have been so examined mark
node i “rC:tdml and scanned” and ~0 to Step 1. I

. :cp 1. To facilitate this node selection, the procedure below
i c s a topological ordering of the final nodes of the arcs i n the
:irtial forcst,. I t effects Step 1 by referring to a forward-order-

illy list, N E S T , t,o determine which node should be selectcd
riext from the “reached biit not scanned” category. A backward-
ordcring list, I,AST, aids updating the ordering when a previ-
ously found path to a node is superseded by a newly found,
shorter one. Also used in this itpdat,ing process are two short
local vectors, H E A D and T‘. l I f , , H E I I D (d] and T A I L [d] contail1
the first and last node of asublist of iiodes, whose associated dis-
txncc is riot less than the distance of the node selected i i i Step 1
.-nd is congruent to d modulo the net’s maximum arc length.

he use of these latter two arrays becomes clear while studying
i i ~ e ALGOL below.

Besides the m root nodes stored in ROOT[l] , . . . , IZOOT[ml, in-
put to MOOEE consists of a network description i n three vectors,
J , D , and Ih‘DEX, together with thescalar parameters n , rnaxd,
and mazdist. The array J contains the final node numbers of all
arcs in the network stored in ascending sequence with respect
to their initial node number, The second vector, D , is parallel
to the array J and holds the corresponding arc lengths-against
which paths are to be minimized. I.\’DEX[i] points to the first
(.‘t:ment of J representing an arc exiting node i. INDEX is di-
: ,nsioned from 1 to n + 1, where the parameter n is t,he highest
Ilide number in the network, and I.VDEX[n+l] contains one
pliis the total number of arcs in the network. The arc lengths
stored in the array D miist be positive integers strictly less than
the parameter maxd. Similarly, as maxd exclusively limits the
length of ail arc, so does the other input scalar parameter
maxdisl limit the length of a path. MOORE only considers paths
which are shorter than mazdisl.

The algorithm’s oiitput describes the minimum-path forest
in two vectors, I and DIST. I (j] contailis the initial node of the
f .rest's unique are whose final node is j . Thus the sequence of
: Ides representing the shortest path from the nearest root
to j is found in reverse order by looking a t I [j] , f [l [j]] , etc.,
until a root node is encountered. D l S T [j] returns the minimized
distance from, the closest root node to j . If j is not reachable
from any root node via a path shorter than mazdisl, MOORE
returns with DLST[j] = mazdist and I [j] = 0. The forest’s topo-
logical orderings are returned in list form in the pointer vectors
N E X T and LAST. MEXT is a circular successor 1ist.Thenumber
of the node closest t o i ts root node is stored in NEXT[ROOT[l]] .
The next closest node is contained in NEXT[iVEXT[ROOT[1111,
r :>., until ROOT[l] is encountered in some N E X T [j] , where j is
ttie number of the node farthest from its root node. Similarly,
LAST is a circular predecessor list. The backward topological
order is obtained by start ing at LAST[ROOT[l]] , which contains
the number of the most distant node. LAST[LAST[ROOT[llll
htts the next most distant,, etc., until L A S T l j] = ROOT(11, j
being the closest node to i t s root. When no path shorter than
mazdist exists between a root node and j , then j appears in
neither the N E X T nor the LAST list.

REFERENCE:
1. MOORE, E. F. Theshortest path through a maze. In Inter-

national Symposium on the Theory of Switching Proceedings.
Harvard U. Press, Cambridge, Mass., hpr . 1957, pp. 285-292;

integer procedure mod(d, w d) ; value d , muzd; integer
d , mazd; mod := d - mazd x entier(d+mazd);

integer array HEAD[O:mazd-11, TAZL[O:mazd-l]; integer

for i := 1 step 1 until w d - 1 do HEAD[iI :== TAZL[i] := 0 ;
for i := 1 step 1 until TI do
bngin DIST[i] := mazdist;
for i := 2 step 1 until m do

begin

4 P L , k, v , j , q, cl;

I [i] ;= 0 end;

Volume 12 / Number 11 / November, 1%9

begin
LvE‘yTIROOTIZ- l]] := ROOT[Z]; L ; l sT[ROOT[i]] := ROOT
[i-11;
DrsT[EooT[i l] := 0

pl := 0;

end;
L:IST[ROOT[l]] := .VEST[ROOT[VZ]] : = DIST[XOOT[1]] :=

i := HEz4D[O] := W O T [l] ; TzlIL[O] := ROOTIn];
comment
r :

begin

Examine a11 exits from selected node (Step 2 above);
for k := Ih’DES[i] step 1 until ISDE.Y[i+lj - 1 do

u := D I S T [i] + D [k) ; j := J [k] ;
if u < D I S T [j] then
begin

comment
in forest;
if D I S T [j] # masdisl then
begin

Path to j via i is shortest so far-put arc (i, j)

comment
q := mod(DIST[j] , maxd);
i f HE;lD[q] = j then HE..ID[q] := .VE.YT[jj
else
begin

Delete node j from its prior srtblist;

if T A I L [q] = j then
begin T:itL[ql := [,..IST[j]; t vE i sT (L : tST[j]] := 0

else
begin L . ~ l S T [, V E S T [j]] : = L A S Y [j] ; iVEST[LrlST

end

[j]] := N E d Y T [j] end
end

end ;
comment

forest;
q := mod(v, maxd);
if H E A D [q J = 0 then
begin HEAD[q] := j;
else
begin L A S T [j] := TAILjq] ;
comment
l [j] := i ; DZSTbl := v ; T A I L [q] .= j ; iVEXT[j] := 0

Hook j to its ncw sublist, and put arc (i, j) in

L A S T [j] := 0 end

iVEXT[T:tIL[q]] := j end;
Update forest and forward ordering;

end
end;
comment Select next node i whose exit arcs are to be examined

if N E X T [i] # 0 then
begin

(Step 1 above);

comment
i; i := iVEXT[iJ; go to r

Sublist containing i not empty-use successor of

end;
comment Sublist containing i empty-use first node in next

HEAD[pl] := 0;
for cl := 1 step 1 until d - 1 do
begin

nonempty sublist;

p l := mod(pt+l, mazd);
if HEAD[pl] # 0 then
begin

comment
LAST[HEAD[pt]] := i; i := iVEXT[i] := H E A D [p f] ;

go to r

Found a nonempty sublist-hook i t to lists;

end;
end;
comment

LAST[ROOT[l]] := i ;

All sublists empty, forest biiilt-circularize lists
and quit;

end MOORE
N E X T [i] := ROOT[l]

Communications of the ACM 633

ALGORITHM 361
PERMANENT FUNCTION OF A SQUARE
MATRIX I AND I1 [G6]
BRUCE SHRIVER, P. J. EBERLEIN, AND R. D. DIXON (Recd.

State University of New York at Buffalo, Amherst, NY

KEY WORDS AXD PHRASES: matrix, permanent, determi-
nant
CR CATEGORIES: 5.30

real procedure perl(A, n) ;
integer n; array A ;

comment Let A be an n X n real matrix, n > 1. The perma-
nent function of A , denoted per(A), is computed by H. J.
Ryser’s [I] expansion formula:

19 Feb. 1969, 7 Mar. 1969 and 9 July 1969)

14226

n-1 r

where Tj , j = n, n - 1 , . . . , 2, 1 , is theset of vectorsx = (zi),
i = 1 , 2, . . . , n which are obtained by adding j columns of A

together i n all possible ways. T o effect the sum over vectors

in Ti, n - 1 sums are computed. The natural 1-1 map from the
binary integers to all r-combinations, r = 1 , 2 , ’ . . , n - 1 , is
used to increment the sums over the sets T,.

1. RYSER, 13. J. Combinatorial Mathematics, Carus Monograph

. (3
REFERI~NCX :

N 1 4 . Wiley, New York, 1963, p. 27;
begin

real s i y , pera, prod , rowsum;
integer number, limit, mod, gen, g, i , j , r ;
array sum(0:n- 11;
integer array d[l :n];
sig := -1; pera := 0 ;
for r := 0 Rtep 1 until n - 1 do sum[r] := 0;
for number := 1 step 1 until limit do
begin

r : = 0 ; gcn := number;
for mod := 1 etep 1 until n do
begin

limit := (2 7 n) - 1;

g : = gen f 2 ;
. begin T := T + 1 ;

gen := Q

end ;
prod := 1 ;
for i := 1 step 1 until n do
begin

if (gen-9x2) = 1 then
d [r] := mod end;

rowsum := 0 ;
for j := 1 step 1 until r do
rowsum := rowsum + A [i , d u l l ;
prod := prod X rowsum

end ;
sum[n-r] := sum[n-r] + prod

end ;
for r := 0 step 1 until n - 1 do
begin sig := - s i g ; p i ra : = pera + sig X sumlr] end;
per := pera

end of real procedure perl;
real procedure per2(A, n) ;

integer n ; array A ;
comment Let A be an n x n real matrix, n > 1 . The permanent

function of A , denoted by per(A) is computed by Jrirkat and
Iiyser’s [I] method of indrictively generating the vectors
PI , , p , , where p , is the vector of permanents of r by r sub-

matrices of the first r rows of A . This vector has

.

indexed by the r-combinations of (1, + . . , n) . The natural 1-1
map from the binary integers {I,. * * . , 2 T n- 1) to the ?-corn.
binations of {I, ... , n) for r = 1, . - . , n is used to index the
p’s and thus they are generated in an order somewhat dif~,3rent
from that of Jurkat and Ryser.

REFERENCE:
1. JURKAT, W. B . A N D RYSER, H. J. Matrix factorizations of

determinants and permanents. J. Algebra 9 (1968), 1-27;
begin

integer numbel., limit, mod, gen, g, r , d i g , sub, j ;
array list [1:2 T n-11;
limit := 2 T n - 1 ;
comment Initialize list aa accumulators;
for j :- 1 step 1 until limit do list [j] := 0 ;
for j := 1 step 1 until n do list [2 7 (j-1)] := A l l , j] ;
for number := 1 step 1 until limit do
begin

if list [number] # 0 then
begin

I := 1; gen := number;
for mod := 1 step 1 until n do
begin

g := gen f 2;
if gen - 2 X g = 1 then r := r + 1;
gen := g

end count of 1’s in number;
d ig := 1 ;
for mod := 1 step 1 until n do
begin

gen := number;

g := gen f 2;
if gen - 2 x g = 0 then
begin

sub := number 4- d i g ;
list [aub] := lid [sitb] + list [nitmber] X A [r , mod]

I

end;
gon := g; dig := 2 X dig

end computations with list [number];
end

end ;
per := list [limit]

end of real procedure per2;

Note. On the Permanent Function of a Square Matrix I and 11:
Progiam I is slower than Program 11. However Program 11
approximately 2“ more locations of store. The running times for
both programs double when n is incremented by 1 .

ALGORITHM 362
GENERATION OF RANDOM PERMUTATIONS [G61
J.)I. ROBSON (Recd. 1 kpr. 1969)
Programming Research Group, 45 Banbury Road, Oxford,

KEY WORDS AND PHRASES: permutation, random permu-
tation, transposition
CR CATEGORIES: 5.5

Englarid

procedure perm(n, r , A); value n, r ; integer n , r ; t e e r
array A ;

comment This procedure produces in the vector A a permutap
tion on the integers 1, 2, . . . , n, each of the n ! permutations
being given by one value of r between 1 and n ! inclusive. It is
thus similar i n effect to the procedure given in [I] but it is con-
siderably faster, especially for large values of n, since it useS ’
siiigle loop rather than a double one.

A perrniitatioii is generated as the product of n - 1 transPo’
sitions of which the jth transposes A[n+l-j] and dlz]
some z I n + 1 - j .

i’olume 12 / Kumber 11 / Novemlh 1.) 1969 634 Communications of the ACM

.’ the line

,,mittctl the procediire will permiit,e t.he originnl vnlries
f, i := 1 step 1 unti l n (lo A[Z] := i

~ 1 1 1 , . . . , J [n j in the same manner.

K o s r ~ s o ~ , C. L. Algorithm 317, Permutation. Covt7rt. .4(’.11 10
Rs~k: l l l . :NCF: :

(PU’OV. 19c,7), 733;
begirl

in teger i, X , y;
for i := 1 step 1 until n do A [i] := i ;
for i := n step -1 until 2 do
bq :in

:= r - (r+-i) X i + 1; r := r + i ;
; := A[z]; A[z] := A[i]; .4[i] := y

end
end

ALGORITHM 363
COIIPLEX ERROR FUNCTION* [Sls]
WALTER GAUTSCHI (Recd. 11 June 1969)
Con mter Sciences Department, Purdue University, 1,a-

fa>.ette, I N 47907
* Work supported, in part, by the National Aeronantlcs and
Space Administration (NASA) under grant NClt 15-005-030
and, in part , by Argonne National Laboratory.

KEY WORDS AND PHRASES: error functmn for complex
argument, Voigt function, Laplace continued fraction, Gaiiss-
Hermite quadrature, recursive computation
CR CATEGORIES: 5.12

proc.’ dure wofi(s, y, re , im);
oomnient This procedure evaluates the real and imaginary

part of the function w(z) = exp(-z*)erfc(-iz) for argument-‘
z = z + iy in the first quadrant of the complex plane. The accu
racy is 10 decirhal places after the decimal point, or better.
For the underlying analysis, see W. Gautschi, “Efficient com-
putation of the complex error function,” to appear in S I A M
J. Math. Anal.;

integer capn, nu, n, np l ;
1 reai h, h2, lambda, r l , 1.2, Y, sl , s2, 11, 12, c ;
1. Bocrlean 6 ;
1 if y < 4.29 A z < 5.33 then

hegin
:= (1-~/4.29) X sprf(1-z X 1 /28 .41) ;

value z, y; real z, y, re, im;

begin

h := 1.6 X s; h2 := 2 X h ;
mpn := 6 + 23 X s ; nu := 9 + 21 X s

end
else
begin h := 0; capn := 0;
if h > 0 then lambda := h2 7 capn;
b : - = h = 0 V lambda = 0;
rl := 72 := 81 := 92 := 0;
for n := nu step - 1 until 0 do
begin

nu := 8 end;

npl := n + 1 ;
11 := y + h + npl x r l ; 12 := I - npl X 72;
c := .5/(t l X tl + t2 X 12);
rl := c x 11; r2 := c x 12;
i f h > 0 A n I cupn then
hegin

11 := lambda + s l ; sl := r1 X t l - r2 X 92;
s2 := r2 x tl + 71 x 92;
hm.& := lam&/h2

end

end ;
re : = if y = 0 then ezp(--zXz) else

t t t t := 1.128879113700551 X (if h then r2 else s 2)
l.l?YRi01fi709551 x (i f b tlien r l else sl);

end luofz

CERTIFICATION OF ALGORITHII 47 [Slfi]
ASSOCIATED TJICGENDRE FUNCTIONS OF THE
FIRST IiIND FOR REAL OR I M A G I X ~ ~ I ~ Y
hRGUAIENTS [.John R. Herndon, Comm. ACJI 4

S. M. COBB (Recd. 6 Feb. 1969, 12 JIay 1969 arld 9 July

The Plessey Co. Ltd., Roke hIanor, Romsey, Hants,

KEYWORDS AND PHRASES. Legendre function, associated
Legendre function, real or imaginary arguments
CR CATEGORIES: 5.12

(Apr. 1961), 1781

1969)

England

This procedure was tested a n d run on the I.C.T. Athw com-
pu ter.

In addition to the errors mentioned in the certification of iiugiist
1963 121 the following points were noted.

1. The requirement that when n < rn p := 0 must take prece-
dence over p := 1 when n = 0. Hence the order of the first two
i f statements must be interchanged.

Most computers fail on division by zero. Hence the state-
ment beginning if z = 0 then and ending with go to last
end; should be inserted between w := I ; and := w/(zxz).

When z = 0, if the argument of the Legendre function is to
be considered aa real p must be milltiplied by (- I)&, This is
achieved by inserting after the statement beginning p := Gamma
[m+n+l] the if statement

i f f then p := p X (-1) T i ;
(For a change in the meaning of r see item 5 below.)

4. After the label last in the compound statement begin-
ning if T # 0 the statement i := n - nt4; is wrong. This
should read

i := n - 4 X (n i 4) ;

Since r is used only aa an indicator it is better that i t be
declared as Boolean. It can then be given the value true if the
argument of the Legendre function is z and false i f it is iz. The
following program changes are then necessary. The statement
beginning

if r = 0 then

becomes

if r then

The statement beginning

if r # 0 then

becomes

if 7 r then

6. Computing t ime can be saved in several ways. First we
should declare another integer k and set i t equal to n - m. The
first statement of the procedure is then

k := n - m ;

The next statement will begin

if k < 0 then

(This replaces if n < m then
in accordance with i tem 1 above.)

2.

3.

5 .

whose position has been changed

Dlume 12 / Number 11 / November, 1969 Communications of the ACM 635

n - m is then replaced by k in the lines
for i := 1 step 1 until n - m do

and

if (; + I) # (n - m) then

Removing j as suggested in the previous certification leaves i t
free to be set to k f 2. This requires the following modification:
instead of the unnecessary statement if n = m then go to main
Put
j := k i 2 ;

In the statement beginning i f x = 0 then replace the line

begin i := (n- m) + 2 ;

by
begin a := j ;

a
further small saving in computer time could be achieved by setting
k to n - i. The loop thus becomes

for i := 1 step 1 until 12 do
begin if j + 1 < i then g o LO lasl;

In the for loop beginning for i := 1 step 1 until 12 do

k := n - i ;
p := p + Gamm[2Xk+31 X z/Gamma[i] X Gamma[k+21 X

Gammu[k-i-m-t3));
z : = z x 1 /
end

For real argument the program was tested as follows.

(i) z = O(O.l)l , m = 0(1)3 , n = 0(1)3
(ii) x = 1.2(0.2)2.8, m = 0(1)2 , n = 0(1)2
(iii) m = 0, n = 9, x = 0(0.2)1, 2(2)10.

For imaginary argumcnt we used

z = 0(0.2)2, m = 0(1)2 , n = 0(1)2 .

Checking lor rcal argiimeiit was wrried out where possible
using [I] , agrecmcnt being ol)tiiiiied i l l all wises k) the nmxiniiiin
number of figures iiviiiliddc, which viiried Ixtwecli (i tind 8. For t i l l

othcr ciiscs [3] had t u bc used, giving oiily 11 5 figurc cl>eck

1 . ABI~.~M~WI~IYL, kl., A N I) *r ’ l sGU~ , I. A. Ilandbook of miittic-
matical functions. AMS 55, Nat. Bur. Stand. US (iovt. Print,-

iiig Ofl’., Washirigtoil, l).C., 1964.
2. G+;ottGlc , 1 1 . Ccrtifcatiori of Algorithm 4 7 . Comm. ilCh!f 6‘

3. MORSL, 1’. M., A N U FISSBACII, 1-1. Melhods o j Theoreliull

13 I:FI2lt I.:NCI.:S :

, (Aug. 19G3), 446.

Physics ” 1 . I I . McGraw llill, New York, 1953.

CERTIFICATION OF ALGORITHM 255 [CG]
COJII’UTATIOK OF FOURIER. COEI~I~ICIEn’TS

[Linda Tcijclo, Conrna. ACM 6 (May 1!165), 2791
GILLIAN HALL* A N D VALEIZIE A. RAY? (Recd. 31 Jlar.

1909 and 1 July 1969)
National Physical I~bora tory , Teddington, lliddlcscx,

Eiiglarid
* hl.1i.C. team, Uivisioii trf Computer Science (forrnerly o f I) i -
visioti of Numerical and Applied Mathematics).
t I)ivision of Numerical aid Applied Matlicmativs.

KEl’ W01tI)S AKI) PI-IIi ASES:
coefficients, Filon’s method
CZi CATEGORIES: 5.16

numericd intvgr:ttioii, 1;ouricr

The tests for convergence on lines 51 and 83 should read re-
spectively:
if abs(previnl2-int2) < eps X abs(int2) A n > 5 then
if abs(previntl-inl1) < eps X abs(int1) A n > 5 then

With this alteration, the program was tested successfully on
series of functions F (z) using a range of values of m and eps for
each function. The parameter subdivmdz: wm set a t the recom-
mended value, 10. For F (z) = x2, for which the method is exact,
results were obtained correct to machine accuracy, i.e. l o) deci-
mal places.

(i) It would be better to declare the identifier tnl
as type integer, i.e. to replace lines 20 and 21 of the text by:

c0, c l , SO, s l , in t l , int2, previntl, preoinl2, 13, temp;
integer n, i , t n l ;

(ii) There is no indication, after execution of the algorithm,
whether the computation was terminated because of apparent
convergence or because the number of times, n, that, the interval
was halved became greater than su6ddivmaz. The following modifi-
cation provides such an indication; i t has the effect that COS&

and sine will retain their entry values except in the case where
cosine or sine has the value true on entry and n becomes greater
than subdivmax in the course of computation. I n this case the value
on exit will be false.

Line 3 becomes:
value eps, s u b d i v m , m ;

Remarks.

Boolean b o d ;

real eps, cinl, s int;
Line 57 becomes:

sin1 := int2; sine := false; go lo M
Line 88 becomes:

cosine := false;

following modification is suggested:

go to ezit end;

(iii) T o avoid the repeated evaluation of iF (O) , F(l.O) the

I>eclnre a new variable lerml of type real on linc 20.
llcplace lines 23 and 24 by :

term1 := F(l.O) X c o s (k) ;
R U ~ C O S := IF(O)+lcrml) X 0.5;
sumsinc := 0;
term1 := 2 X (sumcos-lerml);

Heplace lines 43, 45 and 4 9 , 50 by:
preuinli! := (a X l e ~ m l +bX.Funiszne+gXo~~slne) X 0.5;
begin in12 := h x (aX~erml+bXsumsine+gXtrdds ine) ;

Ilcplnce lines 76, 77 and 81, 82 by:

previntl := (bXsumcos+gX&cos) X 0.5;
hegin intl := h X (bXsumco~+gX~ddcos) ;

Physical Laboratory.
The work described above has been carried out a t the ICationa’

CERTIFICATION OF ALGOltITHh4 296 [E21
GENEItALIZED LEAST SQUARES FIT BY
ORTHOGONAL I’OLYKOMIALS [G. J. Jlaliinson,

WAYNE T. WATSON (Recd. 11 Fcb. 1969 and 21 A I a i . ?9G9)
Service Bureau Corp., Development Laboratory, 1 I ;Vest

KEY WO1II)S ANI) PHIIASES: le:m sqrlares, curve fittingp

cir‘ cATEc;oitIEs: 5.13, 5.5

Contna. ACM 10 (lceb. 1967), 871

St. John Street, Sari .Jose, CA 95113

orl.tiogoiiii1 polpiiomials, three-term reciirrence, pdymmial re-
grcssiotr, tipproximiltion, Forsythe’s rnelltod

/,SF/TUM‘ was c!ompiletl and tested i l l CAI,L/3(iO:I’L/I.
nrotlitiratioiis were miidc t,o t11e :tlgorit,1ini, mid the c.omp1t,ations
were Inadc i i i tong prevision (about 15 sigtiificiiiit f lonti ’ point

1969 Volume 12 / IVirmber 11 , I V o v c m l * ‘ : ‘ I 636 Communications of the AChl

zits) . In addition, POLYS [2] was used to transform the resnlts
01 I,SPIl'UIV from the interval (- 2 , 2) to the interval (a ,zm).

To generally test the algorithm, several small sets of data a e r p
used with LSPITGW iind the resrilts were compared with thosc
obtained from :~n independently written polynomi:tl ciirve fitting
algorithm which does not use t,he method of orthogonal poly-
nomials. Only polynomials of degree less than 5 were \wed t o fit
the data . Agreement between coefficients :ind standard errors was

As a more comprehensive test of the iilgorithm, all experiments
t , could be duplicated from the article by .kcher :tnd Forsythe
[I were performed; a slight modification to LSFITUW was re-
qrlired to transform the data to the interval (-1,l) instead of
(-2,2). Briefly, the experiments included:

(I) For certain equally spaced data , a comparison of the a; and
p, calculated by the program against those values of a; and pi
obtained from known formulas (a;=O for equally spaced da ta) .

(2) A fit of the function f(z) = I z 1 over the interval (-1,l)
for equally spaced da ta for polynomials of degree as high as 30.

(3) A fit of the function f(x) = e* for unequally spaced data
inside the interval (-1,l) for polynomials of degree as high as 32.

!'he results of experiment (1) showed that LSFITUW produced
va;sies of p; differing only in the last significant digit (15) from
those calculated by the known formula. The valltes of ai produced
were in the range of the floating point roiind-oR error
The results of duplicating experiments (2) and (3) were better
than those reported in [I] becailse of the greater precision used in
the calcrilntions (about 10.8 versus aborit 15 significant floating
digits). While conducting the last two experiments, it was noted
that for data values of z symmetric about the origin, the value of
b i n the transformation eqrmtion x = al + 6 may be computed to
be ' 1 number in the floitting point round-off range instead of exactsly
zel- ' . Whcn fitting polynomials of a slifficicntly high degree, this
ma! cause a n underflow a t line 1 of P O L Y S , the trarisformation
routine. The user may find it desirable to branch on an underflow
in POLYX and reset h to zero.

T o check the computations of the Uk2 obtained by the recursive
definition of Ukz used in the algorithm, the were compared
with results computed directly from the equation

good.

whs re y k is the best fitting polynomial of degree k for the da ta
2, , f, . Experience with the algorithm indicates tha t B loss of
accuracy in computing occurs at smaller values of k when using
the recursive definition than when using (*). If the values of utz
are of importance to the user, he may find i t useful to compute
them using (*) instead.

A comprehensive test of the algorithm's feature which uses the
4 to automatically select the best fitting polynomial was not
made, but the feature did work properly for the polynomials used.
In connection with this feature, the user should be aware, though,
Of the possible difficulty mentioned above in computing Uk* ac-

I cur ' tely using the recursive definition. I n this case, the user
should not expect the algorithm to select the best fitting poly-
nomial. This difficulty was experienced several times while testing ' the algorithm, but was circumvented by using (*) t o calculate
n'. I n order to detect a possible loss in accuracy, the Uk' should ' be examined carefully or compared with those obtained by y).

Comprehensive tests were not made using weights; however,
no problems were encountered with a moderate usage of this
feature.
REFERENCES:

.

c
1. ASCHER, M., AND FORBYTHE, G . E. SWAG experiments on the

use of orthogonal polynomials for da t a fitting. J . ACM 6
(Jan. 1958), 9-21.

2. MACKINNEY, JOHN G . Algorithm 29, Polynomial transformer.
Comm. ACM 3 (Nov. 1960), 604.

vOhne 12 / Number 11 / November, 1969

RE;\II\RIC O K :\I,GORITHlI 175 [E4]
DI ItECT SEARCH [I\rthur 1'. Iiaupe, ,Jr., C o n m . .lC.U

6 (.June l!W), 3131; [as revised by 11. Bell and 11. C.
Pike, Comw ACJ/ 9 (Sept. 19M), f j M]

I:. I<. TOMLIN A X I) I,. B. SMITH (ILectl. I T \Lay INS, 9
Sept. 1968 and 30 ,June 196!))

Stanford Research Institute, Jlenlo Park, CA 9402.5, arid
CERN, DD Division, Gcncv:i, Switzerland

KEY WOI1DS A N I) l'Ifl{ASUS.
direct scarch
CR CATEGOItIES. 5.19

fiiiictiori rniriimiziitioii, search

The procedure DIRECT SEARCH, as modified by M. Bell and
M. C. Pike [l], does not always provide the determined minimiim.
In addition, the maximum number of frinction evaluations per-
mitted is almost always exceeded whenever the step-length is
greater t,liaii t iel la :it the time tht: nrimber of frinctioii evaluations
is greater t1i:ui o r equal to mazeral. Finally, the label 3 is riot
used.

To insure that the d e t e r m i i d minimum is always provided,
the test on the number of ev:diiatiotis shoiild be moved to a point
where the miniinwn has heen properly provided.

111 [2] IIeVogelaerc remarks correctly that the procedure does
not exit as specified :~nd givcs ch:ruges which will indeed caiise the
procedure to terminate when the niimber of fiiiiction evaluations
exceeds the specified limit (and not some number of evttluations
later) . However it is felt tha t UeVogelaere's solution to this
problem caiises excessive testing. Therefore the test should be
.performed after an exploratory move :is in [I] biit it sholild also
be performed when the step-length is reduced. This method of
testing violates the letter of the specified rise of iriazeval bllt not
the intent, which is to provide :in escape from excessive calcula-
tion.

To obtain the determined minimum, to provide a means for
reducing the number of function evahiutions when step-length
is greater than delta, and to eliminate the unused label:
(1) The lines

2: if eval 2 mazeval then
begin converge := false

end ;
go to EXIT

should be removed.

in Ill)
(2) The line (16th line from the end of the procedure given

for k := 1 step 1 until K do

should be changed to

2: fork := 1 step 1 until K do

(3) The line

Sps i := SS; SS := Sphi := S (p h i) ; eval := eval + 1; E;
should have the following code inserted after the statement

if em1 2 mazeval then

3 : converge : = false;

S P S i := ss;

begin

go to EXIT
end;
(4) The line

3:

should be changed t o

if DELTA 2 delta then

if DELTA 2 delta then

(5) The line

Communications of the ACM 637

begin DELTA := rho X delta;

should be changed to

begin if em1 > maxeval then go to 3 else
DELTA := rho X della;
REFERENCES :

1. BELL, M., AND PIKE, M. C. Remark on Algorithm 178. Comm.
ACM 9 (Sept. 1966), 684.

2. DEVOQELAERE, R. Remark on Algorithm 178. Comm. ACM 11
(July 1968), 498.

REMARK ON ALGORITHM 178 [EX]
DIRECT SEARCH [Arthur F. Kaupe, Jr., Comm. ACM

6 (June 1963), 313; as revised by M. Bell and M. C.
Pike, Comm. ACM 9 (Sept. 1966), 6841

LYLE B. SMITH* (Recd. 9 Sept. 1968)
Stanford Linear Accelerator Center, Stanford, CA 94305

Present address. CERN, Data Handling Division, 1211
Geneva 23, Switzerland

KEY WORDS AND PHRASES: function minimization, search,
direct search
CR CATEGORIES: 5.19

Algorithm 178, as modified by Bell and Pike 111, has been
used successfully by the author on a number of different problems
and in a variety of languages (e.g. Burroughs Extended ALGOL on
a B5500, SUBALQOL on an IBM 7090, and FORTRAN on the
IBM/360 series machines). A modification which has been found
to be useful involves tailoring the step size to be meaningful for a
wide variation in the magnitudes of the variables.

A s currently specified 111, each variable is incremented (or de-
cremented) by DELTA a.. a minimiim is sought. For a function
such that the values of the variables differ by several orders of
magnitude at the minimum, a universal step size causes some pa-
rameters to be essentially ignored during much of the searching
process. For example, i f a function of two variables has a miriiinurn
near (lW.0,0.1), as tep size of 10.0 will be useful i n minimizing with
respect to the first parameter, but it will be meaningless with re-
spect to the second parameter unti l i t has been reduced to near
0.01. On the other hand, a step size of 0.01 would be useful o i l the
second variable but on the first variable it would take an undesir-
ably large number of steps to approach the minimum.

A modification to direct search which circumvents this scaling
problem involves the use of a different step size for each variable.
This is easily implemented since an array is already used to hold
the signed step size for each variable. The change is accomplished
by removing the statement labeled &art and replacing it by the
following statement:

Slarl: for k := 1 step 1 until K do
begin s(k) := DELTA X abs (p s i (k)) ;

if s(k) = 0.0 then s(k) := DELTA;
end ;

This change sets the step size for each variable to DELTA times
the magnitude of the starting value, or i f the starting value is 0.0
the step size is seb equal to DELTA. Thus DELTA is the fraction
of the original value of each variable to be used as a11 initial st,ep
size. Subsequent reductions in step size are haidled correctly
without further modificatioris to the procedure.

As a11 example of the usefulness of the above modificatioii, roil-

sider the functioij

f (X , , X2 , X3) = (X I - 0.01)* + (S* - 1.0)* + (A3 - 100.0)~

with a minimum a t (0.01, 1.0,100.0). The following table shows the
results of using direct search on this function with and without the
modified step size. The results were computed on an IBM 36017~
computer using single precision with rho = 0.1, d e l b
0.001, DELTA = 0.2 for the modified step size (giving 20 percent
of initial value for initial stepsize) and DELTA = [average FIdgni- T
tude of initial guesses for the variables] for the algorithm ay pub- 2

lished. !
- 1

TABLE I. f = (XI - O.Ol)* 4- (x, - l.o)* 4- (xa - 100.0)~
~

I I

For initial values of (0.0, 0.0,200.0) :

Direct seareh 66.8867 163
Modified direct I ,2 1 112 1

U ? S C l l

For initial values of (0.05,5.0,500.0) :

Direct anvch 168.36 174 0.934 X lo-’ O.OlOOa83 0.998968’ Bg.g889
Modified direct 1 ,2 1 ,6 1 I 1 1

0.659 X 10-6 0.00898888 O.nW98 99.9893

Note that the modified method will tend to yield the same rela-
tive accuracy for each parameter, whereas with a fixed stc? size
direct search will tend to give the same absolute accuracy ior all
parameters. In most cases a relative accuracy is probably more
desirable than an absolute accuracy.

1. BELL, M., A N D PIKY, M. C.
ACM 9 (Sept. l%E), 1584.

search

REFERENCES

Remark on algorithm 178. Comm

I

REMARK ON ALGORITHM 308 [GG]

LEXICOGRAPHIC ORDER [R. J. Ord-Smith,

R. J. ORD-SMITH (Recd. 21 May 1969)
Computing Laboratory, University of Bradford, England
KEY WORDS AN11 PHRASES: permutations, lexicographic
order, lexicographic generation, permutatioii generation
CK CATEGOltIES: 5.39

GEYERATION OF I’ERR/IUTATIONS I N 1’Fi‘--DO-
omm.

ACM 10 (July 1967), 4521

Following the construction of the very fast lexirc ::raphie
permutation Algorithm 323 [I] it has become clear that ti! ,,errnu-
tation sequence generated by the Algorithm 308 can be obtained
more quickly. In fact, replacement of

trxtarl:m := q[k]; 1 := z[m]; z[m] := zlk]; z[k] := 1 ;
q[k] := m + 1; k := k - 1;

by
lrslarl:

in Algorithm 323 produces the ECONOPERM sequence of AI.
gorithm 308.

q(k] := q[k] + 1;

The times are as follows on an ICT 1905, in second?

t i 18

Algorithm 323 F 47
New ECONOPERM 5.9 45
Old ECONOPEIZM 6.2 50.6

11 t:IIERENCI, :
1. OIW-SMITH, I t . J . Algorithm 323: (hierat ion of permlltations

111 Icsirographic order. Comm. ACM 1 1 (I?&. 19681, 117.

638 Communications of the ACM ., 1969 Volume 12 / Number 1 1 / Novcrl.

