
~psrS~-demc:r~ t-lis t)  : : = (pwsc-elernerl t)l
(p;llwlemefI  t,); (p3rsc-tirr~c-r~~~t,if~~~-f~~~m~j~
(p:i’  (:-dcrnor~  t)(r)~lrsc:-(~l~~rn(:rll-list)j
(p:l~~..(:-~:lerr~~~f~tj.  (p:rrse-element-list)1
(p~rse-elernerl  t>  - (p:trsc-clement-list)

(pa~~e-clcmcr~tJ  : : = (I>:lrs~?-utom)l(p:lt’se-gr(~r.lp)
(parse-grOllp~  1: = ’ ’( (parse-d ternative-lis t)‘)’  1

~(t(p~~rse-rec~~~cst.-r~ame):(p:~rse-:~iterrrut,ive-list)’)’
(pa~se-atoIll)  1 1 = (parse-name)[(text-1iter:d)l

(primit  ivct-I,;Lrse-recl~lest-f~tnct,ioll)j(cmpt,y)
(parse-n:Lme)  : : = (parse-request-tame)/

(p:trsc?-recl~rest-se~~~ef~~~e-rlnme)
(parsc~.:Ilterrl:L(,ivc-thyme}  : : = ((PL/l  identifier))I(ernptyj
(parsl  -delimit:~tor)  : : = : :
(parse*-I iIne-rorlt,irlc-n:lmc)  : : =

(nantc?  of : L  PT,,/l  bi t  vd~wtf  function) (arguments)
(parse-r.ecl~Iest-r~tlme)  : : = (PI,/1  ideutifer)
(parse-re(1IICSt  -sccluencc-nnmc)  : : = (IX/l  identifier)
(primitivcl-parso-rt!cltlest-f~~rlctic,n)  : : =

(reservcti  PL/l  itlcntificr)  (:wgrunerk3)
(argumcfltS)  : : = ((:rrb’rlment-list))I(cmpt,y)
(argument-list,)  : : = (pwse-iktornjl(p;wse-utornj,  (;wgurnent-list)
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2. BALZI~,  R. M. Dataldss programming. Proc. AFIPS 1967 Fall
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9. GALLER, B., AND PERLIS,  A. J. A proposal for definitions in
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LLOYD 0.  FOSDICK,  Editor

KEY  WOItlXj  AND  P~lRASES:  fwtorid  vnrituwc  ,zrdysis,
v:wi:uwe,  statistical analysis
PfC  Ci~TEGORIES  : 5.5

COMMI~;NTS. This subroutine tr:ulsforms  :t  vwtory  y, observed
in :k bttlnncetl  complete  11X/&  .  . . X 1,,  fncttorid  experiment, ill  to
,zn  intcrtlction vector z,  whose elements inclde  mean  and main
ctTcc!ts.

The cxperiment:Ll  0bserv:ltions I/,, (s  = (~1 , +cz , . . s, St,); *c; = 0,
1, .a.,  ti  - 1; i = 1, 2, a-., fn) we :usumecl  to be storccl  in the
:wr:ly  Y in increasing order by the wmposi  te hsc  integer  s .
After the transformation, the :irr,zy  % will contain the intcr:kctions
in natural order.

The method used is Good’s [l, 21  rnodificzltion  of Y:ttcs’s  15) in-
teraction algorithm. In [l, p.  3(i7], the interactiorls  :lre  expressed
ill ttlc  form z = (M* @ �If, @ - l l @M,,)y,  where  .I&  is tt  tiX 1;
matrix of normalized orthogonal contrasts and where  @ denotes a
direct (Kronecker, tensor) product. The interactions can also be
written z = (C&  l . l C,)y,  where

. . . . . . . . . . . . . . . . . . . . . . . . . .

and where Iii is the t&ti  identity matrix.
By performing elementary operations (row and column inter-

changes) on the Ci we get z = (D&  l . l &)y,  where

D;  = Mi2 @ l l l $ Mi2
- - - - a - - - - - -
. - - - - - - - - - - -

Miti  $  l l l $  Miti

and where Mii is rowj of Mi  . The symbol $ denotes a direct sum.
For an example of this for an unnormalized matrix, see Good
[1, p. 3621.

Since each row of D;  consists of a row of lvi and zeros, we only
need Mi  for forming z.  The subroutine forms first D,y,  then this
result is premultiplied by Dn-l , and so on until we obtain z.  The
elements of z are the required interactions.

This method can be mechanized for hand computation in the
following way. (The subroutine was written from this point of

iQ
i”;
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view.) Write the observations in the order specified above. Write
row one of IL down the right edge of a strip of paper using the
same spacing as for the observations. Now place this movable
strip alongside the observation vector so that the top element on
the paper strip is opposite the top element of the observation
vector. Multiply adjacent elements and write the sum of these
products at the top of a new column. Now slide the paper strip
down t,  spaces. Form the indicated inner product as before and
write the result in the new column below the previous entry. Con-
tinue in this manner until all the observations have been used.
Now write row two of MD  on a strip of paper and proceed as before.
If we continue this process with all the rows of Mn  we will get a
new vector zn  whose elements are linear transformations of the
observation vector y,  The dimension of z,,  is the same as that of
y. Similarly form znBl  from Zn  and &-I . Continuing this process
we finally obtain z1  = z which is the desired interaction vector.

In all the foregoing we used the normalized contrast matrices;
thus the sums of squares are the squares of the elements of z.  For
hand computation, one might prefer using the unnormalized con-
trast matrices, since their elements are integers. But then we need
a vector of divisors; it is obtained by performing the same opera-
tions on a column of ones as on y,  except that we use the squares
of the elements of the contrast matrices. Then the ith sum of
squares equals 2; 2  divided by the corresponding divisor.

This method might be called a “paper strip method” for analy-
sis of variance and is similar to paper strip methods used for
operations with polynomials. For examples of this, see Lanczos
[3]  and Pragcr  [4].

We require 21J2  l . . t,, locations for storing y and z plus sup(ll ,
t ‘2,  “‘, 1,‘)  locations for storilq  a row of iV,  . The number of mul-
tiplicntions  rcquircxl  is (nli)  (r1i + 1).

AC~;NO\~LI:DGMI:NTS:  The  author wishes to  thank Dr. A. E.
Brxndt  for initirlting  h i s  intcrcst  in programming analysis  of
vwiancc. I It!  wishes  LO  t,h:~&  Dr. W.  I l .  Carter ,  J r . ,  and the
rcf(lrcbc,  for 1~4 pf ul  (*oinm(fil ts.
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2. Gow,  I. ,J. The  intcractio11  :\.lgori thm  :md  prnctictll  Fouricl
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SUPRCUT  INE  FYCVA
l *tt+***t++t,.***

C
l ryr2~ROwrMSI2E~NCLS~NFCTR)

SI’+JENSION Y(llrZ(l)r
l f?CW(l)*MSIZELl~

L O O P  F O R  KfCTR  C O N T R A S T  M A T R I C E S
C

CO 5 kr  = 1tNFCfR
I =  1

SET  S I Z E  OF THE  MATRIX
Y =  NFCTR-NF+l
NRNC =  h’SItE(K) C

33 3 J = 1  tNRNC
ROk  O F  A  C O N T R A S T  M A T R I X C
C A L L  AMOk  (ROk*NRNC*Jl
DERFORN  THE ‘PAPER  S T R I P ’
OPERATIOI~  F O R  A  M A T R I X  ROW
22 2 K =  1tNCLSrNYNC

Z(I)  =  0.
33  1 L  =  1rNRNC

KLl =  K+L-1
1 #?(I) =  ZLI )+ROk(L)*Y(KLl)

2 I =  I+1

3 C O N T I N U E
HOVE  2  INTO Y
DO ~1  J * 1gNCLS

L Y ’ ( J ) =  Z(J)
r,_ CONTIuuF

3C 6 J = 1thCLS

6 V(J) = Y(J)*Y(J)
k r Tyu’,

i hC

SuBROUT  INE  AROW
*****+I*********

* (R0WtNRNC.J)
DIMENS ION  ROWf  11

IF ROW ONE

IFfJ-113rlt3

1 A =  N R N C
EL =  l./SORTdA)

DO 2 I =  1,NRNC

2 ROW(  I  I= E L
AND
R E T U R N
E L S E

3 3Ml =  3-l

R J . J
A =  SORT(RJ+RJ-RJI

E L 0  1./A
DO 4 I =  ltJM1

4 ROWf  I  )= E L
DO5  1 =  JINRNC

5 ROb/sl(I)=  0 .
RObI(  11.~T\J)/A

RE  Tu’?‘v
kYD

ALGORITHM 360

30 Apr. 1969)
Alan M. Voorhees and Associates, Inc., 1  . __ -----,  . __ -yI

and Department of Civil Engineering, University
Washington, Seat-de,  WA 98105

KEY WORDS AND PHRASES: shortest path, tree, network4
directed graph 5%
CR  CATEGORIES: 5.32, 5.42

SHORTEST-PATH FOREST WITH TOPOLOG1
ORDERING [H]
ROBERT B. DIAL (Recd. 21 NOV. 1968, 27 NOV. 1968 an

procedure MOORE (INDEX, J, D, d, n, DIST, I, NEXT,
LAST, wuzxdist,  ROOT, m);
value n-w&,  n, ??MZdiSt,  m;

integer array INDEX, J, D, DIST,  I, NEXT, LAST, ROOT;
integer ?rlilxd,  n, VUlXdiSt,  m;

comment Given a subset (called “roots”) of the nodes (num-
bered from 1 to n) spanned by a directed graph composed of
arcs of known length, MOORE finds for each node in&he  network
the shortest path connecting it to its closest root node. The
result is a disjoint set of shortest-path trees, referred to here 88
a “shortest-path forest.” MOORE’S  outpurt  describes all the
paths in the forest and gives their lengths. It also provides two
lists which sequence the nodes spanned by the forest in forward
and backward topological order. In the algorithm’s terminology,
“forward topological order” is a sequence in tihich  any given
node is listed after any other node which lies on the path be-
tween i t  and i ts  root  node.  Conversely,  the “backward topo-
lo+nl  o r d e r ” has the nodes arranged iu dccrensing distance
from their ncarcst  root node.

The  proccdurc M o w  implements  : L  well-kllown,  widely-used
algori thm by 1’. F. Moore [l] rind is p,zrti(*ulnrly  suited for a
large, sparse  network whose arc lengths  are short ttnd  which
hltve  a small  variance,  e.g. an urbti11  highwlty  system. As an
indication of its cliiciency, ail  Assembly Langri:~ge  routine pat-
terned after MOORE for the IBM 360  model 65 found all short-
est paths from a single root node to the rem,zining  12,O  nodes
of a 36,000-arc  network (i.e. built :t  minimum-pnth tree) in one
(1) second. In general, for a connected graph, MOORE’s %m-
ning time” is directly proportional to the number of arcs i!l the
network and is independent of the number of roots. The  me-
chanics of the algorithm are summarized in the following
three steps :

Mark each root node r “reached but not scanned” and asso-
ciate with it a distance of zero (DrSTjr]=O).  Mark each
nonroot  node i “not reached” and associate with it a distance
of infinity (i.e. DIST(i]=mazdist).  Go to Step 1.
From among the nodes marked “reached but not scanned,”
select the node i whose distance is smallest. If there is no
node so marked, the forest is complete. Otherwise go to WP
3d.
For each  arc (i, j)  in the network (i.e. all arcs exiting the
selected node i), compare DIST[j]  with the sum of MS’T[il
and the arc length of (i, j>. Whenever this latter sum is less
than the former quanti ty, set  nIs’l’[j]  equal  to  i t ,  mark

’node 1 “rc:tched  but not scanned,” and put the arc (i, j)  in
the forest, removing any other :trc whose final node is j.
When  :tll  arcs exi t ing node i have been  so examined mark
node  i “rC:tdml  and  scanned”  and  ~0 to Step  1. I



. :cp 1. To facilitate this node selection, the procedure below 
i c s  a topological ordering of  the final nodes of the arcs i n  the 
:irtial forcst,. I t  effects Step 1 by referring to a forward-order- 

illy list, N E S T ,  t,o determine which node should be selectcd 
riext from the “reached biit not scanned” category. A backward- 
ordcring list, I,AST, aids updating the ordering when a previ- 
ously found path to a node is superseded by a newly found, 
shorter one. Also used in this itpdat,ing process are two short  
local vectors, H E A D  and T‘. l I f , ,  H E I I D ( d ]  and T A I L [ d ]  contail1 
the first and last node of asublist  of iiodes, whose associated dis- 
txncc is riot less than the distance of the node selected i i i  Step 1 
.-nd is congruent to d modulo the net’s maximum arc length. 

he use of these latter two arrays becomes clear while studying 
i i ~ e  ALGOL below. 

Besides the m root nodes stored in ROOT[ l ] ,  . . .  , IZOOT[ml, in- 
put to MOOEE consists of a network description i n  three vectors, 
J ,  D ,  and Ih‘DEX,  together with thescalar parameters n ,  rnaxd, 
and mazdist. The  array J contains the final node numbers of all 
arcs in the network stored in ascending sequence with respect 
to their initial node number, The  second vector, D ,  is parallel 
to the array J and holds the corresponding arc lengths-against 
which paths are to be minimized. I.\’DEX[i] points to the first 
(.‘t:ment of J representing an arc exiting node i. INDEX is di- 
: ,nsioned from 1 to n + 1, where the parameter n is t,he highest 
Ilide number in the network, and I.VDEX[n+l] contains one 
pliis the total number of arcs in the network. The arc lengths 
stored in the array D miist be positive integers strictly less than 
the parameter maxd. Similarly, as maxd exclusively limits the 
length of ail arc, so does the other input scalar parameter 
maxdisl limit the length of a path. MOORE only considers paths 
which are shorter than mazdisl. 

The algorithm’s oiitput describes the minimum-path forest 
in two vectors, I and DIST.  I ( j ]  contailis the initial node of the 
f .rest's unique are whose final node is j .  Thus the sequence of 
: Ides representing the shortest path from the nearest root 
to j is found in reverse order by looking a t  I [ j ] ,  f [ l [ j ] ] ,  etc., 
until a root node is encountered. D l S T [ j ]  returns the minimized 
distance from, the closest root node to j .  If j is not reachable 
from any root node via a path shorter than mazdisl, MOORE 
returns with DLST[j] = mazdist and I [ j ]  = 0. The forest’s topo- 
logical orderings are returned in list form in the pointer vectors 
N E X T  and LAST. MEXT is a circular successor 1ist.Thenumber 
of the node closest t o  i ts  root node is stored in NEXT[ROOT[l]] .  
The next closest node is contained in NEXT[iVEXT[ROOT[1111, 
r :>., until ROOT[l] is encountered in some N E X T [ j ] ,  where j is 
ttie number of the node farthest from its root node. Similarly, 
LAST is a circular predecessor list. The backward topological 
order is obtained by start ing at LAST[ROOT[l]] ,  which contains 
the number of the most distant node. LAST[LAST[ROOT[llll 
htts the next most distant,, etc., until L A S T l j ]  = ROOT(11, j 
being the closest node to  i t s  root. When no path shorter than 
mazdist exists between a root node and j ,  then j appears in 
neither the N E X T  nor the LAST list. 

REFERENCE: 
1. MOORE, E. F. Theshortest  path through a maze. In  Inter- 

national Symposium on the Theory of Switching Proceedings. 
Harvard U. Press, Cambridge, Mass., hpr .  1957, pp. 285-292; 

integer procedure mod(d, w d ) ;  value d ,  muzd; integer 
d ,  mazd; mod := d - mazd x entier(d+mazd); 

integer array HEAD[O:mazd-11, TAZL[O:mazd-l]; integer 

for i := 1 step 1 until w d - 1  do HEAD[iI :== TAZL[i]  := 0 ;  
for i := 1 step 1 until TI do 
bngin DIST[i]  := mazdist; 
for i := 2 step 1 until m do 

begin 

4 P L ,  k, v ,  j ,  q, cl; 

I [ i ]  ;= 0 end; 
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begin 
LvE‘yTIROOTIZ- l ] ]  := ROOT[Z]; L ; l sT[ROOT[ i ] ]  := ROOT 
[i-11; 
DrsT[EooT[i l]  := 0 

pl  := 0; 

end; 
L:IST[ROOT[l]] := .VEST[ROOT[VZ]]  : =  DIST[XOOT[1]]  := 

i := HEz4D[O] := W O T [ l ] ;  TzlIL[O] := ROOTIn];  
comment 
r :  

begin 

Examine a11 exits from selected node (Step 2 above);  
for k := Ih’DES[i]  step 1 until ISDE.Y[i+lj  - 1 do 

u := D I S T [ i ]  + D [ k ) ;  j := J [ k ] ;  
if u < D I S T [ j ]  then 
begin 

comment 
in forest; 
if D I S T [ j ]  # masdisl then 
begin 

Path to j via i is shortest so far-put arc (i, j )  

comment 
q := mod(DIST[ j ] ,  maxd); 
i f  HE;lD[q] = j then HE..ID[q] := .VE.YT[jj 
else 
begin 

Delete node j from its prior srtblist; 

if T A I L [ q ]  = j then 
begin T:itL[ql := [,..IST[j]; t vE i sT (L : tST[ j ] ]  := 0 

else 
begin L . ~ l S T [ , V E S T [ j ] ]  : = L A S Y [ j ] ;  iVEST[LrlST 

end 

[ j ] ]  := N E d Y T [ j ]  end 
end 

end ; 
comment 

forest; 
q := mod(v, maxd); 
if H E A D [ q J  = 0 then 
begin HEAD[q]  := j; 
else 
begin L A S T [ j ]  := TAILjq] ;  
comment 
l [ j ]  := i ;  DZSTbl := v ;  T A I L [ q ]  .= j ;  iVEXT[ j ]  := 0 

Hook j to its ncw sublist, and put arc (i, j )  in 

L A S T [ j ]  := 0 end 

iVEXT[T:tIL[q]] := j end; 
Update forest and forward ordering; 

end 
end; 
comment Select next node i whose exit arcs are to be examined 

if N E X T [ i ]  # 0 then 
begin 

(Step 1 above); 

comment 
i; i := iVEXT[iJ;  go to r 

Sublist containing i not empty-use successor of 

end; 
comment Sublist containing i empty-use first node in next 

HEAD[pl]  := 0; 
for cl := 1 step 1 until d - 1 do 
begin 

nonempty sublist; 

p l  := mod(pt+l, mazd); 
if HEAD[pl]  # 0 then 
begin 

comment 
LAST[HEAD[pt]]  := i; i := iVEXT[i] := H E A D [ p f ] ;  

go to r 

Found a nonempty sublist-hook i t  to lists; 

end; 
end; 
comment 

LAST[ROOT[l]] := i ;  

All sublists empty, forest biiilt-circularize lists 
and quit;  

end MOORE 
N E X T [ i ]  := ROOT[l] 
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ALGORITHM 361 
PERMANENT FUNCTION OF A SQUARE 
MATRIX I AND I1 [G6] 
BRUCE SHRIVER, P. J. EBERLEIN, AND R. D. DIXON (Recd. 

State University of New York at  Buffalo, Amherst, NY 

KEY WORDS AXD PHRASES: matrix, permanent, determi- 
nant 
CR CATEGORIES: 5.30 

real procedure perl(A, n ) ;  
integer n;  array A ;  

comment Let A be an n X n real matrix, n > 1. The perma- 
nent function of A ,  denoted per(A),  is computed by H. J. 
Ryser’s [ I ]  expansion formula: 

19 Feb. 1969, 7 Mar. 1969 and 9 July 1969) 

14226 

n-1 r 

where Tj ,  j = n, n - 1 ,  . . .  , 2, 1 ,  is theset  of vectorsx = (zi), 
i = 1 ,  2, . . . , n which are obtained by adding j columns of A 

together i n  all possible ways. T o  effect the sum over vectors 

in Ti, n - 1 sums are computed. The natural 1-1 map from the 
binary integers to all r-combinations, r = 1 ,  2 ,  ’ .  . , n - 1 ,  is 
used to increment the sums over the sets T,. 

1. RYSER, 13. J. Combinatorial Mathematics, Carus Monograph 

. (3 
REFERI~NCX : 

N 1 4 .  Wiley, New York, 1963, p. 27; 
begin 

real s i y ,  pera, prod ,  rowsum; 
integer number, limit, mod, gen, g, i ,  j ,  r ;  
array sum(0:n- 11; 
integer array d[l :n];  
sig := -1; pera :=  0 ;  
for r := 0 Rtep 1 until n - 1 do sum[r] := 0; 
for number := 1 step 1 until limit do 
begin 

r : =  0 ;  gcn := number; 
for mod := 1 etep 1 until n do 
begin 

limit := ( 2 7  n )  - 1; 

g : =  gen f 2 ;  
. begin T :=  T + 1 ;  

gen := Q 

end ; 
prod := 1 ;  
for i :=  1 step 1 until n do 
begin 

if (gen-9x2) = 1 then 
d [ r ]  := mod end; 

rowsum := 0 ;  
for j := 1 step 1 until r do 
rowsum := rowsum + A [ i ,  d u l l ;  
prod := prod X rowsum 

end ; 
sum[n-r] := sum[n-r] + prod 

end ; 
for r := 0 step 1 until n - 1 do 
begin sig := - s i g ;  p i ra  : =  pera + sig X sumlr] end; 
per  := pera 

end of real procedure perl; 
real procedure per2(A, n ) ;  

integer n ;  array A ;  
comment Let A be an n x n real matrix, n > 1 .  The permanent 

function of A ,  denoted by per(A) is computed by Jrirkat and 
Iiyser’s [ I ]  method of indrictively generating the vectors 
PI , , p , ,  where p ,  is the vector of permanents of r by r sub-  

matrices of the first r rows of A .  This vector has 

. 

indexed by the r-combinations of (1, + . .  , n ) .  The  natural 1-1 
map from the binary integers {I,. * * . , 2 T n- 1 )  to the ?-corn. 
binations of {I,  ... , n)  for r = 1, . - .  , n is used to  index the 
p’s and thus they are generated in an  order somewhat dif~,3rent 
from that  of Jurkat and Ryser. 

REFERENCE: 
1. JURKAT, W. B .  A N D  RYSER, H. J. Matrix factorizations of 

determinants and permanents. J. Algebra 9 (1968), 1-27; 
begin 

integer numbel., limit, mod, gen, g, r ,  d i g ,  sub, j ;  
array list [1:2 T n-11; 
limit := 2 T n  - 1 ;  
comment Initialize list aa accumulators; 
for j :- 1 step 1 until limit do list [ j ]  := 0 ;  
for j := 1 step 1 until n do list [2 7 (j-1)] := A l l ,  j ] ;  
for number := 1 step 1 until limit do 
begin 

if list [number] # 0 then 
begin 

I := 1; gen := number; 
for mod := 1 step 1 until n do 
begin 

g := gen f 2; 
if gen - 2 X g = 1 then r := r + 1; 
gen := g 

end count of 1’s in number; 
d ig  := 1 ;  
for mod := 1 step 1 until n do 
begin 

gen := number; 

g := gen f 2;  
if gen - 2 x g = 0 then 
begin 

sub := number 4- d i g ;  
list [aub] := lid [sitb] + list [nitmber] X A [ r ,  mod] 

I 

end; 
gon := g; dig := 2 X dig  

end computations with list [number]; 
end 

end ; 
per := list [limit] 

end of real procedure per2;  

Note. On the Permanent Function of a Square Matrix I and 11: 
Progiam I is slower than Program 11. However Program 11 
approximately 2“ more locations of store. The  running times for 
both programs double when n is incremented by 1 .  

ALGORITHM 362 
GENERATION OF RANDOM PERMUTATIONS [G61 
J. )I. ROBSON (Recd. 1 kpr. 1969) 
Programming Research Group, 45 Banbury Road, Oxford, 

KEY WORDS AND PHRASES: permutation, random permu- 
tation, transposition 
CR CATEGORIES: 5.5 

Englarid 

procedure perm(n, r ,  A);  value n, r ;  integer n ,  r ;  t e e r  
array A ;  

comment This procedure produces in the vector A a permutap 
tion on the integers 1, 2, . . .  , n, each of the n !  permutations 
being given by one value of r between 1 and n !  inclusive. It is 
thus  similar i n  effect to the procedure given in [ I ]  but it is con- 
siderably faster,  especially for large values of n, since it useS ’ 
siiigle loop rather than a double one. 

A perrniitatioii is generated as the product of n - 1 transPo’ 
sitions of which the jth transposes A[n+l-j]  and dlz] 
some z I n + 1 - j .  
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.’ the line 

,,mittctl the procediire will permiit,e t.he originnl vnlries 
f, i := 1 step 1 unti l  n (lo A[Z] := i 

~ 1 1 1 ,  . . .  , J [ n j  in the same manner. 

K o s r ~ s o ~ ,  C. L. Algorithm 317, Permutation. Covt7rt. .4(’.11 10 
Rs~k: l l l . :NCF:  : 

(PU’OV. 19c,7), 733; 
begirl 

in teger  i, X ,  y; 
for i := 1 step 1 until n do A [ i ]  :=  i ;  
for i := n step -1 until 2 do 
bq :in 

:= r - (r+-i) X i + 1; r := r + i ;  
; := A[z]; A[z] := A[i];  .4[i] := y 

end 
end 

ALGORITHM 363 
COIIPLEX ERROR FUNCTION* [Sls] 
WALTER GAUTSCHI (Recd. 11 June 1969) 
Con mter Sciences Department, Purdue University, 1,a- 

fa>.ette, I N  47907 
* Work supported, in part, by the National Aeronantlcs and 
Space Administration (NASA) under grant NClt 15-005-030 
and, in part ,  by Argonne National Laboratory. 

KEY WORDS AND PHRASES: error functmn for complex 
argument, Voigt function, Laplace continued fraction, Gaiiss- 
Hermite quadrature,  recursive computation 
CR CATEGORIES: 5.12 

proc.’ dure wofi(s, y, re ,  im); 
oomnient This procedure evaluates the real and imaginary 

part of the function w(z) = exp(-z*)erfc(-iz) for argument-‘ 
z = z + iy in the first quadrant of the complex plane. The accu 
racy is 10 decirhal places after the decimal point, or better. 
For the underlying analysis, see W. Gautschi, “Efficient com- 
putation of the complex error function,” to appear in S I A M  
J. Math. Anal.; 

integer capn, nu, n, np l ;  
1 reai h, h2, lambda, r l ,  1.2, Y, sl ,  s2, 11, 12, c ;  
1. Bocrlean 6 ;  
1 if y < 4.29 A z < 5.33 then 

hegin 
:= (1-~/4.29) X sprf(1-z X 1 /28 .41 ) ;  

value z, y; real z, y, re, im; 

begin 

h := 1.6 X s; h2 := 2 X h ;  
mpn := 6 + 23 X s ;  nu := 9 + 21 X s 

end 
else 
begin h := 0; capn := 0;  
if h > 0 then lambda := h2 7 capn; 
b : - =  h = 0 V lambda = 0; 
rl := 72 := 81 := 92 := 0; 
for n := nu step - 1  until 0 do 
begin 

nu := 8 end; 

npl := n + 1 ;  
11 := y + h + npl x r l ;  12 := I - npl X 72;  
c := .5/(t l  X tl + t2 X 12); 
rl  := c x 11; r2 := c x 12; 
i f h  > 0 A n I cupn then 
hegin 

11 := lambda + s l ;  sl := r1 X t l  - r2 X 92; 
s2 := r2 x tl + 71 x 92; 
hm.& := lam&/h2 

end 

end ; 
re : =  if y = 0 then ezp(--zXz) else 

t t t t  := 1.128879113700551 X (if h then r2 else s 2 )  
l.l?YRi01fi709551 x ( i f  b tlien r l  else sl); 

end luofz 

CERTIFICATION OF ALGORITHII 47 [Slfi] 
ASSOCIATED TJICGENDRE FUNCTIONS OF THE 
FIRST IiIND FOR REAL OR I M A G I X ~ ~ I ~ Y  
hRGUAIENTS [.John R. Herndon, Comm. ACJI 4 

S. M. COBB (Recd. 6 Feb. 1969, 12 JIay 1969 arld 9 July 

The Plessey Co. Ltd., Roke hIanor, Romsey, Hants, 

KEYWORDS AND PHRASES.  Legendre function, associated 
Legendre function, real or imaginary arguments 
CR CATEGORIES: 5.12 

(Apr. 1961), 1781 

1969) 

England 

This procedure was tested a n d  run  on the I.C.T. Athw com- 
pu ter. 

In  addition to the errors mentioned in the certification of iiugiist 
1963 121 the following points were noted. 

1. The requirement that  when n < rn p := 0 must take prece- 
dence over p := 1 when n = 0. Hence the order of the first two 
i f  statements must be interchanged. 

Most computers fail on  division by zero. Hence the state- 
ment beginning if z = 0 then and ending with go to last 
end; should be inserted between w := I ;  and := w/(zxz). 

When z = 0, if the argument of the Legendre function is to 
be considered aa real p must be milltiplied by ( - I )&,  This is 
achieved by inserting after the statement beginning p := Gamma 
[m+n+l]  the if statement 

i f f  then p := p X (-1) T i ;  
(For a change in the meaning of r see item 5 below.) 

4. After the label last in the compound statement begin- 
ning if  T # 0 the statement i := n - nt4; is wrong. This 
should read 

i := n - 4 X ( n i 4 ) ;  

Since r is used only aa an  indicator it is better that  i t  be 
declared as Boolean. It can then be given the value true if the 
argument of the  Legendre function is z and false i f  it is iz. The  
following program changes are then necessary. The statement 
beginning 

if r = 0 then 

becomes 

if r then 

The statement beginning 

if r # 0 then 

becomes 

if 7 r then 

6. Computing t ime can be saved in several ways. First we 
should declare another integer k and set i t  equal to n - m. The  
first statement of the procedure is then 

k := n - m ;  

The  next statement will begin 

if k < 0 then 

(This replaces if n < m then 
in accordance with i tem 1 above.) 

2. 

3. 

5 .  

whose position has been changed 
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n - m is then replaced by k in the lines 
for i := 1 step 1 until n - m do 

and 

if ( ; + I )  # ( n - m )  then 

Removing j as suggested in the previous certification leaves i t  
free to be set to k f 2. This requires the following modification: 
instead of the unnecessary statement if n = m then go to main 
Put 
j := k i 2 ;  

In the statement beginning i f  x = 0 then replace the line 

begin i := ( n- m )  + 2 ;  

by 
begin a := j ;  

a 
further small saving in computer time could be achieved by setting 
k to n - i. The loop thus becomes 

for i := 1 step 1 until 12 do 
begin if j + 1 < i then g o  LO lasl; 

In the for loop beginning for i := 1 step 1 until 12 do 

k := n - i ;  
p := p + Gamm[2Xk+31 X z/Gamma[i] X Gamma[k+21 X 

Gammu[k-i-m-t3));  
z : = z x 1 /  
end 

For real argument the program was tested as follows. 

( i )  z = O(O.l)l ,  m = 0(1)3 ,  n = 0(1)3  
(ii)  x = 1.2(0.2)2.8, m = 0(1)2 ,  n = 0(1)2 
(iii) m = 0, n = 9, x = 0(0.2)1,  2(2)10. 

For imaginary argumcnt we used 

z = 0(0.2)2,  m = 0(1 )2 ,  n = 0(1)2 .  

Checking lor rcal argiimeiit was wrried out where possible 
using [ I ] ,  agrecmcnt being ol)tiiiiied i l l  all wises k) the nmxiniiiin 
number of figures iiviiiliddc, which viiried Ixtwecli (i tind 8. For t i l l  

othcr ciiscs [3] had t u  bc used, giving oiily 11 5 figurc cl>eck 

1 .  ABI~.~M~WI~IYL, kl., A N I )  *r ’ l sGU~ ,  I. A. Ilandbook of miittic- 
matical functions. AMS 55, Nat. Bur. Stand. US (iovt. Print,- 

iiig Ofl’., Washirigtoil, l).C., 1964. 
2. G+;ottGlc ,  1 1 .  Ccrtifcatiori of Algorithm 4 7 .  Comm. ilCh!f 6‘ 

3. MORSL, 1’. M., A N U  FISSBACII, 1-1. Melhods o j  Theoreliull 

13 I:FI2lt I.:NCI.:S : 

, (Aug. 19G3), 446. 

Physics ” 1 .  I I .  McGraw llill, New York, 1953. 

CERTIFICATION OF ALGORITHM 255 [CG] 
COJII’UTATIOK OF FOURIER. COEI~I~ICIEn’TS 

[Linda Tcijclo, Conrna. ACM 6 (May 1!165), 2791 
GILLIAN HALL* A N D  VALEIZIE A. RAY? (Recd. 31 Jlar.  

1909 and 1 July 1969) 
National Physical I~bora tory ,  Teddington, lliddlcscx, 

Eiiglarid 
* hl.1i.C. team, Uivisioii trf Computer Science (forrnerly o f  I ) i -  
visioti of Numerical and Applied Mathematics). 
t I )ivision of Numerical aid  Applied Matlicmativs. 

KEl’ W01tI)S AKI) PI-IIi ASES: 
coefficients, Filon’s method 
CZi CATEGORIES: 5.16 

numericd intvgr:ttioii, 1;ouricr 

The tests for convergence on lines 51 and 83 should read re- 
spectively: 
if abs(previnl2-int2) < eps X abs(int2) A n > 5 then 
if abs(previntl-inl1) < eps X abs(int1) A n > 5 then 

With this alteration, the program was tested successfully on 
series of functions F ( z )  using a range of values of m and eps for 
each function. The parameter subdivmdz: wm set a t  the recom- 
mended value, 10. For F ( z )  = x2, for which the method is exact, 
results were obtained correct to machine accuracy, i.e. l o )  deci- 
mal places. 

( i)  It would be better to  declare the identifier tnl 
as type integer, i.e. to  replace lines 20 and 21 of the text by: 

c0, c l ,  SO, s l ,  in t l ,  int2, previntl, preoinl2, 13, temp; 
integer n, i ,  t n l ;  

(ii) There is no indication, after execution of the algorithm, 
whether the computation was terminated because of apparent 
convergence or because the number of times, n, that, the interval 
was halved became greater than su6ddivmaz. The following modifi- 
cation provides such an indication; i t  has the effect that COS& 

and sine will retain their entry values except in the case where 
cosine or sine has the value true on entry and n becomes greater 
than subdivmax in the course of computation. I n  this case the value 
on exit will be false. 

Line 3 becomes: 
value eps, s u b d i v m ,  m ;  

Remarks. 

Boolean b o d ;  

real eps, cinl, s int;  
Line 57 becomes: 

sin1 := int2; sine := false; go lo M 
Line 88 becomes: 

cosine := false; 

following modification is suggested: 

go to ezit end; 

(iii) T o  avoid the repeated evaluation of iF (O) ,  F(l.O) the 

I>eclnre a new variable lerml of type real on linc 20. 
llcplace lines 23 and 24 by : 

term1 := F(l.O) X c o s ( k ) ;  
R U ~ C O S  := IF(O)+lcrml) X 0.5; 
sumsinc := 0; 
term1 := 2 X (sumcos-lerml); 

Heplace lines 43, 45 and 4 9 ,  50 by: 
preuinli! := ( a X l e ~ m l  +bX.Funiszne+gXo~~slne) X 0.5; 
begin in12 := h x (aX~erml+bXsumsine+gXtrdds ine) ;  

Ilcplnce lines 76,  77 and 81, 82 by: 

previntl := (bXsumcos+gX&cos) X 0.5; 
hegin intl := h X (bXsumco~+gX~ddcos ) ;  

Physical Laboratory. 
The work described above has been carried out a t  the ICationa’ 

CERTIFICATION OF ALGOltITHh4 296 [E21 
GENEItALIZED LEAST SQUARES FIT BY 
ORTHOGONAL I’OLYKOMIALS [G. J. Jlaliinson, 

WAYNE T. WATSON (Recd. 11 Fcb. 1969 and 21 A I a i .  ?9G9) 
Service Bureau Corp., Development Laboratory, 1 I ;Vest 

KEY WO1II)S ANI) PHIIASES: le:m sqrlares, curve fittingp 

cir‘ cATEc;oitIEs: 5.13, 5.5 

Contna. ACM 10 (lceb. 1967), 871 

St. John Street, Sari .Jose, CA 95113 

orl.tiogoiiii1 polpiiomials, three-term reciirrence, pdymmial re- 
grcssiotr, tipproximiltion, Forsythe’s rnelltod 

/,SF/TUM‘ was c!ompiletl and tested i l l  CAI,L/3(iO:I’L/I. 
nrotlitiratioiis were miidc t,o t11e :tlgorit,1ini, mid the  c.omp1t,ations 
were Inadc i i i  tong prevision (about 15 sigtiificiiiit f lonti ’ point 
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zits) .  In  addition, POLYS [2] was used to transform the resnlts 
01 I,SPIl'UIV from the interval ( - 2 , 2 )  to the interval (a ,zm). 

To generally test  the algorithm, several small sets of data a e r p  
used with LSPITGW iind the resrilts were compared with thosc 
obtained from :~n independently written polynomi:tl ciirve fitting 
algorithm which does not use t,he method of orthogonal poly- 
nomials. Only polynomials of degree less than 5 were \wed t o  fit 
the data .  Agreement between coefficients :ind standard errors was 

As a more comprehensive test of the iilgorithm, all experiments 
t ,  could be duplicated from the article by .kcher :tnd Forsythe 
[I were performed; a slight modification to LSFITUW was re- 
qrlired to  transform the data  to  the interval (-1,l) instead of 
(-2,2). Briefly, the experiments included: 

( I )  For  certain equally spaced data ,  a comparison of the a; and 
p, calculated by the program against those values of a; and pi 
obtained from known formulas (a;=O for equally spaced da ta ) .  

( 2 )  A fit of the function f(z) = I z 1 over the interval (-1,l) 
for equally spaced da ta  for polynomials of degree as high as 30. 

(3) A fit of the function f(x) = e* for unequally spaced data  
inside the interval (-1,l) for polynomials of degree as high as 32. 

!'he results of experiment (1) showed that  LSFITUW produced 
va;sies of p; differing only in the last significant digit (15) from 
those calculated by the known formula. The  valltes of ai produced 
were in the range of the floating point roiind-oR error 
The results of duplicating experiments (2) and (3) were better 
than those reported in [ I ]  becailse of the greater precision used in 
the calcrilntions (about 10.8 versus aborit 15 significant floating 
digits). While conducting the last two experiments, it was noted 
that for data  values of z symmetric about the origin, the value of 
b i n  the transformation eqrmtion x = al + 6 may be computed to 
be ' 1  number in the floitting point round-off range instead of exactsly 
zel- ' .  Whcn fitting polynomials of a slifficicntly high degree, this 
ma! cause a n  underflow a t  line 1 of P O L Y S ,  the trarisformation 
routine. The  user may find it desirable to branch on an underflow 
in POLYX and reset h to zero. 

T o  check the computations of the Uk2 obtained by the recursive 
definition of Ukz used in the algorithm, the were compared 
with results computed directly from the equation 

good. 

whs re y k  is the best fitting polynomial of degree k for the da ta  
2, , f, . Experience with the algorithm indicates tha t  B loss of 
accuracy in computing occurs at smaller values of k when using 
the recursive definition than when using (*). If the values of utz 
are of importance to  the user, he may find i t  useful to  compute 
them using (*) instead. 

A comprehensive test  of the algorithm's feature which uses the 
4 to  automatically select the best fitting polynomial was not 
made, but  the feature did work properly for the polynomials used. 
In connection with this feature, the user should be aware, though, 
Of the possible difficulty mentioned above in computing Uk* ac- 

I cur ' tely using the recursive definition. I n  this case, the user 
should not expect the algorithm to  select the best fitting poly- 
nomial. This  difficulty was experienced several times while testing ' the algorithm, but  was circumvented by using (*) t o  calculate 
n'. I n  order to detect a possible loss in accuracy, the Uk' should ' be examined carefully or compared with those obtained by y). 

Comprehensive tests were not made using weights; however, 
no problems were encountered with a moderate usage of this 
feature. 
REFERENCES: 

. 

c 
1. ASCHER, M., AND FORBYTHE, G .  E. SWAG experiments on the 

use of orthogonal polynomials for da t a  fitting. J .  ACM 6 
(Jan. 1958), 9-21. 

2. MACKINNEY, JOHN G .  Algorithm 29, Polynomial transformer. 
Comm. ACM 3 (Nov. 1960), 604. 
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RE;\II\RIC O K  :\I,GORITHlI 175 [E4] 
DI ItECT SEARCH [I\rthur 1'. Iiaupe, ,Jr., C o n m .  .lC.U 

6 (.June l!W), 3131; [as revised by 11. Bell and 11. C. 
Pike, Comw ACJ/ 9 (Sept. 19M), f j M ]  

I:. I<. TOMLIN A X I )  I,. B. SMITH (ILectl. I T  \Lay INS, 9 
Sept. 1968 and 30 ,June 196!)) 

Stanford Research Institute, Jlenlo Park, CA 9402.5, arid 
CERN, DD Division, Gcncv:i, Switzerland 

KEY WOI1DS A N I )  l'Ifl{ASUS. 
direct scarch 
CR CATEGOItIES. 5.19 

fiiiictiori rniriimiziitioii, search 

The procedure DIRECT SEARCH, as modified by M. Bell and 
M. C. Pike [l], does not always provide the determined minimiim. 
In addition, the maximum number of frinction evaluations per- 
mitted is almost always exceeded whenever the step-length is 
greater t,liaii t iel la :it the time tht: nrimber of frinctioii evaluations 
is greater t1i:ui o r  equal to mazeral. Finally, the label 3 is riot 
used. 

To  insure that the d e t e r m i i d  minimum is always provided, 
the test on the number of ev:diiatiotis shoiild be moved to a point 
where the miniinwn has heen properly provided. 

111 [ 2 ]  IIeVogelaerc remarks correctly that  the procedure does 
not exit as  specified :~nd  givcs ch:ruges which will indeed caiise the 
procedure to  terminate when the niimber of fiiiiction evaluations 
exceeds the specified limit (and not some number of evttluations 
later) .  However it is felt tha t  UeVogelaere's solution to this 
problem caiises excessive testing. Therefore the test should be 
.performed after an exploratory move :is in [I] biit it sholild also 
be performed when the step-length is reduced. This  method of 
testing violates the letter of the specified rise of iriazeval bllt not 
the intent, which is to provide :in escape from excessive calcula- 
tion. 

To obtain the determined minimum, to provide a means for 
reducing the number of function evahiutions when step-length 
is greater than delta, and to  eliminate the unused label: 
(1) The  lines 

2: if eval 2 mazeval then 
begin converge := false 

end ; 
go to EXIT 

should be removed. 

in Ill) 
(2) The line (16th line from the end of the procedure given 

for k := 1 step 1 until K do 

should be changed to  

2: fork := 1 step 1 until K do 

(3) The line 

Sps i  := SS; SS := Sphi := S ( p h i ) ;  eval := eval + 1; E; 
should have the  following code inserted after the statement 

if em1 2 mazeval then 

3 :  converge : = false; 

S P S i  := ss; 

begin 

go to EXIT 
end; 
(4) The line 

3: 

should be changed t o  

if DELTA 2 delta then 

if DELTA 2 delta then 

(5)  The line 
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begin DELTA := rho X delta; 

should be changed to 

begin if em1 > maxeval then go to 3 else 
DELTA := rho X della; 
REFERENCES : 

1. BELL, M., AND PIKE, M. C. Remark on Algorithm 178. Comm. 
ACM 9 (Sept. 1966), 684. 

2. DEVOQELAERE, R. Remark on Algorithm 178. Comm. ACM 11 
(July 1968), 498. 

REMARK ON ALGORITHM 178 [EX] 
DIRECT SEARCH [Arthur F. Kaupe, Jr., Comm. ACM 

6 (June 1963), 313; as revised by M. Bell and M. C. 
Pike, Comm. ACM 9 (Sept. 1966), 6841 

LYLE B. SMITH* (Recd. 9 Sept. 1968) 
Stanford Linear Accelerator Center, Stanford, CA 94305 

Present address. CERN, Data Handling Division, 1211 
Geneva 23, Switzerland 

KEY WORDS AND PHRASES: function minimization, search, 
direct search 
CR CATEGORIES: 5.19 

Algorithm 178, as modified by Bell and Pike 111, has been 
used successfully by the author on a number of different problems 
and in a variety of languages (e.g. Burroughs Extended ALGOL on 
a B5500, SUBALQOL on an IBM 7090, and FORTRAN on the 
IBM/360 series machines). A modification which has been found 
to be useful involves tailoring the step size to be meaningful for a 
wide variation in the magnitudes of the variables. 

A s  currently specified 111, each variable is incremented (or de- 
cremented) by DELTA a.. a minimiim is sought. For a function 
such that the values of the variables differ by several orders of 
magnitude at the minimum, a universal step size causes some pa- 
rameters to be essentially ignored during much of the searching 
process. For example, i f  a function of two variables has a miriiinurn 
near (lW.0,0.1), as tep size of 10.0 will be useful i n  minimizing with 
respect to the first parameter, but it will be meaningless with re- 
spect to the second parameter unti l  i t  has been reduced to near 
0.01. On the other hand, a step size of 0.01 would be useful o i l  the 
second variable but on the first variable it would take an undesir- 
ably large number of steps to approach the minimum. 

A modification to direct search which circumvents this scaling 
problem involves the use of a different step size for each variable. 
This is  easily implemented since an array is already used to hold 
the signed step size for each variable. The change is accomplished 
by removing the statement labeled &art and replacing it by the 
following statement: 

Slarl: for k := 1 step 1 until K do 
begin s(k) := DELTA X abs ( p s i ( k ) ) ;  

if s(k) = 0.0 then s(k) := DELTA; 
end ; 

This change sets the step size for each variable to DELTA times 
the magnitude of the starting value, or i f  the starting value is 0.0 
the step size is seb equal to DELTA.  Thus DELTA is the fraction 
of the original value of each variable to be used as a11 initial st,ep 
size. Subsequent reductions in  step size are haidled correctly 
without further modificatioris to the procedure. 

As a11 example of the usefulness of the above modificatioii, roil- 

sider the functioij 

f ( X ,  , X2 , X3) = ( X I  - 0.01)* + (S* - 1.0)* + (A3 - 100.0)~ 

with a minimum a t  (0.01, 1.0,100.0). The following table shows the 
results of using direct search on this function with and without the 
modified step size. The results were computed on an IBM 36017~ 
computer using single precision with rho = 0.1, d e l b  
0.001, DELTA = 0.2 for the modified step size (giving 20 percent 
of initial value for initial stepsize) and DELTA = [average FIdgni- T 
tude of initial guesses for the variables] for the algorithm ay pub- 2 

lished. ! 
- 1  

TABLE I. f = (XI - O.Ol)* 4- (x, - l.o)* 4- (xa - 100.0)~ 
~ 

I I 

For initial values of (0.0, 0.0,200.0) : 

Direct seareh 66.8867 163 
Modified direct I ,2  1 112 1 

U ? S C l l  

For initial values of (0.05,5.0,500.0) : 

Direct anvch 168.36 174 0.934 X lo-’ O.OlOOa83 0.998968’ Bg.g889 
Modified direct 1 ,2  1 ,6 1 I 1 1 

0.659 X 10-6 0.00898888 O.nW98 99.9893 

Note that the modified method will tend to yield the same rela- 
tive accuracy for each parameter, whereas with a fixed stc? size 
direct search will tend to give the same absolute accuracy ior all 
parameters. In most cases a relative accuracy is probably more 
desirable than an absolute accuracy. 

1. BELL, M., A N D  PIKY, M. C. 
ACM 9 (Sept. l%E), 1584. 
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Following the construction of the very fast lexirc ::raphie 
permutation Algorithm 323 [I] it has become clear that ti! ,,errnu- 
tation sequence generated by the Algorithm 308 can be obtained 
more quickly. In fact, replacement of 

trxtarl:m := q[k]; 1 := z[m]; z[m] := zlk]; z[k] := 1 ;  
q[k] := m + 1; k := k - 1; 

by 
lrslarl: 

in Algorithm 323 produces the ECONOPERM sequence of AI. 
gorithm 308. 

q(k] := q[k] + 1; 

The times are as follows on an ICT 1905, in second? 

t i  18 

Algorithm 323 F 47 
New ECONOPERM 5.9 45 
Old ECONOPEIZM 6.2 50.6 

11 t:IIERENCI, : 
1. OIW-SMITH, I t .  J .  Algorithm 323: (hierat ion of permlltations 

111 Icsirographic order. Comm. ACM 1 1  (I?&. 19681, 117. 
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