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real proeedure perl (A, n) j 
integer nj array Aj 

comment Let A be an n X n real matrix, n > 1. The perma
nent function of A, denoted per(A), is computed by H. J. 
Ryser's [1] expansion formula: 

n-l T 

per(A) = L (_I)r L II Xi 
r=O xETn_ri=l 

where Tj, j = n, n - 1, ... ,2, 1, is the set of vectors x = (Xi), 
i = 1, 2, '" , n which are obtained by adding j columns of A 

together in au(; ) possible ways. To effect the sum over vectors 

in T;, n - 1 sums are computed. The natural 1-1 map from the 
binary integers to all r-combinations, r = 1, 2, ... , n - 1, is 
used to increment the sums over the sets T;. 

REFERENCE: 
1. RYSER, H. J. Combinatorial Mathematics, Carus Monograph 

#14. Wiley, New York, 1963, p. 27j 
begin 

real sig, pera, prod, rowsumj 
integer number, limit, mod, gen, g, i, j, rj 
array sum[O:n-l]j 
integer array d[1 :n]j 
.~ig := -lj pera:= OJ limit:= (2 i n) - Ij 
for r := 0 step 1 until n - 1 do sum[r] := OJ 
for number := 1 step 1 until limit do 
begin 

r : = OJ gen:= numberj 
for mod := 1 step 1 until n do 
begin 

g := gen + 2j if (gen-gX2) = 1 then 
begin r := r + Ij d[r]:= mod endj 
gen := g 

endj 
prod := Ij 
for i := 1 step 1 until n do 
begin 

rowsum := OJ 
for j := 1 step 1 until r do 
rowsum := rowsum + A[i, d[j]]j 
prod : = prod X rowsum 

cndj 
sum[n-rJ ;= sum[n-r] + prod 

endj 
for r ; = 0 step 1 until n - 1 do 
hegin sig ;= -sigj pira;= pera + sig X sum[r] endj 
per ;= pera 

l'Ild of real procedure perl; 
rC\al procedure per2(A, n)j 

in I.eger n j array A j 
comment Let A be an n X n real matrix, n > 1. The permanent 

function of A, denoted by per(A) is computed by Jurkat and 
RYllf'r's [1] method of inductively generating the vectors 
PI , ... , p" where pr is the vector of permanents of r by r sub-

mlltrices of the first r rows of A. This vector has ( : ) components 
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indexed by the r-combinations of {I, ... , nl. The natural 1-1 
map from the binary integers {I,.··· , 2 in-II to the r-com
binations of {I, .. , , nl for r = 1, ... , n is used to index the 
p's and thus they are generated in an order somewhat different 
from that of Jurkat and Ryser. 

REFERENCB: 
1. JURKAT, W. B. AND RYSER, H. J. Matrix factorizations of 

determinants and permanents. J. Algebra 3 (1966), 1-27j 
begin 

integer number, limit, mod, gen, g, r, dig, sub, jj 
array list [1:2 in-I] j 
limit ; = 2 i n - 1 j 
comment Initialize list as accumulatorsj 
for j := 1 step 1 until limit do list [j] := OJ 
for j ;= 1 step 1 until n do list [2 i 0-1)] ;= A[I, j]j 
for number := I step I until limit do 
begin 

if list [number] r! 0 then 
begin 

r := Ij gen := numberj 
for mod := 1 step 1 until n do 
begin 

g := gen + 2j 
if gen - 2 X g = 1 then r : = r + 1 j 
gen := g 

end count of l's in numberj 
dig := Ij gen :=. numberj 
for mod := 1 step 1 until n do 
begin 

g := gen + 2j 
if gen - 2 X g = 0 then 
begin 

sub : = number + dig j 
list [sub] := list [sub] + list [number] X A [r, mod] 

endj 
gen := gj dig:= 2 X dig 

end computations with list [number]j 
end 

endj 
per := list [limit] 

end of real procedure per2j 

Note. On the Permanent Function of a Square Matrix I and II: 
Program I is slower than Program II. However Program II uses 
approximately 2" more locations of store. The running times for 
both programs double when n is incremented by 1. 

ALGORITHM 362 
GENERATION OF RANDOM PERMUTATIONS [G6] 
J. M. ROBSON (Reed. 1 Apr. 1969) 
Programming Research Group, 45 Banbury Road, Oxford, 

England 
KEY WORDS AND PHRASES: permutation, random permu
tation, transposition 
CR CATEGORIES: 5.5 

procedure perm(n, r, A)j value n, rj integer n, rj integer 
array Aj 

comment This procedure produces in the vector A a permuta
tion on the integers 1, 2, ... , n, each of the n! permutations 
being given by one value of r between 1 and n! inclusive. It is 
thus similar in effect to the procedure given in [1] but it is con
siderably faster, especially for large values of n, since it uses a 
single loop rather than a double one. 

A permutation is generated as the product of n - 1 transpo
sitions of which the jth transposes A[n+l-j] and A{x] for 
some x S n + 1 - j. 
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If the line 
for i := 1 step 1 until n do A[i] := i 
is omitted the procedure will permute the original values 
A[l], ... , A[n] in the same manner. 
REFERENCE: 

1. ROBINSON, C. L. Algorithm 317, Permutation. Comm. ACM 10 
(Nov. 1967),729; 

begin 
integer i, x, v; 
for i := 1 step 1 until n do A[i] := ij 
for i := n step -1 until 2 do 
begin 

:& := r - (r+i) X i + 1; r:= r + i; 
V := A[:&]; A[x]:= A[i]; A[i]:= V 

end 
end 

ALGORITHM 363 
COMPLEX ERROR FUNCTION* [S15] 
WALTER GAUTSCHI (Reed. 11 June 1969) 
Computer Sciences Department, Purdue University, IJa

fayette, IN 47907 
* Work supported, in part, by the National Aeronautics and 
Space Administration (NASA) under grant NGR 15-005-039 
and, in part, by Argonne National Laboratory. 

KEY WORDS AND PHRASES: error function for complex 
argument, Voigt function, Laplace continued fraction, Gauss
Hermite quadrature, recursive computation 
CR CATEGORIES: 5.12 

procedure wojz(x, V, re, im); value x, V; real x, V, re, im; 
comment This procedure evaluates the real and imaginary 

part of the function w(z) = exp(-zl)erfc(-iz) for argumenti 
II = X + iV in the first quadrant of the complex plane. The accu 
racy is 10 decimal places after the decimal point, or better. 
For the underlying analysis, see W. Gautschi, "Efficient com
putation of the complex error function," to appear in SIAM 
J. Math. Anal.; 

begin 
integer capn, nu, n, npl; 
real h, h2, lambda, rl, r2, 8, sl, 82, tl, t2, C; 
Boolean b; 
if V < 4.29 1\ x < 5.33 then 
begin 

8 := (l-v/4.29) X 8qrt(l-x X x/28.41); 
h := 1.6 X 8; h2:= 2 X h; 
capn := 6 + 23 X 8; nu:= 9 + 21 X 8 

end . 

else 
begin h := 0; capn:= 0; nu:= 8 end; 
if h > 0 then lambda : = h2 i capn; 
b := h = 0 V lambda = 0; 
rl := r2 := sl := 82 := 0; 
for n := nu step -1 until 0 do 
begin 

npl := n + 1; 
t1 := V + h + npl X rl; t2:= x - npl X r2; 
C := .5/(tl X tl + t2 X t2); 
rl := C X tl; r2:= C X t2; 
ifh > 0 1\ n:1! capnthen 
begin 

t1 := lambda + sl; 81:= rl X tl - r2 X 82; 
82 := r2 X tl + rl X s2; 
lambda := lambda/h2 

end 
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end; ~, 
re := if y = 0 then e:z;p(-xXx) else 

1.12837916709551 X (if b then rl else 81); 
im := 1.12837916709551 X (if b then r2 else 82) 

end wojz 

CERTIFICATION OF ALGORITHM 47 [S16] 
ASSOCIATED LEGENDRE FUNCTIONS OF THE 
FIRST KIND FOR REAL OR IMAGINARY 
ARGUMENTS [John R. Herndon, Comm. ACM 4 

(Apr. 1961), 178] 
S. M. COBB (Reed. 6 Feb. 1969, 12 May 1969 and 9 July 

1969) 
The Plessey Co. Ltd., Roke Manor, Romsey, Hants, 

England 

KEYWORDS AND PHRASES: Legendre function, associated 
Legendre function, real or imaginary arguments 
CR CATEGORIES: 5.12 

This procedure was tested and run on the I.C.T. Atlas com
puter. 

In addition to the errors mentioned in the certification of August 
1963 [2] the following points were noted. 

1. The requirement that when n < m p := 0 must take prece
dence over p := 1 when n = o. Hence the order of the first two 
if statements must be interchanged. 

2. Most computers fail on division by zero. Hence the state
ment beginning if x = 0 then and ending with go to last 
end; should be inserted between w := 1; and y := w/(xXx). 

3. When x = 0, if the argument of the Legendre function is to 
be considered as real p must be multiplied 'by (-I)'. This is 
achieved by inserting after the statement beginning p:= Gam'/1UJ 
[m+n+l] the if statement 

if r then p := p X (-1) ii; 

(For a change in the meaning of r see item 5 below.) 
4. After the label last in the compound statement begin

ning if r¢ 0 the statement i:= n - n+4; is wrong. This 
should read . 

i := n - 4 X (n+4); 

5. Since r is used only as an indicator it is better that it be 
declared as Boolean. It can then be given the value true if the 
argument of the Legendre function is x and false if it is n. The 
following program changes are then necessary. The statement 
beginning 

if r = 0 then 

becomes 

ifr then 

The statement beginning 

if r ¢ 0 then 

becomes 

ill r then 

6. Computing time can be saved in several ways. First we 
should declare another integer k and set it equal to n - m. The 
first statement of the procedure is then 

k:= n - m; 

The next statement will begin 

if k < 0 then 

(This replaces if n < m then whose position has been changed 
in accordance with item 1 above.) 
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n - m is then replaced by k in the lines 
for i := 1 step 1 until n - m do 

and 

if (i+1) ;4 (n-m) then 

Removing j as suggested in the previous certification leaves it 
free to be set to k + 2. This requires the following modification: 
instead of the unnecessary statement if n = m then go to main 
put 

j := k + 2; 

In the statement beginning if x = 0 then replace the line 

begin i := (n-m) + 2; 

by 

begin i := j; 

In the for loop beginning for i := 1 step 1 until 12 do a 
further small saving in computer time could be achieved by setting 
k to n - i. The loop thus becomes 

for i := 1 step 1 unti112 do 
begin if j + 1 < i then go to last; 

k := n - i; 
p := p + Gamma[2Xk+3] X z/Gamma[i] X Gamma[k+2] X 

Gamma[k-i-m+3D; 
z := z X y 
end 

For real argument the program was tested 8..'1 follows. 

(i) x = 0(0.1)1, m = 0(1)3, n = 0(1)3 
(ii) x = 1.2(0.2)2.8, m = 0(1)2, n = 0(1)2 
(iii) m = 0, n = 9, x = 0(0.2)1, 2(2)10. 

For imaginary argument we used 

x = 0(0.2)2, m = 0(1)2, n = 0(1)2. 

Checking for real argument was carried out where possible 
using [I], agreement being obtained in all cases to the maximum 
number of figures available, which varied between 6 and 8. For all 
other cases [3] had to be used, giving only a 5 figure check. 

REFERENCES: 
1. ABRAMOWITZ, M., AND STEGUN, I. A. Handbook of mathe

matical functions. AMS 55, Nat. Bur. Stand. US Govt. Print
ing Off., Washington, D.C., 1964. 

2. GEORGE, R. Certification of Algorithm 47. Oomm. AOM 6 
(Aug. 1963), 446. 

3. MORSE, P. M., AND FESBACH, H. Methods of Theoretical 
Physic8 Pt. II. McGraw Hill, New York, 1953. 

CERTIFICATION OF ALGORITHM 255 [C6] 
COMPUTATION OF FOURIER COEFF1CIENTS 

[Linda Teijelo, Comm. ACM 8 (May 1965), 279] 
GILLIAN HALL* AND VALERIE A. RAyt (Reed. 31 Mar. 

1969 and 1 July 1969) 
National Physical Laboratory, Teddington, Middlesex, 

England 
* M.R.C. team, Division of Computer Science (formerly of Di
vision of Numerical and Applied Mathematics). 
t Division of Numerical and Applied Mathematics. 

KEY WORfifh\NIYPHRASES: numerical integration, Fourier 
coefficients, Filon's method 
OR CATEGORIES: 5.16 

The algorithm was translated using the KDF9 Kidsgrove 
ALGOL compiler, and needed the following correction. 
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The tests for convergence on lines 51 and 83 should read re
spectively: 

if ab8(pretJint2-int2) < ep8 X ab8(int2) /\ n > 5 then 
if ab8(pretJintl-int1) < ep8 X abs(int1) /\ n > 5 then 

With this alteration, the program was tested successfully on a 
series of functions F(z) using a range of values of m and eps for 
each function. The parameter subdivmax was set at the recom
mended value, 10. For F(z) = Xl, for which the method is exact, 
results were obtained correct to machine accuracy, Le. lot deci
mal places. 

Remarks. (i) It would be better to declare the identifier tn1 
as type integer, Le. to replace lines 20 and 21 of the text by: 

cO, c1, sO, 81, intl, int2, previntl, pretJint2, ta, temp; 
integer n, i, tnl; Boolean bool; 

(ii) There is no indication, after execution of the algorithm, 
whether the computation was terminated because of apparent 
convergence or because the number of times, n, that the interval 
was halved became greater than 8ubdivmax. The following modifi
cation provides such an indication; it has the effect that cosine 
and sine will retain their entry values except in the case where 
cosine or sine has the value true on entry and n becomes greater 
than subdivmax in the course of computation. In this case the value 
on exit will be false. 

Line 3 becomes: 

value ep8, subdivmax, m; real eps, cint, sint; 

Line 57 becomes: 

sint := int2; sine:= false; go to LO 

Line 88 becomes: 

cosine := false; go to exit end; 

(iii) To avoid the repeated evaluation of F(O), F(1.0) the 
following modification is suggested: 

Declare a new variable terml of type real on line 20. 
Replace lines 23 and 24 by: 

term1 := F(1.0) X cos(k); 
8UmcOS := (F(0)+term1) X 0.5; 
sumsine := 0; 
term1 := 2 X (sumcos-term1); 

Replace lines 44, 45 and 49, 50 by: 

pretJint2 := (aXterm1+bXsumsine+gXoddsine) X 0.5; 
begin int2:= h X (aXterml+bXsumsine+gXoddsine); 

Replace lines 76, 77 and 81, 82 by: 

pretJintl := (bXsumcos+gXoddcos) X 0.5; 
begin intI := h X (bXsumcos+gXoddcos); 

The work described above has been carried out at the National 
Physical Laboratory. 

CERTIFICATION OF ALGORITHM 296 [E2] 
GENERALIZED LEAST SQUARES FIT BY 
ORTHOGONAL POLYNOMIALS [G. J. Makinson, 

Comm. ACM 10 (Feb. 1967), 87] 
WAYNE T. WATSON (Reed. 11 Feb. 1969 and 21 Mar. 1969) 
Service Bureau Corp., Development Laboratory, 111 West 

St. John Street, San Jose, CA 95113 
KEY WORDS AND PHRASES: least squares, curve fitting, 
orthogonal polynomials, three-term recurrence, polynomial re
gression, approximation, Forsythe's method 
OR CATEGORIES: 5.13, 5.5 

LSFITUW was compiled and tested in CALL/360:PL/I. No 
modifications were made to the algorithm, and the computations 
were made in long precision (about 15 significant floating point 

Volume 12/ Number 11 / November, 1969 



digits). In addition, POLYX [2] was used to transform the results 
of LSFITUW from the interval (-2,2) to the interval (Xl,x .. ). 

To generally test the algorithm, several small sets of data were 
used with LSFITUW and the results were compared with those 
obtained from an independently written polynomial curve fitting 
algorithm which does not use the method of orthogonal poly
nomials. Only polynomials of degree less than 5 were used to fit 
the data. Agreement between coefficients and standard errors was 
good. 

As a more comprehensive test of the algorithm, all experiments 
that could be duplicated from the article by Ascher and Forsythe 
[I] were performed; a slight modification to LSFITUW was re
quired to transform the data to the interval (-1,1) instead of 
(-2,2). Briefly, the experiments included: 

(1) For certain equally spaced data, a comparison of the a, and 
p, calculated by the program against those values of a, and p, 
obtained from known formulas (a.=O for equally spaced data). 

(2) A fit of the function I(x) = I X lover the interval (-1,1) 
for equally spaced data for polynomials of degree as high as 30. 

(3) A fit of the function I(x) = eZ for unequally spaced data 
inside the interval (-1,1) for polynomials of degree as high as 32. 

The results of experiment (1) showed that LSFITUW produced 
values of P. differing only in the last significant digit (15) from 
those calculated by the known formula. The values of a, produced 
were in the range of the floating point round-off error (10-15). 

The results of duplicating experiments (2) and (3) were better 
than those reported in [I] because of the greater precision used in 
the calculations (about 10.8 versus about 15 significant floating 
digits). While conducting the last two experiments, it was noted 
that for data values of X symmetric about the origin, the value of 
b in the transformation equation X = at + b may be computed to 
be a number in the floating point round-off range instead of exactly 
zero. When fitting polynomials of a sufficiently high degree, this 
may cause an underflow at line 4 of POLYX, the transformation 
routine. The user may find it desirable to branch on an underflow 
in POLYX and reset b to zero. 

To check the computations of the Uk 2 obtained by the recursive 
definition of V",2 used in the algorithm, the Uk 2 were compared 
with results computed directly from the equation 

( .. ) 
where y", is the best fitting polynomial of degree k for the data 
Xi , Ii. Experience with the algorithm indicates that a loss of 
accuracy in computing v",2 occurs at smaller values of k when using 
the recursive definition than when using (*). If the values of V",2 

are of importance to the user, he may find it useful to compute 
them using (*) instead. 

A comprehensive test of the algorithm's feature which uses the 
v,,2 to automatically select the best fitting polynomial was not 
made, but the feature did work properly for the polynomials used. 
In connection with this feature, the user should be aware, though, 
of the possible difficulty mentioned above in computing V",2 ac
curately using the recursive definition. In this case, the user 
should not expect the algorithm to select the best fitting poly
nomial. This difficulty was experienced several times while testing 
the algorithm, but was circumvented by using ( .. ) to calculate 
V",2. In order to detect a possible loss in accuracy, the v",2 should 
be examined carefully or compared with those obtained by (*). 

Comprehensive tests were not made using weights; however, 
no problems were encountered with a moderate usage of this 
feature. 
REFERENCES: 

1. AsCHER, M., AND FORSYTHE, G. E. SWAC experiments on the 
use of orthogonal polynomials for data fitting. J. ACM 5 
(Jan. 1958), 9-21. 

2. MACKINNEY, JOHN G. Algorithm 29, Polynomial transformer. 
Comm. ACM S (Nov. 1960), 604. 
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REMARK ON ALGORITHM 178 [E4] 
DIRECT SEARCH [Arthur F. Kaupe, Jr., Comm. ACM 

6 (June 1963), 313]; [as revised by M. Bell and M. C. 
Pike, Comm ACM 9 (Sept. 1966),684] 

F. K. TOMLIN AND L. B. SMITH (Reed. 17 May 1968, 9 
Sept. 1968 and 30 June 1969) 

Stanford Research Institute, l\.fenlo Park, CA 94025, and 
CERN, DD Division, Geneva, Switzerland 

KEY WORDS AND PHRASES: function minimization, search, 
direct search 
CR CATEGORIES: 5.19 

The procedure DIRECT SEARCH, as modified by M. Bell and 
M. C. Pike [1], does not always provide the determined minimum. 
In addition, the maximum number of function evaluations per
mitted is almost always exceeded whenever the step-length is 
greater than delln at the time the number of function evaluations 
is grea~r than or equal to maxeval. Finally, the label 3 is not 
used. 

To insure that the determined minimum is always provided, 
the test on the number of evaluations should be moved to a point 
where the minimum has been properly provided. 

In [2] DeVogelaere remarks correctly that the procedure does 
not exit as specified and gives changes which will indeed cause the 
procedure to terminate when the number of function evaluations 
exceeds the specified limit (and not some number of evaluations 
later). However it is felt that DeVogelaere's solution to this 
problem cBjuses excessive testing. Therefore the test should be 
performed after an exploratory move as in [I] but it should also 
be performed when the step-length is reduced. This method of 
testing violates the letter of the specified use of maxeval but not 
the intent, which is to provide an escape from excessive calcula
tion. 

To obtain the determined minimum, to provide a means for 
reducing the number of function evaluations when step-length 
is greater than delln, and to eliminate the unused label: 

(1) The lines 

2: if eval ;::: maxeval then 
begin converge := false 

go to EXIT 
end; 

should be removed. 
(2) The line (16th line from the end of the procedure given 

in [1]) 

for k := 1 step 1 until K do 

should be changed to 

2: for k := 1 step 1 until K do 

(3) The line 

Spsi := SS; SS:= Sphi := S(phi); eval:= eval + 1; E; 

should have the following code inserted after the statement 
Spsi := SS; 

if eval ;::: maxeval then 
begin 

3: converge:= false; 
go to EXIT 

end; 

(4) The line 

3: if DELTA;::: delta then 

should be changed to 

if DELTA;::: delln then 

(5) The line 
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begin DELTA := rko X delta; 

should be changed to 

begin if eval > flUUeval then go to 3 else 
DELTA := rho X delta; 
REFERENCES: 

1. BELL, M., AND PIKE, M. C. Remark on Algorithm 178. (Jomm. 
ACM 9 (Sept. 1966), 684. 

2. DEVOGELAERE, R. Remark on Algorithm 178. Comm. ACM 11 
(July 1968), 498. 

REMARK ON ALGORITHM 178 [E4] 
DIRECT SEARCH [Arthur F. Kaupe, Jr., Comm. ACM 

6 (June 1963), 313; as revised by M. Bell and M. C. 
Pike, Comm. ACM 9 (Sept. 1966), 684] 

LYLE B. SMITH· (Reed. 9 Sept. 1968) 
Stanford Linear Accelerator Center, Stanford, CA 94305 

• Present address. CERN, Data Handling Division, 1211 
Geneva 23, Switzerland 

KEY WORDS AND PHRASES: function minimization, search, 
direct search 
CR CATEGORIES: 5.19 

Algorithm 178, as modified by Bell and Pike [1], has been 
used successfully by the author on a number of different problems 
and in a variety of languages (e.g. Burroughs Extended ALGOL on 
a B55OO, SUBALGOL on an IBM 7090, and FORTRAN on the 
mM/360 series machines). A modification which has been found 
to be useful involves tailoring the step size to be meaningful for a 
wide variation in the magnitudes of the variables. 

As currently specified -[I], each variable is incremented (or de
cremented) by DELTA as a minimum is sought. For a function 
such that the values of the variables differ by several orders of 
magnitude at the minimum, a universal step size causes some pa
rameters to be essentially ignored during much of the searching 
process. For example, if a function of two variables has a minimum 
near (100.0, 0.1), a step size of 10.0 will be useful in minimizing with 
respect to the first parameter, but it will be meaningless with re
spect to the second parameter until it has been reduced to near 
0.01. On the other hand, a step size of 0.01 would be useful on the 
second variable but on the first variable it would take an up-desir
ably large number of steps to approach the minimum. 

A modification to direct search which circumvents this scaling 
problem involves the use of a different step size for each variable. 
This is easily implemented since an array is already used to hold 
the signed step size for each variable. The change is accomplished 
by removing the statement labeled Start and replacing it by the 
following statement: 

Start: for k : == 1 step 1 until K do 
begin 8(k) := DELTA X 008 (Psi(k»; 

if 8(k) = 0.0 then 8(k) := DELTA; 
end; 

This change sets the step size for each variable to DELTA times 
the magnitude of the starting value, or if the starting value is 0.0 
the step size is set equal to DELTA. Thus DELTA is the fraction 
of the original value of each variable to be used as an initial step 
size. Subsequent reductions in step size are handled correctly 
without further modifications to the procedure. 

As an example of the usefulness of the above modification, con
sider the functior. 

I(XI , X, ,X,) - (XI - 0.0l)1 + (X, - 1.0)' + (X, - 100.0)1 
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with a minimum at (0.0l, 1.0, 100.0). The followiPg table shows the 
results of using direct search on this function with and without the 
modified step size. The results were computed on an IBM 360/75 
computer using single precision with rko = 0.1, delta == 
0.001, DELTA == 0.2 for the modified step size (giving 20 percent 
of initial value for initial step size) and DELTA ... [average magni
tude of initial guesses for the variables] for the algorithm as pub
lished. 

TABLE I. f == (Xl - 0.01)' + (X, - 1.0)1 + (X. - 100.0)1 

Nu""- of M'.'mum F'"al .alues of'M ,IIriGbles 
,DELTA jtmcIiOfl .al"" off nalulJlt6m 

XI I X. I X. 

For initial values of (0.0, 0.0, 200.0): 

Direct -.ch 
Modified direct 

-.ch 

Ui3 

112 
1 

0.841 X 10"71°.00999996'°. 9999951100•000 

0.597 X 10"7 0.00999998/0.999900,100.000 

For initial values of (0.05, 5.0, 500.0) : 

Direct -.ch 
Modified direct 

-.ch 

168.36 1 

.2 

174 

75 
I 0.934 X 10"71°.01002631'°.998958,' 99.9999 

0.1159 X 1(11 0.009999880.999998 99.9992 

Note that the modified-method will tend to yield the same rela
tive accuracy for each parameter, whereas with a fixed step size 
direct search will tend to give the same absolute accuracy for all 
parameters.- In most cases a relative accuracy is probably more 
desirable-than an absolute accuracy. 

REFERENCES 
1. BELL, M., AND PIKE, M. C. Remark on algorithm 178. Comm 

ACM II (Sept. 1966), 684. 

REMARK ON ALGORITHM 308 [G6] 
GENERATION OF PERMUTATIONS IN PSEUDO
LEXICOGRAPHIC ORDER [R. J. Ord-Smith, Comm. 

ACM 10 (July 1967), 452] 
R. J. ORD-SMITH (Reed. 21 May 1969) 
Computing Laboratory, University of Bradford, England 
KEY WORDS AND PHRASES: permutations, lexicographic 
order, lexicographic generation, permutation generation 
CR CATEGORIES: 5.39 

Following the construction of the very fast lexicographic 
permutation Algorithm 323 [1] it has become clear that the permu
tation sequence generated by the Algorithm 308 can be obtained 
more quickly. In fact, replacement of 

tr8tart:m := q[k]; t:= z[m]; z[m]:= z[k]; z[k]:= t; 
q[k] := m + 1; k:= k - 1; 

by 

trstart: q[k]:= q[k] + 1; 

in Algorithm 323 produces the ECONOPERM sequence of Al· 
gorithm 308. 

The times are as follows on an leT 1905, in seconds. 

Algorithm 323 
New ECONOPERM 
Old ECONOPERM 
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