
ALGOIUTHM 361
PERMANENT FUNCTION OF A SQUARE
MATRIX I AND II [G6}
BnucE SHlUVER, P. J. EBERLEIN, AND R. D. DIXON (Reed.

1H Feb. 1969, 7 Mar. 1969 and 9 July 1969)
Stltte University of New York at Buffalo, Amherst, NY

14~~(j

KEY WORDS AND PHRASES: matrix, permanent, determi·
lIant
CR CATEGORIES: 5.30

real proeedure perl (A, n) j
integer nj array Aj

comment Let A be an n X n real matrix, n > 1. The perma
nent function of A, denoted per(A), is computed by H. J.
Ryser's [1] expansion formula:

n-l T

per(A) = L (_I)r L II Xi
r=O xETn_ri=l

where Tj, j = n, n - 1, ... ,2, 1, is the set of vectors x = (Xi),
i = 1, 2, '" , n which are obtained by adding j columns of A

together in au(;) possible ways. To effect the sum over vectors

in T;, n - 1 sums are computed. The natural 1-1 map from the
binary integers to all r-combinations, r = 1, 2, ... , n - 1, is
used to increment the sums over the sets T;.

REFERENCE:
1. RYSER, H. J. Combinatorial Mathematics, Carus Monograph

#14. Wiley, New York, 1963, p. 27j
begin

real sig, pera, prod, rowsumj
integer number, limit, mod, gen, g, i, j, rj
array sum[O:n-l]j
integer array d[1 :n]j
.~ig := -lj pera:= OJ limit:= (2 i n) - Ij
for r := 0 step 1 until n - 1 do sum[r] := OJ
for number := 1 step 1 until limit do
begin

r : = OJ gen:= numberj
for mod := 1 step 1 until n do
begin

g := gen + 2j if (gen-gX2) = 1 then
begin r := r + Ij d[r]:= mod endj
gen := g

endj
prod := Ij
for i := 1 step 1 until n do
begin

rowsum := OJ
for j := 1 step 1 until r do
rowsum := rowsum + A[i, d[j]]j
prod : = prod X rowsum

cndj
sum[n-rJ ;= sum[n-r] + prod

endj
for r ; = 0 step 1 until n - 1 do
hegin sig ;= -sigj pira;= pera + sig X sum[r] endj
per ;= pera

l'Ild of real procedure perl;
rC\al procedure per2(A, n)j

in I.eger n j array A j
comment Let A be an n X n real matrix, n > 1. The permanent

function of A, denoted by per(A) is computed by Jurkat and
RYllf'r's [1] method of inductively generating the vectors
PI , ... , p" where pr is the vector of permanents of r by r sub-

mlltrices of the first r rows of A. This vector has (:) components

Communications of the ACM

indexed by the r-combinations of {I, ... , nl. The natural 1-1
map from the binary integers {I,.··· , 2 in-II to the r-com
binations of {I, .. , , nl for r = 1, ... , n is used to index the
p's and thus they are generated in an order somewhat different
from that of Jurkat and Ryser.

REFERENCB:
1. JURKAT, W. B. AND RYSER, H. J. Matrix factorizations of

determinants and permanents. J. Algebra 3 (1966), 1-27j
begin

integer number, limit, mod, gen, g, r, dig, sub, jj
array list [1:2 in-I] j
limit ; = 2 i n - 1 j
comment Initialize list as accumulatorsj
for j := 1 step 1 until limit do list [j] := OJ
for j ;= 1 step 1 until n do list [2 i 0-1)] ;= A[I, j]j
for number := I step I until limit do
begin

if list [number] r! 0 then
begin

r := Ij gen := numberj
for mod := 1 step 1 until n do
begin

g := gen + 2j
if gen - 2 X g = 1 then r : = r + 1 j
gen := g

end count of l's in numberj
dig := Ij gen :=. numberj
for mod := 1 step 1 until n do
begin

g := gen + 2j
if gen - 2 X g = 0 then
begin

sub : = number + dig j
list [sub] := list [sub] + list [number] X A [r, mod]

endj
gen := gj dig:= 2 X dig

end computations with list [number]j
end

endj
per := list [limit]

end of real procedure per2j

Note. On the Permanent Function of a Square Matrix I and II:
Program I is slower than Program II. However Program II uses
approximately 2" more locations of store. The running times for
both programs double when n is incremented by 1.

ALGORITHM 362
GENERATION OF RANDOM PERMUTATIONS [G6]
J. M. ROBSON (Reed. 1 Apr. 1969)
Programming Research Group, 45 Banbury Road, Oxford,

England
KEY WORDS AND PHRASES: permutation, random permu
tation, transposition
CR CATEGORIES: 5.5

procedure perm(n, r, A)j value n, rj integer n, rj integer
array Aj

comment This procedure produces in the vector A a permuta
tion on the integers 1, 2, ... , n, each of the n! permutations
being given by one value of r between 1 and n! inclusive. It is
thus similar in effect to the procedure given in [1] but it is con
siderably faster, especially for large values of n, since it uses a
single loop rather than a double one.

A permutation is generated as the product of n - 1 transpo
sitions of which the jth transposes A[n+l-j] and A{x] for
some x S n + 1 - j.

Volume 12 / Numher 11 / Novemller. 1969

If the line
for i := 1 step 1 until n do A[i] := i
is omitted the procedure will permute the original values
A[l], ... , A[n] in the same manner.
REFERENCE:

1. ROBINSON, C. L. Algorithm 317, Permutation. Comm. ACM 10
(Nov. 1967),729;

begin
integer i, x, v;
for i := 1 step 1 until n do A[i] := ij
for i := n step -1 until 2 do
begin

:& := r - (r+i) X i + 1; r:= r + i;
V := A[:&]; A[x]:= A[i]; A[i]:= V

end
end

ALGORITHM 363
COMPLEX ERROR FUNCTION* [S15]
WALTER GAUTSCHI (Reed. 11 June 1969)
Computer Sciences Department, Purdue University, IJa

fayette, IN 47907
* Work supported, in part, by the National Aeronautics and
Space Administration (NASA) under grant NGR 15-005-039
and, in part, by Argonne National Laboratory.

KEY WORDS AND PHRASES: error function for complex
argument, Voigt function, Laplace continued fraction, Gauss
Hermite quadrature, recursive computation
CR CATEGORIES: 5.12

procedure wojz(x, V, re, im); value x, V; real x, V, re, im;
comment This procedure evaluates the real and imaginary

part of the function w(z) = exp(-zl)erfc(-iz) for argumenti
II = X + iV in the first quadrant of the complex plane. The accu
racy is 10 decimal places after the decimal point, or better.
For the underlying analysis, see W. Gautschi, "Efficient com
putation of the complex error function," to appear in SIAM
J. Math. Anal.;

begin
integer capn, nu, n, npl;
real h, h2, lambda, rl, r2, 8, sl, 82, tl, t2, C;
Boolean b;
if V < 4.29 1\ x < 5.33 then
begin

8 := (l-v/4.29) X 8qrt(l-x X x/28.41);
h := 1.6 X 8; h2:= 2 X h;
capn := 6 + 23 X 8; nu:= 9 + 21 X 8

end .

else
begin h := 0; capn:= 0; nu:= 8 end;
if h > 0 then lambda : = h2 i capn;
b := h = 0 V lambda = 0;
rl := r2 := sl := 82 := 0;
for n := nu step -1 until 0 do
begin

npl := n + 1;
t1 := V + h + npl X rl; t2:= x - npl X r2;
C := .5/(tl X tl + t2 X t2);
rl := C X tl; r2:= C X t2;
ifh > 0 1\ n:1! capnthen
begin

t1 := lambda + sl; 81:= rl X tl - r2 X 82;
82 := r2 X tl + rl X s2;
lambda := lambda/h2

end

Volume 12 / Number 11 / November, 1969

end; ~,
re := if y = 0 then e:z;p(-xXx) else

1.12837916709551 X (if b then rl else 81);
im := 1.12837916709551 X (if b then r2 else 82)

end wojz

CERTIFICATION OF ALGORITHM 47 [S16]
ASSOCIATED LEGENDRE FUNCTIONS OF THE
FIRST KIND FOR REAL OR IMAGINARY
ARGUMENTS [John R. Herndon, Comm. ACM 4

(Apr. 1961), 178]
S. M. COBB (Reed. 6 Feb. 1969, 12 May 1969 and 9 July

1969)
The Plessey Co. Ltd., Roke Manor, Romsey, Hants,

England

KEYWORDS AND PHRASES: Legendre function, associated
Legendre function, real or imaginary arguments
CR CATEGORIES: 5.12

This procedure was tested and run on the I.C.T. Atlas com
puter.

In addition to the errors mentioned in the certification of August
1963 [2] the following points were noted.

1. The requirement that when n < m p := 0 must take prece
dence over p := 1 when n = o. Hence the order of the first two
if statements must be interchanged.

2. Most computers fail on division by zero. Hence the state
ment beginning if x = 0 then and ending with go to last
end; should be inserted between w := 1; and y := w/(xXx).

3. When x = 0, if the argument of the Legendre function is to
be considered as real p must be multiplied 'by (-I)'. This is
achieved by inserting after the statement beginning p:= Gam'/1UJ
[m+n+l] the if statement

if r then p := p X (-1) ii;

(For a change in the meaning of r see item 5 below.)
4. After the label last in the compound statement begin

ning if r¢ 0 the statement i:= n - n+4; is wrong. This
should read .

i := n - 4 X (n+4);

5. Since r is used only as an indicator it is better that it be
declared as Boolean. It can then be given the value true if the
argument of the Legendre function is x and false if it is n. The
following program changes are then necessary. The statement
beginning

if r = 0 then

becomes

ifr then

The statement beginning

if r ¢ 0 then

becomes

ill r then

6. Computing time can be saved in several ways. First we
should declare another integer k and set it equal to n - m. The
first statement of the procedure is then

k:= n - m;

The next statement will begin

if k < 0 then

(This replaces if n < m then whose position has been changed
in accordance with item 1 above.)

Communications of the ACM 635

n - m is then replaced by k in the lines
for i := 1 step 1 until n - m do

and

if (i+1) ;4 (n-m) then

Removing j as suggested in the previous certification leaves it
free to be set to k + 2. This requires the following modification:
instead of the unnecessary statement if n = m then go to main
put

j := k + 2;

In the statement beginning if x = 0 then replace the line

begin i := (n-m) + 2;

by

begin i := j;

In the for loop beginning for i := 1 step 1 until 12 do a
further small saving in computer time could be achieved by setting
k to n - i. The loop thus becomes

for i := 1 step 1 unti112 do
begin if j + 1 < i then go to last;

k := n - i;
p := p + Gamma[2Xk+3] X z/Gamma[i] X Gamma[k+2] X

Gamma[k-i-m+3D;
z := z X y
end

For real argument the program was tested 8..'1 follows.

(i) x = 0(0.1)1, m = 0(1)3, n = 0(1)3
(ii) x = 1.2(0.2)2.8, m = 0(1)2, n = 0(1)2
(iii) m = 0, n = 9, x = 0(0.2)1, 2(2)10.

For imaginary argument we used

x = 0(0.2)2, m = 0(1)2, n = 0(1)2.

Checking for real argument was carried out where possible
using [I], agreement being obtained in all cases to the maximum
number of figures available, which varied between 6 and 8. For all
other cases [3] had to be used, giving only a 5 figure check.

REFERENCES:
1. ABRAMOWITZ, M., AND STEGUN, I. A. Handbook of mathe

matical functions. AMS 55, Nat. Bur. Stand. US Govt. Print
ing Off., Washington, D.C., 1964.

2. GEORGE, R. Certification of Algorithm 47. Oomm. AOM 6
(Aug. 1963), 446.

3. MORSE, P. M., AND FESBACH, H. Methods of Theoretical
Physic8 Pt. II. McGraw Hill, New York, 1953.

CERTIFICATION OF ALGORITHM 255 [C6]
COMPUTATION OF FOURIER COEFF1CIENTS

[Linda Teijelo, Comm. ACM 8 (May 1965), 279]
GILLIAN HALL* AND VALERIE A. RAyt (Reed. 31 Mar.

1969 and 1 July 1969)
National Physical Laboratory, Teddington, Middlesex,

England
* M.R.C. team, Division of Computer Science (formerly of Di
vision of Numerical and Applied Mathematics).
t Division of Numerical and Applied Mathematics.

KEY WORfifh\NIYPHRASES: numerical integration, Fourier
coefficients, Filon's method
OR CATEGORIES: 5.16

The algorithm was translated using the KDF9 Kidsgrove
ALGOL compiler, and needed the following correction.

636 Communications of the ACM

The tests for convergence on lines 51 and 83 should read re
spectively:

if ab8(pretJint2-int2) < ep8 X ab8(int2) /\ n > 5 then
if ab8(pretJintl-int1) < ep8 X abs(int1) /\ n > 5 then

With this alteration, the program was tested successfully on a
series of functions F(z) using a range of values of m and eps for
each function. The parameter subdivmax was set at the recom
mended value, 10. For F(z) = Xl, for which the method is exact,
results were obtained correct to machine accuracy, Le. lot deci
mal places.

Remarks. (i) It would be better to declare the identifier tn1
as type integer, Le. to replace lines 20 and 21 of the text by:

cO, c1, sO, 81, intl, int2, previntl, pretJint2, ta, temp;
integer n, i, tnl; Boolean bool;

(ii) There is no indication, after execution of the algorithm,
whether the computation was terminated because of apparent
convergence or because the number of times, n, that the interval
was halved became greater than 8ubdivmax. The following modifi
cation provides such an indication; it has the effect that cosine
and sine will retain their entry values except in the case where
cosine or sine has the value true on entry and n becomes greater
than subdivmax in the course of computation. In this case the value
on exit will be false.

Line 3 becomes:

value ep8, subdivmax, m; real eps, cint, sint;

Line 57 becomes:

sint := int2; sine:= false; go to LO

Line 88 becomes:

cosine := false; go to exit end;

(iii) To avoid the repeated evaluation of F(O), F(1.0) the
following modification is suggested:

Declare a new variable terml of type real on line 20.
Replace lines 23 and 24 by:

term1 := F(1.0) X cos(k);
8UmcOS := (F(0)+term1) X 0.5;
sumsine := 0;
term1 := 2 X (sumcos-term1);

Replace lines 44, 45 and 49, 50 by:

pretJint2 := (aXterm1+bXsumsine+gXoddsine) X 0.5;
begin int2:= h X (aXterml+bXsumsine+gXoddsine);

Replace lines 76, 77 and 81, 82 by:

pretJintl := (bXsumcos+gXoddcos) X 0.5;
begin intI := h X (bXsumcos+gXoddcos);

The work described above has been carried out at the National
Physical Laboratory.

CERTIFICATION OF ALGORITHM 296 [E2]
GENERALIZED LEAST SQUARES FIT BY
ORTHOGONAL POLYNOMIALS [G. J. Makinson,

Comm. ACM 10 (Feb. 1967), 87]
WAYNE T. WATSON (Reed. 11 Feb. 1969 and 21 Mar. 1969)
Service Bureau Corp., Development Laboratory, 111 West

St. John Street, San Jose, CA 95113
KEY WORDS AND PHRASES: least squares, curve fitting,
orthogonal polynomials, three-term recurrence, polynomial re
gression, approximation, Forsythe's method
OR CATEGORIES: 5.13, 5.5

LSFITUW was compiled and tested in CALL/360:PL/I. No
modifications were made to the algorithm, and the computations
were made in long precision (about 15 significant floating point

Volume 12/ Number 11 / November, 1969

digits). In addition, POLYX [2] was used to transform the results
of LSFITUW from the interval (-2,2) to the interval (Xl,x ..).

To generally test the algorithm, several small sets of data were
used with LSFITUW and the results were compared with those
obtained from an independently written polynomial curve fitting
algorithm which does not use the method of orthogonal poly
nomials. Only polynomials of degree less than 5 were used to fit
the data. Agreement between coefficients and standard errors was
good.

As a more comprehensive test of the algorithm, all experiments
that could be duplicated from the article by Ascher and Forsythe
[I] were performed; a slight modification to LSFITUW was re
quired to transform the data to the interval (-1,1) instead of
(-2,2). Briefly, the experiments included:

(1) For certain equally spaced data, a comparison of the a, and
p, calculated by the program against those values of a, and p,
obtained from known formulas (a.=O for equally spaced data).

(2) A fit of the function I(x) = I X lover the interval (-1,1)
for equally spaced data for polynomials of degree as high as 30.

(3) A fit of the function I(x) = eZ for unequally spaced data
inside the interval (-1,1) for polynomials of degree as high as 32.

The results of experiment (1) showed that LSFITUW produced
values of P. differing only in the last significant digit (15) from
those calculated by the known formula. The values of a, produced
were in the range of the floating point round-off error (10-15).

The results of duplicating experiments (2) and (3) were better
than those reported in [I] because of the greater precision used in
the calculations (about 10.8 versus about 15 significant floating
digits). While conducting the last two experiments, it was noted
that for data values of X symmetric about the origin, the value of
b in the transformation equation X = at + b may be computed to
be a number in the floating point round-off range instead of exactly
zero. When fitting polynomials of a sufficiently high degree, this
may cause an underflow at line 4 of POLYX, the transformation
routine. The user may find it desirable to branch on an underflow
in POLYX and reset b to zero.

To check the computations of the Uk 2 obtained by the recursive
definition of V",2 used in the algorithm, the Uk 2 were compared
with results computed directly from the equation

(..)
where y", is the best fitting polynomial of degree k for the data
Xi , Ii. Experience with the algorithm indicates that a loss of
accuracy in computing v",2 occurs at smaller values of k when using
the recursive definition than when using (*). If the values of V",2

are of importance to the user, he may find it useful to compute
them using (*) instead.

A comprehensive test of the algorithm's feature which uses the
v,,2 to automatically select the best fitting polynomial was not
made, but the feature did work properly for the polynomials used.
In connection with this feature, the user should be aware, though,
of the possible difficulty mentioned above in computing V",2 ac
curately using the recursive definition. In this case, the user
should not expect the algorithm to select the best fitting poly
nomial. This difficulty was experienced several times while testing
the algorithm, but was circumvented by using (..) to calculate
V",2. In order to detect a possible loss in accuracy, the v",2 should
be examined carefully or compared with those obtained by (*).

Comprehensive tests were not made using weights; however,
no problems were encountered with a moderate usage of this
feature.
REFERENCES:

1. AsCHER, M., AND FORSYTHE, G. E. SWAC experiments on the
use of orthogonal polynomials for data fitting. J. ACM 5
(Jan. 1958), 9-21.

2. MACKINNEY, JOHN G. Algorithm 29, Polynomial transformer.
Comm. ACM S (Nov. 1960), 604.

Volume 12/ Number 11 / November, 1969

REMARK ON ALGORITHM 178 [E4]
DIRECT SEARCH [Arthur F. Kaupe, Jr., Comm. ACM

6 (June 1963), 313]; [as revised by M. Bell and M. C.
Pike, Comm ACM 9 (Sept. 1966),684]

F. K. TOMLIN AND L. B. SMITH (Reed. 17 May 1968, 9
Sept. 1968 and 30 June 1969)

Stanford Research Institute, l\.fenlo Park, CA 94025, and
CERN, DD Division, Geneva, Switzerland

KEY WORDS AND PHRASES: function minimization, search,
direct search
CR CATEGORIES: 5.19

The procedure DIRECT SEARCH, as modified by M. Bell and
M. C. Pike [1], does not always provide the determined minimum.
In addition, the maximum number of function evaluations per
mitted is almost always exceeded whenever the step-length is
greater than delln at the time the number of function evaluations
is grea~r than or equal to maxeval. Finally, the label 3 is not
used.

To insure that the determined minimum is always provided,
the test on the number of evaluations should be moved to a point
where the minimum has been properly provided.

In [2] DeVogelaere remarks correctly that the procedure does
not exit as specified and gives changes which will indeed cause the
procedure to terminate when the number of function evaluations
exceeds the specified limit (and not some number of evaluations
later). However it is felt that DeVogelaere's solution to this
problem cBjuses excessive testing. Therefore the test should be
performed after an exploratory move as in [I] but it should also
be performed when the step-length is reduced. This method of
testing violates the letter of the specified use of maxeval but not
the intent, which is to provide an escape from excessive calcula
tion.

To obtain the determined minimum, to provide a means for
reducing the number of function evaluations when step-length
is greater than delln, and to eliminate the unused label:

(1) The lines

2: if eval ;::: maxeval then
begin converge := false

go to EXIT
end;

should be removed.
(2) The line (16th line from the end of the procedure given

in [1])

for k := 1 step 1 until K do

should be changed to

2: for k := 1 step 1 until K do

(3) The line

Spsi := SS; SS:= Sphi := S(phi); eval:= eval + 1; E;

should have the following code inserted after the statement
Spsi := SS;

if eval ;::: maxeval then
begin

3: converge:= false;
go to EXIT

end;

(4) The line

3: if DELTA;::: delta then

should be changed to

if DELTA;::: delln then

(5) The line

Communications of the ACM 637

begin DELTA := rko X delta;

should be changed to

begin if eval > flUUeval then go to 3 else
DELTA := rho X delta;
REFERENCES:

1. BELL, M., AND PIKE, M. C. Remark on Algorithm 178. (Jomm.
ACM 9 (Sept. 1966), 684.

2. DEVOGELAERE, R. Remark on Algorithm 178. Comm. ACM 11
(July 1968), 498.

REMARK ON ALGORITHM 178 [E4]
DIRECT SEARCH [Arthur F. Kaupe, Jr., Comm. ACM

6 (June 1963), 313; as revised by M. Bell and M. C.
Pike, Comm. ACM 9 (Sept. 1966), 684]

LYLE B. SMITH· (Reed. 9 Sept. 1968)
Stanford Linear Accelerator Center, Stanford, CA 94305

• Present address. CERN, Data Handling Division, 1211
Geneva 23, Switzerland

KEY WORDS AND PHRASES: function minimization, search,
direct search
CR CATEGORIES: 5.19

Algorithm 178, as modified by Bell and Pike [1], has been
used successfully by the author on a number of different problems
and in a variety of languages (e.g. Burroughs Extended ALGOL on
a B55OO, SUBALGOL on an IBM 7090, and FORTRAN on the
mM/360 series machines). A modification which has been found
to be useful involves tailoring the step size to be meaningful for a
wide variation in the magnitudes of the variables.

As currently specified -[I], each variable is incremented (or de
cremented) by DELTA as a minimum is sought. For a function
such that the values of the variables differ by several orders of
magnitude at the minimum, a universal step size causes some pa
rameters to be essentially ignored during much of the searching
process. For example, if a function of two variables has a minimum
near (100.0, 0.1), a step size of 10.0 will be useful in minimizing with
respect to the first parameter, but it will be meaningless with re
spect to the second parameter until it has been reduced to near
0.01. On the other hand, a step size of 0.01 would be useful on the
second variable but on the first variable it would take an up-desir
ably large number of steps to approach the minimum.

A modification to direct search which circumvents this scaling
problem involves the use of a different step size for each variable.
This is easily implemented since an array is already used to hold
the signed step size for each variable. The change is accomplished
by removing the statement labeled Start and replacing it by the
following statement:

Start: for k : == 1 step 1 until K do
begin 8(k) := DELTA X 008 (Psi(k»;

if 8(k) = 0.0 then 8(k) := DELTA;
end;

This change sets the step size for each variable to DELTA times
the magnitude of the starting value, or if the starting value is 0.0
the step size is set equal to DELTA. Thus DELTA is the fraction
of the original value of each variable to be used as an initial step
size. Subsequent reductions in step size are handled correctly
without further modifications to the procedure.

As an example of the usefulness of the above modification, con
sider the functior.

I(XI , X, ,X,) - (XI - 0.0l)1 + (X, - 1.0)' + (X, - 100.0)1

638 Communications of the ACM

with a minimum at (0.0l, 1.0, 100.0). The followiPg table shows the
results of using direct search on this function with and without the
modified step size. The results were computed on an IBM 360/75
computer using single precision with rko = 0.1, delta ==
0.001, DELTA == 0.2 for the modified step size (giving 20 percent
of initial value for initial step size) and DELTA ... [average magni
tude of initial guesses for the variables] for the algorithm as pub
lished.

TABLE I. f == (Xl - 0.01)' + (X, - 1.0)1 + (X. - 100.0)1

Nu""- of M'.'mum F'"al .alues of'M ,IIriGbles
,DELTA jtmcIiOfl .al"" off nalulJlt6m

XI I X. I X.

For initial values of (0.0, 0.0, 200.0):

Direct -.ch
Modified direct

-.ch

Ui3

112
1

0.841 X 10"71°.00999996'°. 9999951100•000

0.597 X 10"7 0.00999998/0.999900,100.000

For initial values of (0.05, 5.0, 500.0) :

Direct -.ch
Modified direct

-.ch

168.36 1

.2

174

75
I 0.934 X 10"71°.01002631'°.998958,' 99.9999

0.1159 X 1(11 0.009999880.999998 99.9992

Note that the modified-method will tend to yield the same rela
tive accuracy for each parameter, whereas with a fixed step size
direct search will tend to give the same absolute accuracy for all
parameters.- In most cases a relative accuracy is probably more
desirable-than an absolute accuracy.

REFERENCES
1. BELL, M., AND PIKE, M. C. Remark on algorithm 178. Comm

ACM II (Sept. 1966), 684.

REMARK ON ALGORITHM 308 [G6]
GENERATION OF PERMUTATIONS IN PSEUDO
LEXICOGRAPHIC ORDER [R. J. Ord-Smith, Comm.

ACM 10 (July 1967), 452]
R. J. ORD-SMITH (Reed. 21 May 1969)
Computing Laboratory, University of Bradford, England
KEY WORDS AND PHRASES: permutations, lexicographic
order, lexicographic generation, permutation generation
CR CATEGORIES: 5.39

Following the construction of the very fast lexicographic
permutation Algorithm 323 [1] it has become clear that the permu
tation sequence generated by the Algorithm 308 can be obtained
more quickly. In fact, replacement of

tr8tart:m := q[k]; t:= z[m]; z[m]:= z[k]; z[k]:= t;
q[k] := m + 1; k:= k - 1;

by

trstart: q[k]:= q[k] + 1;

in Algorithm 323 produces the ECONOPERM sequence of Al·
gorithm 308.

The times are as follows on an leT 1905, in seconds.

Algorithm 323
New ECONOPERM
Old ECONOPERM

REFERENCE:

t-,

6
5.9
6.2

10
47
45
50.6

1. ORD-SMITH, R. J. Algorithm 323: Generation of permutations
in lexicographic order. Comm. ACM 11_ (Feb. 1968),117.

VolUlne 12 / Num.ber 11 / Novem.ber, 1969

