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procedure TWIDDLE (z,y, 2, done, p); integer z, Y, 2;
Boolean done; integer array p;

comment TWIDDLE can be used (1) in generating all combi-
nations of m out of n objects, or (2) in generating all n-length
sequences containing m 1’s and (n—m) 0’s.

In the case (1), suppose the n objects are given by an array
a[l:n], and let us successively store combinations in another
array, say, c¢[l:m]. For the first combination, ¢[1] through c{m]
are equated, respectively, to a[n—m--1] through afnl.
TWIDDLE (z, y, z, done, p) is called. If done = true, then all
combinations have been processed and we therefore stop. If
not, a new combination is made available by setting c¢[z] equal
to a[z]. TWIDDLE is called, and we continue on this loop until
done = true.

In the case (2), let the sequences of m 1’s and (n — m) 0’s be
stored successively in an integer array, say, b[l:n]. The first
sequence is obtained by setting b[1] through b[n—m] equal to 0,
and b[n—m-1] through b[n] equal to 1. TWIDDLE (z, vy, 2,
done, p) is called. If done = true, then all required sequences
have been processed, and we therefore stop. If not, a new se-
quence is made available by setting blz] equal to 1, and b[y}
equal to 0. TWIDDLE is again called, and we continue on this
loop until done = true.

m and n are used only in the initialization of the auxiliary
integer array p[0:n-+1], which is done in the main program as
follows. (It is assumed that 0 < m < n and 1 < n.) p[0] is set
equal to n + 1, and p[n--1] is set equal to —2. p[l] through
pln—m] are set equal to 0. p[n—m-+1] through p[n] are set
equal, respectively, to 1 through m. If m = 0, then set p[l]
equal to 1. done is set equal to false.

The algorithm has several features which deserve mention.
When used in generating combinations: (a) at each stage, only
one combination number, namely ¢[z], is changed, (b)
TWIDDLE is order preserving in the sense that at each stage
¢[1] through c¢[m] will equal, respectively, some afi] through
a[tm] where 4 through %, are strictly increasing. When used in
generating fixed-density 0-1 sequences: (¢) at each stage, it is
only necessary to change two numbers of the sequence, b[z]
and b[y], and these are changed in a specific manner.

The algorithm underlying this procedure was discovered by
Leo W. Lathroum in 1965. Another algorithm which accom-
plishes combinations by transpositions was discovered by
Donald E. Knuth in 1964. The author has knowledge of the work
of Lathroum and Knuth from private communications. He will
include further detail in a mathematical paper, which will in-
clude justification of this procedure, to be published elsewhere;

begin integer 7, j, k; 7 := 0;

Li:
J =7+ 1; if p[j] £ 0 then go to Ll;
if p[j—1] = 0 then

begin
for i := j — 1 step —1 until 2 do p[z] := —1; p[j] = 0;
plll ;=2 :=2:=1; y:=j; gotol4
end;
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if 7 > 1 then p[j—1] := 0;

L2:
j:=173 4+ 1; if p{j] > O then go to L2;
ti=k:=j—1;
L3:
it =1+ 1; if p[¢] = 0 then
begin p[Z] := —1; go to L3 end;
if p[¢] = —1 then
begin
plil := 2z := plkl; = :=14; y:=k;
plk] := —1; go to L4
end;

if ¢ = p[0] then begin done:x:= true; go to L4 end;
z := pljl := plil; pll :=0; z:=7; y:=71;

IA4:

end of TWIDDLE
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procedure EXTENDED TWIDDLE (=, y, k, u, done, p);
value k, u; integer z, v, k, u; Boolean done; integer array
»;
comment EXTENDED TWIDDLE is a generalization both of
TWIDDLE [2], which is used in generating combinations by
transpositions, and of the Trotter-Johnson adjacent-transpo-
sition permutation algorithms [5, 3).

In the main program, to successively store all distinct permu-
tations of C[I] numbers equal to N[I] (/=1 toJ) in an array 4,
take, as the first permutation, that obtained by dividing
A[1:C[1]+---+C[J]] into J intervals and setting the C[I]
numbers of interval I equal to N{I] (I=1 to J). (We assume
that J > 2 and that each C[I] > 1. For distinct permutations,
we need N[I']#=N[I"”"] whenever I’ % I, For somewhat better
efficiency, it is desirable, but not necessary, that the sequence
C[I] be non-increasing.)

EXTENDED TWIDDLE (z, vy, k, u, done, p) is called. If
done = true, then all permutations have been processed and
we therefore stop. If not, a new permutation is made available
by transposing A[x] and Alyl, EXTENDED TWIDDLE is
called, and we continue on this loop until done = true.

EXTENDED TWIDDLE is initialized in the main program.
k is equated to J, u is equated to C[1] + --- + C[J] -+ 1, done
is equated to false, and p[0] and p[u] are equated to J + 1.
pll:u—1] is initialized by setting the members of the Ith in-
terval, of length C[I], equal toJ — I 4 1(I=1to J);

That the procedure proceeds by transpositions (not neces-
sarily adjacent, this being impossible in general) will introduce
a special economy in some cases. If this feature is of no value
in a particular application, then the algorithm of Bratley [1]
or of Sagg [4] might be appropriate. For J = 2, TWIDDLE [2],
which also has the transposition feature, will be more efficient
than EXTENDED TWIDDLE. If each C{I] = 1, then Trotter’s
algorithm [5] for generating permutations by transpositions,
is appropriate.
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begin integer s, <, j, b;

Ji=b:i=s5:=0
Ll:
j =3+ 1; ifabs (p[j]) = k then

begin if p[j] < 0 then s := j;
if p{j—1] = k then
begin
fori := j — s — 1 step —1 until 2 do p[s 4 7] := —k;
if s > b then p[s] := k;

go to Ll end;

pls+1] := pljl; 2l :=k; z:=s+4+1; y:=j; gotold
end;
if s > b then p[s] := k;
L2:
Jji=j+1; ifabs (p[j]) < k then go to L2;
if j = u then
begin
if £ = 2 then begin done := true; go to L4 end;
ji=b:=s8; k:=k—1; gotolLl
end;
ti=b:=35—1;
L3:
t:=1 4 1; if p[¢] = k then
begin p[i] := —k; go to L3 end;
if p[i] = —k then
begin B
pli] := plb]; plb]l := —k; z:=b; y:=1; gotoLd
end;
if 2 = u then
begin

if £ = 2 then begin done := true; go to L4 end;

u:i=j3; ji=b:=s8; ki=k—1; gotolLl
end;
z:=7j; y:=1; pljl :=pli; pli] :=k;
L4:

end EXTENDED TWIDDLE

The following algorithm by G. W. Stewart relates to the paper by the same
author in the Numerical Mathematics department of this issue on pages 365~
367. This concurrent publication in C. tcations follows a policy an-
nounced by the Editors of the two departments in the March 1967 issue.
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DEescripTION:

SYMQR finds the eigenvalues and, at the users option, the
eigenvectors of a real symetric matrix. If the matrix is not ini-
tially tridiagonal, it is reduced to tridiagonal form by House-
holder’s method [2, p. 290]. The eigenvalues of the tridiagonal
matrix are calculated by a variant of the QR algorithm with origin
shifts [1]. Bigenvectors are calculated by accumulating the prod-
uets of the transformations used in the Householder transforma-
tions and the QR steps, a procedure which guarantees a nearly
orthonormal set of approximate eigenvectors.

At each QR step the eigenvalues of the 2 X 2 submatrix in the
lower right-hand corner are computed, and the one nearest the
last diagonal element is distinguished. When these numbers settle
down they are used as origin shifts.

The user may choose between absolute and relative convergence
criteria. The former accepts the last diagonal element as an ap-
proximate eigenvalue when the last off-diagonal element is a small
multiple (EPS) of the infinity norm of the matrix. The latter re-
quires that the last off-diagonal be small compared to the last two
diagonal elements. To avoid an excessive number of QR steps, an
important consideration when eigenvectors are computed, the
following guidelines should be followed. The convergence tolerance
should not be smaller than the data warrants [2, p. 102]. The rela-
tive convergence criterion should be used only when there are
eigenvalues, small compared to the elements of the matrix, that
are nonetheless determined to high relative accuracy. Finally,
when there is a wide disparity in the sizes of the elements of the
matrix, the matrix should be arranged so that the smaller elements
appear in the lower right hand corner.

The program will work with matrices whose elements very
nearly underflow or overflow the range of a floating-point word.
Some accuracy may be gained by accumulating inner products.
The places where this should be done are signaled by the appear-
ance of the variables SUM and SUMI1.
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ALGORITHM:

SUBROUTINE SYMQR(A+DsE sKOsNsNASEPSsABSCNV,,VECS TRDSFAIL)

EXPLANATIUN OF THE PARAMETERS IN THE CALLING SEQUENCE.

A A DOUBLE DIMENSIONED ARRAYs. IF THE MATRIX IS NOT
INITIALLY TRIDIAGONALs IT IS CONTAINED IN THE LOWER
TRIANGLE OF Ae. [IF EIGENVECTORS ARE NOT REQUESTED
THE LOWER TRIANGLF OF A IS5 DESTROYED WHILE THE
ELEMENTS ABOVE THF DIAGONAL ARE LEFT UNDISTURBEDs
1F EIGENVECTORS ARE REQUESTED, THEY ARE RETURNED IN THE
COLUMNS OF Ae

D A SINGLY SUBSCRIPTED ARRAY,
INITIALLY TRIDIAGONAL
ELEMENTS.
THE MATRIXe

If THE MATRIX IS
D CONTAINS ITS DIAGONAL
ON RETURN D CONTAINS THE EIGENVALUES OF

E A SINGLY SUBSCRIPTED ARRAYe [IF THE MATRIX IS
INITIALLY TRIDIAGONAL, £ CONTAINS ITS OFF-DIAGONAL
ELEMENTS. UPON RETURN E(I) CONTAINS THE NUMBER OF
ITERATIONS REQUIRED TO COMPUTE THE APPROXIMATE
EIGENVALUE DI(1).

KO A REAL VARIABLE CONTAINING AN INITIAL ORIGIN SHIFT TO
BE USED UNTIL THE COMPUTED SHIFTS SETTLE DOWN.

N AN INTEGER VARIABLE CONTAINING THE ORDER OF THE
MATRIXe

NA AN INTEGER VARJABLE CONTAINING THE FIRST DIMENSION
OF THE ARRAY A,

EPS A REAL VARIABLE CONTAINING A CONVERGENCE TOLERANCEe

ABSCNV A LOGICAL VARIABLF CONTAINING THE VALUE «TRUE. IF
THE ARSOLUTE CONVERGENCE CRITERION IS TO BE USED
OR THE VALUE .FALSE. IF THE RELATIVE CRITERION
1S TO BE USED.

VEC A LOGICAL VARIABLE CONTAINING THE VALUE «TRUEe IF

EIGENVECTORS ARE TO BE COMPUTED AND RETURNED IN
THE ARRAY A AND OTHERWISE CONTAINING THE VALUE
+FALSE s
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TRD A LOGICAL VARIABLF CONTAINING THF VALUE «TRUFe
IF THF MATRIX IS TRIDIAGONAL AND LOCATED IN THE ARRAYS
D AND E AND OTHERWISE CONTAINING THE VALUE oFALSEee
FAIL AN INTEGER VARIABLE CONTAINING AN ERROR SIGNALe

ON RETURN THE EIGENVALUES IN D(FAIL+1)seeesDiN]
AND THEIR CORRESPONDING EIGENVECTORS MAY BE PRESUMED
ACCURATE W

REAL

1A(NAS1) oD(1}4E(1)sKOsD1sD24KIEPS+S2sCONININFSTEST9CB9€C LDy
2CsSsTEMP 3P 3PP 3QsQQ +sNORM 4Ry TITTER s SUMy SUML yMAX

INTEGER
INoNM1 sNM2 oNASFATL s I9 11909l s L1sLLLLY WNLyNUSNUML s SINCOSsRETURN
LOGICAL

1ABSCNVsVECs TRD ySHFT

TITTER = 50,

NM1 = N-]

NM2 = N-2

NINF = O,

ASSIGN 500 TO SINCOS

SIGNAL ERROR IF N IS NOT POSITIVE.

IF(NsGT«0) GO TO 1
FAIL = -1
RETURN

SPECIAL TREATMENT FOR A MATRIX OF ORDER ONE.

IF{NeGTel) GO TO S
1FL{.NOTTRD} D(1)
IF(VEC) A{1s1) =
FAIL = O

RETURN

= All,s1)
le

IF THE MATRIX IS TRIDIAGONALs SKIP THE REDUCTION

IF(TRD) GO TO 100
IF{N.EQ«2) GO TO 80

REDUCE THE MATRIX- TO TRIDIAGONAL FORM BY HOUSEHOLDERS METHODs

DO 70 L=1sNM2

L1 = L+1
DIL) = A(LsL)
MAX = 0o

DO 10 I=L1.N

MAX = AMAX1(MAXsABS(A(IsL)})
IF(MAXoNEJO4) GO TO 13

E(L) = 0,
AtLsL) =
GO TO 70
SUM = 0.
PO 17 1=L1sN

A(LsL} = ALIsL)/MAX
SUM = SUM + A(l,L)%*2
§2 = SUM

$2 = SQRT(S2)
TF{A(LISL) oLT.
E(L) = -S2#MAX
A(L1sL) = A(L1sL) + S2
AfLsL) = S2#A(L1,L}

SuM1 = O,

00 50 [=L1,N

SUM = 0.

DO 20 J=L1sl

SUM = SUM + AlTsJ)*A(J,L)
IF(1.EQeN) GO TO 40

11 = 1+1

DO 30 J=11.N

1.

0¢) S2 = =82

SUM = SUM + A(JsLI®A{J,1)
Erl} = SUM/A(LsL}

SUM1 = SUM1 + A(I,L)*E(])
CON = o5%SUMI/A{L,L)

DO 60 I=L1sN
E(I) = E(I) - CON®A(I,sL)
DO 60 J=L1yl

Atlsd) = ACTeJ) = AULSLI®ELJ) = A{JsLI®E(])
CONTINUE

DINM1) = ATNM1,NM1)

D(N) = A(NsN)

F(NM1) = A(NoNM1)

IF EIGENVECTORS ARE REQUIREDs INITIALIZE Ae

IF(«NOT«VEC) GO TO 180

IF THE MATRIX WAS TRIDIAGONAL, SET A EQUAL TO THE IDENTITY MATRIX.
IF{«NOT.TRD +AND., NeNE.2} GO TO 130

DO 120 I=1,N

DO 110 J=1,N

AllsJ) = O,

AlIsI) = 1.

GO TO 180

IF THE MATRIX WAS NOT TRIDIAGONALs MULTIPLY OUT THE
TRANSFORMATIONS OBTAINED IN THE HOUSEHOLDER REDUCTION.

A(NsN) = 1,

A (NM]1 sNM1) =
A(NMIsN) = O,
A(NJNML} = O,
DO 170 L=1,NM2

LL = NM2-L+]

ELY = LL+1

DO 140 I=LL1sN

SUM = 0,

DO 135 JsLL1,N

SUM = SUM + A(JyLLI*ALJ,])

le
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140 A(LL,1) = SUM/AILLLL)
DO 150 I=LL1,N
DO 150 J=LL1,N
Atlsd) = AtlsJ)
DO 160 I=LL1sN
AtTyLL) 0.

AfLL, 1) Oe

AtLLsLL) = 1,

150 - ACISLLI*A(LL,J) -

160
170

IF AN ABSOLUTE CONVERGENCE CRITERION 1S REQUESTED
(ABSCNV=oaTRUE«)s COMPUTE THE INFINITY NORM OF THE MATRIXe
180 IF(«NOT.ABSCNV) GO TO 200
NINF = AMAX1{ABS(D(1))+ABS(E(1))sABS(D(N))I+ABSIEINM1)))
IF{N.EQe2) GO TO 200
DO 190 I=2sNM1
190 NINF = AMAX1(NINF,ABS{D(1))+ABS(F{I))+ABS{E(I-1)})
START THE QR ITERATION,.

200
NUM1
SHFT
K1 = KO
TEST = NINF®EPS
E(N} = O,

N-1

Nu = N
= oFALSE.

CHECK FOR CONVERGENCE AND LOCATE THE SUBMATRIX IN WHICH THE

QR STEP IS TO BE PERFORMED,
210 DO 220 NNL=1sNUM1
NL = NUMI1-NNL+1
IF{«NOT+ABSCNV}
IF(ABS(E(NL))
CONTINUE
GO TO 240
E(NL} = 0.
NL = NL+1
IF(NL «NE. NU) GO TO 240
IFINUM] LEQs 1) RETURN
IF{E(200)4NEeOs) PRINT 20009(D(I)sE{])sI=1,NU)
‘FORMAT(1HQ10E1244/¢1H 10E1244))
NU = NUM1
NUM1 = Ny-1
GO TO 210
E(NU) = E(NUI+FLOAT(NUM1-NL)
IF(le «EQe 14) GO TO 250
IF(0e «EQe 1) GO TO 250
FAIL = NU
RETURN

TEST = EPS®AMINI (ABS(D(NL))sABS(D(NL+1)))
oLEs TEST) GO TO 230
220

230

2000

240

CALCULATE THE SHIFT,.

250 CB =

MAX =

(D{NUM1)-DI(NUI} /2,
AMAX1(ABS(CB)+ABSIE(NUM1)))
CB/MAX

{E(NUML) /MAX) % %2

SQRT(CB#*%#2 + CC)

IF(CB «NEe Os) CD = SIGN(CD,CB)
K2 = D(NU) =~ MAX*CC/(CB+CD)
IF(SHFTY GO TO 270
IF(ARSIK2=K1) «LTe
K1 = K2

K = KO

GO TO 300

SHFT = «TRUE.

K = K2

0
[a}
[

«5S*ABS(K2)) GO TO 260

260
270

PERFORM ONE QR STEP WITH SHIFT K ON ROWS AND COLUMNS
NL THROUGH NU
300 IF(E(200)eNEeOs
P = DINL) - K
Q = E(NL)
ASSIGN 310 TO RETURN
GO TO SINCOS, {500}
DO 380 I=NLsNUMI

eANDe KolEeleE-14%ABSIDI(NL) )} K=0s

310

IF REQUIREDy ROTATE THE EI1GENVECTORS.
IF(eNOT.VEC) GO TO 330

00 320 J=14N

TEMP = C®A(Js1) + S*A(J,141)

AlJsl+4]l) = ~SHALI,1) + CHA(JsI+1)
AlJs1) = TEMP

PERFORM THE SIMILARITY TRANSFORMATION AND CALCULATE THE NEXT
ROTATION.

DI Q]
TEMP
D(I+1
F(l}

CHDUI) + S*E(D)

C#E(L) + S*D{1+])

= —SRE(]) + CH*D([+1)

~5%K

ol C#D(I) + S*TEMP

IF(I «EQ. NUM1) GO TO 380
IF{ABS(S}) «GT. ABS(C)) GO TO 350
R = §/C

DI+1) = -S*E(1])
P = D(I+1) = K
N = C*F(1+1)
ASSIGN 340 TO RETURN
GO TO SINCOSs(500)
E(I) = R*NORM

F(I+1) = @

GO TO 380

P o= CH*E(]) + S*D(I+1)
Q = S*E(I+1)

D(I+1) = C#P/S + K
E(I+1) = C*E(I+1)
ASSIGN 360 TO RETURN
GO TO SINCOSs»(50n)
360 E{I) = NORM

+ C*D{[+1)

340

350
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380 CONTINUE
TEMP = C#E(NUM1) + S¥D(NU)

D(NU) = -S®*E(NUM1} + C*D(NU)
E(NUM1) = TEMP
GO TO 210

INTERNAL PROCEDURE TO CALCULATE THE ROTATION CORRESPONDING TC
THE VECTOR(P,Q) e

[aXaXaXal

500 PP = ABS(P)
QQ = ABS(M)
IF(OQ «GT. PP) GN TO 510 '
NORM = PP®SQRT(1l, + (QQ/PP)#%2}
GO TO 520
510 IF(0Q «EQe 0.) GN TO 530
NORM = QQ#SQRT(1l. + (PP/QQ)%*%x2)
520 C = P/NORM
S = Q/NORM
GO TO RETURN,(310+3409360)
530 C = 1,
S = O
NORM = O,
GO TO RETURN»(31n5,340+360)
END

CERTIFICATION OF ALGORITHM 245 [M1]

TREESORT 3 [Robert W. Floyd, Comm. ACM 7 (Dec.
1964), 701]: PROOF OF ALGORITHMS—A NEW
KIND OF CERTIFICATION

Rarra L. Lonpon* (Reed. 27 Feb. 1969 and 8 Jan. 1970)

Computer Sciences Department and Mathematics Re-
search Center, University of Wisconsin, Madison, WI
53706

* This work was supported by NSF Grant GP-7069 and the
Mathematics Research Center, US Army under Contract
Number DA-31-124-AR0-D-462.

ABSTRACT: The certification of an algorithm can take the form
of a proof that the algorithm is correct. As an illustrative but
practical example, Algorithm 245, TREESORT 8 for sorting an
array, is proved correct.

KEY WORDS AND PHRASES: proof of algorithms, debugging,
certification, metatheory, sorting, in-place sorting
CR CATEGORIES: 4.42,4.49, 5.24, 5.31

Certification of algorithms by proof. Since suitable techniques
now exist for proving the correctness of many algorithms [for
example, 3-7], it is possible and appropriate to certify algorithms
with a proof of correctness. This certification would be in addi-
tion to, or in many cases instead of, the usual certification. Certi-
fication by testing still is useful because it is easier and because it
also provides, for example, timing data. Nevertheless the existence
of a proof should be welcome additional certification of an algo-
rithm. The proof shows that an algorithm is debuggged by show-
ing conclusively that no bugs exist.

It does not matter whether all users of an algorithm will wish
to, or be able to, verify a sometimes lengthy proof. One is not
required to accept a proof before using the algorithm any more
than one is expected to rerun the certification tests. In both
cases one could depend, in part at least, upon the author and the
referee.

As an example of a certification by proof, the algorithm
TREESORT 38 [2] is proved to perform properly its claimed task
of sorting an array M[1:n] into ascending order. This algorithm
has been previously certified [1], but in that certification, for
example, no arrays of odd length were tested. Since TREESORT 3
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is a fast practical algorithm for in-place sorting and one with
sufficient complexity so that its correctness is not immediately
apparent, its use as the example is more than an abstract exercise.
It is an example of considerable practical importance.

Outline of TREESORT 3 and method of proof. The algorithm is
most easily followed if the array is viewed as a binary tree.
M(k+2] is the parent of M[k], 2 < %k < n. In other words the
children of M[j] are M[2j]1 and M[2j+1] provided one or both
of the children exist.

The first part of the algorithm permutes the M array so that
for a segment of the array, each parent is larger than both of the
children (one child if the second does not exist). Each call of the
auxiliary procedure sifiup enlarges the segment by causing one
more parent to dominate its children. The second part of the
algorithm uses siftup to make the parents larger over the whole
array, exchanges M[1] with the last element and repeats on an
array one element shorter. The above statements are motivation
and not part of the formal proof.

That TREESORT 3 is correct is proved in three parts. First
the procedure sifiup is shown to perform as it is formally defined
below. Then the body of TREESORT 3, which uses siftup in two
ways, is shown to sort the array into ascending order. (The proof
of the procedure exchange is omitted.) The proofs are by a method
described in (3, 4, 7): assertions concerning the progress of the
computation are made between lines of code, and the proof con-
sists of demonstrating that each assertion is true each time con-
trol reaches that assertion, under the assumption that the previ-
ously encountered assertions are true. Finally termination of the
algorithm is shown separately.

The lines of the original algorithm have been numbered and the
assertions, in the form of program comments, are numbered cor-
respondingly. The numbers are used only to refer to code and to
assertions and have no other significance. One extra begin-end
pair has been inserted into the body of TREESORT 38 in order
that the control points of two assertions (3.1 and 4.1) could be dis~
tinguished. In siftup the assertions 10.1 and 10.2 express the cor-
rect result; in the body of TREESORT 8 the assertions 9.3 and
9.4 do likewise.

Definition of sifiup and notation. We now define formally the
procedure siftup(z,n), where n is a formal parameter and not the
length of the array M. Let A(s) denote the set of inequalities
M{k+2] > M[k] for 2s < k < n. (If 3> n+2, then A(s) is a vacu-
ous statement.) If A(Z+1) holds before the call of siftup(i,n)
and if 1 < 7 < n < array size, then after sé¢ftup(i,n):

(1) A () holds;

(2) the segment of the array M[:] through M[n] is permuted;
and

(3) the segment outside M[z] through M[n] is unaltered.

In order to prove these properties of siftup, some notation is
required. The formal parameter ¢ will be changed inside siftup.
Since ¢ is called by value, that change will be invisible outside
siftup. Nevertheless it is necessary to use the initial value of 2
as well as the current value of < in the proof of siftup. Let 7o denote
the value of ¢ upon entry to siftup.

Similarly let M, denote the M array upon entry to siftup.
The notation “M = p(M,) with M := copy’ means “if M[i] :=
copy were done, M is some permutation of M, as described in (2)
and (3) of the definition of siftup.” “M = p(M,)”’ means the
same without the reference to M[i] := copy being done.

Code and asserttons for siftup.
0 procedure siftup(z, n); value 7, n; integer i, n;
1 begin real copy; integer j;
comment
1.1: 1 £ % = 2 £ n £ array size
1.2: A(Ge+1)
1.3: M = p(M,);
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copy = M[:l;
loop:j 1= 2 X 1;
comment
31: 7 < n
32: 2% =3
33: 7 =1dp0ri > 2
3.4: M = p(M) with M[{] := copy
3.5: A('Lo) or (’L = 7o and A(io+1))
3.6: M[:+2] > copyor¢ = 1o
3.7: M[t+2] > M[i] or ¢ = 4o;
4 if j < n then
5 begin if j < n then
6a begin if M[j+1] > M[j] then

w N

6b j =7+ 1lend;
comment
6l:7=5+2

62: 2 <j<nm

6.3:7 =4d00rs > 2

6.4: M = p(M,) with M[Z] := copy

6.5: A(4y) or (¢ = 7o and A (fe+1))

6.6: M[t<+2] > copyori = 7

6.7: M[1+2] > Ml[iJorz = 7o

6.8: (22 < n and M[j] = max(M[2:], M[2{+1])) or
(2¢ = n and M[j] = M{n])

6.9: Mic] > M[jlor i = 15

7 if M[j] > copy then
8a begin M[:] := Mij];
comment

81l: i =1dsor¢ > 2
82:21<j<n
8.3: M[j+2] = M[i]l = M{j] > copy
8.4: M[Z+2] > M[jlor< = 4
8.5: M = p(Ms) with M{j] := copy
8.6: A(%);
8b i:i=7;
comment
87: 1> 2
88:i=j<1mn
8.9: M[i+2] > copy
8.10: M[i+2] > M[i]
8.11: M = p(M,) with M[i] := copy

8.12: A(%);
8c go to loop end
9 end;

comment

9.1: M[j] < copy if reached from 7 or
2¢ = j > n if reached from 4;
10 M[7] := copy;

comment
10.1: M = p(Mo)
10.2: A (40);

11 end siftup;

Verification of the assertions of sifiup. Reasons for the truth of
each assertion follow:
1.1-1.2: Assumptions for using siftup.
1.3: p is the identity permutation.
3.1-3.7: If reached from 2,
3.1: 1.1,
3.2: 3.
3.3,38.5-3.7: ¢ = 7, by 1.1. 3.5 also requires 1.2.
3.4: 1.3 and 2.
If reached from 8, respectively, 8.8, 3, 8.7, 8.11, 8.12,
8.9 and 8.10.
6.1: At3.25 = 2{ and by 6b, j might be 2¢ 4 1.7 = j+2 in either
case.
6.2: After 4, j < n. j is altered from 3.1 to 6.2 only at 6b. Before
6b, j <nby5. Hencej < nat6.2. 2/ < jby6.1,
6.3-6.7: 3.3-3.7, respectively.
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6.8:

6.9:

8.1:

8.2:
8.3:

8.5:

8.6:

8.7:

8.8:
8.9:

If 4 is true and § is false, j = 2 = n (using 3.2) so the
second clause of 6.8 holds. If 4 is true and 5 is true, then
at 6a, 20 = j < n (using 3.2) so M[j+1] = M([2:+1] is
defined. Now at 6.8, j = 2¢{ or § = 2¢+1. In either case,
by 6a and 6b, the first clause of 6.8 holds.

By 6.5 © 5« 19 gives A(4p). 20 < 22 < j < n by 6.3 and 6.2.
Hence A (40) and 6.1 give M{i] = M[j=-2] > M[jl.

6.3.

6.2.

1 =j+2 by 6.1, M[{] = M[j] by 8a and M[j] > copy by 7.

6.7 and 6.9.

6.4 requires that M[¢] be replaced by copy. Since M[i] =
M{j] by 8a, M[jl may equally well be replaced with copy.
8.1 and 8.2 give 7y < 7 < 7 so that the change to M at 8a
is in the segment M{é] through Mn].

By 8a and if 6.8 (first clause) holds, M{z] > M{2¢] and M[7] >
M[2¢41]. By 8a and if 6.8 (second clause) holds, M[i] =
M5l = M[n] = M[2¢] and M[2:+1] does not exist for this
call of siftup. A (fe+1) holds at 6.5 since A (is) implies
A@e+1). If © = 4y, A@o+1) and the relations above on
MIi] give A (te). If 7 % 4, then 8a, 8.4, A (%) at 6.5 and
the relations above on M[7] give A (i) at 8.6.

8b, 8.1 and 8.2.

8b and 8.2.

8b and 8.3.

8.10: At 8.6, 2¢y < j < n by 8.1 and 8.2. Hence by 8.6, M[j+2] >

M[j]. Use 8b on M[j+2] > M[j].

8.11: 8b and 8.5.
8.12: 8.6.

9.1:

9.1 is reached only if 7 is false or if 4 is false. 2 = j by 3.2.

10.1-10.2: If reached from 7,

10.1: 6.4 and 10. (6.2 and 6.3 give 4, < 7 < n ensuring
the change to M at 10 is in the segment M[is]
through M[=n].)

10.2: By 10, 9.1, 6.2 and 6.8, M{¢] = copy > M[j] >
M[2{] and, if M[2i+1] exists, M[j] > M[2i+1]. If
© = 45, 10.2 follows as in 8.6. If 7 £ 4, , 6.6 and
10 give M[i<+2] > copy = M[i]. A (%) at 6.5 now
gives A (7o) at 10.2.

If reached from 4,

10.1: 3.4 and 10. (3.1 and 3.3 give 70 < ¢ < n.)

10.2: 2¢ > n means no relations in A (%) of the
form M[Z] > --- . If © = 4, 3.5 gives 10.2. If
© # 1, 3.6 and 10 give M[{+2] > copy = M[:].
A (i) at 3.5 now gives 10.2.

Code and assertions for the body of TREESORT 3.

integer ¢;
comment
0.1: A(n+241);
for ¢ := n+2 step —1 until 2 do
begin
comment
2.1: A(Z+1)
2.2: Assumptions of siftup satisfied;
siftup(@,n);
comment
3.1: A(5);
end;
comment
41: Mp] < Mlp+1lforn+1<p<n—1
4.2: A2),i.e. Mlk+2] > Mkl for4 < k < n;
for i := n step —1 until 2 do
begin
comment
6.1: Mip] < Mlpt+ijfori +1<p<n—-1
6.2: Mk+21 > Mklfora <k <i
6.3: M[i+1] > M[rlfor1 < r<i
6.4: Assumptions of siftup satisfied;
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7 siftup (1,3);
comment
7.1: Mip] £ M[p+1]fori +
7.2: M{k+2] > M[k] for 2 <
7.3: M[1] > M[rlfor2<r <1
7.4: Mli+1] > M{1];
8 exchange (M[1], M[Z]);
comment
81: Mli] > M[r]forl<r<i—1
8.2: M[p] < Mp+1llfori<p<n-—-1
. 8.3: M[k+2] > Mklfora <k <1—1;
9 end;
comment h
9.1: M[p] < Mip+1lfor2< p<n—1
9.2: M[2] > M[1]
9.3: M[p] < Mlp+1]lforl1 < p < n — 1, ie M is fully
ordered
9.4: M is a permutation of Mpy;

Verification of the assertions for the body of TREESORT 8.
Reasons for the truth of each agsertion follow:
0.1: Vacuous statement since 2(n=<24+1) > n.
2.1: If reached from 0.1, by 1 substitute ¢ = n+2in 0.1.
If reached from 3.1, by 1 substitute ¢ = ¢ 4+ 1in 3.1 to ac-
count for the change in ¢ from 3.1 to 2.1.
2.2: 2.1, the bound on < implied by 1 and the array size being n.
3.1: 2.1 and the definition of siftup(i, n).
4.1: Vacuous statement.
4.2: If n > 4, 3 is executed; hence 3.1 with 7z = 2. If n < 3,
vacuous statement.
If reached from 4.1,
6.1-6.2: By 5 substitute ¢ = n in 4.1 and 4.2.
6.3: Vacuous statement for ¢ = n.
If reached from 8.1, by 5 substitute ¢ = ¢ 4+ 1 in 8.2,
8.3 and 8.1, respectively.
6.4: 5 and6.2,i.e. A(2) for the subarray M[1:1].
7.1: 6.1 and (3) of siftup.
7.2: 6.2 and (1) of siftup.
7.3: 7.2 noting that M[1] = M[k=2]if £ = 2 and using the transi-
tivity of >. )
7.4: Vacuous for 2 = n. Otherwise 6.3 for the appropriate r since
by (2) of siftup, M[1] at 7.3 is one of the M[r],1 < r < %,
at 6.3.
8.1: 7.3 with the changes caused by 8 (only M[1] and M[:] are
altered by 8).
8.2: By 8 substitute M[¢] for M[1] in 7.4; then 7.1 also holds for
p =1t -
8.3: 7.2 excluding only the one or two relations M[1] > ---
the one relation --- > M[z].
If n > 2, 8 is executed;
9.1: 8.2 with¢ = 2.
9.2: 8.1 with 7 = 2.
9.3: 9.1 and 9.2.-
If n < 1, 9.1-9.3 are vacuous statements.
9.4: The only operations done to M are siftup and exchange all of
which leave M as a permutation of M, .

6.1-6.3:

, and

9.1-9.3:

Proof of termination of TREESORT 3. Provided siftup and ez-
change terminate, it is clear that TREESORT 8 terminates. Note
that each parameter of sifiup is called by value so that 7 is not
changed in the body of the for loops.

The procedure exchange certainly terminates. In s¢ftup the only
possibility for an unending loop is from 3 to 8b and back to 3.
Note that all changes to ¢ (only at 8b) and to j (only at 3 and 6b)
occur in this loop and that on each cycle of this loop both 7 and j
are changed. By the test at 4, it is sufficient to show that j strictly
increases in value. ¢ > 1 means 2¢ > 7. At'8b, j = 7 < 2¢ while at
3,7 = 2,i.e. j(at 3) = 2 > ¢ = j(at 8b). Hence each setting to j
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at 3 strictly increases the value of j. The only other setting to j
(at 6b), if made, similarly increases the value of j.
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REMARK ON ALGORITHM 201 [M1]

SHELLSORT [J. Boothroyd, Comm. ACM 6 (Aug. 1963},
445]

J. P. CaanbpiEr AND W. C. Harrison* (Recd. 19 Sept.
1969)

Department of Physics, Florida State University, Talla-
hassee, FL 32306

* This work was supported in part by AEC Contract No. AT-
(40-1)-3509. Computational costs were supported in part by
National Science Foundation Grant GJ 367 to the Florida State
University Computing Center.

KEY WORDS AND PHRASES: sorting, minimal storage sort-
ing, digital computer sorting '
CR CATEGORIES: 5.31

Hibbard [1] has coded this method in a way that increases the
speed significantly. In SHELLSORT, each stage of each sift con-
sists of successive pair swaps. The modification replaces each set
of n pair swaps by one “save,”” n — 1 moves, and one insertion.

Table I gives timing information for AvgoL, FORTRAN, and
Cowmpass (assembly language) versions of SHELLSORT and the

TABLE 1. SorTiNg TiMEs 1N SECONDS FoR 10,000 RaANDOMLY
OrpERED NUMBERS ON THE CDC 6400 CoMPUTER

Algorithm Source Language
ArgoL FORTRAN CoMPASS
SHELLSORT 53.40 7.18 2.38
SHELLSORT2 36.56 5.98 1.87 ~
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modified version (called SHELLSORT2), for the CDC 6400 com-
puter. The savings in time achieved by the modification are 329,
17%, and 219, respectively. The savings are greater than this
when vectors of more than one word each are being sorted.

The comparative execution times of the ALcorL and FORTRAN
versions, for these compilers, are quite interesting.

REFERENCES:
1. HisBarp, T. N. An empirical study of minimal storage sort-

ing. Comm. ACM 6 (May 1963), 206.

REMARK ON ALGORITHM 351 [D1]
MODIFIED ROMBERG QUADRATURE
[G. Fairweather, Comm. ACM 12 (June 1969), 324]
GeorceE C, WALLICK
Mobil Research and Development Corporation, Field
Research Laboratory, P. O. Box 900, Dallas, TX 75221

KEY WORDS AND PHRASES: numerical integration, Rom-
berg quadrature, modified Romberg quadrature, trapezoid values,
rectangle values

CR CATEGORIES: 5.16

Algorithm 351 was compiled and run successfully in ForTRAN
IV on a CDC 6400 computer. Computation times for equivalent
orders were essentially the same as for a ForTRAN version of Al-
gorithm 60 Romberg Integration [1]; storage requirements were
approximately 20 percent greater.

Algorithm 351 incorporates two modifications to the standard
Romberg algorithm, each designed to reduce roundoff: (1) the
Krasun and Prager [3] replacement of the table of trapezoidal
values T;* with a table of rectangular values R;; (2) the method
proposed by Rutishauser [6] for the evaluation of the rectangular
sums R¢*. Since neither of these modifications has been properly
evaluated we have chosen to compare integral values returned
by five variants of the Romberg algorithm:

1. Conventional Romberg integration as described by Algo-
rithm 60

2. A Krasun and Prager modification of Algorithm 60 (T;*
table replaced by R table)

3. A Rutishauser modification of Algorithm 60 (T;* table
extrapolation with improved evaluation of the R¢¥)

4. Modified Romberg integration as described by Algorithm
351 (R;* table; improved R¢* evaluation)

5. Algorithm 351 with the Rutishauser procedure replaced
by the standard evaluation of the B¢t (B;* table extrapolation)

The following test integrals were investigated.

1.1

A. z* dz, @ = 3.0,40,50
01

1
B. f (A + 291 dz, «= 10,40
[1]

10
C. f In z dz
1

5
D. f = dz
0

Integral A was suggested by Thacher [7], Integral B by Rabi-
nowitz [5], Integral C by Hillstrom [2], and Integral D by Hill-
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strom and by Kubik [4]. All computation was carried out in CDC
6400 single-precision floating-point arithmetic. Results were re-
corded to 14 decimal digits. (CDC 6400 word length corresponds
to 144 decimal digits.) The data obtained in this manner are
summarized in Tables I-IV.

For a specified order of extrapolation m, Algorithm 60 variants
require 2” 4 1 function evaluations and return 7,°. Algorithm
351 requires 2w+ + 1 function evaluations and returns T'.l.
Thus one cannot meaningfully compare integral values returned
by the two algorithms for the same specified order. We have there-
fore chosen to compare integral values resulting from the same
number of function evaluations and have tabulated these data
in terms of the Algorithm 60 order m. The corresponding specified
order for Algorithm 351 variants is m — 1.

In each example considered, Algorithm 351 returns integral
values for the optimum extrapolation order that are more accurate
than the Algorithm 60 solutions by from one to two significant
figures. There is, of course, no increase in the rate of convergence
and little difference in solution accuracy for approximation
orders less than that corresponding to the maximum attainable
accuracy. If one were interested in, e.g. six or eight significant
figure accuracy, either algorithm would be satisfactory. If ac-
curacy requirements are not severe and one is satisfied with
integral values correct to a number of significant figures less
than half the computer word length, either algorithm may be used.
If one seeks the maximum achievable accuracy, Algorithm 351
is clearly the proper choice.

Tables I-IV include data recorded when the order was over-
specified, i.e. when m was greater than that required for optimum
accuracy. For both algorithms the accuracy at first increases with
increasing order. This continues until an optimum accuracy ob-
tains. With Algorithm 60 a further increase in m results in a
decline, at times rather rapid, in evaluation accuracy. With
Algorithm 351 there is little loss in accuracy with increasing
order. The accuracy decline rate is strongly retarded and in many
cases practically eliminated. This is a very significant result.

In routine use of the algorithms, the unwary may overestimate
the order required for optimum convergence (Algorithm 60 termi-
nates only when a specified order has been obtained) or may
specify an accuracy criterion for termination that cannot be
satisfied. With Algorithm 351 the only loss is that of computer
time; with Algorithm 60 solution accuracy may be impaired.

From the data presented in Tables I-1V we may determine the
extent to which each of the procedural modifications contributes
to the overall superiority of Algorithm 351. It is immediately
evident that the Krasun and Prager modification has little effect
either on the accuracy of the algorithms or on the loss of accuracy
as the optimum order is exceeded. Results obtained using this
modification differ from those returned by Algorithm 60 by at most
2 in the l4th figure. When the Rutishauser procedure is sub-
tracted from Algorithm 351, the algorithm becomes, for all prac-
tical purposes, equivalent in accuracy to Algorithm 60. This con-
clusion has been further supported by results obtained in the
evaluation of eight additional test integrals selected from the
literature.

If, on the other hand, the Rutishauser procedure is added to
Algorithm 60, the results obtained are essentially the same as
those recorded for Algorithm 351. Clearly the Rutishauser modifi-
cation is the dominant factor determining the superiority of
Algorithm 351.

The success of the Rutishauser modification tempts one to
expand the procedure to include an additional summation level.
Experiments with such expansions indicate that they may be of
value where slow Romberg convergence requires the use of orders
m > 13.

The following changes are suggested as possible improvements
in the algorithm. The integration interval (B—A) is now com-
puted K + 2 times where K is the order of approximation on exit
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TABLES. CoMmpPARISONS OF ROMBERG METHOD VARIATIONS
(KP = Krasun-Prager Modification; RUT = Rutishauser Modification; NSF = Number of Significant Figures)

Variations Returning Tm® Variations Returning Tl Variations Returning T'm® Variations Returning To,!
Algorithm | Algorithm . rithm L £ . ]
Rom-|  Algorithm 60 ¢ %0 G Alagriph Rom-|  Algorimoo | Sgm | Alecpiim E‘}gﬁ;”_’}f"gﬁ?ﬁ Alggrsphm
ol berg + KP | + RUT (KP only) berg + KP | + RUT (KP only)
Order Order
" o o3 g % ” o3 % i o3
Digits 1-14 | NSF :;:;:' NSF I?Zo:] NSF Dg_g}f NSF I?Eci NSF Digits 1-14 | NSF :§§_ NSF §:' NSF %{ﬂ’j’ NSF :;fo:' NSF
I S ] S ] 1)
1 10
I. I~ THE EvALUATION OF I(a) = fo Q4+ z9rde II1, IN tHE EvaLUATION OF [ = f, Inzdz =
I(1) = 0.69314 71805 59945; I(4) = 0.86697 20873 3991 14.025 85092 99404 6
1.0 3 160314 74776 4482 6 14482 6 [4482 6 |79014 8123 5 [8123 5 4 14025 60234 7275| 5 [7275] 5 |7275] 5 {60498 3885 5 3885 5
4 69314 71819 1673 8 |1673) 8 1673 8 171830 7192) 8 \7192) 8 5 (14025 84455 4627) 6 (4627 6 |4627 6 (84433 5675 6 |s675| 6
5 (69314 71805 6227| 11 |6228; 11 (6227 11 |71805 6360 11 |(6360| 1t 6 114025 85085 2042 8 2043 8 (2043 8 (85085 0505 8 10505 8
6 69514 71805 5091} 13 15992 13 15092) 13 71805 5063) 13 15962 13 7 |14025 85002 0556 11 [os56| 11 |os56| 11 |ssoe2 gss2| 11 9s51| 11
7 |69314 71805 5987| 12 |[5988| 12 (5991 13 (71805 5992 13 [5988] 12 8 14025 85002 9938] 13 10038] 13 (0939 13 (85002 9930 13 {0938| 13
8 169314 71805 5984| 12 (5984 12 5990 13 (71805 5992 13 |5984| 12 o 14025 85002 9937| 13 |0937| 13 |9940| 14 (85092 9940/ 14 {0937| 13
9 (69314 71805 5071| 12 5972 12 5989 12 171805 5990 13 |5972| 12 10 |14025 85002 9934) 12 |9934| 12 |0939| 13 85092 9940| 14 [0934] 12
10 (69314 71805 5951| 12 |[5951| 12 (5988 12 (71805 5989 12 (5951 12 11 |14025 85092 9928| 12 [0929] 12 {o939| 13 (85002 0940 14 [9929] 12
11 169314 71805 5006| 11 18906/ 11 5091 13 |71805 5000 13 15906 11 12 |14025 85002 9916] 12 [9916] 12 |0940| 14 (85002 0039 13 [9916] 12
12 69314 71805 5822) 11 (5822 11 |5987| 12 |71805 5089 12 (5822 11
40| 4 (86697 29736 s070| 7 |s070| 7 |[8070] 7 (30046 3711 7 (3711 7 = [P o= dr =
5 |86607 20872 2539] 9 |[2530| 9 |2530| o |20872 1216) 9 [1216] 9 IV. In sae EVALI;';TION or I f 0™ do
6 |86697 20873 4006| 12 [4006| 12 (4007 12 20873 4005| 12 [4003| 12 0.886: 69254 51396
7 (86607 29873 3083] 12 |3984] 12 |3087| 13 |29873 3088, 13 |(3084| 12 5 |88622 50970 9402| 5 [9043| 5 (0042 5 |50296 9073) 5 (9073 5
8 |86697 29873 3077| 12 (3978 12 |3986] 13 |290873 3087| 13 |3979| 12 6 {88622 69310 8538 7 [8539| 7 |8541| 7 |60308 5739 7 |5736| 7
9 (86697 29873 3963| 12 |[3964] 12 [3985| 12 (20873 3986| 13 [3964| 12 7 |88622 69254 4529] 10 |4529| 10 4535/ 10 [69254 4570, 10 l4564| 10
10 (86607 20873 3030| 11 3940/ 11 |[3985| 12 (20873 3985 12 (3040 11 8 |(8s622 69254 5117| 12 |5117, 12 |5134| 12 (60254 5135 13 [5117[ 12
11 {86697 20873 3890} 11 (3890 11 |3984| 12 (20873 3986 13 (3890 11 9 |88622 60254 5003 12 5004 12 (5131 12 69254 5134 12 |5005| 12
12 |86697 20873 3787] 11 |3788{ 11 |3983| 12 |29873 3985 12 {3788 11 10 {88622 69254 5053] 11 |5054| 11 |5135 13 |60254 5134| 12 |5054] 11

1.1
II. In THE EvALUATION OF I{a) = f,,,l =% dz
1(3) = 0.49995 86776 85950 X 10+ I(4) = 0.33333 30828 95066 X 10v;
I(5) = 0.24999 99982 9247 X 108
3.0] 8 |50280 43604 1249) 2 [1249| 2 (1255 2 (49952 9475 2 |9469| 2
9 |50007 88217 4010 3 4010 3 [4037| 3 |88324 8156 3 (8128 3
10 49996 05996 3754| 5 [3755| 5 [3813] 5 |05097 5088 5 5020 5
11 |49995 86888 2917 7 [2917] 7 |3041] 7 (86888 3087 7 |2062) 7
12 |40995 86777 0553 10 [0553) 10 [0814| 10 |86777 0815| 10 (0553 10
13 149995 86776 8060] 10 |8070] 10 |8s588] 12 (86776 8590| 12 |8070| 10
14 |49095 86776 7547) 10 |7549| 10 (8585 12 (86776 8587| 12 |7549| 10
15 49995 86776 6495 10 [6496| 10 8581 12 |86776 8583 12 [6496| 10

4.0 8 (33018 76383 3713] 1 |3713] 1 [3717| 1 |83321 8573| 1 (8568 1
9 |33362 40891 0012| 3 (0011f 3 |0028| 3 (41103 2353| 3 (2337 3
10 [33333 86458 8643| 4 18642| 4 [8682| 4 [86461 5904| 4 (5865 4
11 |33333 31207 4466 7 [4466 7 |4547) 7 |31207 4679| 7 (4598 7
12 33333 30829 8056/ 9 !8055/ 9 (8220 O (30829 8220, 9 (8056 9
13 33333 30828 9178] 11 (9178 11 [9508) 13 (30828 9508 13 |9178 11
14 |33333 30828 8842| 10 (8843 10 [9500[ 12 |30828 9501; 12 {8843 10
15 |33333 30828 8163| 10 |8163| 10 |9497| 12 [30828 94991 12 |8163[ 10

5.00 8 [25979 73076 7608 1 7608 1 |7611| 1 |82577 2026 1 (2023} 1
9 {25058 17539 3846] 2 |3846| 2 [3857| 2 |17890 9312} 2 (9300 2
10 (25001 31264 6257| 4 [6257| 4 (6282 4 |31270 0511 4 (0486 4
11 |25000 01021 0524| 6 |0524) 6 [0576] 6 |01021 0887| 6 |0835| 6
12 24999 99985 6515 9 (6515 9 (6621 O (99985 6622 9 (6516 9
13 24999 99982 9053| 11 |[9053! 11 (9267, 12 |99982 9268 12 |9054| 11
14 (24999 99982 8817 11 |8818f 11 [9242) 13 |99982 9243 13 |8818| 11
156 (24999 99982 8379 10 |8380| 10 |9241) 12 ([99982 9242] 13 [8380; 10

from the routine. We suggest an initial definition of a variable,
e.g. SH = (B—A) and the replacement of (B—A) by SH in these
statements where (B—A) appears. Initialization should also
include a test to insure that the maximum extrapolation order
MAXE permitted is less than or equal to 15 with a possible re-
placement MAXE = 15 if this condition is violated. Alternatively,
one could replace the statement DO 11 K = 1, MAXE with
DO 11 K = 1,15 and test for K < MAXE prior to executing
statement no. 11. The GO TO 3 statement following statement
no. 1 should read GO TO 4. If ¥ < 32, N is also < 512.

Upon exit, the input parameter MAXE is assigned either the
value MAXE = K, where K is the approximation order, or
MAXE = 0 if the accuracy criterion has not been satisfied. We
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11 |88622 69254 4974| 11 [4975| 11 |5130| 12 169254 5133; 12 (4976| 11
12 |88622 69254 4801 11 [4802] 11 (5129 12 (69254 5131| 12 (4803 11
13 (88622 69254 4463| 10 [4463| 10 |5128] 12 (69254 5129 12 (4464 10
14 |88622 69254 3801| 10 |[3802| 10 I5125] 12 ;69254 5i27| 12 |3803| 10

believe that it is poor programming practice to have a subroutine
alter the value of an input parameter. We suggest the addition of
an output parameter, e.g. MFIN = K which returns the order
on exit. Where we now set MAXE = 0, we could set MFIN = 16.
One can test as easily for MFIN < 15 as for MAXE = 0. This
would eliminate the necessity for resetting MAXE each time the
subroutine is entered. It is also useful to return the final value
of the accuracy ERR. In the event that MAXE = 0, one could
test ERE to determine whether or not the returned integral
value falls within aceceptable limits.

In practical applications we prefer to express the procedure
as a function subprogram and to add the name of the generating
function F to the argument list. We also consider a test for rela-
tive error rather than absolute error to be more useful in routine
use of the algorithm.

The author wishes to thank the Mobil Research and Develop-
ment Corporation for permission to publish this information.
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REMARK ON ALGORITHM 361 [G6]

PERMANENT FUNCTION OF A SQUARE MATRIX
I AND II [Bruce Shriver, P. J. Eberlein, and R. D.
Dixon, Comm. ACM 12 (Nov. 1969), 634]

Bruce Smriver, P. J. EBerLEm, anp R. D. Dmxxon
(Reed. 22 Jan. 1970)

State University of New York at Buffalo, Amherst, NY
14226

KEY WORDS AND PHRASES: matrix, permanent, determi-
nant

CR CATEGORIES: 5.30

The authors would like to cite the following misprints in the
above two algorithms:
(A) In procedure perl(4, n) .
(1) in line 43, the variable name pira should be pera
(2) in line 44, the variable name per should be perl.
(B) In procedure per2(4, n) .
(1) in line 47, the variable name per should be per2.

REMARK ON ALGORITHM 382 [G6]

COMBINATIONS OF M OUT OF N OBJECTS
[Phillip J. Chase, Comm. ACM 18 (June 1970), 368]

Paitirp J. Cmase (Recd. 18 Mar. 1969 and 31 Oct.
1969)

Department of Defense, Fort Meade, MD 20755

KEY WORDS AND PHRASES: permutations and combina-
tions, permutations
CR CATEGORIES: 5.39

The following driver program illustrates the use of Algorithm
382,
begin integer m, n, 1, 2, v, 2, ¢, r; Boolean done;

integer array a, b, ¢[1:30], p[0:31];

procedure TWIDDLE (z, y, 2, done, p);

comment Body of TWIDDLE is to be inserted here;

comment TWIDDLE is here used to generate: (1) all combi-
nations c¢{l:m] of a[l:n]. Here we take a[¢] equal to ¢, each 4.
(2) all sequences b[1:n] consisting of m 1’s and (n—m) 0’s.
The user must supply m and nsuch that 0 < m < nand1 < n.
(Our declarations here require n < 30.);

ininteger (2, m); <ininteger (2, n);

for ¢ := n step —1 until 1 do a[{] := 7;

comment We initialize the parameters p and done of
TWIDDLE as follows;
i=n — m;

for 7 := r step —1 until 1 do p[{] := 0;

for ¢ := m step —1 until 1 do p[r+17] := ¢;

pl0] :=n 4+ 1; pln+1] := —2; done := false;

if m = 0 then p[l] := 1;

comment We initialize ¢[l:m];

for { ;= m step —1 until 1 do ¢[z] := a[r-+7];

comment Next we initialize b[1:n];

for i := m step —1 until 1 do b[r+i} := 1;

for i := r step —1 until 1 do b[7] := 0;

comment Now we generate and output our successive com-
binations and sequences;

qg:=0;
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L:
gi=q+1
outinteger (1, q);
for 1 := m — 1 step —1 until 0 do outinieger (1, c[m—1l]);
for ¢ := n — 1 step —1 until 0 do outinteger (1, b[n—1]);
TWIDDLE (z, vy, 2, done, p);
if — done then
begin

clz] := alz];

end

end of driver program

blz] :=1; bly] :=0; gotoL

REMARK ON ALGORITHM 383 [G6]

PERMUTATIONS OF A SET WITH
REPETITIONS [Phillip J. Chase, Comm. ACM 13
(June 1970), 368]

Puiruie J. CraskE (Reed. 4 Aug. 1969 and 13 Feb. 1970)

Department of Defense, Fort Meade, MD 20755

KEY WORDS AND PHRASES: permutations and combina-
tions, permutations
CR CATEGORIES: 5.39

The following driver program illustrates the use of Algorithm
383.
begin integer z, ¥, k, 4, J, @, I, L; Boolean done;

integer array p[0:31], 4, C, N[1:30];

procedure EXTENDED TWIDDLE (z, y, k, u, done, p);

comment Body of EXTENDED TWIDDLE is to be inserted
here;

comment Program uses EXTENDED TWIDDLE in generat-~
ing all permutations of C[/] numbers equal to N[I] (I=1 to J).
They are successively stored in 4 and output. The user must
supply: 1. J (indexing above requires J<30); 2. C[I] (I=1 to
J), each > 1 (indexing above requires C[1]----.+4-C[J]<30);
3. N[I1 (I=1 to J), distinet numbers (declarations above
requires integer type);

ininteger (2, J);

for I := 1 step 1 until J do

begin ininieger (2, C[I1); ininteger (2, N{I]) end;

comment The array A is initialized;

L:=1;

for I := 1 step 1 until J do

for Q := C{I] step —1 until 1 do

begin A[L] := N{I}; L :=L + 1end;

comment EXTENDED TWIDDLE is initialized;

L:=1;

for I := 1 step 1 until J do

for @ := C[I] step —1 until 1 do

begin p[{L] :=J — I 4 1; L:=L + 1end;

pl0] := plL] :=J + 15

done := false;

k:=J; u:=1L;

comment Permutations are successively generated and

output;
Q:=0; L:=u—1;
L1:
Q:=Q+1;

outinteger (1, Q);
for I := y — 2 step —1 intil 0 do outinteger (1, A[L—1I]);
EXTENDED TWIDDLE (z, vy, k, u, done, p);
I:= Alz]; Als] := Alyl; Alyl :=I;
if — done then go to L1
end of driver program
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