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The second algorithm of Remez can be used to compute the 
minimax approximation to a function, f(x), by a linear combination 
of functions, { Q~(x) } ~, which form a Chebyshev system. The only 
restriction on the function to be approximated is that it be continuous 
on a finite interval [a,b]. An Algol 60 procedure is given, which will 
accomplish the approximation. This implementation of the second 
algorithm of Remez is quite general in that the continuity off(x) is 
all that is required whereas previous implementations have required 
differentiability, that the end points of the interval be "critical 
points," and that the number of "critical points" be exactly n q- 2. 
Discussion of the method used and of its numerical properties is given 
as well as some computational examples of the use of the algorithm. 
The use of orthogonal polynomials (which change at each iteration) as 
the Chebyshev system is also discussed. 

Description 
1. Introduction, Given a Chebyshev system, ~o(X), ~o~(x) . . . .  , 

~.(x), we define the Chebyshev or minimax approximation to a 
continuous functionf(x) over an interval [a, b] to be the function 

Pn(x)  = Co~oo(x) + "'" + C,,~On(X), (1.1) 

such that ~ is minimized, where 

= max  If(x) - P~(x ) I .  (1.2) 
a_~x~b 

If ~ (x )  = x ~, we have the minimax polynomial approximation of 
degree n to f ( x ) .  If ¢i(x) = Ti (X), where T,:(x) denotes the Cheby- 
shev polynomial of the first kind of order i, we have the minimax 
approximation as a sum of Chebyshev polynomials. For the defini- 
tion of a Chebyshev system, see Achieser [3, p. 73]. 
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The algorithm presented here computes the coefficients c , ,  
i = 0, 1, . . .  , n, in (1.1) for any given Chebyshev system ¢i(x), 
i = 0, 1, . . .  , n. The algorithm is based on the second algorithm 
of Remez [11, and also makes use of the exchange method de- 
scribed by Stiefel [21. 

The characterization of the error curve, given by 

~(x) = ~ ci,p~(x) - f ( x ) ,  (1.3) 
i=0 

is the basis for the second algorithm of Remez. It is shown, for 
example, by Rice [ l l ,  p. 56] that  p,~*(x) = ~i"=o ci~oi(x) is the 
Chebyshev approximation to f ( x )  on [a, b] if and only if there exists 
a se t  o f  po in t s  a ~ x0 < xL < x2 < • • • < xn+l ~ b s u c h  t h a t  

(a) ~(x~+,) = - , ( x O ,  
(b) I ~(xl) I = e*, and 
(c) max  l , (x )  l = e*. 

a_<z_< b 

Thus, when the computed error curve attains this "equal ripple' 
character with at least n q-- 1 sign changes in [a,b] we know we 
have the desired minimax approximation. 

The second algorithm of Remez, based on the characterization, 
can be outlined in three steps. 

(i) Choose an initial set of points, the reference set, a < xo < 
xl < " '"  < x , . l  ~ b. 
(ii) Compute the discrete Chebyshev approximation to f ( x )  on 
the reference set. 
(iii) Adjust the points of the reference set to be the extrema of the 
error curve (1.3). 

Steps (ii) and (iii) are repeated until convergence is obtained. 
Proof of the existence of the minimax polynomial (given by 

(1.1) and (1.2) with {¢~};', a Chebyshev system) is given by Achie- 
ser [3, p. 74]. 

Proof that the second algorithm of Remez converges for any 
starting values for the critical points is given by Novodvorskii and 
Pinsker [4]. If f (x) is differentiable, Veidinger [12] proves that the 
convergence is quadratic. That  is 

~* - ~(~) = O(~* - ~k-~))~, as k --~ ~ ,  

where ~* is the maximum error for the Chebyshev approximation 
and e(~) is the maximum error at the kth iteration. A survey article 
concerned with minimax approximations is given by Fraser [8]. 

2. Applicability. The algorithm presented herein has wide ap- 
plicability in that it can be used to approximate any continuous 
function given on an arbitrary closed interval. In addition, the 
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approximating function is not restricted to polynomials or Cheby- 
shev polynomials, but is allowed to be any linear Chebyshev systert~ 
to be supplied by the user. Three simplifying assumptions often 
made in an implementation of the second algorithm of Remez are: 

(a) Differentiability of f(x),  the function to be approximated. 
(see [6], for example) 
(b) The end points of the interval are critical points (see [8, p. 
299]). 
(c) The existence of exactly n + 2 points of extreme value on the 
error curve (see [8, p. 299]). 

None of these three assumptions is made for this algorithm. 
3a. Formal parameter list: input to the procedure 
n integer degree of the Chebyshev system of functions to be 

used in the fit {,no(x), ca(x), . . .  , cn(x)}. 
a lower end point of the interval of approximation, of type 

real. 
b upper end point of the interval of approximation, of type 

real. 
kstart integer controlling the number of points 

(kstartX(n-k2)) used in the initial approximation. See (i) in Sec- 
tion 5. 

kmax integer allowing control of the number of times k is 
increased above kstart. 

loops integer allowing control over the number of iterations 
taken by Remez's second algorithm if convergence is not yet 
attained. 

f a real procedure to compute the function f(x) to be ap- 
proximated; procedure heading required: 

real procedure f(x); 
value x; 
real x; 

the argument is the untransformed variable x. f(x) must be con- 
tinuous in the interval [a, b]. 

chebyshev a procedure to evaluate the Chebyshev system of 
functions being used at some point, x, in the interval In, b]; pro- 
cedure heading required: 

procedure chebyshev(n, x, t); 
value n, x; 
integer n; 
real x; 
real array t; 

n is the degree of the system, x is the point in [a, b], and t is an 
array that will contain the values t[il = cdx) ,  i = 0, 1, . . . ,  n. 

eps a real procedure to compute the error curve given by 
(5.1) ; procedure heading required: 

real procedure eps(x, c, n) ; 
value x ,  n; 
real x; 
integer n; 
real array c; 

x is a point in [a, b], n is the degree of the system, and c is an array 
containing the coeffÉcients of the approximation, c[i] = c~ in (5.1). 

exchange a procedure, [10] for example, to locate the n d- 2 
subset of m d- 1 given points which determine the minimax poly- 
nomial on those m -I- 1 points; procedure heading required: 

procedure exchange (a,d,c,m,n,refset,emax,singular,r) ; 
value m,n; integer m,n; real emax; 
real array a,d,c,r; 
integer array refset; 
label singular; 

a is a real m -q- 1 by n -¥ 1 array, d is a m -t- 1 component vector, 
c is a n -k 2 component vector, m -b 1 is the integer number of 
points (x0, . . .  , x~), n is the degree of the system, refset is a n -b 2 
component integer vector, emax is a real number and singular is a 
label, r is a vector containing the m + 1 values of the residual 
at the m + 1 points under consideration. On entry the components 

of a and d are 

a[i,j] = cj(xi) and 

d[i] = f(xi),  i = 0(1)m, j = 0(1)n. 

Upon exit from exchange, the array c contains the coefficients of 
the minimax function found, refset contains the subscripts identify- 
ing the points used to compute the minimax function, i.e. the refer- 
ence set, and emax contains the value of the maximum deviation 
of the minimax function from f(x) on the points x i ,  i = 0(l)m. 

3b. Formal parameter.list: output from the procedure 
c the array of coefficients c~ of eq. (5.1). 
emax the maximum modulus of the error curve (5.1) for the 

final approximation function, of type real. 
trouble a label to which control is transferred if remez does 

not converge properly. 
why an integer whose value on exit will be set to one of the 

following: 

why = - 1 if number of added points is greater than n. (See step 
(ii) in Section 5.) 

why = 1 if trouble occurs in procedure quadraticmax. 
why = 2 if trouble occurs in procedure exchange. 
why = 3 if no convergence after iterating loops times. 
why = 4 converged according to the maximum and minimum 

residual comparison. 
why = 5 converged according to why = 4 and the critical point 

test. 
why = 6 converged according to why = 4 and the coefficient test. 
why = 7 converged according to why = 4 and both the critical 

point and the coefficient tests. 
why = 8 converged according to critical point test only. 
why = 9 converged according to coefficient test only. 
why = 10 converged according to critical point and coefficient 

tests. 

4. Organization and notational details. The algorithm calls 
for three procedures, in addition to the function f (x)  to be approxi- 
mated, as indicated by the formal parameter list. 

exchange Based on Stiefel's Exchange algorithm, which finds 
the n q- 2 subset of m q- 1 given points which determine the mini- 
max polynomial. Use [10], for example. 

eps To be supplied by user: eps computes the error curve 

n 

E(x) = ~ ci¢i(x) - f[x] (4.1) 
iff i0  

where the c¢, i = 0 . . . .  , n, are parameters and the ,¢~(x), i = 0, 
1 . . . .  , n, are the Chebyshev system of functions being used to 
fit the function f(x).  For best results ~(x) should be computed in 
double precision and then rounded to single precision accuracy. 
If  f (x) cannot be calculated easily or efficiently in double precision 
at least the sum, ~ - 0  c~¢~(x), should be accumulated in double 
precision and rounded to single. 

chebyshev To be supplied by user: chebyshev evaluates the 
Chebyshev system ¢¢ (x), i = 0, I, . . . ,  n for a given argument x. 
chebyshev is called by eps. 

The functions ~(x) and ,p~(x) (computed by eps and chebyshev) 
can often be computed by simple recursive procedures. For ex- 
ample, if the Chebyshev system used is the set of Chebyshev poly- 
nomials, there is a well-known recurrence relation (¢~+l(x)= 
2x~o~(x)-~_l) that  can be used to efficiently evaluate the required 
functions. 

An outline of the organization of the algorithm is given in the 
following steps: 
(i) Let m = k X (n+2) ,  take m + 1 points in the interval 
[a,b] and use exchange to determine the "bes t"  polynomial (i.e. 
the 

c~ ~ max I ~ c~oi(xj) - f (xi)  I = minimum) 
O_~j_~n i=0 

on those points. Exchange will pick n + 2 of the original points as 
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critical points. The m + 1 points are chosen equally spaced or as 
the zeros of T~_~(x) - T,_~(x) with k ~ 1. 
(ii) Use the n + 2 points chosen by exchange in step (i) and 
other local extrema (subject to the conditions discussed under 
Example 2, Section 6) as input to the procedure quadratiemax 
(~>0). 
(iii) Procedure quadraticmax adjusts the n -b ~ + 2 critical points 
to be the abscissas of the extrema of the error curve given by (4. l). 
Section 5b gives a discussion of how the adjustments are com- 
puted. After adjustment the new points are tested for alternation 
of sign, and if the property has been lost, we increase k and go 
back to step (i). 
(iv) The adjusted critical points are then input to exchange which 
finds the new coefficients e i ,  i = 0, 1, . . .  , n for the "bes t"  poly- 
nomial on the adjusted n + p + 2 points. 
(v) Now convergence tests can be applied to the coefficients c~, 
found in step (iv), to the critical points x~, i = 0, 1, . . .  , n and 
to the extreme values of (4.1). If not converged, go back to step 
(iii) since the previous critical points will not be the exact extreme 
points after the approximating polynomial is changed in step (iv). 

5a. Discussion o f  numerical properties and methods: accuracy 
and convergence. The accuracy of the approximations generated 
by this procedure is limited by the precision of the arithmetic used 
and the accuracy of the subsidiary procedures f ,  exchange, eps, 
and chebvshev. The use of double precision in eps, for example, 
can improve the results of remez since it will then have a "  smoother" 
error curve to work on. This use of double precision in eps is 
strongly recommended by the authors. The maximum absolute 
error of the approximation is output from remez and depends, of 
course, on n, the degree of approximation. 

The procedure is deemed to have converged when the coeffi- 
cients of the approximating function or the critical points have 
satisfied certain relative criteria between successive iterations. 
We use the notation c~ ~ to represent the ith coefficient at the nth 
iteration and similarly, x~ ~) represents the ith critical point at the 
nth iteration. 

When 

max [ c~ ~ - c~ ~-') I _< epscl c~ )  l (5.1) 
i 

o r  

max I x~ ~) -- x~ ~-1) I _< epsx[ x ~ )  l (5.2) 
i 

we consider the procedure to have converged. If [ c~ ") [ or [ x~")l 
is very small the relative test is not appropriate. In that case we 
test- " I' e~ (") - c~"-~) '1 ano" I' xi(") - x~"-~ [ against allowed absolute 
errors, absepsc and absepsx. Typical values for the constants (for 
an 11-decimal place machine) could be 

epsc = 10 -s 

epsx = 10 --4 (5.3) 

absepsc = 10 --s 

absepsx = 10-4 

A third convergence criterion is the comparison of the maxi- 
mum and minimum magnitudes of the error curve at the critical 
points. Let 

maxr = max I,(x~ ~)  I 
i 

and 

minr = mi~r l ,(x~"~) l 
i 

where {x~ ~) } are the critical points chosen at the nth iteration, and 
then make the following test. If maxr  ~ rcompare M minr then 
claim convergence. A typical value for the constant rcompare 
could be 1.0000005. 

When the maximum absolute error approaches 10-ff(f,,), 

where s is the number of places available in the machine, and f~ 
is maxa<x<b I f ( x )  [, we are approaching the limit of obtainable 
accuracy. We are working with 

e(x) = P , (x )  - f ( x )  (5.4) 

so when e(x) is nearly equal to 10-*f(x), we are losing about s places 
in the subtraction in (5.4). This is where judicious use of double 
precision can be made to increase accuracy if necessary. P,(x)  
can be computed in double precision and a single precision differ- 
ence formed, or for even further accuracyf(x),  if possible, could be 
computed in double precision and the double precision difference 
taken. 

A comparison of the discrete approximation on a finite num- 
ber of points in an interval, and the continuous approximation 
which this algorithm finds, is studied by Rivlin and Cheney in 
[9]. Rice [11, pp. 66-701 discusses the question of convergence (and 
rate of convergence) of the discrete approximation to the continu- 
ous approximation. This relates to the question of how large to 
choose k in step (i), Section 4. We have found that for well-behaved 
functions like e x on [ -1 ,1]  a value for k of about 3 gives good 
starting values. On the other hand a function like 1 / ( x - X )  on 
[-1,11 with X > 1 and X near 1 requires k to be about 15 to obtain 
good starting values. The choice of k should be large enough so 
that  the initial approximation chosen by the procedure exchange 
is close enough to the final approximation to insure that the "alter- 
nation of sign" property is never lost during the iterations. There is 
no known method of choosing such a k a priori. This is why the 
algorithm tests for "alternation of signs" at each iteration and in- 
creases k if the property is lost. 

5b. Discussion o f  numerical properties and methods: Locating 
the extrema o f  ~(x). Most of the programming effort is involved 
in locating the extrema of the error function ~(x). The programming 
is similar to that done by C.L. Lawson in a Fortran program to 
compute the best minimax approximation [7]. ~(x) is given by 

E(x) = ~ ci~oi(x) - f ( x ) .  

The procedure exchange then is used to compute the coefficients 
of the minimax function. That  is, given n + ~ + 2 points, p ~ 0, 
exchange computes the coefficients of the function ~i%0 c~¢~(x) 
such that on the discrete set of points ~(xj), j = 0, 1, - • • , n + u + 1 
has at least n + 2 extreme values (at the given points) equal in 
magnitude and of alternating signs. The satisfaction of this condi- 
tion when the points are indeed the extrema of the continuous ~(x) 
guarantees that ~ = c  c~¢~(x) is the unique minimax approximat- 
ing function that we seek. 

5b.1 Discussion o f  numerical properties and methods: Parabolic 
approximation to locate extremum. Given the initial guesses x i ,  
i =  0, 1 , . . . ,  n + v  + 1 (at each iteration) for the abcissas 
of the extrema of the error curve, we must locate these critical 
points more precisely. We consider two cases. First the interior 
points, and secondly the least and greatest of the initial guesses 
which may be equal to the respective end points of the interval on 
which the function is to be approximated. 

For interior points we do the following. Take 

U ~ X i  

v = xi  + ~ ( x ~ + ~ - x O  (5.5) 

w = x ,  + ~ ( x i - ~ - x O  

where a is a parameter 0 < a < 1 (e.g. a =0.1). We then deter- 
mine the parabola through the three points ~(u), ~(v), and ~(w). 
The abscissa, x*, corresponding to the vertex of this parabola is 
then taken as the next guess for the ith "critical point." The point 
x* is given by 

1 [(u ~ - v~ ) , (w)  + (v~ - w~)~(u) + (w~ - u~)dv)] 
x* = - (5.6) 

2 [(u - v)dw) + (v - w)~(u) + (w - u)~(v)] 

For computational purposes x* is not computed directly by (5.6) 
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since for u, v, and w very close, the denominator  will be quite small. 
Therefore, the denominator  of  (5.6) is computed 

d = [ ( u -  v), (w) + ( v -  w)~(u) + (w - u)~(v)], (5.7) 

and then by dividing out (5.6), we express x* as 

I ~ ( u W v )  i f d = 0  

x* = (5.8) 

[~  (u + v) + 21(v -- u)(u -- w)d ['(v) -- ~(w)] if d E 0 .  

Once x* is computed,  it is then tested to insure acceptability since 
for u, v, and w very close, machine roundoff  may introduce spurious 
results. Also,  the value of  a or the nature of  the function f (x)  and 
therefore of  ~(x) may introduce an unacceptable value for x* in 
which case u, v, or w, whichever has highest ordinate value, is used 
for x*. If  x* is acceptable it can replace u, v, or w, whichever has the 
lowest (in abolute value) ordinate value on the error curve ~(x), 
and a second x* is computed.  This iteration will converge to the 
abcissa of  the extremum near x~ if roundoff  is ignored and u, v, 
and w are sufficiently close to that  point. (Compare convergence 
to Muller's method for solving algebraic equations [5].) However,  
this iteration need not be carried out excessively (2-4 iterations 
should be sufficient) since during each iteration of  the overall 
process we recompute the approximating function and thereby ob- 
tain a new error curve whose extrema will not necessarily have the 
same abscissas. 

For  the end points (5.5) cannot  apply since x~+1 and xi_l do 
not exist at the right and left ends respectively. Therefore we take, 
at the left end for example, 

lU = x i  

V = X i  - ~  o t ( X i + l - - X i )  
(5.9) 

(xi  +/3(x¢+l-x¢) if xl = a 
W 

/ 

\x~ + ol(a-xl) if a < x~ , 

with the requirement that  ~ # /3. The right end is handled simi- 
larly. Again the parabola through the three points e(u), e(v), and 
e(w) is used to determine x*. The tests for acceptability and itera- 
tions are performed as they were for the interior points. 

5b.2 Discussion of numerical properties and methods: Crude 
search to locate extremum. In case approximation by parabola does 
not yield an acceptable value for the abscissa of  an extremum, the 
following rather crude method works effectively. We simply divide 
the interval under consideration into l equal intervals (e.g. l =  10) 
and examine the ordinate of  the error curve at the end points o f  the 
intervals. The points to the left and right o f  the point with maxi- 
mum ordinate (in absolute value) then define a new interval upon 
which the process is repeated. This subdivision continues until the 
subintervals become smaller than some specified value (e.g. 10-5). 
The method causes the function to be evaluated more often than 
the parabolic approximation, but works successfully at a point 
where the error curve has a sharp cusp-like extremum. 

The choice of  l = 10 in this crude search procedure is arbitrary. 
In fact, for an initial interval of  length I, a smaller value, say l = 4, 
would reduce the subinterval size to 10 -5.1 with a minimum of  21 
function evaluations, whereas using l = 10 would require at least 
51 function evaluations. However,  small values of  l increase the 
chances of  missing the true extremum. 

To decide whether to use this crude search or not  we employ a 
relative test. Let the parabolic choice be x* and the three points 
used to compute x* be u, v, and w. Then one would expect (hope) 
that  I ~(x*) [ >_ I ~(u) 1, I ~(v) l, and I ~(w) I, in which case x* has 
the desired properties. However, if ¢,, = max . . . . . .  w I ¢(x) I, and 
1 4 x * )  I < ~ .... then we must doubt  the acceptability of  x* and 
perhaps use the crude method to determine x*. We found a suc- 
cessful way to make this decision was to use the crude method if 
]l ~(x*)l - ~ [ > C - ~ ,  where C is an arbitrary constant  (e.g. 
10-~). 

Fig .  1 

~.(I 0 .5  0 + 1.0 
1P .x 

Table  I. Coeff icients  ci o f " b e s t "  po lynomia l  
P4(x) = ~ = 0  ciT,(x) (to 6D) 

i S tar t  I t e r a t i on  1 I t e r a t i on  2 I t e r a t ion  3 

0 1.266 063 1.266 066 1.266 066 1.266 066 
1 1.130 321 1.130 318 1.130 318 1.130 318 
2 0.271 495 0.271 495 0.271 495 0.271 495 
3 0.044 337 0.044 336 0.044 336 0.044 336 
4 0.005 523 0.005 519 0.005 519 0.005 519 

Table  II. Cr i t ica l  points ,  x~, of  bes t  po lynomia l  (to 6D) 

j S tar t  I t e r a t i on  1 I t e r a t i on  2 I t e r a t i on  3 

0 - - 1 . 0 0 0 0 0 0  - -1 .000 000 - 1.000 000 - 1 .000000  
1 - 0 . 7 7 1  429 - 0 . 7 9 7  573 - 0 . 7 9 7  682 - 0 . 7 9 7  682 
2 - 0 . 2 5 7  143 - 0 . 2 7 8  189 - 0 . 2 7 9  152 --0.279 152 
3 0.314 286 0.339 8 0 " ~  0.339 061 0.339 061 
4 0.828 571 0.820 978 0.820 536 0.820 536 

5 1. 000 000 1.000 000 1.000 000 1.000 000 

Table  III. C o m p a r i s o n  o f  s t a r t ing  values xj  for  f ( x )  = eL n = 4 
(to 3D) 

j T s ( x ) -  T3(x) 
= 0 o r  IT~(x)I 

~ J 

= 1  

0 - -  1 . 0 0 0  
1 --0.809 
2 --0.309 
3 0. 309 
4 0. 809 
5 1.000 
Dmax 0. 030 

exchange on exchange on T R U E  
6 ( N + 2 )  201 po in t s  (computed) 
po in t s  equal ly  
equal ly  spaced  
spaced  

- -  1 . 0 0 0  - 1 . 0 0 0  - -  1 . 0 0 0  

--0.771 - -0 .800 - 0 . 7 9 8  
- 0 . 2 5 7  - 0 . 2 8 0  - 0 . 2 7 9  

0.314 0.340 0.339 
0.829 0.820 0.821 
1 . 0 0 0  1 . 0 0 0  1 . 0 0 0  

0.027 0. 002 - -  

Table  IV. Cr i t ica l  po in t s  chosen  at each i te ra t ion .  

I t e r a t i on  The  n + 2  po in t s  used (see F igure  3) 

1st 1 2 3 4 7 8 9 10 11 12 
2nd 1 2 3 6 7 8 9 l0  11 12 
3rd 1 2 3 6 7 8 9 10 11 12 
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6. Examples. The procedure was tested on the Burroughs B5500 
at the Stanford Computation Center using Burroughs Extended 
Algol. 

We have chosen two examples to illustrate the use of the al- 
gorithm. The first is the function 

ft(x) = e" on [-1,11 (6.1) 

and the second is 

f2(x) = l + x, 

- -  X ,  

Fig. 2 

I)(x),  A' 8 

- - 1 . 0 ~  x < --0.5 :: 

- 0 . 5  _< x <~ 0.0 (6.2) 

0 . 0 <  x <  1.0. 

The first example, Jq(x), is an infinitely differentiable function so 
that the error curve (4.1) is also differentiable, whereas f~(x) (see 
Figure 1) is continuous, but its derivative, f2'(x), has discontinuities 
at x = - 0 . 5  and at x = 0.0, which cause the error curve to have a 
discontinuous derivative. We examine f~(x) as it provides an in- 
teresting example of approximating a function which is only con- 
tinuous. In both cases we used Chebyshev polynomials as the 
Chebyshev system of functions. ~ 

Example 1. ~(x)=e~].  Tables I and II show how the critical 
points and the coefficients of the approximating polynomial con- 
verge as we approximatefl(x) = e • by a 4th-degree sum of Cheby- 
shev polynomials. Figures differing from the final result are under- 

lined at each step. J.00o 0.600 
Table I shows that the coefficients of the "best" polynomial 

have converged to 6D after only one iteration; however, the critical 
points don't converge until the second iteration as shown by Table 
II. In other words, the polynomial does not change coefficients 
very much with a small change in the critical points. The starting 
points shown in Table II are chosen by exchange from 6 × (n+2) = 
36 (for n=4)  equally spaced points in the interval [-1,1].  

Various methods for choosing the starting values for the Fig. 3 
critical points have been proposed. These include the zeros of 
T,~+i(x) - T,- t(x) ,  which are also the extrema of T,+l(x), and 
what we propose here is to let exchange choose n + 2 points from 
some original set of k(n+2) points where k ~ 1. The original ~ ' . . . .  
k(n+2) points may be equally spaced, or they may be the zeros of 
Tk~,+2)+l(x) -- Tkc,+~)-l(x). 

Table III compares various starting values for this example, 
f~(x) = e~(n=4). D ..... represents the maximum deviation from 
the "TRUE"  values. 

Example 2. [f~(x)]. Approximation of f , (x )  by an 8th degree 
sum of Chebyshev polynomials (n = 8) poses the problem of hav- 
ing an error curve with more than N + 2 local extrema. This 
problem also arises when approximating an even or odd function 
(see [6]). We resolve the problem by including all the local extrema 
of the error function, ~(x), which have the alternation of sign 
property, in the search for n + 2 critical points. That is, if the 
abcissas of the extrema are ordered algebraically, the signs of the 
corresponding ordinates must alternate. We obtain starting guesses 
for local extrema by having exchange pick n + 2 starting points 
from some original set of points, together with the corresponding 
first approximating polynomial, and then examining the resultant 
residuals. If the table of residuals indicates an extremum not al- 
ready chosen by exchange, which has the correct alternating sign, 
then the corresponding abcissa is included as a critical point for 
later iterations, k must be chosen greater than 1 in order for this 
method to work. 

Figure 2 shows the error curve, ~(x), for the first and third ~000 0.6o0 
iterations of approximating f2(x) by an 8th-degree linear combina- 
tion of Chebyshev polynomials. 

Table IV indicates how the choice of critical points can change 
from one iteration to the next. If we had not included the addi- 
tional extrema at points 5 and 6 at the first iteration, we would have 
arrived at the approximation whose error curve is illustrated by 
Figure 3. That is n + 2 extrema of the error curve have equal 
magnitude and alternating signs, but another extremum exists 
with larger modulus. 

8 
Approximating f d x  by Z c.T,,(x 

n.o 
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X 

Error curve ~ith points 5 and 6 not used. 
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Table  V. Compar i son  of  s tar t ing values x~ for f ( x )  = f2(x), 
n = 8 (to 4D) 

j Tg(x) -- TT(x) exchange on exchange on T R U E  
= 0 33 points  201 points  (computed) 

equally equally 
spaced spaced 

0 --1.0000 --1.0000 --1.00 --1.0000 
1 -0 .9397  --0.8750 - 0 . 8 6  -0 .8565  
2 - 0.7660 -- 0.6250 -- 0.62 - 0.6248 
3 --0.5000 --0.1250 --0.14 --0.1424 
4 --0.1736 0 .0  0 .0  0 .0  
5 0.1736 0.1250 0.15 0.1456 
6 0.5000 0.4375 0.44 0.4413 
7 0.7660 0.7500 0.73 0.7290 
8 0.9397 0.9375 0.93 0.9289 
9 1.0000 1.0000 1.000 1.0000 

Dmax 0.3750 0.0210 0.0048 

As an interesting comparison to Table III we give a similar ta- 
ble for f (x )  = f~(x). D~ox represents the maximum deviation from 
the " T R U E "  values in Table V. 

7. Use o f  orthogonal polynomials. Consider the polynomials 
po(x),p~(x), • • • , p~(x) orthogonal on the set of points x~ < X l  < 
• "" < X,~. Such polynomials are described by Forsythe [13], 
and they form a Chebyshev system. This is easily seen since any 
licear combination, 

n 

P(x) = ~ cipi(x), (7.1) 

is a polynomial of degree n which has exactly n zeros. Hence on 
any interval, P(x) has no more than n zeros. This satisfies the defini- 
tion of a Chebyshev system. 

It is known, see Forsythe [13], that  orthogonal polynomials 
have advantages over standard polynomials in least squares data- 
fitting. In the Remez algorithm, if a new set of polynomials, or- 
thogonal on the critical points, is computed each time the critical 
points are adjusted, convergence is assured. This can be proved by 
nothing that at each iteration the best orthogonal polynomial 
fit is equivalent to the best fit that would be obtained if the Cheby- 
shev system were held constant as standard polynomials. Perhaps 
this use of orthogonal polynomials will have computational ad- 
vantages over, say, standard polynomials on the interval [0,1]. 

The use of orthogonal polynomials for the Chebyshev system 
has been implemented and tried successfully on a Burroughs B5500 
but as yet we have no illustrations of any dramatic advantages over 
any other Chebyshev system. 
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Algorithm 
procedure remez (n, a, b, kstart, kmax, loops, f ,  chebyshev, eps, 

exchange, c, emax, trouble, why); 
value n, a, b, kstart, kmax, loops; 
real array c; real a, b, emax; label trouble; 
integer n, kstart, kmax, loops, why; 
real procedure f, eps; procedure chebyshev, exchange; 

comment Procedure remez finds the best fit (in the minimax sense) to 
a function fus ing  a linear combination of functions which form a 
Chebyshev system. The exchange algorithm of E.L. Stiefel is used 
to obtain starting values for the critical points and the Remez 
algorithm is then used to find the best fit; 

begin 
procedure quadraticmax(n, x, niter, alia, beta, ok, a, b, c, nadded, 

eps); 
value n, niter, alfa, beta, nadded; array x, c; 
integer n, niter, nadded; real alfa, beta, a, b; 
Boolean ok; real procedure eps; 

comment Procedure quadraticmax is called to adjust the values of 
the critical points in each iteration of the Remez algorithm. The 
points are adjusted by fitting a parabola to the error curve in a 
neighborhood, or if that  proves unsatisfactory a brute force de- 
termination of the extrema is used; 

begin 
integer i, countl, count2, nhalf, signepsxstar, signu, signv, signw, 

fmax, ncrude, f,  nn; 
real u, v, w, dehorn, epsu, epsv, epsw, xstar, epsxstar, xxx,  misse, 

missx, dx, emax, etmp; 
integer array signepsx [0 : n --I- 1]; array epsx [0 : n + 1}; 
nn := n - nadded; 
comment On arbitrary parameters... 

ncrude The number of divisions used in the brute force 
search for extrema. 

nhalf The parameter (alpha) which determines the size of 
interval to be examined for an extremum is reduced by 
half if a bad value for xstar is computed, however this 
reduction may occur only nhalf times. 

misse If the value of the error curve at a new critical point 
differs from the previous value by a relative difference of 
more than misse then the brute force method is brought in. 

missx The brute force method keeps searching until it is 
within missx of an extremum; 

comment Set values of the constants; 
ncrude := 10; nhalf := 4; misse :=  1.0~0 --2; missx := 

1.01o --5; 
comment Compare missx with absepsx. They should be equal; 
for i := 0 step 1 until n -+ 1 do 
begin 

epsx[i] :=  eps(x[i], c, nn); 
signepsx[i] : = sign(epsx[i]) ; 

end; 
for i := step 1 until n q-- 1 do 
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be#n 
comment  I f  the  start ing values for the  critical points  do not  

al ternate the  sign of  eps (x ) ,  then  we go to the  label trouble; 

i f  signepsx[i] X s i g n e p s x [ i -  1] # - 1 then go to trouble; 
end; 
comment  First  find all the  interior extrema.  T h e n  we will find 

the  end extrema,  which may  occur at the  ends  o f  the  interval;  
for i : =  1 step 1 until n do 
begin 

c o u m l  := 0; count2 := 0; 

u : =  x[i];  
v :=  u + alfa X (x [ i+ l ]  - u); w :-- u + alfa × 

(x[i--1] -- u); 
epsu  := epsx[i]; s ignu := signepsx[i]; 

epsv : =  eps(v,  c, nn); s ignv  := s ign(epsv);  
epsw  : =  eps(w,  c, nn); s ignw := s ign(epsw);  
if  -~ s ignu = s ignv V -1 s ignv = s ignw then go to L3; 
comment  I f  the  sign o f  eps(x )  at  the  three points  is no t  the  

same,  we go to L3 where alfa is reduced to make  the  points  
closer together;  

epsu := abs(epsu);  epsv  : =  abs(epsv);  epsw := abs(epsw);  

denom :=  2.0 X ((epsv - epsu) X (w - u) + (epsw - 

epsu) X (u - v)); 
i f  denom = 0.0 then xs tar  : =  0.5 × (v + w) else xs tar  := 

0.5 X (v + w) + (v - u) X (u - w) × (epsv - e p s w ) /  

denom; 
coun t l  := coun t l  + 1; 
comment  Test  xs tar  to be sure  it is what  we want.  Is it be- 

tween x [ i - 1 ]  and  x [ i + l ] ?  Is eps(xs tar )  > eps(u,  v, w)? If  
xs tar  is too bad, go to L3 and  reduce alfa unless alfa has 
been reduced n h a l f t i m e s .  Otherwise if ok, go to savexs tar;  

i f x s t a r  = u V xs tar  = v V xs tar  = w then 
begin 

epsxs tar  := eps(xs tar ,  c, nn); s ignepsxs tar  := s ign 
(epsxstar)  ; 

epsxs tar  := abs(epsxs tar ) ;  go to savexs tar  
end; 
if xs tar  < x[ i - -1]  V xs ta r  > x [ i + l ]  then go to L3; 
epsxs tar  := eps(xs tar ,  c, nn); 
s ignepsxs tar  : = s ign(epsxs tar)  ; 

epsxs tar  :=  abs(epsxs tar);  

if  s ignepsxs tar  # s ignu V epsxs tar  < epsu V epsxs tar  < 
epsv  V epsxs tar  < epsw then 

begin 
if epsu ~ epsv A epsu  > epsw then 
begin 

if  abs (epsxs tar  - epsu) > misse X epsu  then go to 
L B L 2 ;  

xs tar  : = u; epsxs tar  : = epsu; s ignepsxs tar  : = signu" 

go to savexstar;  
end; 
if  epsv  > epsu  A epsv  ~ epsw then 
begin 

if  abs(epsxs tar  - epsv) > misse  X epsv then go to 
L B L 2 ;  

xs tar  : = v; epsxs tar  : = epsv; s ignepsxs tar  : = signv: 
go to savexstar" 

end; 
if  abs(epsxs tar  - epsw) > misse X epsw then go to 

L B L 2 ;  

xs tar  : =  w; epsxs tar  : =  epsw; s ignepsxs tar  :=  signw; 
go to savexstar;  

j m a x  := 0; 

d x  := ( v - w ) / n c r u d e ;  e m a x  := 0.0; x x x  : =  w - dx ;  
for j : = 0 step 1 until ncrude do 
begin 

x x x  := x x x  + dx;  j m a x  := j m a x  + 1; 

L4: 

e t m p  : = e p s ( x x x ,  c, nn); 
i f  abs (e tmp)  > e m a x  then 
begin 

e m a x  :=  epsxs tar  := abs (e tmp) ;  

s ignepsxs tar  : = s ign(e tmp)  ; 
u : = x s ta r  : = x x x ;  
v := u + dx ;  w =  u - dx ;  

end 
end; 
if d x  > m i s s x  then go to L B L 1 ;  
comment  M a k e  sure v and  w are within bounds ;  
if v > x [ i + l ]  then go to L3; 
i f  w _< x [ i -  1] then go to L3; 
go to savexs tar  

end; 
if  count l  > ni ter  then go to savexstar;  

i f  epsu  < epsw then 
begin 

if epsv  < epsu  then 

begin 
comment  v is m i n i m u m ;  
if  xs ta r  > u then 
begin 

v :=  xstar;  epsv :=  epsxstar;  go to L2; 
end; 
i f  xs tar  > w then 
begin 

epsv  : =  epsu; v := u; 
epsu  : =  epsxstar;  u := xstar;  

go to L2; 
end 
else 
begin 

v :=  u; epsv  := epsu; 
u :=  w; epsu :=  epsw; 

w : =  xstar;  epsw  :=  epsxstar;  

go to L2; 
end; 

end 
else 
begin 

comment  u is m in imum;  
if  xs tar  >_ v then 
begin 

u := v; epsu  := epsv~ 
v :=  xstar;  epsv  := epsxstar;  

go to L2; 
end; 
if  xs ta r  > w then 
begin 

u : =  xstar;  epsu  := epsxstar;  

go to L2; 
end 
else 
begin 

u :=  w; epsu :=  epsw; 
w :=  xstar;  epsw :=  epsxstar;  

go to L2; 
end; 

end; 
end 
d s e  
begin 

if  epsv  < epsw then 
begin 

comment  v is m i n i m u m ;  go to L4; 
end 
else 
begin 

comment  w is m i n i m u m ;  if  xs tar  > v then 
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L3: 

L8: 

L5: 

begin 
w :=  u; epsw :=  epsu; 
u :=  v; epsu :=  epsv; 
v :=  xstar; epsv :=  epsxstar; 
go to L2; 

end; 
if xstar > u then 
begin 

w := u; epsw :=  epsu; 
u :=  xstar; epsu :=  epsxstar; 

go to L2; 
end 
else 
begin 

w := xstar; epsw :=  epsxstar; 
go to L2; 

end; 
end; 

end; 

count2 :=  count2 + 1; 
if count2 > nhalf then go to trouble; 
alfa := 0.5 X alfa; 
comment The factor 0.5 used in reducing alpha is arbitrarily 

chosen; 
go to L1; 
comment Replace x[i] by xstar after checking alternation of 

signs; 
savexstar: 

if i > 1 A signepsxstar X signepsx[i-1] # - 1  then go to 
trouble; 

signepsx[i] :=  signepsxstar; 
x[i] :=  xstar; 

end; 
eomment This is the end of the loop on i which finds all interior 

extrema. Now we proceed to locate the extrema at or near 
the two endpoints (left end, then right end); 

comment We assume beta > alfa; 
f o r i  :=  0, n + l d o  
begin 

countl :=  0; count2 :=  0; 

u :=  x[i]; i f /  = O t h e n  
begin 

f f a  < u t h e n w  :=  u +t- alfa X (a - u) e l sew :=  u + 
beta X (x[l] -- u); 
v :=  u + alfa X (x[l] - u); 

end 
else 
begin 

i f b  > u t h e n w  :=  u + alfa X (b - u) elsew :=  u + 
beta × (x[n] - u); 
v :=  u + alfa X (x[n] -- u); 

end; 
epsu := epsx[i]; signu :=  signepsx[i]; 
epsv :=  eps(v, c, nn); signv :=  sign(epsv); 
epsw :=  eps(w, c, nn); signw := sign(epsw); 
if signv ~ signu V signv # signw then go to L7; 
epsu :=  abs(epsu); epsv :=  abs(epsv); epsw := abs(epsw); 

denom :=  2.0 X (epsu X ( v - w )  + epsv X ( w - u )  + epsw X 
(u-  v)); 

if denom = 0.0 then xstar :=  0.5 X (w+v)  else xstar :=  
0.5 X (v+w)  + (v--u) X ( u - w )  X (epsv -- epsw)/ 
denom; 

if i = 0 A (xstar < a V xstar > x[1]) then 
begin 

xstar :=  a; epsxstar :=  eps(a, c, nn); 
signepsxstar : = sign(epsxstar) ; epsxstar : = abs (epsxstar) ; 

end 

L7: 

else 
i f i  = n + 1 A (xstar > b A xstar < x[n]) then 
begin 

xstar :=  b; epsxstar :=  ep~(b, c, nn); 
signepsxstar : = sign(epsxstar) ; epsxstar : = abs (epsxstar) ; 

end 
else 
begin 

epsxstar :=  eps(xstar, c, nn); 
signepsxstar :=  sign(epsxstar); 
epsxstar :=  abs(epsxstar); 

end; 
countl :=  countl + 1; 
i f i  = 0 A xstar > x[1] then go to L7; 
if i = n + 1 A xstar < x[n] then go to L7; 
if xstar = u V xstar = v V xstar = w then go to L6; 
if signepsxstar # signu V epsxstar < epsu V epsxstar < 

epsv V epsxstar < epsw then 
begin 

if epsu > epsv A epsu > epsw then 
begin 

xstar :=  u; epsxstar :=  epsu; 
signepsxstar :=  signu; go to L6; 

end; 
if epsv > epsu A epsv > epsw then 
begin 

xstar := v; epsxstar :=  epsv; 
signepsxstar :=  signv; go to L6; 

end; 
xstar :=  w; epsxstar :=  epsw; 
signepsxstar :=  signw; go to L6; 

end; 
if countl > niter then go to L6; 
if epsu < epsw then 
begin 

if epsv < epsu then 
begin 

comment v is minimum; 
v :=  xstar; epsv :=  epsxstar; 
go to L5; 

end 
else 
begin 

comment u is minimum; 
u :=  xstar; epsu :=  epsxstar; 
go to L5; 

end; 
end 
else 
begin 

if epsv < epsw then 
begin 

comment v is minimum; 
v :=  xstar; epsv :=  epsxstar; 
go to L5; 

end 
else 
begin 

comment w is minimum; w :=  xstar; epsw :=  epsxstar; 
go to L5; 

end 
end; 

count2 :=  count2 + 1; 
if count2 > nhalf then go to trouble; 
alfa :=  0.5 X alfa; beta :=  0.5 X beta; 
go to L8; 
comment Replace x[i] by xstar after checking its sign; 
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L6: 
if  i = 0 A signepsxstar X signepsx[1] ~ - 1 then go to 

trouble; 
if i ~ 0 /~ signepsxstar X signepsx[n] ~ - 1 then go to 

trouble; 
signepsx[i] : =  signepsxstar; x[i] := xstar; 

end; 
go to done; 

trouble: 
ok := false; go toL9;  

clone: 
ok :=  true; 

L9: 
end quadraticmax; 
comment  Procedure  start computes  the arrays which are then in- 

put  to exchange to find the best approximat ion  on the points  at 
hand;  

procedure start (m, n, a, d, xi, chebyshev, f ) ;  
value m, n; integer m, n; 
array a, d, xi; 
procedure ehebyshev; real procedure f ;  

begin 
integer i,j; real array t[0:nJ; 
for i := 0 step 1 until m do 
begin 

chebyshev (n, xi[i], t); 
forj  :=  0 step 1 until n do a[i,j] :=  t[j]; 
d[i] :=  f(xi[i]); 

end 
end start; 
comment Now the procedure remez; 
real epsc, alfa, beta, epsx, absepse, absepsx, rcompare, dx, maxr,  

minr, tempr, minsep; 
integer m, i, itemp, j ,  niter, nloop, k, nadded, isub, maxri, ilast, 

signnow, j j ;  
integer signnew; integer array refset[O : n --k 1 -q- n]; 
comment  A s s u m e  number  of  points  added  < n; 
integer a r ray  ptsadd[O : n]; 
array elast[O : n W 1], xq, xqlast[O : n @ 1 q- n]; 
Boolean firsttime, ok, convx, convc, addit; 
why :=  0; k :=  kstart; 
comment C o m e  here if k gets changed:  

ne wk: 
m : =  n +  1 + ( k -  1) X ( n + 2 ) ;  
begin 

array r, xi, d[0 : m], aa[O: m, 0 : n + I]; 
t~rsttime : =  true; convx : =  false; convc :~- false; 
nloop :=  0; 
comment  This  makes  the initial points  spaced according to the  

extrema of  the  Chebyshev  polynomial  of  degree m - ! ; 
for i :=  0 step 1 until m do 
xili] :=  (a+b) /2 .0  - ( b - a )  X cos((3.14159265359 X i ) / m ) /  

2.0; 
comment  3.14159... is zr; 
dx := ( b - a ) / m ;  
comment To  use equally spaced points  a s ta tement  such as the  

following could be used. for i : =  0 step 1 until m do xilil : =  
a + i X d x ;  

start(m, n, aa, d, xi, chebyshev, f ) ,  
comment  The  following cons tan ts  are used in testing for conver- 

gence 
epsc used in relative test on coefficients 
absepsc used in absolute  test on coefficients 
epsx used in relative test on  critical points  
absepsx used in absolute  test on  critical points  
rcompare used to compare  relative magni tudes  of  max and  
min values of  residual on the  critical points; 

epsc :=  1.0~o - 7; absepsc := 1.010 -- 7; epsx := 1.0~0 -- ¢- 
absepsx : =  1.010 --  5; 

rcompare : ---- 1.0000005; 
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comment epsx and  absepsx should  be the  same  as missx in pro-  
cedure  quadra t icmax,  epsc and  absepsc should be adjus ted 
according to knowledge o f  the  expected magni tudes  of  the  
coefficients (if known) .  It is best to depend on  the  critical 
points  a n d / o f  the max and  min of  the  residuals for conver- 
gence criteria; 

comment  Now call on exchange to find the  first approximat ion  
to the  best approximat ing  function;  

exchange (aa, d, c, m, n, refset, emax, singular, r); 
comment  The  subscripts of  the points  chosen are in array ref- 

set[O:nq-1], the coefficients of  the  best approximat ing  func- 
t ion on the m points  are in c[0:n], the residuals in r; 

comment The reference set, the coefficients at this step, a n d / o r  
the residuals may  be written at this point; 

for i :=  0 step 1 until n do clast[iJ :=  c[i]; 
comment  Now we are going to look for any  extrema not  given 

by the points  chosen by exchange; 
comment  Make  sure critical points  are algebraically ordered; 
for i : = 0 step 1 until n do for j : = i -q-- 1 step 1 until n 4- 1 do 
begin 

if refset[j] < refset[i] then 
begin 

i temp :=  rel~et~j]; refset~] :=  refset[i]; 
refset[i] : =  itemp; 

end 
end; 
nadded :-~ 0; maxr :=  0; maxri  : =  0; ilast :=  0; 
signnow :=  sign(r[O]); 
for i :=  0 step 1 until m q- 1 do 
begin 

if i = m -f- 1 then go to LBL; 
if sign(rill) ~ 0 A sign(r[i]) = signnow then 
begin 

if  abs(r[i]) > maxr  then 
begin maxri  := i; maxr  := abs(r[i]); end 

end 
else 

LBL: 
begin 

if i < m -k 1 then signnow : = sign(r[i]) ; 
addit := true; 
forj  := 0 step 1 until n -Jr 1 do 
begin 

for j j  := ilast step 1 until i - 1 do 
begin 

i f  j j  = refset[J'] then addit := false; 
end 

end; 
if  adxlit then 
begin 

nadded : = nadded --1- 1 ; if  nadded > n then 
begin 

comment  We as sume  nadded is always < n. If  naclded 
is > n, why is set to - 1  and  we go to the  label 
trouble. This  can be modified by changing this test 
and  changing  the declarations for ptsadd, refset, xq, 
and  xqlast above; 

why :=  - -1 ;  
go to trouble 

end; 
ptsadd[nadded] :=  maxri; 
reJ~et [n W 1 -b nadded] := maxri; 

end; 
if  i <  m--b l t h e n  
begin 

ilast :=  i; maxr  :=  abs(r[i]); maxri  :=  i; 
end 

end 
end; 
comment  We  now have n -b 2 --k nadded points  to send to 

quadraticmax for ad jus tment ;  
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m := n + nadded; 
comment Make sure critical points are algebraically ordered; 
f o r i : =  0 s t e p  1 until m do for j :=  i 4 -  1 step 1 un t i lm + 1 

do 
begin 

if  refset[j] < refset[i] then 
begin 

itemp :=  refset[j]; refset[j] :=  refset[i]; 
refset[i] :=  itemp; 

end 
end; 
for i :=  0 step 1 until m + 1 do xq[i] :=  xi[refset [i]]; 
niter :=  2; 
comment This is the number  of  times to iterate in quadraticmax; 
alfa := 0.15; beta :=  0.2; 
comment alfa and beta are used to determine the points used 

in quadraticmax to fit a parabola. They are arbitrary subject 
to: 0 < alfa < beta < 1. Also beta should be fairly small 
to keep the points on one side of  zero; 

conunent This is the beginning of  the loop that  calls on 
quadraticmax, exchange, etc.; 

loop: 
nloop := nloop + 1; 
quadraticmax(m, xq, niter, alfa, beta, ok, a, b, c, nadded, eps) ; 
if -a ok then 
begin 

k : =  k + 1; i f k  > k m a x t h e n  
begin why := 1; go to trouble; end; 
go to newk; 

end; 
if  -~ f irst t ime then 
begin 

comment Compare  the largest and smallest of  the residuals 
at the critical points (after adjustment);  

comment Set minr to a large number;  
maxr  := 0.0; minr := 1.01050; 
for i :=  0 step 1 until n + 1 do 
begin 

addit := true; 
f o r j  :=  1 step 1 until nadded do if refset[i] = ptsadd[j] 

then addit := false; 
if addit then 
begin 

t empt  := abs(eps (xq [refset [i]], c, n)); 
i f  tempr > maxr  then maxr  := tempr else if tempr < 

minr then minr : = tempr; 
end 

end; 
if  maxr  < rcompare X minr then why :=  4; 

end; 
comment Compare  xq to xqlast; 
if -a f irst t ime then 
begin 

convx :=  true; 
for i := 0 step 1 until m -t- 1 do 
begin 

if  abs(xq [i] - xqlast[i]) > absepsx then 
begin 

if  abs (xq [i] - xqlast[i]) > epsx  X abs(xq [i]) A 
xq[il ~ 0.0 then convx := false; 

if xq[i] = 0.0 A abs(xq [i1 - xqlast[i]) > absepsx 
then convx :=  false; 

end; 
xqlast[i] := xq[i]; 

end 
end 
else 

begin 
f irst t ime :=  false; 
for i :=  0 step 1 until m + 1 do xqlast[i] := xq[i]; 
for i :=  0 step 1 until n do clast[i] := c[i]; 

end; 
comment Get  ready to call exchange again; 
start(m 4- 1, n, aa, d, xq, chebyshev, f ) ;  
exchange(aa, d, c, m + 1, n, refset, emax, singular, r); 
comment Now compare  the new coefficients to the last set o f  

coefficients; 
if  ~ f irst t ime then 
begin 

convc := true; 
for i :=  0 step 1 until n do 
begin 

i f  abs(c[i] -- clast[i]) > epsc X abs(c[i]) A c[i] ~ 0.0 
then convc := false; 

if c[i] = 0.0 A abs(c[i] - clast[i]) > absepsc then 
convc := false; clast[i] :=  c[i]; 

end 
end; 
comment Set the parameter why to the proper value according 

to the following: 
why = 4 if maxr  < rcompare X minr. 
why  = 5 if "4"  and convx = true. 
why = 6 if "4"  and conve = true. 
why = 7 if "4"  and convx = convc = true. 
why = 8 if convx = true. 
why = 9 if convc = true. 
why = 10 if convx = convc = true. Any value of  why > 

4 indicates cnnvergence; 
if why = 4 A convx then why := 5; 
if why = 4 A convc then why :=  6; 
if why = 5 A convc then why := 7; 
if why = 0 A convx then why :=  8; 
i f  why = 0 A convcthen  why := 9; 
if why = 8 A convc then why := 10; 
if why >_ 4 then go to converged; 
if  nloop > loops then 
begin why :=  3; go to trouble end; 
comment We go to label trouble in calling program if no con- 

vergence after a number  of  iterations equal to loops; 
go to loop; 

singular: 
why := 2; go to trouble; 
comment We come to singular if exchange gets into trouble;  

converged: 
end; 
comment End  of  block using m in array declarations; 
comment There are four exits to the label t r o u b l e . . .  

(why = 1) if k gets > k m a x  
(why = 2) if exchange gets into trouble 
(why= 3) if no convergence after iterating loops number  of  

times 
(why = - 1) if number  of  added points is greater than  n; 

end remez 
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