
L.D. F o s d i c k

A l g o r i t h m s E d i t o r

Submittal of an algorithm for consideration for publication in
Communications of the ACM implies that unrestricted use of the
algorithm within a computer is permissible.

Algorithm 414

Chebyshev Approximation of
Continuous Functions by a
Chebyshev System of
Functions [E2]
G . H . G o l u b a n d L.B. S m i t h * (R e c d . Oct . 11, 1967,

J a n . 27, 1969, a n d A p r . 11, 1970) D e p t . o f C o m p u t e r

Sc ience , S t a n f o r d U n i v e r s i t y , S t a n f o r d C A 94305

Key Words and Phrases: approximation, Chebyshev
approximation, Remez algorithm

CR Categories: 5.13

The second algorithm of Remez can be used to compute the
minimax approximation to a function, f(x), by a linear combination
of functions, { Q~(x) } ~, which form a Chebyshev system. The only
restriction on the function to be approximated is that it be continuous
on a finite interval [a,b]. An Algol 60 procedure is given, which will
accomplish the approximation. This implementation of the second
algorithm of Remez is quite general in that the continuity off(x) is
all that is required whereas previous implementations have required
differentiability, that the end points of the interval be "critical
points," and that the number of "critical points" be exactly n q- 2.
Discussion of the method used and of its numerical properties is given
as well as some computational examples of the use of the algorithm.
The use of orthogonal polynomials (which change at each iteration) as
the Chebyshev system is also discussed.

Description
1. Introduction, Given a Chebyshev system, ~o(X), ~o~(x) ,

~.(x), we define the Chebyshev or minimax approximation to a
continuous functionf(x) over an interval [a, b] to be the function

Pn(x) = Co~oo(x) + "'" + C,,~On(X), (1.1)

such that ~ is minimized, where

= max If(x) - P~(x) I . (1.2)
a_~x~b

If ~ (x) = x ~, we have the minimax polynomial approximation of
degree n to f (x) . If ¢i(x) = Ti (X), where T,:(x) denotes the Cheby-
shev polynomial of the first kind of order i, we have the minimax
approximation as a sum of Chebyshev polynomials. For the defini-
tion of a Chebyshev system, see Achieser [3, p. 73].

Copyright © 1971, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, an

algorithm is granted, provided that reference is made to this
publication, to its date of issue, and to the fact that reprinting
privileges were granted by permission of the Association for Com-
puting Machinery.

* Now at Computing Center, University of Colorado, Boulder,
CO 80302

737

The algorithm presented here computes the coefficients c , ,
i = 0, 1, . . . , n, in (1.1) for any given Chebyshev system ¢i(x),
i = 0, 1, . . . , n. The algorithm is based on the second algorithm
of Remez [11, and also makes use of the exchange method de-
scribed by Stiefel [21.

The characterization of the error curve, given by

~(x) = ~ ci,p~(x) - f (x) , (1.3)
i=0

is the basis for the second algorithm of Remez. It is shown, for
example, by Rice [l l , p. 56] that p,~*(x) = ~i"=o ci~oi(x) is the
Chebyshev approximation to f (x) on [a, b] if and only if there exists
a se t o f po in t s a ~ x0 < xL < x2 < • • • < xn+l ~ b s u c h t h a t

(a) ~(x~+,) = - , (x O ,
(b) I ~(xl) I = e*, and
(c) max l , (x) l = e*.

a_<z_< b

Thus, when the computed error curve attains this "equal ripple'
character with at least n q-- 1 sign changes in [a,b] we know we
have the desired minimax approximation.

The second algorithm of Remez, based on the characterization,
can be outlined in three steps.

(i) Choose an initial set of points, the reference set, a < xo <
xl < " '" < x , . l ~ b.
(ii) Compute the discrete Chebyshev approximation to f (x) on
the reference set.
(iii) Adjust the points of the reference set to be the extrema of the
error curve (1.3).

Steps (ii) and (iii) are repeated until convergence is obtained.
Proof of the existence of the minimax polynomial (given by

(1.1) and (1.2) with {¢~};', a Chebyshev system) is given by Achie-
ser [3, p. 74].

Proof that the second algorithm of Remez converges for any
starting values for the critical points is given by Novodvorskii and
Pinsker [4]. If f (x) is differentiable, Veidinger [12] proves that the
convergence is quadratic. That is

~* - ~(~) = O(~* - ~k-~))~, as k --~ ~ ,

where ~* is the maximum error for the Chebyshev approximation
and e(~) is the maximum error at the kth iteration. A survey article
concerned with minimax approximations is given by Fraser [8].

2. Applicability. The algorithm presented herein has wide ap-
plicability in that it can be used to approximate any continuous
function given on an arbitrary closed interval. In addition, the

Communications November 1971
of Volume 14
the ACM Number 11

approximating function is not restricted to polynomials or Cheby-
shev polynomials, but is allowed to be any linear Chebyshev systert~
to be supplied by the user. Three simplifying assumptions often
made in an implementation of the second algorithm of Remez are:

(a) Differentiability of f(x), the function to be approximated.
(see [6], for example)
(b) The end points of the interval are critical points (see [8, p.
299]).
(c) The existence of exactly n + 2 points of extreme value on the
error curve (see [8, p. 299]).

None of these three assumptions is made for this algorithm.
3a. Formal parameter list: input to the procedure
n integer degree of the Chebyshev system of functions to be

used in the fit {,no(x), ca(x), . . . , cn(x)}.
a lower end point of the interval of approximation, of type

real.
b upper end point of the interval of approximation, of type

real.
kstart integer controlling the number of points

(kstartX(n-k2)) used in the initial approximation. See (i) in Sec-
tion 5.

kmax integer allowing control of the number of times k is
increased above kstart.

loops integer allowing control over the number of iterations
taken by Remez's second algorithm if convergence is not yet
attained.

f a real procedure to compute the function f(x) to be ap-
proximated; procedure heading required:

real procedure f(x);
value x;
real x;

the argument is the untransformed variable x. f(x) must be con-
tinuous in the interval [a, b].

chebyshev a procedure to evaluate the Chebyshev system of
functions being used at some point, x, in the interval In, b]; pro-
cedure heading required:

procedure chebyshev(n, x, t);
value n, x;
integer n;
real x;
real array t;

n is the degree of the system, x is the point in [a, b], and t is an
array that will contain the values t[il = cdx) , i = 0, 1, . . . , n.

eps a real procedure to compute the error curve given by
(5.1) ; procedure heading required:

real procedure eps(x, c, n) ;
value x , n;
real x;
integer n;
real array c;

x is a point in [a, b], n is the degree of the system, and c is an array
containing the coeffÉcients of the approximation, c[i] = c~ in (5.1).

exchange a procedure, [10] for example, to locate the n d- 2
subset of m d- 1 given points which determine the minimax poly-
nomial on those m -I- 1 points; procedure heading required:

procedure exchange (a,d,c,m,n,refset,emax,singular,r) ;
value m,n; integer m,n; real emax;
real array a,d,c,r;
integer array refset;
label singular;

a is a real m -q- 1 by n -¥ 1 array, d is a m -t- 1 component vector,
c is a n -k 2 component vector, m -b 1 is the integer number of
points (x0, . . . , x~), n is the degree of the system, refset is a n -b 2
component integer vector, emax is a real number and singular is a
label, r is a vector containing the m + 1 values of the residual
at the m + 1 points under consideration. On entry the components

of a and d are

a[i,j] = cj(xi) and

d[i] = f(xi), i = 0(1)m, j = 0(1)n.

Upon exit from exchange, the array c contains the coefficients of
the minimax function found, refset contains the subscripts identify-
ing the points used to compute the minimax function, i.e. the refer-
ence set, and emax contains the value of the maximum deviation
of the minimax function from f(x) on the points x i , i = 0(l)m.

3b. Formal parameter.list: output from the procedure
c the array of coefficients c~ of eq. (5.1).
emax the maximum modulus of the error curve (5.1) for the

final approximation function, of type real.
trouble a label to which control is transferred if remez does

not converge properly.
why an integer whose value on exit will be set to one of the

following:

why = - 1 if number of added points is greater than n. (See step
(ii) in Section 5.)

why = 1 if trouble occurs in procedure quadraticmax.
why = 2 if trouble occurs in procedure exchange.
why = 3 if no convergence after iterating loops times.
why = 4 converged according to the maximum and minimum

residual comparison.
why = 5 converged according to why = 4 and the critical point

test.
why = 6 converged according to why = 4 and the coefficient test.
why = 7 converged according to why = 4 and both the critical

point and the coefficient tests.
why = 8 converged according to critical point test only.
why = 9 converged according to coefficient test only.
why = 10 converged according to critical point and coefficient

tests.

4. Organization and notational details. The algorithm calls
for three procedures, in addition to the function f (x) to be approxi-
mated, as indicated by the formal parameter list.

exchange Based on Stiefel's Exchange algorithm, which finds
the n q- 2 subset of m q- 1 given points which determine the mini-
max polynomial. Use [10], for example.

eps To be supplied by user: eps computes the error curve

n

E(x) = ~ ci¢i(x) - f[x] (4.1)
iff i0

where the c¢, i = 0 , n, are parameters and the ,¢~(x), i = 0,
1 , n, are the Chebyshev system of functions being used to
fit the function f(x). For best results ~(x) should be computed in
double precision and then rounded to single precision accuracy.
If f (x) cannot be calculated easily or efficiently in double precision
at least the sum, ~ - 0 c~¢~(x), should be accumulated in double
precision and rounded to single.

chebyshev To be supplied by user: chebyshev evaluates the
Chebyshev system ¢¢ (x), i = 0, I, . . . , n for a given argument x.
chebyshev is called by eps.

The functions ~(x) and ,p~(x) (computed by eps and chebyshev)
can often be computed by simple recursive procedures. For ex-
ample, if the Chebyshev system used is the set of Chebyshev poly-
nomials, there is a well-known recurrence relation (¢~+l(x)=
2x~o~(x)-~_l) that can be used to efficiently evaluate the required
functions.

An outline of the organization of the algorithm is given in the
following steps:
(i) Let m = k X (n+2) , take m + 1 points in the interval
[a,b] and use exchange to determine the "bes t" polynomial (i.e.
the

c~ ~ max I ~ c~oi(xj) - f (xi) I = minimum)
O_~j_~n i=0

on those points. Exchange will pick n + 2 of the original points as

738 Communications November 1971
of Volume 14
the ACM Number 11

critical points. The m + 1 points are chosen equally spaced or as
the zeros of T~_~(x) - T,_~(x) with k ~ 1.
(ii) Use the n + 2 points chosen by exchange in step (i) and
other local extrema (subject to the conditions discussed under
Example 2, Section 6) as input to the procedure quadratiemax
(~>0).
(iii) Procedure quadraticmax adjusts the n -b ~ + 2 critical points
to be the abscissas of the extrema of the error curve given by (4. l).
Section 5b gives a discussion of how the adjustments are com-
puted. After adjustment the new points are tested for alternation
of sign, and if the property has been lost, we increase k and go
back to step (i).
(iv) The adjusted critical points are then input to exchange which
finds the new coefficients e i , i = 0, 1, . . . , n for the "bes t" poly-
nomial on the adjusted n + p + 2 points.
(v) Now convergence tests can be applied to the coefficients c~,
found in step (iv), to the critical points x~, i = 0, 1, . . . , n and
to the extreme values of (4.1). If not converged, go back to step
(iii) since the previous critical points will not be the exact extreme
points after the approximating polynomial is changed in step (iv).

5a. Discussion o f numerical properties and methods: accuracy
and convergence. The accuracy of the approximations generated
by this procedure is limited by the precision of the arithmetic used
and the accuracy of the subsidiary procedures f , exchange, eps,
and chebvshev. The use of double precision in eps, for example,
can improve the results of remez since it will then have a " smoother"
error curve to work on. This use of double precision in eps is
strongly recommended by the authors. The maximum absolute
error of the approximation is output from remez and depends, of
course, on n, the degree of approximation.

The procedure is deemed to have converged when the coeffi-
cients of the approximating function or the critical points have
satisfied certain relative criteria between successive iterations.
We use the notation c~ ~ to represent the ith coefficient at the nth
iteration and similarly, x~ ~) represents the ith critical point at the
nth iteration.

When

max [c~ ~ - c~ ~-') I _< epscl c~) l (5.1)
i

o r

max I x~ ~) -- x~ ~-1) I _< epsx[x ~) l (5.2)
i

we consider the procedure to have converged. If [c~ ") [or [x~")l
is very small the relative test is not appropriate. In that case we
test- " I' e~ (") - c~"-~) '1 ano" I' xi(") - x~"-~ [against allowed absolute
errors, absepsc and absepsx. Typical values for the constants (for
an 11-decimal place machine) could be

epsc = 10 -s

epsx = 10 --4 (5.3)

absepsc = 10 --s

absepsx = 10-4

A third convergence criterion is the comparison of the maxi-
mum and minimum magnitudes of the error curve at the critical
points. Let

maxr = max I,(x~ ~) I
i

and

minr = mi~r l ,(x~"~) l
i

where {x~ ~) } are the critical points chosen at the nth iteration, and
then make the following test. If maxr ~ rcompare M minr then
claim convergence. A typical value for the constant rcompare
could be 1.0000005.

When the maximum absolute error approaches 10-ff(f,,),

where s is the number of places available in the machine, and f~
is maxa<x<b I f (x) [, we are approaching the limit of obtainable
accuracy. We are working with

e(x) = P , (x) - f (x) (5.4)

so when e(x) is nearly equal to 10-*f(x), we are losing about s places
in the subtraction in (5.4). This is where judicious use of double
precision can be made to increase accuracy if necessary. P,(x)
can be computed in double precision and a single precision differ-
ence formed, or for even further accuracyf(x), if possible, could be
computed in double precision and the double precision difference
taken.

A comparison of the discrete approximation on a finite num-
ber of points in an interval, and the continuous approximation
which this algorithm finds, is studied by Rivlin and Cheney in
[9]. Rice [11, pp. 66-701 discusses the question of convergence (and
rate of convergence) of the discrete approximation to the continu-
ous approximation. This relates to the question of how large to
choose k in step (i), Section 4. We have found that for well-behaved
functions like e x on [-1 ,1] a value for k of about 3 gives good
starting values. On the other hand a function like 1 / (x - X) on
[-1,11 with X > 1 and X near 1 requires k to be about 15 to obtain
good starting values. The choice of k should be large enough so
that the initial approximation chosen by the procedure exchange
is close enough to the final approximation to insure that the "alter-
nation of sign" property is never lost during the iterations. There is
no known method of choosing such a k a priori. This is why the
algorithm tests for "alternation of signs" at each iteration and in-
creases k if the property is lost.

5b. Discussion o f numerical properties and methods: Locating
the extrema o f ~(x). Most of the programming effort is involved
in locating the extrema of the error function ~(x). The programming
is similar to that done by C.L. Lawson in a Fortran program to
compute the best minimax approximation [7]. ~(x) is given by

E(x) = ~ ci~oi(x) - f (x) .

The procedure exchange then is used to compute the coefficients
of the minimax function. That is, given n + ~ + 2 points, p ~ 0,
exchange computes the coefficients of the function ~i%0 c~¢~(x)
such that on the discrete set of points ~(xj), j = 0, 1, - • • , n + u + 1
has at least n + 2 extreme values (at the given points) equal in
magnitude and of alternating signs. The satisfaction of this condi-
tion when the points are indeed the extrema of the continuous ~(x)
guarantees that ~ = c c~¢~(x) is the unique minimax approximat-
ing function that we seek.

5b.1 Discussion o f numerical properties and methods: Parabolic
approximation to locate extremum. Given the initial guesses x i ,
i = 0, 1 , . . . , n + v + 1 (at each iteration) for the abcissas
of the extrema of the error curve, we must locate these critical
points more precisely. We consider two cases. First the interior
points, and secondly the least and greatest of the initial guesses
which may be equal to the respective end points of the interval on
which the function is to be approximated.

For interior points we do the following. Take

U ~ X i

v = xi + ~ (x ~ + ~ - x O (5.5)

w = x , + ~ (x i - ~ - x O

where a is a parameter 0 < a < 1 (e.g. a =0.1). We then deter-
mine the parabola through the three points ~(u), ~(v), and ~(w).
The abscissa, x*, corresponding to the vertex of this parabola is
then taken as the next guess for the ith "critical point." The point
x* is given by

1 [(u ~ - v~) , (w) + (v~ - w~)~(u) + (w~ - u~)dv)]
x* = - (5.6)

2 [(u - v)dw) + (v - w)~(u) + (w - u)~(v)]

For computational purposes x* is not computed directly by (5.6)

739 Communications November 1971
of Volume 14
the ACM Number 11

since for u, v, and w very close, the denominator will be quite small.
Therefore, the denominator of (5.6) is computed

d = [(u - v), (w) + (v - w)~(u) + (w - u)~(v)], (5.7)

and then by dividing out (5.6), we express x* as

I ~ (u W v) i f d = 0

x* = (5.8)

[~ (u + v) + 21(v -- u)(u -- w)d ['(v) -- ~(w)] if d E 0 .

Once x* is computed, it is then tested to insure acceptability since
for u, v, and w very close, machine roundoff may introduce spurious
results. Also, the value of a or the nature of the function f (x) and
therefore of ~(x) may introduce an unacceptable value for x* in
which case u, v, or w, whichever has highest ordinate value, is used
for x*. If x* is acceptable it can replace u, v, or w, whichever has the
lowest (in abolute value) ordinate value on the error curve ~(x),
and a second x* is computed. This iteration will converge to the
abcissa of the extremum near x~ if roundoff is ignored and u, v,
and w are sufficiently close to that point. (Compare convergence
to Muller's method for solving algebraic equations [5].) However,
this iteration need not be carried out excessively (2-4 iterations
should be sufficient) since during each iteration of the overall
process we recompute the approximating function and thereby ob-
tain a new error curve whose extrema will not necessarily have the
same abscissas.

For the end points (5.5) cannot apply since x~+1 and xi_l do
not exist at the right and left ends respectively. Therefore we take,
at the left end for example,

lU = x i

V = X i - ~ o t (X i + l - - X i)
(5.9)

(xi +/3(x¢+l-x¢) if xl = a
W

/

\x~ + ol(a-xl) if a < x~ ,

with the requirement that ~ # /3. The right end is handled simi-
larly. Again the parabola through the three points e(u), e(v), and
e(w) is used to determine x*. The tests for acceptability and itera-
tions are performed as they were for the interior points.

5b.2 Discussion of numerical properties and methods: Crude
search to locate extremum. In case approximation by parabola does
not yield an acceptable value for the abscissa of an extremum, the
following rather crude method works effectively. We simply divide
the interval under consideration into l equal intervals (e.g. l = 10)
and examine the ordinate of the error curve at the end points o f the
intervals. The points to the left and right o f the point with maxi-
mum ordinate (in absolute value) then define a new interval upon
which the process is repeated. This subdivision continues until the
subintervals become smaller than some specified value (e.g. 10-5).
The method causes the function to be evaluated more often than
the parabolic approximation, but works successfully at a point
where the error curve has a sharp cusp-like extremum.

The choice of l = 10 in this crude search procedure is arbitrary.
In fact, for an initial interval of length I, a smaller value, say l = 4,
would reduce the subinterval size to 10 -5.1 with a minimum of 21
function evaluations, whereas using l = 10 would require at least
51 function evaluations. However, small values of l increase the
chances of missing the true extremum.

To decide whether to use this crude search or not we employ a
relative test. Let the parabolic choice be x* and the three points
used to compute x* be u, v, and w. Then one would expect (hope)
that I ~(x*) [>_ I ~(u) 1, I ~(v) l, and I ~(w) I, in which case x* has
the desired properties. However, if ¢,, = max w I ¢(x) I, and
1 4 x *) I < ~ then we must doubt the acceptability of x* and
perhaps use the crude method to determine x*. We found a suc-
cessful way to make this decision was to use the crude method if
]l ~(x*)l - ~ [> C - ~ , where C is an arbitrary constant (e.g.
10-~).

Fig . 1

~.(I 0 .5 0 + 1.0
1P .x

Table I. Coeff icients ci o f " b e s t " po lynomia l
P4(x) = ~ = 0 ciT,(x) (to 6D)

i S tar t I t e r a t i on 1 I t e r a t i on 2 I t e r a t ion 3

0 1.266 063 1.266 066 1.266 066 1.266 066
1 1.130 321 1.130 318 1.130 318 1.130 318
2 0.271 495 0.271 495 0.271 495 0.271 495
3 0.044 337 0.044 336 0.044 336 0.044 336
4 0.005 523 0.005 519 0.005 519 0.005 519

Table II. Cr i t ica l points , x~, of bes t po lynomia l (to 6D)

j S tar t I t e r a t i on 1 I t e r a t i on 2 I t e r a t i on 3

0 - - 1 . 0 0 0 0 0 0 - -1 .000 000 - 1.000 000 - 1 .000000
1 - 0 . 7 7 1 429 - 0 . 7 9 7 573 - 0 . 7 9 7 682 - 0 . 7 9 7 682
2 - 0 . 2 5 7 143 - 0 . 2 7 8 189 - 0 . 2 7 9 152 --0.279 152
3 0.314 286 0.339 8 0 " ~ 0.339 061 0.339 061
4 0.828 571 0.820 978 0.820 536 0.820 536

5 1. 000 000 1.000 000 1.000 000 1.000 000

Table III. C o m p a r i s o n o f s t a r t ing values xj for f (x) = eL n = 4
(to 3D)

j T s (x) - T3(x)
= 0 o r IT~(x)I

~ J

= 1

0 - - 1 . 0 0 0
1 --0.809
2 --0.309
3 0. 309
4 0. 809
5 1.000
Dmax 0. 030

exchange on exchange on T R U E
6 (N + 2) 201 po in t s (computed)
po in t s equal ly
equal ly spaced
spaced

- - 1 . 0 0 0 - 1 . 0 0 0 - - 1 . 0 0 0

--0.771 - -0 .800 - 0 . 7 9 8
- 0 . 2 5 7 - 0 . 2 8 0 - 0 . 2 7 9

0.314 0.340 0.339
0.829 0.820 0.821
1 . 0 0 0 1 . 0 0 0 1 . 0 0 0

0.027 0. 002 - -

Table IV. Cr i t ica l po in t s chosen at each i te ra t ion .

I t e r a t i on The n + 2 po in t s used (see F igure 3)

1st 1 2 3 4 7 8 9 10 11 12
2nd 1 2 3 6 7 8 9 l0 11 12
3rd 1 2 3 6 7 8 9 10 11 12

7 4 0 Communicat ions November 1971
of Volume 14
the ACM Number 11

6. Examples. The procedure was tested on the Burroughs B5500
at the Stanford Computation Center using Burroughs Extended
Algol.

We have chosen two examples to illustrate the use of the al-
gorithm. The first is the function

ft(x) = e" on [-1,11 (6.1)

and the second is

f2(x) = l + x,

- - X ,

Fig. 2

I)(x), A' 8

- - 1 . 0 ~ x < --0.5 ::

- 0 . 5 _< x <~ 0.0 (6.2)

0 . 0 < x < 1.0.

The first example, Jq(x), is an infinitely differentiable function so
that the error curve (4.1) is also differentiable, whereas f~(x) (see
Figure 1) is continuous, but its derivative, f2'(x), has discontinuities
at x = - 0 . 5 and at x = 0.0, which cause the error curve to have a
discontinuous derivative. We examine f~(x) as it provides an in-
teresting example of approximating a function which is only con-
tinuous. In both cases we used Chebyshev polynomials as the
Chebyshev system of functions. ~

Example 1. ~(x)=e~]. Tables I and II show how the critical
points and the coefficients of the approximating polynomial con-
verge as we approximatefl(x) = e • by a 4th-degree sum of Cheby-
shev polynomials. Figures differing from the final result are under-

lined at each step. J.00o 0.600
Table I shows that the coefficients of the "best" polynomial

have converged to 6D after only one iteration; however, the critical
points don't converge until the second iteration as shown by Table
II. In other words, the polynomial does not change coefficients
very much with a small change in the critical points. The starting
points shown in Table II are chosen by exchange from 6 × (n+2) =
36 (for n=4) equally spaced points in the interval [-1,1].

Various methods for choosing the starting values for the Fig. 3
critical points have been proposed. These include the zeros of
T,~+i(x) - T,- t(x) , which are also the extrema of T,+l(x), and
what we propose here is to let exchange choose n + 2 points from
some original set of k(n+2) points where k ~ 1. The original ~ '
k(n+2) points may be equally spaced, or they may be the zeros of
Tk~,+2)+l(x) -- Tkc,+~)-l(x).

Table III compares various starting values for this example,
f~(x) = e~(n=4). D represents the maximum deviation from
the "TRUE" values.

Example 2. [f~(x)]. Approximation of f , (x) by an 8th degree
sum of Chebyshev polynomials (n = 8) poses the problem of hav-
ing an error curve with more than N + 2 local extrema. This
problem also arises when approximating an even or odd function
(see [6]). We resolve the problem by including all the local extrema
of the error function, ~(x), which have the alternation of sign
property, in the search for n + 2 critical points. That is, if the
abcissas of the extrema are ordered algebraically, the signs of the
corresponding ordinates must alternate. We obtain starting guesses
for local extrema by having exchange pick n + 2 starting points
from some original set of points, together with the corresponding
first approximating polynomial, and then examining the resultant
residuals. If the table of residuals indicates an extremum not al-
ready chosen by exchange, which has the correct alternating sign,
then the corresponding abcissa is included as a critical point for
later iterations, k must be chosen greater than 1 in order for this
method to work.

Figure 2 shows the error curve, ~(x), for the first and third ~000 0.6o0
iterations of approximating f2(x) by an 8th-degree linear combina-
tion of Chebyshev polynomials.

Table IV indicates how the choice of critical points can change
from one iteration to the next. If we had not included the addi-
tional extrema at points 5 and 6 at the first iteration, we would have
arrived at the approximation whose error curve is illustrated by
Figure 3. That is n + 2 extrema of the error curve have equal
magnitude and alternating signs, but another extremum exists
with larger modulus.

8
Approximating f d x by Z c.T,,(x

n.o

o.2oo o.2oo o.doo I.ooo
X

Error curve ~ith points 5 and 6 not used.

0.200 0.200 0.600 1.000

X

741 Communications
of
the ACM

November 1971
Volume 14
Number 11

Table V. Compar i son of s tar t ing values x~ for f (x) = f2(x),
n = 8 (to 4D)

j Tg(x) -- TT(x) exchange on exchange on T R U E
= 0 33 points 201 points (computed)

equally equally
spaced spaced

0 --1.0000 --1.0000 --1.00 --1.0000
1 -0 .9397 --0.8750 - 0 . 8 6 -0 .8565
2 - 0.7660 -- 0.6250 -- 0.62 - 0.6248
3 --0.5000 --0.1250 --0.14 --0.1424
4 --0.1736 0 .0 0 .0 0 .0
5 0.1736 0.1250 0.15 0.1456
6 0.5000 0.4375 0.44 0.4413
7 0.7660 0.7500 0.73 0.7290
8 0.9397 0.9375 0.93 0.9289
9 1.0000 1.0000 1.000 1.0000

Dmax 0.3750 0.0210 0.0048

As an interesting comparison to Table III we give a similar ta-
ble for f (x) = f~(x). D~ox represents the maximum deviation from
the " T R U E " values in Table V.

7. Use o f orthogonal polynomials. Consider the polynomials
po(x),p~(x), • • • , p~(x) orthogonal on the set of points x~ < X l <
• "" < X,~. Such polynomials are described by Forsythe [13],
and they form a Chebyshev system. This is easily seen since any
licear combination,

n

P(x) = ~ cipi(x), (7.1)

is a polynomial of degree n which has exactly n zeros. Hence on
any interval, P(x) has no more than n zeros. This satisfies the defini-
tion of a Chebyshev system.

It is known, see Forsythe [13], that orthogonal polynomials
have advantages over standard polynomials in least squares data-
fitting. In the Remez algorithm, if a new set of polynomials, or-
thogonal on the critical points, is computed each time the critical
points are adjusted, convergence is assured. This can be proved by
nothing that at each iteration the best orthogonal polynomial
fit is equivalent to the best fit that would be obtained if the Cheby-
shev system were held constant as standard polynomials. Perhaps
this use of orthogonal polynomials will have computational ad-
vantages over, say, standard polynomials on the interval [0,1].

The use of orthogonal polynomials for the Chebyshev system
has been implemented and tried successfully on a Burroughs B5500
but as yet we have no illustrations of any dramatic advantages over
any other Chebyshev system.

References
1. Remez, E.Y. General computational methods of Chebyshev
approximation. In The Problems with Linear Real Parameters,
AEC-tr-4491, Books 1 and 2, English translation by US AEC.
2. Stiefel, E.L. Numerical methods of Chebyshev approximation.
In On Numerical Approximation, R.E. Langer (Ed.) U. of Wisconsin
Press, Madison, 1959.
3. Achieser, N.I. Theory o f Approximation. (Trans. by C.J.
Hyman), Frederick'Ungar Publ. Co., New York, 1956.
4. Novodvorskii, E.N., and Pinsker, I.S. On a process of
equalization of maxima. Uspehi Mat. Nauk. 6 (1951), 174-181.
(Trans. by A. Shenitzer, available from New York U. Library.)
5. Muller, D.E. A method for solving algebraic equations using an
automatic computer. Math Tables Aids Comp. 10 (1956), 208-215.
6. Murnaghan, E.D., and Wrench, J.W. Rep. No. 1175, David
Taylor Model Basin, Md., 1960.
7. Lawson, C.L. Private communication.
8. Fraser, W. A survey of methods of computing minimax and

742

near minimax polynomial approximations for functions of a single
independent variable. J. A C M 12 (July 1965), 295-314.
9. Rivlin, T.J., and Cheney, E.W. A comparison of uniform
approximations on an interval and a finite subset thereof. S I A M
J. on Numer. Anal. 3 (June 1966).
10. Bartels, R.H., and Golub, G.H. Computational considerations
regarding the calculation of Chebyshev solutions for overdetermined
linear equation systems by the exchange method. Tech. Rep. No.
CS67, Comput. Sci. Dep., Stanford U. (June 1967). Also Algorithm
328 Comm. A C M 11 (June 1968), 401-406, 428-430.
11. Rice, J.R. The Approximation o f Functions, Vol. 1, Reading
Mass. Addison-Wesley, 1964.
12. Veidinger, L. On the numerical determination of the best
approximations in the Chebyshev sense. Numer. Math. 2 (1960),
95-105.
13. Forsythe, G.E. Generation and use of orthogonal polynomials
for data-fitting with a digital computer. J. S I A M 5 (June 1957),
74--88.

Algorithm
procedure remez (n, a, b, kstart, kmax, loops, f , chebyshev, eps,

exchange, c, emax, trouble, why);
value n, a, b, kstart, kmax, loops;
real array c; real a, b, emax; label trouble;
integer n, kstart, kmax, loops, why;
real procedure f, eps; procedure chebyshev, exchange;

comment Procedure remez finds the best fit (in the minimax sense) to
a function fus ing a linear combination of functions which form a
Chebyshev system. The exchange algorithm of E.L. Stiefel is used
to obtain starting values for the critical points and the Remez
algorithm is then used to find the best fit;

begin
procedure quadraticmax(n, x, niter, alia, beta, ok, a, b, c, nadded,

eps);
value n, niter, alfa, beta, nadded; array x, c;
integer n, niter, nadded; real alfa, beta, a, b;
Boolean ok; real procedure eps;

comment Procedure quadraticmax is called to adjust the values of
the critical points in each iteration of the Remez algorithm. The
points are adjusted by fitting a parabola to the error curve in a
neighborhood, or if that proves unsatisfactory a brute force de-
termination of the extrema is used;

begin
integer i, countl, count2, nhalf, signepsxstar, signu, signv, signw,

fmax, ncrude, f, nn;
real u, v, w, dehorn, epsu, epsv, epsw, xstar, epsxstar, xxx, misse,

missx, dx, emax, etmp;
integer array signepsx [0 : n --I- 1]; array epsx [0 : n + 1};
nn := n - nadded;
comment On arbitrary parameters...

ncrude The number of divisions used in the brute force
search for extrema.

nhalf The parameter (alpha) which determines the size of
interval to be examined for an extremum is reduced by
half if a bad value for xstar is computed, however this
reduction may occur only nhalf times.

misse If the value of the error curve at a new critical point
differs from the previous value by a relative difference of
more than misse then the brute force method is brought in.

missx The brute force method keeps searching until it is
within missx of an extremum;

comment Set values of the constants;
ncrude := 10; nhalf := 4; misse := 1.0~0 --2; missx :=

1.01o --5;
comment Compare missx with absepsx. They should be equal;
for i := 0 step 1 until n -+ 1 do
begin

epsx[i] := eps(x[i], c, nn);
signepsx[i] : = sign(epsx[i]) ;

end;
for i := step 1 until n q-- 1 do

Communications November 1971
of Volume 14
the ACM Number 11

LI :

L2:

L B L 2 :

L BL1 :

743

be#n
comment I f the start ing values for the critical points do not

al ternate the sign of eps (x) , then we go to the label trouble;

i f signepsx[i] X s i g n e p s x [i - 1] # - 1 then go to trouble;
end;
comment First find all the interior extrema. T h e n we will find

the end extrema, which may occur at the ends o f the interval;
for i : = 1 step 1 until n do
begin

c o u m l := 0; count2 := 0;

u : = x[i];
v := u + alfa X (x [i+ l] - u); w :-- u + alfa ×

(x[i--1] -- u);
epsu := epsx[i]; s ignu := signepsx[i];

epsv : = eps(v, c, nn); s ignv := s ign(epsv);
epsw : = eps(w, c, nn); s ignw := s ign(epsw);
if -~ s ignu = s ignv V -1 s ignv = s ignw then go to L3;
comment I f the sign o f eps(x) at the three points is no t the

same, we go to L3 where alfa is reduced to make the points
closer together;

epsu := abs(epsu); epsv : = abs(epsv); epsw := abs(epsw);

denom := 2.0 X ((epsv - epsu) X (w - u) + (epsw -

epsu) X (u - v));
i f denom = 0.0 then xs tar : = 0.5 × (v + w) else xs tar :=

0.5 X (v + w) + (v - u) X (u - w) × (epsv - e p s w) /

denom;
coun t l := coun t l + 1;
comment Test xs tar to be sure it is what we want. Is it be-

tween x [i - 1] and x [i + l] ? Is eps(xs tar) > eps(u, v, w)? If
xs tar is too bad, go to L3 and reduce alfa unless alfa has
been reduced n h a l f t i m e s . Otherwise if ok, go to savexs tar;

i f x s t a r = u V xs tar = v V xs tar = w then
begin

epsxs tar := eps(xs tar , c, nn); s ignepsxs tar := s ign
(epsxstar) ;

epsxs tar := abs(epsxs tar) ; go to savexs tar
end;
if xs tar < x[i - -1] V xs ta r > x [i + l] then go to L3;
epsxs tar := eps(xs tar , c, nn);
s ignepsxs tar : = s ign(epsxs tar) ;

epsxs tar := abs(epsxs tar);

if s ignepsxs tar # s ignu V epsxs tar < epsu V epsxs tar <
epsv V epsxs tar < epsw then

begin
if epsu ~ epsv A epsu > epsw then
begin

if abs (epsxs tar - epsu) > misse X epsu then go to
L B L 2 ;

xs tar : = u; epsxs tar : = epsu; s ignepsxs tar : = signu"

go to savexstar;
end;
if epsv > epsu A epsv ~ epsw then
begin

if abs(epsxs tar - epsv) > misse X epsv then go to
L B L 2 ;

xs tar : = v; epsxs tar : = epsv; s ignepsxs tar : = signv:
go to savexstar"

end;
if abs(epsxs tar - epsw) > misse X epsw then go to

L B L 2 ;

xs tar : = w; epsxs tar : = epsw; s ignepsxs tar := signw;
go to savexstar;

j m a x := 0;

d x := (v - w) / n c r u d e ; e m a x := 0.0; x x x : = w - dx ;
for j : = 0 step 1 until ncrude do
begin

x x x := x x x + dx; j m a x := j m a x + 1;

L4:

e t m p : = e p s (x x x , c, nn);
i f abs (e tmp) > e m a x then
begin

e m a x := epsxs tar := abs (e tmp) ;

s ignepsxs tar : = s ign(e tmp) ;
u : = x s ta r : = x x x ;
v := u + dx ; w = u - dx ;

end
end;
if d x > m i s s x then go to L B L 1 ;
comment M a k e sure v and w are within bounds ;
if v > x [i + l] then go to L3;
i f w _< x [i - 1] then go to L3;
go to savexs tar

end;
if count l > ni ter then go to savexstar;

i f epsu < epsw then
begin

if epsv < epsu then

begin
comment v is m i n i m u m ;
if xs ta r > u then
begin

v := xstar; epsv := epsxstar; go to L2;
end;
i f xs tar > w then
begin

epsv : = epsu; v := u;
epsu : = epsxstar; u := xstar;

go to L2;
end
else
begin

v := u; epsv := epsu;
u := w; epsu := epsw;

w : = xstar; epsw := epsxstar;

go to L2;
end;

end
else
begin

comment u is m in imum;
if xs tar >_ v then
begin

u := v; epsu := epsv~
v := xstar; epsv := epsxstar;

go to L2;
end;
if xs ta r > w then
begin

u : = xstar; epsu := epsxstar;

go to L2;
end
else
begin

u := w; epsu := epsw;
w := xstar; epsw := epsxstar;

go to L2;
end;

end;
end
d s e
begin

if epsv < epsw then
begin

comment v is m i n i m u m ; go to L4;
end
else
begin

comment w is m i n i m u m ; if xs tar > v then

Commun ica t i ons November 1971
of Vo lume 14
the A C M N u m b e r 11

L3:

L8:

L5:

begin
w := u; epsw := epsu;
u := v; epsu := epsv;
v := xstar; epsv := epsxstar;
go to L2;

end;
if xstar > u then
begin

w := u; epsw := epsu;
u := xstar; epsu := epsxstar;

go to L2;
end
else
begin

w := xstar; epsw := epsxstar;
go to L2;

end;
end;

end;

count2 := count2 + 1;
if count2 > nhalf then go to trouble;
alfa := 0.5 X alfa;
comment The factor 0.5 used in reducing alpha is arbitrarily

chosen;
go to L1;
comment Replace x[i] by xstar after checking alternation of

signs;
savexstar:

if i > 1 A signepsxstar X signepsx[i-1] # - 1 then go to
trouble;

signepsx[i] := signepsxstar;
x[i] := xstar;

end;
eomment This is the end of the loop on i which finds all interior

extrema. Now we proceed to locate the extrema at or near
the two endpoints (left end, then right end);

comment We assume beta > alfa;
f o r i := 0, n + l d o
begin

countl := 0; count2 := 0;

u := x[i]; i f / = O t h e n
begin

f f a < u t h e n w := u +t- alfa X (a - u) e l sew := u +
beta X (x[l] -- u);
v := u + alfa X (x[l] - u);

end
else
begin

i f b > u t h e n w := u + alfa X (b - u) elsew := u +
beta × (x[n] - u);
v := u + alfa X (x[n] -- u);

end;
epsu := epsx[i]; signu := signepsx[i];
epsv := eps(v, c, nn); signv := sign(epsv);
epsw := eps(w, c, nn); signw := sign(epsw);
if signv ~ signu V signv # signw then go to L7;
epsu := abs(epsu); epsv := abs(epsv); epsw := abs(epsw);

denom := 2.0 X (epsu X (v - w) + epsv X (w - u) + epsw X
(u- v));

if denom = 0.0 then xstar := 0.5 X (w+v) else xstar :=
0.5 X (v+w) + (v--u) X (u - w) X (epsv -- epsw)/
denom;

if i = 0 A (xstar < a V xstar > x[1]) then
begin

xstar := a; epsxstar := eps(a, c, nn);
signepsxstar : = sign(epsxstar) ; epsxstar : = abs (epsxstar) ;

end

L7:

else
i f i = n + 1 A (xstar > b A xstar < x[n]) then
begin

xstar := b; epsxstar := ep~(b, c, nn);
signepsxstar : = sign(epsxstar) ; epsxstar : = abs (epsxstar) ;

end
else
begin

epsxstar := eps(xstar, c, nn);
signepsxstar := sign(epsxstar);
epsxstar := abs(epsxstar);

end;
countl := countl + 1;
i f i = 0 A xstar > x[1] then go to L7;
if i = n + 1 A xstar < x[n] then go to L7;
if xstar = u V xstar = v V xstar = w then go to L6;
if signepsxstar # signu V epsxstar < epsu V epsxstar <

epsv V epsxstar < epsw then
begin

if epsu > epsv A epsu > epsw then
begin

xstar := u; epsxstar := epsu;
signepsxstar := signu; go to L6;

end;
if epsv > epsu A epsv > epsw then
begin

xstar := v; epsxstar := epsv;
signepsxstar := signv; go to L6;

end;
xstar := w; epsxstar := epsw;
signepsxstar := signw; go to L6;

end;
if countl > niter then go to L6;
if epsu < epsw then
begin

if epsv < epsu then
begin

comment v is minimum;
v := xstar; epsv := epsxstar;
go to L5;

end
else
begin

comment u is minimum;
u := xstar; epsu := epsxstar;
go to L5;

end;
end
else
begin

if epsv < epsw then
begin

comment v is minimum;
v := xstar; epsv := epsxstar;
go to L5;

end
else
begin

comment w is minimum; w := xstar; epsw := epsxstar;
go to L5;

end
end;

count2 := count2 + 1;
if count2 > nhalf then go to trouble;
alfa := 0.5 X alfa; beta := 0.5 X beta;
go to L8;
comment Replace x[i] by xstar after checking its sign;

744 Communications November 1971
of Volume 14
the ACM Number 11

L6:
if i = 0 A signepsxstar X signepsx[1] ~ - 1 then go to

trouble;
if i ~ 0 /~ signepsxstar X signepsx[n] ~ - 1 then go to

trouble;
signepsx[i] : = signepsxstar; x[i] := xstar;

end;
go to done;

trouble:
ok := false; go toL9;

clone:
ok := true;

L9:
end quadraticmax;
comment Procedure start computes the arrays which are then in-

put to exchange to find the best approximat ion on the points at
hand;

procedure start (m, n, a, d, xi, chebyshev, f) ;
value m, n; integer m, n;
array a, d, xi;
procedure ehebyshev; real procedure f ;

begin
integer i,j; real array t[0:nJ;
for i := 0 step 1 until m do
begin

chebyshev (n, xi[i], t);
forj := 0 step 1 until n do a[i,j] := t[j];
d[i] := f(xi[i]);

end
end start;
comment Now the procedure remez;
real epsc, alfa, beta, epsx, absepse, absepsx, rcompare, dx, maxr,

minr, tempr, minsep;
integer m, i, itemp, j , niter, nloop, k, nadded, isub, maxri, ilast,

signnow, j j ;
integer signnew; integer array refset[O : n --k 1 -q- n];
comment A s s u m e number of points added < n;
integer a r ray ptsadd[O : n];
array elast[O : n W 1], xq, xqlast[O : n @ 1 q- n];
Boolean firsttime, ok, convx, convc, addit;
why := 0; k := kstart;
comment C o m e here if k gets changed:

ne wk:
m : = n + 1 + (k - 1) X (n + 2) ;
begin

array r, xi, d[0 : m], aa[O: m, 0 : n + I];
t~rsttime : = true; convx : = false; convc :~- false;
nloop := 0;
comment This makes the initial points spaced according to the

extrema of the Chebyshev polynomial of degree m - ! ;
for i := 0 step 1 until m do
xili] := (a+b) /2 .0 - (b - a) X cos((3.14159265359 X i) / m) /

2.0;
comment 3.14159... is zr;
dx := (b - a) / m ;
comment To use equally spaced points a s ta tement such as the

following could be used. for i : = 0 step 1 until m do xilil : =
a + i X d x ;

start(m, n, aa, d, xi, chebyshev, f) ,
comment The following cons tan ts are used in testing for conver-

gence
epsc used in relative test on coefficients
absepsc used in absolute test on coefficients
epsx used in relative test on critical points
absepsx used in absolute test on critical points
rcompare used to compare relative magni tudes of max and
min values of residual on the critical points;

epsc := 1.0~o - 7; absepsc := 1.010 -- 7; epsx := 1.0~0 -- ¢-
absepsx : = 1.010 -- 5;

rcompare : ---- 1.0000005;

745

comment epsx and absepsx should be the same as missx in pro-
cedure quadra t icmax, epsc and absepsc should be adjus ted
according to knowledge o f the expected magni tudes of the
coefficients (if known) . It is best to depend on the critical
points a n d / o f the max and min of the residuals for conver-
gence criteria;

comment Now call on exchange to find the first approximat ion
to the best approximat ing function;

exchange (aa, d, c, m, n, refset, emax, singular, r);
comment The subscripts of the points chosen are in array ref-

set[O:nq-1], the coefficients of the best approximat ing func-
t ion on the m points are in c[0:n], the residuals in r;

comment The reference set, the coefficients at this step, a n d / o r
the residuals may be written at this point;

for i := 0 step 1 until n do clast[iJ := c[i];
comment Now we are going to look for any extrema not given

by the points chosen by exchange;
comment Make sure critical points are algebraically ordered;
for i : = 0 step 1 until n do for j : = i -q-- 1 step 1 until n 4- 1 do
begin

if refset[j] < refset[i] then
begin

i temp := rel~et~j]; refset~] := refset[i];
refset[i] : = itemp;

end
end;
nadded :-~ 0; maxr := 0; maxri : = 0; ilast := 0;
signnow := sign(r[O]);
for i := 0 step 1 until m q- 1 do
begin

if i = m -f- 1 then go to LBL;
if sign(rill) ~ 0 A sign(r[i]) = signnow then
begin

if abs(r[i]) > maxr then
begin maxri := i; maxr := abs(r[i]); end

end
else

LBL:
begin

if i < m -k 1 then signnow : = sign(r[i]) ;
addit := true;
forj := 0 step 1 until n -Jr 1 do
begin

for j j := ilast step 1 until i - 1 do
begin

i f j j = refset[J'] then addit := false;
end

end;
if adxlit then
begin

nadded : = nadded --1- 1 ; if nadded > n then
begin

comment We as sume nadded is always < n. If naclded
is > n, why is set to - 1 and we go to the label
trouble. This can be modified by changing this test
and changing the declarations for ptsadd, refset, xq,
and xqlast above;

why := - -1 ;
go to trouble

end;
ptsadd[nadded] := maxri;
reJ~et [n W 1 -b nadded] := maxri;

end;
if i < m--b l t h e n
begin

ilast := i; maxr := abs(r[i]); maxri := i;
end

end
end;
comment We now have n -b 2 --k nadded points to send to

quadraticmax for ad jus tment ;

Commun ica t i ons November 1971
of Volume 14
the A C M N u m b e r 11

m := n + nadded;
comment Make sure critical points are algebraically ordered;
f o r i : = 0 s t e p 1 until m do for j := i 4 - 1 step 1 un t i lm + 1

do
begin

if refset[j] < refset[i] then
begin

itemp := refset[j]; refset[j] := refset[i];
refset[i] := itemp;

end
end;
for i := 0 step 1 until m + 1 do xq[i] := xi[refset [i]];
niter := 2;
comment This is the number of times to iterate in quadraticmax;
alfa := 0.15; beta := 0.2;
comment alfa and beta are used to determine the points used

in quadraticmax to fit a parabola. They are arbitrary subject
to: 0 < alfa < beta < 1. Also beta should be fairly small
to keep the points on one side of zero;

conunent This is the beginning of the loop that calls on
quadraticmax, exchange, etc.;

loop:
nloop := nloop + 1;
quadraticmax(m, xq, niter, alfa, beta, ok, a, b, c, nadded, eps) ;
if -a ok then
begin

k : = k + 1; i f k > k m a x t h e n
begin why := 1; go to trouble; end;
go to newk;

end;
if -~ f irst t ime then
begin

comment Compare the largest and smallest of the residuals
at the critical points (after adjustment);

comment Set minr to a large number;
maxr := 0.0; minr := 1.01050;
for i := 0 step 1 until n + 1 do
begin

addit := true;
f o r j := 1 step 1 until nadded do if refset[i] = ptsadd[j]

then addit := false;
if addit then
begin

t empt := abs(eps (xq [refset [i]], c, n));
i f tempr > maxr then maxr := tempr else if tempr <

minr then minr : = tempr;
end

end;
if maxr < rcompare X minr then why := 4;

end;
comment Compare xq to xqlast;
if -a f irst t ime then
begin

convx := true;
for i := 0 step 1 until m -t- 1 do
begin

if abs(xq [i] - xqlast[i]) > absepsx then
begin

if abs (xq [i] - xqlast[i]) > epsx X abs(xq [i]) A
xq[il ~ 0.0 then convx := false;

if xq[i] = 0.0 A abs(xq [i1 - xqlast[i]) > absepsx
then convx := false;

end;
xqlast[i] := xq[i];

end
end
else

begin
f irst t ime := false;
for i := 0 step 1 until m + 1 do xqlast[i] := xq[i];
for i := 0 step 1 until n do clast[i] := c[i];

end;
comment Get ready to call exchange again;
start(m 4- 1, n, aa, d, xq, chebyshev, f) ;
exchange(aa, d, c, m + 1, n, refset, emax, singular, r);
comment Now compare the new coefficients to the last set o f

coefficients;
if ~ f irst t ime then
begin

convc := true;
for i := 0 step 1 until n do
begin

i f abs(c[i] -- clast[i]) > epsc X abs(c[i]) A c[i] ~ 0.0
then convc := false;

if c[i] = 0.0 A abs(c[i] - clast[i]) > absepsc then
convc := false; clast[i] := c[i];

end
end;
comment Set the parameter why to the proper value according

to the following:
why = 4 if maxr < rcompare X minr.
why = 5 if "4" and convx = true.
why = 6 if "4" and conve = true.
why = 7 if "4" and convx = convc = true.
why = 8 if convx = true.
why = 9 if convc = true.
why = 10 if convx = convc = true. Any value of why >

4 indicates cnnvergence;
if why = 4 A convx then why := 5;
if why = 4 A convc then why := 6;
if why = 5 A convc then why := 7;
if why = 0 A convx then why := 8;
i f why = 0 A convcthen why := 9;
if why = 8 A convc then why := 10;
if why >_ 4 then go to converged;
if nloop > loops then
begin why := 3; go to trouble end;
comment We go to label trouble in calling program if no con-

vergence after a number of iterations equal to loops;
go to loop;

singular:
why := 2; go to trouble;
comment We come to singular if exchange gets into trouble;

converged:
end;
comment End of block using m in array declarations;
comment There are four exits to the label t r o u b l e . . .

(why = 1) if k gets > k m a x
(why = 2) if exchange gets into trouble
(why= 3) if no convergence after iterating loops number of

times
(why = - 1) if number of added points is greater than n;

end remez

746 Communicat ions November 1971
of Volume 14
the A C M Number 11

