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DESCRIPTION 

1. Introduction 

The purpose of the procedures presented here is to determine the interpolating 
quintic natural  spline function S ( x )  for the set of data  points (x, ,y.) ,  i = 
N 1 , N I ~ - I , . . . ,  N2, where it is assumed tha t  x ~  < x~+~ < • • • < xN2 • The inter- 
polating quintic natural  spline function S ( x )  with the knots x ~ , . . . ,  XN2 has the 
following properties: (i) S ( x )  is a polynomial of degree 5 in each interval (x,, x,+~), 
i = N 1 , . . . ,  N 2 - 1 .  (ii) S ( x )  and its derivatives S ' ( x ) ,  S"  (x),  S " ( x ) ,  and S " ( x )  
are continuous in [x~l.x~2]. (iii) S "  (X~l) = S "  (x~2) = S "  (x~l) = S "  (XN2) = O. 
(iv) S(x , )  = y,, i = N 1 , . . . ,  N2. I t  is known tha t  if N2 > N l - k l ,  then there is a 
unique quintic natural  spline function which has the properties ( i ) - ( i v ) .  (See, for 
example, Greville [3, 4].) This spline function can be represented in the form 

S ( x )  = y~ -4- B , t  -4- C,t  2 A- D , t  ~ -4- E , t  4 -4- F , t  5 (1) 

w i t h t = x - x ,  f o r x , < x < x , + ~ ,  i = N 1 , . . . , N 2 - 1 .  
The procedure Q U I N A T  computes the coefficients B , ,  C , ,  D , ,  E , ,  F, of the 

quintic natural  spline represented as in eq. (1) for an arbi t rary  set of data  points 
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(x, ,y,) as previously specified. This procedure is much faster than  the procedure 
NA T S P L I N E  of ACM Algorithm 472 [6] with m = 3. An even faster procedure, 
QUINEQ, is provided for the case in which the knots x, are known to be equidis- 
tant.  In  this case it is not necessary to specify the values of x , .  The representation 
(1) is still used, but  now t = ( x - x , ) / h ,  where h = x , + l - x , ,  the constant  spacing 
of the knots. 

! 
I f  at  one or more of the knots x~ one also specifies the derivative y , ,  thus requiring 

S ' (x,)  = y,', then one has to give up the condition tha t  S " ( x )  be continuous at  
the knot  x , .  I f  the second derivative y," is also specified, thus requiring S"(x,) = 
y,", then one must  also give up the condition tha t  S"(x)  be continuous at  x , .  
Q UINA T is designed so tha t  it can be used in these cases with the convention tha t  if 
two consecutive knots are equal, say x~ = x~+l, then S(x~) = y~ and S'(x~) = y~+l, 
and if three consecutive knots  are equal, say x~ = x~+l = x~+2, then S(x~) = y~, 
S'(xj) = y~, and S"(x~) = yj+2 • Thus in order to use Q U I N A T  in the case tha t  

! 
both the value y~ and the first derivative y~ are specified at  x~, one increases the 
number  of knots by 1 setting X~+l = xj (and renumbering the knots and values to 

! 
the right).  Then one chooses yj+~ = y~. The spline function computed by Q UINA T 
will have the proper ty  S(x3) = y~ and S'(x~) = y~+l • One m a y  use Q U I N A T  in a 
similar manner  if the second derivative is also specified at  a knot  x~. Complete 
details are given in the comment  of the procedure QUINAT.  

I f  the values of the function y, and the values of the first derivative yJ  are speci- 
fied at  all the knots  x , ,  then S " ( x )  need not be continuous at  the knots  
and S "  (x~l) and S "  (x~2) need not  be zero. Such a spline is said to be of defi- 
ciency 2. The  procedure Q UINDF computes the coefficients of the quintic natural  
spline of deficiency 2 when the values of the function y, and the values of the first 
derivat ive y,~ are given at  each knot.  Although Q UINA T could be used for this case 
as just described, QUINDF is much faster and needs much less storage space. 

I t  is not  of interest to specify the values of the function and its first and second 
derivatives at  each knot,  because in this case the quintic polynomial is completely 
determined in each interval  independently of all other intervals. 

2. Method of Calculation 

QUINAT.  As in the general case of Algorithm 472 [6], the calculation of the co- 
efficients of the spline function is carried out in a numerically stable manner  follow- 
ing a method described by  Anselone and Laurent  [1]. The basic ideas on which the 
method is based were given earlier by  Schoenberg [7]. The method is specialized to 
the case of the quintic natural  spline and uses min imum support  B-splines [2, 3] of 
degree 2 to form a basis for the class of third derivatives of the quintic natural  
splines. Ins tead of specializing the formulas of Algorithm 472 [6] by setting m -- 3, 
we derive the necessary formulas directly and we choose a different numbering and 
a different normalization for the B-splines. 

We first assume tha t  the knots  are str ict ly monotone increasing, tha t  is, 
x~l < xNl+l < • • • < x~2. In  order to simplify the notation, we choose N1 = 0 
and let N2 = n, so tha t  the da ta  points are denoted by  (x,, y,) ,  i = 0, 1 , . . . ,  n. 
We denote by  M,(x) the B-spline of degree 2, vanishing outside the inter- 
val (x,_l,x,+2). We let h, = X~+l - x, ,  t = x -- X,_l, u = x -- x , ,  v = x - x,+l .  
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Then we have 

Mr(x) = At  2, x,-I <_ x < x , ,  

= B -k Cu - Du 2, x, <_ x < x,+l,  (2) 

= E ( v  - h ,+ l )  2, x ,+ l  _< x < x,+~., 

where 

A = 1/[h,_~(h,_~ + h,)], B = h,_i/(h,_l  + h,), C = 2/(h,_~ + h,), (3) 

D = (h,_~ -t- 2h, + h~+x)/[(h~_~ -t- h ,)h,(h,  + h,+~)], E = 1/[h,+~(h. -t- h.+~)]. 

Now since the third derivative S " ( x )  vanishes outside the interval (x0, x.) ,  it 
has a unique representation of the form 

n~2 
S " ( x )  = ~ 6 0 % M , ( x ) .  (4) 

.7=1 

In order to determine the 7 , ,  we make use of the relation 
oO 

f = 2 ( S ( X , ,  Xt+l, X~+2) - -  S ( X , - I ,  X,, ( 5 )  M,(x )  S "  (x )dx  Xz+l) ) 
oo 

using the usual notation for divided differences. This relation is easily obtained 
by integration by parts. If we multiply eq. (4) by ½M,(x),  i = 1, 2, . . .  , n - 2 ,  
and integrate, we obtain a well-conditioned positive definite pentadiagonal system 
of linear equations for the determination of the %: 

d171 -~- e172 + f173 = Cl 

e171 + d272 + e273 + f~74 = c2 

fi-27,-2 + e,-1%-~ + d,7, + e,7,+~ -t- fi7,+2 = c,, i = 3, 4 . . . .  , n - -4  (6) 

fn-5Tn-5 -~ en-4"Yn-4 "~ dn-3"}tn-3 -~ en-~,"~n--2 

f .-47,,-,  + e.m7,,-~ + d.-~7.-2 

where 

d, = T1 + T2 -~- T3, 

e, = T4 + Ts ,  

.f, = T 6 ,  

C, = y~,,+1,~+2 - -  y , - 1 , , , , + l ,  

Cn--3 

Cn--2 

i = 1 , 2 , . . . , n - - 2 ,  

i = 1 , 2 , . . . , n - - 3 ,  

i = 1 , 2 , . . . , n - - 4 ,  

i = 1 , 2 , . . . , n - - 2 .  

Here y~,,~1,,+2 denotes the second divided difference of the given {y,}, and for the 
T, one finds, after some algebraic manipulation, the following formulas: 

T1 = 6h~-l/(h,_l -k- h,) 2 

T2 = h,{3Oh~_,h~+l -+- (h,_~ + h,+l)h,(4Oh,_xh,+l + 14h, ~) 

+ h,2[16(h2,_1 + h2,+l) + 42h,_~h,+, + 4h,~]l/[(h,_~ + h,)~(h, + h,+l) ~] 

T~ = 6h~+x/(h, + h,+l) 2 

T4 = h,2[h,_,(h, + h,e~) + 3(h,_1 + h,)(h, + 3h,+l)]/[(h,_, -k h,)(h, + h,+,) 2] 

T5 = h~,+l[h,+2(h, + h~+l) + 3(h,+1 + h,+2)(3h, + h,+~)]/[(h, + h~+~)2(h,+~ -}- h,+2)] 

T6 = h3~41/[(h, + h,+l)(h,+l -{- h,+2)]. 
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Note tha t  all terms in these expressions are positive; consequently no cancella- 
tions can occur. The system of equations (6) can be solved for the 7~ by using Gaus- 
sian elimination without pivoting. When the coefficients 73 have  been found, S " ( x )  
is given by  eq. (4). Remembering tha t  M : ( x )  vanishes outside the interval  
(X~-l, xj+~) and making use of eqs. (1) through (4), we easily find tha t  

D,/ IO = (7,-~h, + 7,h , - l ) / (h , -~  + h,) 

E , / 5  = (~,, -- ~,_~)/(h,_, + h,) 
i =  2 , 3 , . . . , n - 3 .  

F, = (l/h,)[('Y,+l - v , ) / ( h ,  + h,+1) 

- ( ' y ,  - -  " y , _ l ) / ( h , _ ~  + h,) l .  

These formulas can also be used for i = 0, 1, n - 2 ,  n - 1  by adding the convention 
tha t  ~-1 = ~0 = ~ - ~  = "Y, = 0. (Note  tha t  Do = E0 = 0 as they should.) Finally 
we make  use of the continuity of S (x )  and its first four derivatives at  x, to obtain 
the following formulas for B, and C, : 

B, = h,_l y,+l - y, + _ _ h '  y, - y , - i  
h,-x + h, h, h,-1 + h, h,-t  

1 (Y,+I - -  y,  
C, - h,-1 + hl \ h; 

h,_lh, 
h,-1 + h, 

h,-~ ] + D,(h,_~ - h,) 

- E ,  h~_~ + h, 3 + 
h,-1 + h, h~-t + h, 

D,h,-lh,  + E,h,-zh,(h,-~ - h,) 

(F,-1hS,-1 + F,h, z) 

( F,-~h~-i - F,h,4) . 

These formulas are valid for i = 1, 2 , . . . ,  n - 1 .  In  addition, we have  for the end- 
points: 

Co = C1 - lOFo ho 3, Bo = (yl -- yo) /ho -- Co ho -- Fo ho 4, 

= 1 3 = hn-i .  C,, C,,_, + OF,~_ih,,_l, B,, (y,, - y,,_l)/h,,_, + C,~A,,_, --F,,_I 4 

In  the preceding discussion we have assumed tha t  the knots were distinct. We can 
relax this condition and allow two or three consecutive knots to be equal. The proce- 
dure Q U I N A T  has been writ ten in such a way tha t  if x3 = x~+,, then S (x : )  = y~ 
and S'(x~) = y~+l, and if x, = x:+, = x~+2, then, in addition, S ' ( x : )  = y~+2 • 
The use of Q U I N A  T in these cases is fully explained in its comment.  

Q U I N E Q .  The calculation of the coefficients in Q U I N E Q  for the case of equi- 
distant  knots is carried out in the same manner  as is the calculation of the coeffi- 
cients in Q U I N A  T for the general case. However,  there are a number  of simplifica- 
tions which result in considerable economy of computat ional  effort. I t  is not neces- 
sary to specify x,. Hence we can assume x, = i. Then h, = 1 for all i, and the co- 
efficients of M , ( x )  are independent of i as are also the d,, e,, f ,  of the pentadiagonal  
system (6) for the 7, • Thus eqs. (2) reduce to 

ll 
t , ~ - -  1 < x < ~, 

2 M , ( x ) =  + u - -  u ,  i_< x < i +  1, 

[½ ( v - -  1) ~, i +  1 _< x < i +  2, 

w i t h t  = x - -  ( i - - 1 ) , u  = x - -  i , v  = x - - ( i + 1 ) .  
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Ins tead of eq. (4) it is convenient to take 
n--3 

S " ( x )  = ~ 120%M~+l(x). 
3~0 

The divided differences become ordinary differences so tha t  eq. (5) becomes: 

f'~ M~(x)S" (z) dx = A3S(x,-1). 
oo 

The pentadiagonal system (6) for the determination of ~/3 becomes: 

66~,0 q- 267~ -~- 72 = A3yo 

2670 + 6671 + 2672 -4- 73 = A3Yl 

~'~-2 + 267,-1 + 667, + 26~,+1 + 7,+0. = A3y,, i = 2, 3 , . . . ,  n - -5  

"y,__~ + 26~/n-5 + 66~',_~ + 26~n_3 = A3y~_4 

The equations for the determination of the spline function coefficients then be- 
come: 

D , / I O  = "y,_~_ + ,y,_~ B ,  = ½ (y,+l - -  y,-~ - -  F~_~ - -  F , )  - -  D ,  

E , / 5  = "r,-1 - -  %-2  C, = ½ (y,e~ + y,_, + F,_I - -  F,) -- y, -- E , .  

F, = 7 ,  - -  *'~'z--1 - -  ~/,--1 + 7~--2 

These formulas are valid for i = 1, 2 , . . . ,  n - 1  with the convention tha t  7-~ = 
7,-~ = 7,-~ = 0. The formula for F~ can be used for i = 0 by setting 7-~ = 0. (Note  
tha t  Do = E0 = 0 as they should.) Finally the coefficients B, and C, at  the endpoints 
are given by  

Co = C 1 -  10F0, B0 = y l -  Y0-- C 0 -  F0, 

C~ = C~+I + 10F~-1, B ,  = y= - y=-I + C~ - F~-I .  

Q U I N D F .  We now assume S ( x , )  = y, and S ' ( x , )  = y ;  are specified at  each of 
the knots. We must  exclude the possibility tha t  x, = x,+~ as this would imply a mul- 
tiplicity of 4, which is not feasible for quintic splines. 

We could proceed as in the calculation of Q U I N A T  by using minimum support  
B-splines of degree 2 to form a basis for the class of third derivatives of the quintic 
natural  splines. Of course, the B-splines would also have to be of deficiency 2. We 
would again obtain a pentadiagonal system of equations which could be solved and 
then the coefficients for the deficient quintic natural  spline could be calculated. An 
algorithm based on this method was developed and tested by the present authors 
[5]. 

However,  we have found tha t  we can obtain a more efficient algorithm by impos- 
ing the appropriate  continuity conditions directly on eq, (1) at  the knots. A similar 
method was used by  Sp~th [8] to obtain an algorithm for the deficient quintic spline 
but  with different end conditions. (He specified the second derivatives at  the end- 
points of the interval instead of requiring the third derivative to be zero at the 
endpoints as for the natural  spline.) 
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Using eq. (1) we see at  once tha t  S'(x,)  = y ;  implies B ,  = y.' .  Then imposing 
the requirement tha t  S(x) ,  S ' ( x ) ,  and S ' ( x )  be continuous at  x,+~, i -- 0, 1 , . . . ,  
n - 2 ,  we obtain by setting t = h, = x.+, - x, in eq. (1) : 

Y,+I = y, -}- B ,h ,  Jr C,h, 2 -}- D,h ,  3 Jr E , h ~  Jr F,h,  ~ 

B,+~ = B, Jr 2C,h, Jr 3D,h,  2 Jr 4E,h ,  ~ Jr 5F,h ,  4 (7) 

C,+1 = C, Jr 3D,h,  Jr 6E,h, 2 Jr 10F,h, 3. 

If we multiply these three equations by 10/h, ~, - 4 / h ,  2, 1 /h~,  respectively, and add 
the results, we eliminate E,  and F, and obtain 

D, = 10 y,+l - y, 4B,+1 Jr 6B, C,+I - 3C, 
h, ~ h, 2 Jr h~ " (8) 

We note tha t  D,  = S " ( x ,  Jr 0)/6 .  In order to obtain a similar expression for 
S " ( x ,  - 0) /6 ,  we replace the subscript i j r  i by ~ - 1  consistently (noting that  then 
h, = X,+l - x, is to be replaced by x,_~ - x, -- - h ,_ l ) .  We obtain 

i,~,,,, y, - y , - ,  6B, -}- 4B,_1 3C, -- C,_, 
~,.~ ~ x , - O )  = 10 + (9) 

h3_1 ~ • h,-1 h,_~ 

Now since the third derivative is continuous at x , ,  we can equate the values of 
S " ( x ,  Jr 0) /6  and S " ( x ,  - 0) /6  in eqs. (8) and (9) to obtain the following set of 
equations for the C, : 

1 C,_, + ( 3 3 )  1 
- h,_-~ h ~ _ + ~ ,  C. - ~ C.+I 

= 10 (y,+l_ --  y, y , - - y , - ~  4B,+1 Jr 6B, 6B. Jr 4B,_1 
\ h,~ h:-, ] h, ~ + h~-~ " 

These equations hold for i = 1, 2 , . . . ,  n - 1 .  Two additional equations can be ob- 
tained from the conditions S"(xo) = S " ( x , )  = 0 by setting i = 0 in eq. (8) and 
by setting i -- n in eq. (9) : 

3 1 4B1 Jr 6Bo 
h0 C O - h o C l =  1 0 Y l - Y °  ho s ho ~ ' 

1 C,~-I Jr 3 y., - y.-1 6B. Jr 4B._1 -- h._x ~ C. = - 1 0  Jr 
hn-1  

This system of n j r  I equations is solved to obtain the C,.  If we make the substitu- 
tions 

X ~ D s  

y = E , h , ,  

z = F,h,  2, 

p -- (y,+l -- y,  -- B ,h ,  - C,h,~)/h,  3, 

q = (B,+I - B ,  --  2 C , h , ) / h ,  2, 

r = (C,+1 - C , ) / h , ,  

then for each i eqs. (7) form a system of three equations in the three unknowns 
x, y, z, and the system is solved by Gaussian elimination. The backward substitution 
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yields formulas for z, y, x in the following order: 

3. Tests 

g = q - 3p 

z = r -  3 ( p W g )  

y = g - z - z  

x = p - y - z  

F~ = z/h, 2 

E, = y/h, 

D , = x .  

These procedures have been tested in Algol 60 on the Telefunken TR-440 computer 
at the Leibniz-Rechenzentrum of the Bavarian Academy of Sciences, Munich, and 
in Algol W on the IBM 360/67 at the Stanford Center for Information Processing. 
The latter tests included timing tests of the procedures with the number of knots 
N = N2 - N1 + 1 ranging up to 1000. The time was found to be approximately 
proportional to the number N of knots. The time T in seconds for the execution of 
the procedure Q UINA T was found to be approximately T = .00193N, whereas for 
the procedure N A T S P L I N E  of Algorithm 472 [6] with m = 3 it was found to be 
T = .0120N, or over six times as great. For the procedure QUINEQ the time was 
approximately T = .00064N, whereas for the procedure N A T S P L I N E E Q  of 
Algorithm 472 [6] with m = 3 it was T = .0038N, or nearly six times as great. For  
the procedure QUINDF the time was approximately T = .00087N, whereas for the 
procedure Q U I N A T  with 2N knots, consecutive knots being equal in pairs, the t ime 
was T = .00325N, or nearly four times as great. Moreover, to compute the same 
results the procedure Q UINA T requires approximately twice as much storage for 
the arrays used as does the procedure Q UINDF. Note also that  from the preceding 
formula for the time required by the procedure QUINAT,  the time for 2N distinct 
knots would be T = .00386N, which can be compared with T = .00325N given 
above for N pairs of equal knots. The reduction for the case of double knots occurs 
because some calculations are omitted when knots are coincident. 

These timing comparisons show that  it is definitely advantageous to use these 
special procedures for the quintic natural spline rather than the general cases given 
in Algorithm 472 [6] with m = 3. 

Tests of the accuracy and correctness of the coefficients computed by the proce- 
dures Q UINA T, Q UINEQ, and Q UINDF were carried out as described in Algo- 
gorithm 472 [6]. Table I shows the results of a typical run using QUINDF for 5 
nonequidistant points. The values of the function and its first derivatives were 
specified. The first line of each entry gives the tabulated quantities at  the given 
value of x which is the lefthand endpoint of the subinterval; the second line of each 
entry gives the tabulated values at the righthand endpoint of the same subinterval. 
The close agreement of the quantities S(x) ,  S ' (x) ,  S ' ( x ) / 2 ,  and S " ( x ) / 6  shows 
tha t  the quintic spline function and its derivatives satisfy the required continuity 
conditions. This is a good indication of the correctness of the results. Note that  the 
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Table I. Quintic Spline Calculated by QUINDF 
(Machine precision approximately 7 decimal digits.) 

-3.000000 

-i.000000 

3.000000 

4.000000 

s(x) 

7.000000 

ii.00000 

ii.00000 

26.00000 

26.00000 

55.99942 

56.00000 

29.00000 

29.00000 

S'(x) 

2.000000 

15,00000 

15.00000 

9.999996 

10.00000 

-27100066 

-27.00000 

-30.00000 

-30.00000 

s"(x)/2 

-6.108377 

7.674876 

7.674870 

-1.908880 

-1.908880 

-5.264791 

-5.264426 

-7.754811 

S" ' (x) /6  

-5.722046'-06 

-4.933508 

-4.933474 

16,59851 

16,59848 

20,03839 

20.03847 

-1.907349'-06 

S""(x)/24 

2.956286 

-4.189662 

-8.157658 

18.92365 

-9.059000 

9.632320 

-2].28366 

11,26443 

SV(x)/120 

-0.7145951 

-0.7145951 

5.416262 

5.416262 

1.246088 

1.246088 

6.509618 

6.509618 

fourth and fifth derivatives are discontinuous. Essentially the same results were 
obtained by using Q U I N A T  with 10 knots, in equal pairs. In  addition, accuracy 
and timing tests were carried out for large values of N, including N = 1000 and 
5000, and produced very satisfactory results. 
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ALGORITHM 

[Only that portion of the listing which gives the introductory comments explain- 
ing the algorithm is printed here. The complete listing is available from the ACM 
Distribution Service (see inside back cover for order form), or may be found in 
"Collected Algorithms from ACM."] 

PROCEDURE QUINAT(INTEGER VALUE NI,N2; REAL ARRAY X,Y,B,C,D,E,F(*)); 1 
COMMENT QUINAT COMPUTES THE COEFFICIENTS OF A QUINTIC NATURAL SPLINE 2 

S(X) INTERPOLATING THE ORDINATES Y(I) AT POINTS X(I), I = N1 3 
THROUGH N2. FOR XX IN (X(I),X(I+I)) THE VALUE OF THE SPLINE 4 
FUNCTION S(XX) IS GIVEN BY THE FIFTH DEGREE POLYNOMIAL: 5 
S(XX) = ((((F(I)*T+E(I))*T+D(I))*T+C(I))*T+B(I))*T+Y(I) 6 
WITH T = XX - X(I). 7 
INPUT: 8 

NI,N2 SUBSCRIPT OF FIRST AND LAST DATA POINT RESPECTIVELY, 9 
IT IS REQUIRED THAT N2 > N1 + i, 10 

X,Y(NI::N2) ARRAYS WITH X(I) AS ABSCISSA AND Y(I) AS ORDINATE ii 
OF THE I-TH DATA POINT. THE ELEMENTS OF THE ARRAY X 12 
MUST BE STRICTLY MONOTONE INCREASING (BUT SEE BELOW FOR 13 
EXCEPTIONS TO THIS). 14 

OUTPUT: 15 
B,C,D,E,F(NI::N2) ARRAYS COLLECTING THE COEFFICIENTS OF THE 16 

QUINTIC NATURAL SPLINE S(XX) AS DESCRIBED ABOVE. 17 
SPECIFICALLY B(I) = S'(X(I)), C(I) = S"(X(I))/2, 18 
D(I) = S"'(X(I))/6, E(I) = S""(X(I))/24, 19 
F(I) = S ..... (X(I)+0)/120. F(N2) IS NEITHER USED OR 20 
ALTERED. THE ARRAYS B,C,D,E,F MUST ALWAYS BE DISTINCT. 21. 

OPTIONS: 22. 
i. THE REQUIREMENT THAT THE ELEMENTS OF THE ARRAY X BE 23. 

STRICTLY MONOTONE INCREASING CAN BE RELAXED TO ALLOW TWO 24. 
OR THREE CONSECUTIVE ABSCISSAS TO BE EQUAL AND THEN 25. 
SPECIFYING VALUES OF THE FIRST AND SECOND DERIVATIVES OF 26. 
THE SPLINE FUNCTION AT SOME OF THE INTERPOLATING POINTS. 27. 
SPECIFICALLY 28. 
IF X(J) = X(J+I) THEN S(X(J)) = Y(J) AND S'(X(J)) = Y(J+I), 29. 
IF X(J) = X(J+I) = X(J+2) THEN IN ADDITION S"(X(J)) =Y(J+2). 30. 
NOTE THAT S""(X) IS DISCONTINUOUS AT A DOUBLE KNOT AND IN 31. 
ADDITION S"'(X) IS DISCONTINUOUS AT A TRIPLE KNOT. AT A 32. 
DOUBLE KNOT, X(J) = X(J+I), THE OUTPUT COEFFICIENTS HAVE THE 33. 
FOLLOWING VALUES: 34. 

B(J) = S'(X(J)) = B(J+I) 35# 
C(J) = S"(X(J))/2 = C(J+I} 36. 
D(J) = S"'(X(J))/6 = D(J+I) 37. 
E(J) = S""(X(J)-0)/24 E(J+I) = S""(X(J)+0)/24 38. 
F(J) = S ..... (X(J)-0)/120 F(J+I) = S ..... (X(J)+0)/120 39. 

THE REPRESENTATION OF S(XX) REMAINS VALID IN ALL INTERVALS 40. 
PROVIDED THE REDEFINITION Y(J+I) := Y(J) IS MADE 41. 
IMMEDIATELY AFTER THE CALL OF THE PROCEDURE QUINAT. AT A 42. 
TRIPLE KNOT, X(J) = X(J+l) = X(J+2), THE OUTPUT COEFFICIENTS 43. 
HAVE THE FOLLOWING VALUES: 44. 

B(J) = S'(X(J)) = B(J+I) = B(J+2) 45. 
C(J) = S"(X(J))/2 = C(J+I) = C(J+2) 46. 
D(J) = S"'(X(J)-0)/6 D(J+I) = 0 D(J+2) = S"'(X(J)+0)/6 47. 
E(J) = S""(X(J)-0)/24 E(J+I) = 0 E(J+2) = S""(X(J)+0)/24 48. 
F(J) = S ..... (X(J)-0)/120 F(J+I)=0 F(J+2)=S ..... (X(J)+0)/120 49. 

THE REPRESENTATION OF S(XX) REMAINS VALID IN ALL INTERVALS 50. 
PROVIDED THE REDEFINITION Y(J+2) := Y(J+I) := Y(J) IS MADE 51. 
IMMEDIATELY AFTER THE CALL OF THE PROCEDURE QUINAT. 52. 

2. THE ARRAY X MAY BE MONOTONE DECREASING INSTEAD OF 53. 
INCREASING; 54. 

IF N2 > N1 + 1 THEN 55. 
BEGIN 56. 
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