begin 

    comment library 1;

    boolean 
        a, 
        b, 
        c; 
    integer 
        i, 
        j; 
    a := b := c := true; 
    i := j := 1; 
    a := i = j; 
    b := i \= j; 
    c := a := b; 
    c := a = b; 
    c = a = b; 
    outreal(1, if a then 0 else if b then 2 else 3); 
end 


algol

begin 

    comment library5;

    real procedure p(q); 
        real procedure 
            q; 
        p := abs(q( - 6.4)); 

    outreal(1, p(abs))
end 


algol

begin 

    comment library 1;

    real 
        x; 
    x := 0; 
    x := (x + 1.1) / 3.3; 
    x := (x + 2.2) / 6.6; 
    x := (x + 3.3) / 9.9; 
    x := (x + 4.4) / 13.2; 
    x := (x + 5.5) / 16.5; 
    x := (x + 6.6) / 19.8; 
    x := (x + 7.7) / 23.1; 
    x := (x + 8.8) / 26.4; 
    x := (x + 9.9) / 29.7; 
    x := (x + 11.0) / 33.0; 
    x := (x + 12.1) / 36.3; 
    x := (x + 13.2) / 39.6; 
    x := (x + 14.3) / 42.9; 
    x := (x + 15.4) / 46.2; 
    x := (x + 16.5) / 49.5; 
    x := (x + 17.6) / 52.8; 
    x := (x + 18.7) / 56.1; 
    x := (x + 19.8) / 59.4; 
    x := (x + 20.9) / 62.7; 
    x := (x + 22.0) / 66.0; 
    x := (x + 23.1) / 69.3; 
    x := (x + 24.2) / 72.6; 
    x := (x + 25.3) / 75.9; 
    x := (x + 26.4) / 79.2; 
    x := (x + 27.5) / 82.5; 
    x := (x + 28.6) / 85.8; 
    x := (x + 29.7) / 89.1; 
    x := (x + 30.8) / 92.4; 
    x := (x + 31.9) / 95.7; 
    x := (x + 33.0) / 99.0; 
    x := (x + 34.1) / 102.3; 
    x := (x + 35.2) / 105.6; 
    x := (x + 36.3) / 108.9; 
    x := (x + 37.4) / 112.2; 
    x := (x + 38.5) / 115.5; 
    x := (x + 39.6) / 118.8; 
    x := (x + 40.7) / 122.1; 
    x := (x + 41.8) / 125.4; 
    x := (x + 42.9) / 128.7; 
    x := (x + 44.0) / 132.0; 
    x := (x + 45.1) / 135.3; 
    x := (x + 46.2) / 138.6; 
    x := (x + 47.3) / 141.9; 
    x := (x + 48.4) / 145.2; 
    x := (x + 49.5) / 148.5; 
    x := (x + 50.6) / 151.8; 
    x := (x + 51.7) / 155.1; 
    x := (x + 52.8) / 158.4; 
    x := (x + 53.9) / 161.7; 
    x := (x + 55.0) / 165.0; 
    x := (x + 56.1) / 168.3; 
    x := (x + 57.2) / 171.6; 
    x := (x + 58.3) / 174.9; 
    x := (x + 59.4) / 178.2; 
    x := (x + 60.5) / 181.5; 
    x := (x + 61.6) / 184.8; 
    x := (x + 62.7) / 188.1; 
    x := (x + 63.8) / 191.4; 
    x := (x + 64.9) / 194.7; 
    x := (x + 66.0) / 198.0; 
    x := (x + 67.1) / 201.3; 
    x := (x + 68.2) / 204.6; 
    x := (x + 69.3) / 207.9; 
    x := (x + 70.4) / 211.2; 
    x := (x + 71.5) / 214.5; 
    x := (x + 72.6) / 217.8; 
    x := (x + 73.7) / 221.1; 
    x := (x + 74.8) / 224.4; 
    x := (x + 75.9) / 227.7; 
    x := (x + 77.0) / 231.0; 
    x := (x + 78.1) / 234.3; 
    x := (x + 79.2) / 237.6; 
    x := (x + 80.3) / 240.9; 
    x := (x + 81.4) / 244.2; 
    x := (x + 82.5) / 247.5; 
    x := (x + 83.6) / 250.8; 
    x := (x + 84.7) / 254.1; 
    x := (x + 85.8) / 257.4; 
    x := (x + 86.9) / 260.7; 
    x := (x + 88.0) / 264.0; 
    x := (x + 89.1) / 267.3; 
    x := (x + 90.2) / 270.6; 
    x := (x + 91.3) / 273.9; 
    x := (x + 92.4) / 277.2; 
    x := (x + 93.5) / 280.5; 
    x := (x + 94.6) / 283.8; 
    x := (x + 95.7) / 287.1; 
    x := (x + 96.8) / 290.4; 
    x := (x + 97.9) / 293.7; 
    x := (x + 99.0) / 297.0; 
    x := (x + 100.1) / 300.3; 
    x := (x + 101.2) / 303.6; 
    x := (x + 102.3) / 306.9; 
    x := (x + 103.4) / 310.2; 
    x := (x + 104.5) / 313.5; 
    x := (x + 105.6) / 316.8; 
    x := (x + 106.7) / 320.1; 
    x := (x + 107.8) / 323.4; 
    x := (x + 108.9) / 326.7; 
    x := (x + 110.0) / 330.0; 
    outreal(1, x); 
end 



algol

begin 

    comment library 1;

    procedure p(st1, st2); 
        string 
            st1, 
            st2; 
        ; 

    p( [  1.1], [  3.3] ); 
    p( [  2.2], [  6.6] ); 
    p( [  3.3], [  9.9] ); 
    p( [  4.4], [ 13.2] ); 
    p( [  5.5], [ 16.5] ); 
    p( [  6.6], [ 19.8] ); 
    p( [  7.7], [ 23.1] ); 
    p( [  8.8], [ 26.4] ); 
    p( [  9.9], [ 29.7] ); 
    p( [ 11.0], [ 33.0] ); 
    p( [ 12.1], [ 36.3] ); 
    p( [ 13.2], [ 39.6] ); 
    p( [ 14.3], [ 42.9] ); 
    p( [ 15.4], [ 46.2] ); 
    p( [ 16.5], [ 49.5] ); 
    p( [ 17.6], [ 52.8] ); 
    p( [ 18.7], [ 56.1] ); 
    p( [ 19.8], [ 59.4] ); 
    p( [ 20.9], [ 62.7] ); 
    p( [ 22.0], [ 66.0] ); 
    p( [ 23.1], [ 69.3] ); 
    p( [ 24.2], [ 72.6] ); 
    p( [ 25.3], [ 75.9] ); 
    p( [ 26.4], [ 79.2] ); 
    p( [ 27.5], [ 82.5] ); 
    p( [ 28.6], [ 85.8] ); 
    p( [ 29.7], [ 89.1] ); 
    p( [ 30.8], [ 92.4] ); 
    p( [ 31.9], [ 95.7] ); 
    p( [ 33.0], [ 99.0] ); 
    p( [ 34.1], [102.3] ); 
    p( [ 35.2], [105.6] ); 
    p( [ 36.3], [108.9] ); 
    p( [ 37.4], [112.2] ); 
    p( [ 38.5], [115.5] ); 
    p( [ 39.6], [118.8] ); 
    p( [ 40.7], [122.1] ); 
    p( [ 41.8], [125.4] ); 
    p( [ 42.9], [128.7] ); 
    p( [ 44.0], [132.0] ); 
    p( [ 45.1], [135.3] ); 
    p( [ 46.2], [138.6] ); 
    p( [ 47.3], [141.9] ); 
    p( [ 48.4], [145.2] ); 
    p( [ 49.5], [148.5] ); 
    p( [ 50.6], [151.8] ); 
    p( [ 51.7], [155.1] ); 
    p( [ 52.8], [158.4] ); 
    p( [ 53.9], [161.7] ); 
    p( [ 55.0], [165.0] ); 
    p( [ 56.1], [168.3] ); 
    p( [ 57.2], [171.6] ); 
    p( [ 58.3], [174.9] ); 
    p( [ 59.4], [178.2] ); 
    p( [ 60.5], [181.5] ); 
    p( [ 61.6], [184.8] ); 
    p( [ 62.7], [188.1] ); 
    p( [ 63.8], [191.4] ); 
    p( [ 64.9], [194.7] ); 
    p( [ 66.0], [198.0] ); 
    p( [ 67.1], [201.3] ); 
    p( [ 68.2], [204.6] ); 
    p( [ 69.3], [207.9] ); 
    p( [ 70.4], [211.2] ); 
    p( [ 71.5], [214.5] ); 
    p( [ 72.6], [217.8] ); 
    p( [ 73.7], [221.1] ); 
    p( [ 74.8], [224.4] ); 
    p( [ 75.9], [227.7] ); 
    p( [ 77.0], [231.0] ); 
    p( [ 78.1], [234.3] ); 
    p( [ 79.2], [237.6] ); 
    p( [ 80.3], [240.9] ); 
    p( [ 81.4], [244.2] ); 
    p( [ 82.5], [247.5] ); 
    p( [ 83.6], [250.8] ); 
    p( [ 84.7], [254.1] ); 
    p( [ 85.8], [257.4] ); 
    p( [ 86.9], [260.7] ); 
    p( [ 88.0], [264.0] ); 
    p( [ 89.1], [267.3] ); 
    p( [ 90.2], [270.6] ); 
    p( [ 91.3], [273.9] ); 
    p( [ 92.4], [277.2] ); 
    p( [ 93.5], [280.5] ); 
    p( [ 94.6], [283.8] ); 
    p( [ 95.7], [287.1] ); 
    p( [ 96.8], [290.4] ); 
    p( [ 97.9], [293.7] ); 
    p( [ 99.0], [297.0] ); 
    p( [100.1], [300.3] ); 
    p( [101.2], [303.6] ); 
    p( [102.3], [306.9] ); 
    p( [103.4], [310.2] ); 
    p( [104.5], [313.5] ); 
    p( [105.6], [316.8] ); 
    p( [106.7], [320.1] ); 
    p( [107.8], [323.4] ); 
    p( [108.9], [326.7] ); 
    p( [110.0], [330.0] ); 
    outreal(1, 0)
end 


algol

begin 

    comment library 1;

    integer 
        i; 
    procedure p(a, b); 
        value 
            a; 
        value 
            b; 
        integer 
            a, 
            b; 
        i := a + b; 

    p(3, 4); 
    outreal(1, i); 
end 


algol

begin 

    comment library 1;

    integer 
        i; 
    procedure p(a, b); 
        integer 
            a; 
        integer 
            b; 
        i := a + b; 

    p(3, 4); 
    outreal(1, i); 
end 



algol
begin 

    comment library 1;

    boolean b; 
    real x; 
    integer array a[ + 1 : .6@2]; 
    integer i, n; 
    b := false; 
    n := @+2 * .6; 
    x := 0; 

    comment   ;

    begin 

        comment   ;

        own real array c0[0 : 1]; 
        procedure p(a, b, c); 
            value a; 
            integer a; 
            string b; 
            boolean array c; 
            begin 
            begin 
                c[(1)] := true or .8 > c0[if true then 0 else 
                    1]; 
                c[ - ( - 2)] := false and .4 >= x + 500@-2; 
                c[.3@1] := .3 \= (0) and (if @1 \= @4 then true 
                    else false ); 
                if false then 
                    p(a, [string], c)
                else 

            end; 
           ; 
            for i := 1 step 1 until 3 do 
                begin 
                if .3 <= 6 div 2 then 
                    goto out; 
              out : 
                end 
            end; 

        real procedure a0l; 
            a0l := 
                if x < x then 
                    @4
                else 
                    .6; 

        integer procedure ii; 
            ii := + 1 * (3 div (4)) - @2 + a0l; 

        begin 
            boolean array c[ii + ii div ii / ii : 1^ii + 3]; 
            c0[0] := 
                if b and (1) = (2) then 
                    0
                else 
                    0; 
            p( + 1)l : ( [] )m : (c); 
            i := - n - i * n div n^1; 
            goto 
                if 1 - .9 = ii / 6 and ii <= a0l then 
                    l
                else 
                    l1; 
          l : 
          l1 : 
            for i := i step n until ii do 
               ; 
            if + .3 + @2 = + (.3) then 
                b := not b equiv false 
            else 
                b := @1 > 3 equiv true; 
            for i := ((1)) step + (1) until + 60 do 
                begin 
                a[@1 - 9] := 1 / .1 - 0.1; 
                a[i] := 
                    if (true ) or a[1] - 1 \= a[@1 - 9] * 1 impl 
                        false then 
                        + 1
                    else 
                        - 1
                end; 
            for i := 1, 
                - 9 + a[1] step - 9 + a[1] until .6@1 do 
                n := 
                    if + a[1] + 0 = a[1] then 
                        0
                    else 
                        @1 - 9 + n; 
            if + n \= + 1 equiv n = - n or 0 < + n and 0 + n >= 0
                then 

            else 
                goto l2; 
            b := b impl n > + 0 equiv 0 < - a[1] / @1 or true; 
          l2 : 
            goto (l3); 
          l3 : 
            b := true and false or false 
                impl true equiv + 0 \= - 1; 
            n := 1^n * 1 + (@1) * @-2^(1) / (2) + n; 
            b := true equiv - (0) div 1 > - a[1] or 
                not true equiv not true; 
            b := not false equiv .1 = 1 impl true 
                impl 0 \= 1; 
            for i := 1 while true do 
                goto exit; 
          exit : 
            for i := i while false do 
                if - 0 >= + 6 then 
                    for n := 1 while 0 >= - 1 or + n <= + (1) do 
                        for n := 1 do 
                           ; 
            b := 0 < @1 impl + 1 <= .1 or - 3 <= - 6 and true 
                and + 1 <= @1; 
            b := b impl - (1) < (2) equiv @1 = .1 and - (1) <= 0; 
            if c[1] impl not + 1 = @1 then 
               ; 
            x := a[1]^.5^@1 + (if not n >= .1 or (if true then 
                false else true ) then - 1 else + 2); 
            begin 
                integer procedure a0(b, c); 
                    boolean b, c; 
                    a0 := 
                        if b impl not c then 
                            (1)^2
                        else if c and not b then 
                            (1)
                        else 
                            (2); 

                x := x + a0(true , false ) + a0(false , true impl .4
                    < .6); 
                n := x * a0( not 0 = @1, 1 >= @2) - a0( not - 1 >
                    .1, not .1 <= (1))
            end; 
            begin 
                goto l4; 
              l4 : 
                begin 
                    for i := i step if 1 < 2 then 1 else 2 until 
                            - 10 do 

                end; 
                if 
                    if b then 
                        .1 > @1
                    else 
                        not @1 \= .6 then 
                    begin 
                    x := x + 100
                    end 
                else 
                    for i := 1 step .3@1 until if not (false )
                            then 1 else a[1] do 
                        b := true 
            end; 
            b := false 
        end; 
        begin 
            real y; 
            array d[c0[0] : + a[1] div 1 + 1 + c0[0]]; 
            boolean procedure b1; 
                begin 
                own boolean x; 
                x := 
                    if d[0] < 0 then 
                        not d[0] <= (0) impl (d[0] >= (1))
                    else 
                        b; 
                b := x and @1 + d[0] > (1) equiv (d[0] \= 0); 
                b1 := b or @1 + d[0] = d[0] equiv (1) > d[0]
                end; 

            switch s := l10, l11; 
            d[0] := 0; 
            b := b1 impl @1 + (1) \= d[0] and b; 
          l10 :; 
          l11 :; 
        end; 
        begin 
            switch ss := la, lb; 
            own integer p; 
            procedure q(l); 
                label l; 
                begin 
                array r[(0) : - ( - 1)], s[1 : @1]; 
                for i := 0, 
                    + 1, 
                    .3, 
                    @1, 
                    (2), 
                    if b then 0 else 1 do 
                    begin 

                    end; 
                for i := 1 while i + (0) >= 9, 
                    i + 1 while + i < 10 do 
                    s[i] := 0; 
                for i := 1 + s[2] while - i > 0, 
                    i + (1) while not i >= 10 do 
                    if b then 

                end; 

            q(la); 
          la :; 
          lb :; 
        end; 
        begin 
            procedure p; 
                begin 
               ; 
                for i := 1 while if 1 < 2 then 0 = a[1] else (a[1]) > 
0
                        do 

                end; 

            array d[1 : if 1 < 2 then 2 else 1]; 
            for i := 1 while .1 < - 3, 
                i + 1 while (i) < 3 do 
                d[i] := i; 
            for i := d[2], 
                1 step (1) until (1) do 
                if 1 < 2 then 
                  l : 
                else 
                    begin 

                    end; 
            p;
            for i := 1 step @1 - 9 until @1 - 9, 
                1 while @1 > 11 do 
                x := x + n
        end; 
        outreal(1, x + n); 
    end 
end 


algol
begin 
    begin 
    real a;
    goto l;
    l: while 
    end 
end 

algol
begin 
    procedure p(a);
    value a: ;
    p(1)
end 



algol
begin 
    procedure p(a);
    real a: ;
    p(1.0)
end 

kdf9