A synthetic benchmark

H J Curnow and B A Wichmann
Central Computer Agency, Riverwalk House, London SW1P 4RT
National Physical Laboratory, Teddington, Middlesex TW1MD

Computer JournalVol 19, No 1, pp43-49. 1976

Abstract
A simple method of measuring performance is by means of a benctprark
gram. Unless such a program is carefully constructed it is unlikely to healyp
of the many thousands of programs run at an installation. An examptnbremk
for measuring the processor power of scientific computers is presetiis is
compared with other methods of assessing computer power. (Red@aeember
1974)

An important characteristic of computers used for scientifork is the speed of
the central processor unit. A simple technique for compgtimis speed for a variety
of machines is to time some clearly defined task on each onfartunately the ratio
of speeds obtained varies enormously with the nature ofakk being performed.
If the task is defined informally in words, large variatiorencbe caused by small
differences in the tasks actually performed on the machifiégse variations can be
largely overcome by using a high level language to speciéyttisk. An additional
advantage of this method is that the efficiency of the comgitel the differences in
machine architecture are automatically taken into accdardny case, most scientific
programming is performed in high level languages, so thesasorements will be a
better guide to the machine’s capabilities than measurentesed on use of low level
languages.

An example of the use of machine-independent languages &sure processing
speed appears in Wichmann [7] which gives the times takendroseconds to execute
42 basic statements in ALGOL 60 on some 50 machines. The tiraesmeasured by
placing each statement in a loop executed sufficiently déigjive a reasonable interval
to measure. The time for the statement is found by taking fitiminterval the same
measurement with a dummy statement and dividing by the nuoflyepetitions. The
two thousand or so time measurements provide a lot of infaomabout the various
implementations of ALGOL 60 but do not directly give a perfiance measure. With
basic statement times for only two machines, the averageeod2 ratios between the
times provides a simple comparative measure. This techrégun be generalised by
assuming that the timés; for a statement (i = 1 to n) on machingj (j = 1 tom)
satisfies

nj%SiXMj

where S; is a time depending only upon the statement &g depends only upon
the machine (arbitrarily take one machine as unity). A leastares fitting process
gives theS; and M; from the times (see [8], page 70, for details). Tife provide a
comparative measure without having to assign weights tintfieidual statements.

Figure 1: Some interpretive instruction counts

Whetstone Algol context Dynamic Static
instruction frequency per frequency per
thousand thousand

Take Integer Result Access to a simple

integer variable 129 73.5
Take Real Address Access to real array

element or storing

simple real variable 68 48.4
X Integer or Real

multiplication 36.2 18.9
Procedure entry 20.1 18.7
GoTo Accumulator goto 2 7.4
Call Block Entry to a block

other than procedure

body or for statement 0.2 1.3
IMPlies Boolean operator 0 0

1 Statisticsof language usage

The comparative measure from the basic statements givere aboot a true perfor-
mance indicator, because the measure does not take intora¢hat some features of
ALGOL 60 are much more frequently used than others. Moreawany of the basic
statements are handled with enormous variation in effigieRor instance, executing
a block containing only a simple variable declaration pr@Etuno instructions with
the 1900 XALT compiler but involves two supervisor callsiwihe 360 ALGOL 60 F
compiler. This variation is illustrated in Fig. 2, which ste®the times divided by the
basic machine speed (tii¢;) for a few of the basic statements.

Weights for the basic statements must be based upon smitidtianguage usage.
Such information has been collected at NPL and Oxford Usitsefrom 949 programs
(Wichmann [6]). In the Whetstone system (Randell and Rug&3)lthe ALGOL pro-
gram is first translated into an intermediate code which én texecuted by an inter-
preter program. By modification of the translator and intetgr programs both static
and dynamic frequency counts of some 124 instructions wieteasreed. Part of this in-
formation is produced in Fig. 1. Weights for the basic staets have been calculated
from these statistics to give a performance measure sitidre Gibson mix.

The ALGOL statement mix has a number of disadvantages l\riitss not always
easy to obtain in one program sufficiently accurate procdsses for the 42 measure-
ments. Secondly, many of the basic statements were tooeitopeflect the general
language features they were supposed to represent. Theastis case of this was
that constant subscripts were used in the array accessiegstnts. The program con-
taining the statements was too simple to be typical of sifieqtrograms in general
and in consequence an optimising compiler could perforrteb#ian on average pro-
grams. Fortunately, moving code out of loops and similaemesive optimisation is
rarely performed by ALGOL 60 compilers and hence the teamigras viable when
confined to that language.

A single program more typical of ALGOL usage was thereforpiieed to measure
processor speed. Such programs are called synthetic banichm

Figure 2: Variation in performance of ALGOL basic statensent
Statements

} x: = abs (y) array a[1:1); p2(x,y) x:=sin{y)
Machines i i

Performance
Factor

1906 A
Four times
expected time

Twice expected
time

€DC 6600

360/ Delft Expected time

86700

'/Z expected
time
108,

2 Thedesign of the benchmark

The design of the program was a compromise between requitsroe simplicity and
complexity. The program had to be simple enough to be easihsterred from one
machine to another and translated into different langualjedso had to be possible
to produce the Whetstone intermediate code, calculate #dupidéncies of the differ-
ent instructions and match them to the available statisfixse simple program was
constructed using the basic statements described abavwehlea this was, translated
into FORTRAN and put through optimising compilers, largetpaf the program were
not executed because they were not logically necessarg. dramatically but also of
significance such a compiler could make a simple program tram aintypically high
speed by using the fast registers as temporary data stdras.iffbecame apparent that
the program should be complex enough to seem typical wheepted to an intelligent
compiler. It was impossible to meet this requirement comafebecause the necessary
information about program structure was not available,thaarchitecture of comput-
ers is so diverse. The best course to follow appeared to bestore that the program
could not be logically optimised and to hope that by writimgle which looked natural
the use of fast registers and other hardware features weudhproximately correct.
The program would then provide a useful measure of perfocaavith well written
source code. Language peculiarities were to be avoidedasdhia program would be
useful for comparing languages having a similar subset.

Thus one is led to having a number of modules of different sypsing different
language features, each executed many times by inclusitivinva for loop. Each
module should represent a genuine calculation, prefegaioigiucing different results

on each execution but capable of indefinite repetition witheading to numeric over-
flow or other mishap. The structure of the modules and the eurobrepetitions of
each should be chosen to match the frequencies of the Whetiststnuctions which
would be generated by the benchmark program to the insbrufittquencies obtained
from the 949 programs.

The choice of the method of fitting the benchmark program éahalysis is an
important matter. As many instructions as possible shoelditted by the choice of
a comparatively small number of module repetition countsie @ethod would be
to minimise the root mean square difference between theutt&in frequencies in
the benchmark and in the analysis. A refinement would be tghtéhe instructions
according to their frequency or to their execution timessthiving greater weight to
fitting the more important instructions. The modules thdwesewould be redesigned
until the fit obtained by the minimisation process was a gowl @ he methods actually
used will be described later.

3 Construction of the program

3.1 Themodules

The computations to be carried out should be genuine cgiootaproducing differ-
ent results on each execution, and capable of indefinitditiope For the elementary
mathematical operations a set of transformation stateswes investigated. The state-
ments in ALGOL were:

xl:= (z14+ 22+ 23 — 24) x 0.5;

x2:= (1 + 22 — 23 4+ x4) x 0.5;
3 := (xl — 22 + 23 + 24) x 0.5;
x4 = (—x1 4+ 22+ 23 + x4) x 0.5;

This transformation provides a convergent sequence; aglues which theoreti-
cally tend to the solution

rl=22=23=24=1.0

but the convergence for approximate computation and faerothlues of ther's are
of interest. It was found that the transformation is coneatdor all values of the's,
but to allow for machine accuracy limits and to provide somanging computations
the factor 0.5 in the statements was replaced by 0.499975arBitrary choice of
initial values such agl = 1.0, 22 = 23 = 24 = —1.0 gives a plausible sequence
of calculations. This scheme of computation was used asakis for three modules
(Nos. 1. 2 and 3) in which the variables were respectivelyptgnidentifiers, array
elements and elements of an array parameter of the procpdisee program text in
the Appendix). A programmed loop was includedpato control the proportion of
parameter references to procedure calls. Other almogirsaay transformations were
used in Modules Nos. 7 and 11. The first used trigonometrictfons as follows:

x =t x arctan(2.0 X sin(x) x cos(x)/(cos(x x y) + cos(x — y) — 1.0));

y =t x arctan(2.0 x sin(y) x cos(y)/(cos(x + y) + cos(xz — y) — 1.0));

With a value oft = 0.499975 and starting withe = y = 0.5 these almost transform
x andy into themselves, and give a slowly varying calculation. sThiodule was
designed to give the correct proportion of callssto or cosandarctan and to avoid
carrying forward common sub-expressions. The second, ladtu 11, exercised the
other standard functions in a single transformation:

z = sqrt(exp(in(x)/t1));

With ¢ = 0.50025 and an initial value ofc = 0.75 a stable series of values of
x is obtained with repeated execution of this statement. Nwaiein these modules
multiplication or division was chosen so that overall thes@uld be a good fit to the
statistics.

Conditional jumps were exercised in Module No. 4 by a set ofditional state-
ments. Starting from an initial value gf = 1, repeated execution of this group of
statements alternatgsbetween 0 and 1, and each condition is alternately true and
false.

Integer arithmetic and array addressing were used in Modole 6 in a simple
calculation. With initial values of = 1, k = 2, [= 3 these values remain unchanged
with repeated executions, but this is unlikely to be detdbiethe compiler. Procedure
calls and parameter addressing were exercised in ModuleBNuy. a procedurep)
with three parameters. The global variableas the same value as in other modules.
Values of the actual parameters corresponding andy are unchanged.

Array references appeared in Module No. 9 which was madedtsg bf a param-
eterless procedure@) to increase the number of procedure calls. Global vagsahte
setupag =1,k=2,1=3,€lll] = 1.0, el[2] = 2.0,¢1[3] = 3.0, and these values are
permuted each time the module is executed.

Finally, in Module No. 10, simple integer arithmetic was dis&Vith initial values
of j =2,k = 3, this interchanges values with each execution.

4 Fitting

Each of the modules was translated into Whetstone instngstiacluding the coding
of the containingfor loop, using a vocabulary of some 40 different instructiome.
simplify the task of fitting their frequencies to the anadysind also to take account of
some of the other instructions not directly representedhénltenchmark, some com-
binations were made to reduce the number of fitted values.tdB&se accounted for
over 95% of the instructions executed in the analysed pmgraThe problem was
thus to choose the execution frequencies of the ten modaldsasthe 25 instruction
frequencies matched. The modules had been designed wstfittii mind, but there
would not be an exact solution. The first approach was to ol#deast-squares fit
using a standard method. This solution suffered from twadliantages. Firstly, it
gave negative frequencies for some of the modules, whicHdnuoave been difficult
to implement, and secondly it gave equal importance todjttiach of the instructions.
The first problem was overcome by using a direct search metftbdhe range of the
parameters restricted to be positive, taking the prewocaiculated result as a starting
point. The second was overcome by allotting to each instmict total time, which
was the product of the instruction frequency and an instsaodime. The instruction
times were derived from the basic statement times, whiclurin were derived from
measurements on a large number of machines [6]. Using thmes,ta weighted root

mean square deviation of the benchmark from the analysisdefsed, and this was
minimised by the direct search method. The result was thabtithe modules, num-

bers 1 and 10, were eliminated by the restriction to positeguencies. The remaining
eight modules gave a weighted root mean square deviatiartlowe5 instructions of

15% which was considered satisfactory. The total nomimaé tof 5.93 seconds com-
pared with a target of 6.08, and the total instruction codr&G3 thousand compared
with the target of one million.

Having decided upon the modules and their relative fregesrtbe whole program
could be assembled. The modules are contained within a fvarkewhich controls
the number of executions of each and provides for the outiratsoilts. This output is
only required to ensure that the calculations are logicaigessary; it is not intended to
represent the output from a typical program. The executieguency of each module
is proportional to the input value afand the scaling factors are such that a value of
1 = 10 gives a total weight to the modules corresponding to oilldomWhetstone
instructions. Although Modules Nos. 1 and 10 have zero feegies they have been
retained in the program because study of the object codeptauce might be of
interest. For accurate measurements the effect of the Wwarkgand if necessary of
compilation and loading, may be eliminated by performingesal runs with different
values ofi. From these results the speed of the machine may be expiadstbetstone
instructions per second.

5 Resultsfrom several machines

Using the benchmark described above, a survey was made @x#doaition speeds
which might be expected from one machine using differenglages, compilers and
precisions. The object was partly to obtain informationwhibe languages and their
implementations and partly to study the usefulness of tmthgyic benchmark tech-
nigue for such a study.

The first machine studied was an IBM 360/65. The operatingesygrovided
information about CPU time used (in micro-hours), periplhehannel program exe-
cution and core occupied. Object code listings were obtbfrem all the compilers,
except the ALGOL one. Brief descriptions of the compileri$ofe:

ALGOL F: The standard IBM ALGOL compiler. Known
to produce inefficient code.

FORTRAN G: The standard IBM FORTRAN medium
sized compiler.

FORTRAN H: The superior IBM FORTRAN compiler.

Produces better code than G at the expense of
compilation time and does logical

optimisation.
PL/I F: The standard IBM PL/I compiler.
PL/I OPT: The new IBM PL/I optimising compiler.

Controlling parameters were chosen to give the maximumutiaetspeed of the
compiled program, and in the case of ALGOL a compiler optitso @ontrolled the
precision of the representation of real quantities. The @lLGorogram was used as
described above with insignificant changes to the input angud procedures to suit
the IBM implementation. For FORTRAN an equivalent programswvritten to per-
form the same calculations using similar language featurbese do not give exactly

Figure 3:360/65 execution speeds (speeds in thousands of Whetstone instructions per

second)
Representation Algol FORTRAN PL/I

real integer F G H F OPT
6HEX 31BIN 72 430 409 372 443
5211
14HEX 31BIN 65° 321 421 302 335
6HEX 6DEC - - - 163 262
6HEX 15BIN - 370 - - -

the same facilities as in ALGOL but the differences are pbbpaot significant in most
applications. The types of the variables were defined eithplicitly by their identi-
fiers according to the FORTRAN convention, or by suitablela@@tions; the names
of the standard functions were also modified as necessaryPlFbthe program was
derived from the ALGOL version and was very similar to it.

Various internal representations of real and integer dtiesitvere used. Real quan-
tities were either short or long precision floating point éadecimal digits, 6HEX or
14 hexadecimal digits, 14HEX). Integer quantities werdegitwhole-word or half-
word binary (31 bits, 31BIN or 15 bits, 15BIN) or nine digitgded decimal (9DEC).
The execution speeds of the programs produced by the varioogilers with different
combinations of these representations are given in Fidiespeeds quoted are in thou-
sands of Whetstone instructions per second. The programdsudesigned to min-
imise the improvement which an optimising compiler couldken@y re-arrangement
of the logic, and examination of the object code showed thiatttad been achieved.
The two figures shown for FORTRAN H with standard precisidier¢o no and full
optimisation. The better performances of H compared witm@& @ PL/I OPT com-
pared with PL/I F were the result of the use of fewer machirstrirctions and, to a
lesser extent, of faster ones; H was particularly good atihglvalues temporarily in
registers. Without the object code listing the reasonstfersiow performance of AL-
GOL could not be determined, but it is known that there is aayacheck on each array
access which was not made in FORTRAN or PL/I as run. Also tbeeqaiure call and
parameter checking and passing mechanisms were more comple

The use of long precision (14HEX) instead of short (6HEX)s=lia 20-25%,
loss of speed in both FORTRAN and PL/I. This could have beesed by extra ma-
chine instruction times for double-length working and byraxomputations needed
for precision in standard functions. In ALGOL the propontéb reduction in speed
was less, but the increase in execution time was about doldievith the other lan-
guages. Using decimal (9DEC) instead of binary (31BIN) espntation for integers
in PL/I had a severe effect, particularly with the F compil€his might be important
since decimal representations could inadvertently résartt such simple declarations
as FIXED, which would give 5DEC or REAL(9,2). In comparingtlanguages it must
be remembered that although the programs were made as agailent as possible,
faster execution was obtained at the expense of programanggage power, run-time
error checks and compilation time. The ALGOL compiler toaityoone tenth of the
CPU time taken by the PL/I Optimizer, but produced a prograat took six times as
long to execute. The program is not, however, intended teigeeca good measure of
compilation speed.

The other machine studied was an ICL 1904A. Programs werdroom a MOP

Figure 4:1CL 1904A execution speeds (speeds in thousands of Whetstone instructions
per second)

Algol FORTRAN
XALT XFAT XFEW
Trace single single double single double
level

0 125 159 20.8 192 21
1 58 91 19.2 100 19
2 52 17 9.4 59 17.5
3 55 - - - -

terminal under George 3 and the mill-time in seconds and thie occupied were
obtained from the system messages. Measurements of simggeams on the same
machine had shown agreement with the quoted instructioastirao the conversion
factor to true seconds was probably correct. The compilenevall standard ICL
products for ALGOL and FORTRAN:

ALGOL XALT 32K disc compiler
FORTRAN XFAT 32K disc compiler good diagnostics
XFEW 48K disc compiler optimised code

For ALGOL the program was used with only minor changes. Reahtjties were
represented in the machine to standard single precisioinary digits floating point.
For FORTRAN two versions were used which gave single and lédiid binary digit)
precisions. The execution speeds of the programs are givEigi 4. In comparing
the ALGOL and FORTRAN speeds it is necessary to consider iffereht facilities
provided at run for error checking and for tracing progranwfldhese are controlled
by TRACE statements which direct the compilers and comeffardnt combinations
in the two languages. At the lowest level, TRACE 0, both laggs are blind to all
but the grossest errors; also at the TRACE 2 level the fexsldre roughly comparable.
Table 3 shows the speeds of execution of programs compildddifferent compilers
on the same machine, at different TRACE levels. The mainattgron in ALGOL
comes with TRACE 1 which adds frequent overflow and array sftschecks; the
error traceback with TRACE 2 only adds a small overhead toatheady complex
ALGOL procedure call mechanism. In FORTRAN both steps imedieavy penalties;
TRACE 1 gives a subroutine error traceback while TRACE 2 gjiweerflow checks
and a detailed statement traceback. This last seems a leogetp pay if all one
requires are the overflow and array subscript checks whiofeda the same package
deal; using explicit program checks would be preferable.

5.1 A comparison of four performance measures

The four performance measures considered are:

1. The Gibson mix. This is a weighted average of instructiomes, reflecting us-
age expected of scientific work. The values were calculajethé Technical
Services Division of the CCA and include an additional akkowe for the ad-
dress structure and the number of registers.

Figure 5: Four measures compared
FORTRAN Gibson Statements ALGOL

Machine
100
che 7600/
Performance
Factor
\ L
_ 40

F 30

20

IIOB——-\ \—_ 0

1906 A P———
560/65/\
-5
6E 635 — -4
B6700 7] L3
i —
DECIO /7————’
1904 A L2
\/
KDF9 / /
/
a0 ——————__| Ly

2. The ALGOL statement mix.
3. The ALGOL synthetic benchmark.
4. The FORTRAN synthetic benchmark.

All these measures are true performance indicators in theesihat they take into
account the relative usage of the various instruction typesmachine. These are in
low-level terms in the Gibson mix whereas the other threeeapgessed in high-level
language form.

The four measures can be compared directly in diagrammatio &s in Fig. 5.
The scales are logarithmic to include computers of wideffedng powers. In any
case, hardware and software improvements tend to yield@pege rather than an
absolute gain. Since the units of each measurement are mdessoarbitrary, the
scales have been adjusted vertically to correspond adylas@ossible. (In fact, the
average gradient of the lines joining each measure is zero.)

One must add a note of caution about the actual values plofed four measures
and twelve computers, 48 measurements are needed. Houe\display as many
machines as possible, when three measures were availabdfeutth has been esti-
mated (in seven cases). Also, the compiling options usedftameht machines on the
same range or with the two ALGOL programs have not always bigesame. These
differences have arisen because of the varying choices atatlferent computer in-
stallations.

Visual inspection of the diagram reveals that measurenmmisembers of a range
of computers (using the same software) shows a similar patt€he two ALGOL
measures are clearly more correlated than the others. Ti@OALand FORTRAN
benchmark results differ enormously in some cases by naddgtor of three.

The correspondence between the measures can be quantifealcojating the
average gradient of the lines joining two measures (igmpotfire sign of the gradient).
This average slope corresponds to the mean differencedalvatween the two scales.
The six ratios are:

ALGOL — Statements ratio 1.21
Gibson — FORTRAN 1.24
Gibson — Statements 1.57
FORTRAN — Statements 1.69
Gibson — ALGOL 1.85
FORTRAN — ALGOL 2.00

Hence two computers with one twice as powerful as the otheherORTRAN
scale, could be the same on the ALGOL scale. For an examplésyfsee the KDF9
and the 360/65 values. In contrast, much smaller differeaoeto be expected between
the ALGOL and Statement scales.

The six ratios given above can be used to plot the distandesebe four points
representing the scales. With a very small amount of distothe logarithm of these
ratios can be plotted as distance between points on a plaimg diig. 6. This figure
again illustrates the high correlation between the ALGOH &tatement scales. The
close relationship between FORTRAN and Gibson is partigut@markable in view
of the diverse routes by which they were derived. Note thatetlis a roughly linear
relationship — FORTRAN, Gibson. Statements, ALGOL. Thia b& seen from the
previous graph where a large number of the lines maintainighly constant gradient.

10

Figure 6: The relationship between the four measures
FORTRAN

Gibson

Statements ALGOL

6 Limitationsand applications

The benchmark program described here has been presentesh@dehof the large
number of programs originally analysed. The intention & thy running it upon a new
type of machine one may learn something of the performareentichine would have
if it ran the original programs. It is not possible to validahe benchmark by direct
comparison with the original programs so one must estimatefaithful a model it is
likely to be. The performance of any machine depends uporhheacteristics of the
stream of machine code instructions executed and the dhtesyao the benchmark
program must generate code which is typical from a numbespéets. This bench-
mark is probably typical in the mixture of machine code fimuts it exercises and in
their sequencing. For example, on the 1904A, examinatighebbject code showed
that the proportion of branch instructions was 19%, which ieasonable figure in the
light of experience on Atlas [4].

The number of executions of each loop is high and it would Hzeen better to
arrange the repeated execution of the whole program byrobgpa measurable load,
rather than increasing the repetition counts of the modinlésidually. The values
of the operands of arithmetic imistructions take varyinfuga as the program rums,
but no attempt was made to make these representative, tineoivjaict being to avoid
repetition of a small number of values which would certaimiye been abnormal. The
utilisation of such system features as the standard fumditioary should be typical
but, of course, calls to the input/output system and to sipeny software are not
represented. The most important way in which this programoigypical is in the size
of the area of store that it addresses, which is very smal, &®regards data and code.
This is not significant on unsophisticated machines but mesoso when machines
with multi-level stores of various types are considereandty well be true that on the
360/65 the use made by the FORTRAN H compiler of the genengdqse registers
was reasonably typical, although it did manage to perforenvihole of module 4 in
registers. On a machine with one or more of the various typésiffered, slaved or
virtual stores all one can say is that the program is unugsatiall and simple in its
patterns of access. A modified version has been producedhahiesses a larger area
of store, but this must clearly be an arbitrary exercise. Winene is known about

11

the characteristics of programs running on these mullstore machines it may be
possible to produce a typical program for particular typgflemachine. It will clearly be
impossible to produce one valid for any conceivable machine

Despite these limitations the program described shouldfls®@mme value, partic-
ularly in relation to smaller machines. It provides a measofr computer speed of
a similar level of usefulness as the Gibson mix, etc. butngkiccount of the actual
compilers available on the machine. Itis particularlyahblié on machines with unusual
architecture where the Gibson mix is difficult to interpreiy; KDF9. Burroughs). By
comparison with other measures it provides some inidinatibthe software ineffi-
ciency incurred by using the various high-level languadé® different compilers and
options can be evaluated on one machine. Another possibleaion for this pro-
gram would be as the processor load component in a more cheime total load
benchmark applied to a complete system. Although this breack program is of lim-
ited use, since it represents only small scientific progrdhesgeneral principles used
in its construction could be applied more widely. The chie$tacle to progress here is,
as in other areas of computer performance measuremenadkeflinformation about
the characteristics of real programs.

Appendix: The Benchmark

begin
real zl, 2,23, 24, x, y, 2, t, t1,t2;
array e1[1:4];
integer 1, 7, k, I, nl, n2,n3, n4,n5,n6,n7,n8,n9,n10,n11;
procedure pa(e);
array e;
begin
integer j;
J=0;
lab:
e[1] == (e[l] + e[2] + e[3] - e[4]) xt;
el2] .= (e[l] + e[2] - e[3] + e[4]) xt;
e[3] :=(e[l] - e[2] + €[3] + e[4]) xt;
e[4] = (-¢[l] + e[2] + ¢[3] + e[4]) / £2;
J=g+ 1
if j < 6then
goto lab;
end procedure pa
procedure p0;
begin
el[j] := el[k];
ellk] := el][l];
el[l] = el[j];
end procedure p
procedure p3(z, y, 2);
value z, y;
real z,y, z;
begin
x =tx(x +y);

12

y=tx(z +y);

z = (x + y)t2;

end procedure p3
procedure pout(n, j, k, z1, 22, x3, z4);

valuen, j, k, zl, 22, 3, x4,

integer n, j, k;

real z1, 2, 23, 24;

begin

outreal(1,n);

outreal(1, j);

outreal(l, k);

outreal(1, x1);

outreal(1, x2);

outreal(1, x3);

outreal(1, x4);

end procedure pout
comment initialise constants

t :=0.499975;
tl :=0.50025;
t2 :=2.0;

comment read value of i, controlling total weight: if i=10 the
total weight is one million Whetstone instructions
inreal(2,1);

nl:=0;

n2 =12 xi;
n3 = 14 x1;
nd = 345x1;
n5:=0;

n6 = 210x7;
n7 =32 xi,
n8 := 899 x1;
n9 = 616 x1;
n10:=0;
nll = 93x1;
comment module 1: simple identifiers
x1:=1.0;

z2 :=x3:=z4:=-1.0;
for i := 1step 1 until nldo
begin
2l = (xl + 22 + 23 - 24) xt;
22 = (xl + 22 - 23 +24) xt;
x3 = (xl - 22 + 23 + 24) xt;
x4 = (xl + 22 + 23 + 24) xt;
end module 1
pout(nl,nl,nl, zl, 22, 23, z4);
comment module 2: array elements
e[1] :=1.0;
e[2] := ¢[3] :=¢[4] :=1.0;
for i := 1step 1 until n2 do
begin

13

el[1] := (e1[1] + el[2] + e1[3] - el[4]) xt;
el[2] ;= (e1[1] + e1[2] - e1[3] + e1[4]) xt;
el[3] := (e1[1] - e1[2] + e1[3] + e1[4]) xt;
el[4] := (-el[1] + el[2] + e1[3] + e1[4]) xt;
end module 2
pout(n2,n3,n2,el[l], el[2], e1[3], e1[4]);
comment module 3: array as parametgr
for i := 1step 1 until n3do
pa(el);
pout(n3,n2,n2, el[1], el]2], e1[3], e1[4]);
comment module 4: conditional jumps

J=1
for 7 := 1 step 1 until n4 do
begin
if 7 =1then
j=2
else
J=3
if j > 2then
j=0
else
J=L
if j < 1then
j=1
ese
j=0;

end module 4
pout(nd, j, 7, 21, 22, 3, 24);
comment module 5: omitted
comment module 6: integer arithmetjc
j=1
k=2
1:=3;
for 7 := 1 step 1 until n6 do
begin
=g x (k=) x (- k);
k=lxk— (-7 xk
li=(1—k)x (k+7);
elll = 11:=j+k+1;
ellk —1]:=j x k x1;
end module 6
pout(nB, j, k, el[1], e1[2], e1[3], e1[4]);
comment module 7: trig. functions

x:=y:=0.5;
for 7 := 1 step 1 until n7 do
begin

x =1t X arctan(t2 x sin(z) x cos(x)/
(cos(x +y) + cos(x — y) — 1.0));
y =t x arctan(t2 x sin(y) x cos(y)/
(cos(xz +y) + cos(z —y) — 1.0));

14

end module 7

pout(n?,j, k, x, z,y,),

comment module 8: procedure caljs

x =y =2z:=1.0;

for ¢ := 1 step 1 until n8 do
p3(z, y, 2);

pout(n8, j, k, x, vy, z, 2);

comment module 9: array references

J=1

k=2

1:=3;

e[1] :=1.0;

e[2] ;= 2.0;

e[3] :=3.0;

for ¢ := 1 step 1 until n9 do

p0;

pout(n9, j, k, e1[1], €1[2], e1[3], e1[4]);
comment module 10: integer arithmetjc

J=2

k:=3;

for ¢ := 1 step 1 until n10do
begin
JiEJAk
k=7+k
Ji=k =g
k=k—j3—7,

end module 10
pout(nlo,j, k, x1, 22, 23, 24);
comment module 11: standard functions
x :=0.75;
for i := 1step 1 until n1ldo

x = sqrt(exp(In(x)/t1));
pout(nll,j, k, x, z, z, x);
end

FORTRAN and PL/I versions of this program are available aquest.

References

[1] Heinhold, J (1962) and Bauer, F.L. (EditorBachbegriffe der Programmierung-
stechnik.Ansgearbeitet vom Fachausschatz Programmieren der Glesfelir
Angewandte Mathematik und Mechanik (GAMM) Oldenbourg, Mien.

[2] KNUTH, D. E. (1971). An emipirical study of FORTRAN progms, Software
Practice and Experiencé&/l. 1, No. 2, pp. 105-133.

[3] RANDELL, B, and RUSSELL, L. J. (1964)ALGOL 60 ImplementatiomrAPIC
Studies in Data Processing No. 5, London. Academic Press.

[4] SUMNER, F. H. (1974). Measurement techniques in complugedware design,
State of the Art Report No. 1Bp. 367-390, Infotech, Maidenhead.

15

[5] WICHMANN, B. A. (1969). A comparison of ALGOL 60 execution spedda-
tional Physical Laboratory Report CCU3.

[6] WICHMANN, B. A. (1970). Some statistics from ALGOL progranisational
Physical Laboratory CCU 11.

[7] WICHMANN, B. A. (1973a). Basic statement times for ALGOL ,6National
Physical Laboratory Report NAC42.

[8] WICHMANN, B. A. (1973b). ALGOL 60 Compilation and AssessmeAta-
demic Press, London.

A Document details
Partly converted just before | retired, but finished in Oetob001. The original was

set in two columns. Other small changes have been made totréfeedefaultATEX
style. Typo corrected, July 2010.

16

