#include <stdio.h> #include <stdlib.h> /* The mark/space timings were estimated from sampling, but it is possible that they should be the NEC times: 562.5 for 0 and 1687.5 for 1. */ void outbyte(int b) { int i; for (i = 0; i < 8; i++) { if (b&1) { fprintf(stdout, " 512, 1652, "); } else { fprintf(stdout, " 512, 574, "); } b = b>>1; } } void savecode(char *name, int code0, int code1, int code2, int code3, int code4) { int code5 = ((0xff + code0 + code1 + code2 + code3 + code4) ^ 0xff)&255; fprintf(stderr, "%s = %02x %02x %02x %02x %02x %02x\n", name, code0, code1, code2, code3, code4, code5); fprintf(stdout, "\"%s\": [4378, 4699, ", name); outbyte(code0); outbyte(code1); outbyte(code2); outbyte(code3); outbyte(code4); outbyte(code5); fprintf(stdout, "512, 4699, 4378, 4699, "); outbyte(code0^0xff); outbyte(code1^0xff); outbyte(code2^0xff); outbyte(code3^0xff); outbyte(code4^0xff); outbyte(code5^0xff); fprintf(stdout, "512, 4699]"); } int main(int argc, char **argv) { // Output known codes to controller definitions file. // The irrp.py code successfully turns the led off and on from across the room. // Next thing will be to output directly, which is needed for things like temperature // changes where the previous state needs to be known. fprintf(stdout, "{"); savecode("led", 0x45, 0x10, 0xff, 0xff, 0xff); fprintf(stdout, ", "); savecode("swing", 0x45, 0x40, 0xff, 0xff, 0xff); fprintf(stdout, "}\n"); exit(0); return 1; } /* #!/usr/bin/env python # irrp.py # 2015-12-21 # Public Domain """ A utility to record and then playback IR remote control codes. To record use ./irrp.py -r -g4 -fcodes 1 2 3 4 5 6 where -r record -g the GPIO connected to the IR receiver -f the file to store the codes and 1 2 3 4 5 6 is a list of codes to record. To playback use ./irrp.py -p -g17 -fcodes 2 3 4 where -p playback -g the GPIO connected to the IR transmitter -f the file storing the codes to transmit and 2 3 4 is a list of codes to transmit. OPTIONS -r record -p playback -g GPIO (receiver for record, transmitter for playback) -f file id1 id2 id3 list of ids to record or transmit RECORD --glitch ignore edges shorter than glitch microseconds, default 100 us --post expect post milliseconds of silence after code, default 15 ms --pre expect pre milliseconds of silence before code, default 200 ms --short reject codes with less than short pulses, default 10 --tolerance consider pulses the same if within tolerance percent, default 15 --no-confirm don't require a code to be repeated during record TRANSMIT --freq IR carrier frequency, default 38 kHz --gap gap in milliseconds between transmitted codes, default 100 ms """ import time import json import os import argparse import pigpio # http://abyz.co.uk/rpi/pigpio/python.html p = argparse.ArgumentParser() g = p.add_mutually_exclusive_group(required=True) g.add_argument("-p", "--play", help="play keys", action="store_true") g.add_argument("-r", "--record", help="record keys", action="store_true") p.add_argument("-g", "--gpio", help="GPIO for RX/TX", required=True, type=int) p.add_argument("-f", "--file", help="Filename", required=True) p.add_argument('id', nargs='+', type=str, help='IR codes') p.add_argument("--freq", help="frequency kHz", type=float, default=38.0) p.add_argument("--gap", help="key gap ms", type=int, default=100) p.add_argument("--glitch", help="glitch us", type=int, default=100) p.add_argument("--post", help="postamble ms", type=int, default=15) p.add_argument("--pre", help="preamble ms", type=int, default=200) p.add_argument("--short", help="short code length", type=int, default=10) p.add_argument("--tolerance", help="tolerance percent", type=int, default=15) p.add_argument("-v", "--verbose", help="Be verbose", action="store_true") p.add_argument("--no-confirm", help="No confirm needed", action="store_true") args = p.parse_args() GPIO = args.gpio FILE = args.file GLITCH = args.glitch PRE_MS = args.pre POST_MS = args.post FREQ = args.freq VERBOSE = args.verbose SHORT = args.short GAP_MS = args.gap NO_CONFIRM = args.no_confirm TOLERANCE = args.tolerance POST_US = POST_MS * 1000 PRE_US = PRE_MS * 1000 GAP_S = GAP_MS / 1000.0 CONFIRM = not NO_CONFIRM TOLER_MIN = (100 - TOLERANCE) / 100.0 TOLER_MAX = (100 + TOLERANCE) / 100.0 last_tick = 0 in_code = False code = [] fetching_code = False def backup(f): """ f -> f.bak -> f.bak1 -> f.bak2 """ try: os.rename(os.path.realpath(f)+".bak1", os.path.realpath(f)+".bak2") except: pass try: os.rename(os.path.realpath(f)+".bak", os.path.realpath(f)+".bak1") except: pass try: os.rename(os.path.realpath(f), os.path.realpath(f)+".bak") except: pass def carrier(gpio, frequency, micros): """ Generate carrier square wave. """ wf = [] cycle = 1000.0 / frequency cycles = int(round(micros/cycle)) on = int(round(cycle / 2.0)) sofar = 0 for c in range(cycles): target = int(round((c+1)*cycle)) sofar += on off = target - sofar sofar += off wf.append(pigpio.pulse(1<<gpio, 0, on)) wf.append(pigpio.pulse(0, 1<<gpio, off)) return wf def normalise(c): """ Typically a code will be made up of two or three distinct marks (carrier) and spaces (no carrier) of different lengths. Because of transmission and reception errors those pulses which should all be x micros long will have a variance around x. This function identifies the distinct pulses and takes the average of the lengths making up each distinct pulse. Marks and spaces are processed separately. This makes the eventual generation of waves much more efficient. Input M S M S M S M S M S M 9000 4500 600 540 620 560 590 1660 620 1690 615 Distinct marks 9000 average 9000 600 620 590 620 615 average 609 Distinct spaces 4500 average 4500 540 560 average 550 1660 1690 average 1675 Output M S M S M S M S M S M 9000 4500 609 550 609 550 609 1675 609 1675 609 """ if VERBOSE: print("before normalise", c) entries = len(c) p = [0]*entries # Set all entries not processed. for i in range(entries): if not p[i]: # Not processed? v = c[i] tot = v similar = 1.0 # Find all pulses with similar lengths to the start pulse. for j in range(i+2, entries, 2): if not p[j]: # Unprocessed. if (c[j]*TOLER_MIN) < v < (c[j]*TOLER_MAX): # Similar. tot = tot + c[j] similar += 1.0 # Calculate the average pulse length. newv = round(tot / similar, 2) c[i] = newv # Set all similar pulses to the average value. for j in range(i+2, entries, 2): if not p[j]: # Unprocessed. if (c[j]*TOLER_MIN) < v < (c[j]*TOLER_MAX): # Similar. c[j] = newv p[j] = 1 if VERBOSE: print("after normalise", c) def compare(p1, p2): """ Check that both recodings correspond in pulse length to within TOLERANCE%. If they do average the two recordings pulse lengths. Input M S M S M S M S M S M 1: 9000 4500 600 560 600 560 600 1700 600 1700 600 2: 9020 4570 590 550 590 550 590 1640 590 1640 590 Output A: 9010 4535 595 555 595 555 595 1670 595 1670 595 """ if len(p1) != len(p2): return False for i in range(len(p1)): v = p1[i] / p2[i] if (v < TOLER_MIN) or (v > TOLER_MAX): return False for i in range(len(p1)): p1[i] = int(round((p1[i]+p2[i])/2.0)) if VERBOSE: print("after compare", p1) return True def tidy_mark_space(records, base): ms = {} # Find all the unique marks (base=0) or spaces (base=1) # and count the number of times they appear, for rec in records: rl = len(records[rec]) for i in range(base, rl, 2): if records[rec][i] in ms: ms[records[rec][i]] += 1 else: ms[records[rec][i]] = 1 if VERBOSE: print("t_m_s A", ms) v = None for plen in sorted(ms): # Now go through in order, shortest first, and collapse # pulses which are the same within a tolerance to the # same value. The value is the weighted average of the # occurences. # # E.g. 500x20 550x30 600x30 1000x10 1100x10 1700x5 1750x5 # # becomes 556(x80) 1050(x20) 1725(x10) # if v == None: e = [plen] v = plen tot = plen * ms[plen] similar = ms[plen] elif plen < (v*TOLER_MAX): e.append(plen) tot += (plen * ms[plen]) similar += ms[plen] else: v = int(round(tot/float(similar))) # set all previous to v for i in e: ms[i] = v e = [plen] v = plen tot = plen * ms[plen] similar = ms[plen] v = int(round(tot/float(similar))) # set all previous to v for i in e: ms[i] = v if VERBOSE: print("t_m_s B", ms) for rec in records: rl = len(records[rec]) for i in range(base, rl, 2): records[rec][i] = ms[records[rec][i]] def tidy(records): tidy_mark_space(records, 0) # Marks. tidy_mark_space(records, 1) # Spaces. def end_of_code(): global code, fetching_code if len(code) > SHORT: normalise(code) fetching_code = False else: code = [] print("Short code, probably a repeat, try again") def cbf(gpio, level, tick): global last_tick, in_code, code, fetching_code if level != pigpio.TIMEOUT: edge = pigpio.tickDiff(last_tick, tick) last_tick = tick if fetching_code: if (edge > PRE_US) and (not in_code): # Start of a code. in_code = True pi.set_watchdog(GPIO, POST_MS) # Start watchdog. elif (edge > POST_US) and in_code: # End of a code. in_code = False pi.set_watchdog(GPIO, 0) # Cancel watchdog. end_of_code() elif in_code: code.append(edge) else: pi.set_watchdog(GPIO, 0) # Cancel watchdog. if in_code: in_code = False end_of_code() pi = pigpio.pi() # Connect to Pi. if not pi.connected: exit(0) if args.record: # Record. try: f = open(FILE, "r") records = json.load(f) f.close() except: records = {} pi.set_mode(GPIO, pigpio.INPUT) # IR RX connected to this GPIO. pi.set_glitch_filter(GPIO, GLITCH) # Ignore glitches. cb = pi.callback(GPIO, pigpio.EITHER_EDGE, cbf) # Process each id print("Recording") for arg in args.id: print("Press key for '{}'".format(arg)) code = [] fetching_code = True while fetching_code: time.sleep(0.1) print("Okay") time.sleep(0.5) if CONFIRM: press_1 = code[:] done = False tries = 0 while not done: print("Press key for '{}' to confirm".format(arg)) code = [] fetching_code = True while fetching_code: time.sleep(0.1) press_2 = code[:] the_same = compare(press_1, press_2) if the_same: done = True records[arg] = press_1[:] print("Okay") time.sleep(0.5) else: tries += 1 if tries <= 3: print("No match") else: print("Giving up on key '{}'".format(arg)) done = True time.sleep(0.5) else: # No confirm. records[arg] = code[:] pi.set_glitch_filter(GPIO, 0) # Cancel glitch filter. pi.set_watchdog(GPIO, 0) # Cancel watchdog. tidy(records) backup(FILE) f = open(FILE, "w") f.write(json.dumps(records, sort_keys=True).replace("],", "],\n")+"\n") f.close() else: # Playback. try: f = open(FILE, "r") except: print("Can't open: {}".format(FILE)) exit(0) records = json.load(f) f.close() pi.set_mode(GPIO, pigpio.OUTPUT) # IR TX connected to this GPIO. pi.wave_add_new() emit_time = time.time() if VERBOSE: print("Playing") for arg in args.id: if arg in records: code = records[arg] # Create wave marks_wid = {} spaces_wid = {} wave = [0]*len(code) for i in range(0, len(code)): ci = code[i] if i & 1: # Space if ci not in spaces_wid: pi.wave_add_generic([pigpio.pulse(0, 0, ci)]) spaces_wid[ci] = pi.wave_create() wave[i] = spaces_wid[ci] else: # Mark if ci not in marks_wid: wf = carrier(GPIO, FREQ, ci) pi.wave_add_generic(wf) marks_wid[ci] = pi.wave_create() wave[i] = marks_wid[ci] delay = emit_time - time.time() if delay > 0.0: time.sleep(delay) pi.wave_chain(wave) if VERBOSE: print("key " + arg) while pi.wave_tx_busy(): time.sleep(0.002) emit_time = time.time() + GAP_S for i in marks_wid: pi.wave_delete(marks_wid[i]) marks_wid = {} for i in spaces_wid: pi.wave_delete(spaces_wid[i]) spaces_wid = {} else: print("Id {} not found".format(arg)) pi.stop() # Disconnect from Pi. */