
MOTOROLA
MC6839

FLOATING POINT
ROM





Contents
SECTION 1 INTRODUCTION…………………………………………………………………… 1

1.1 EARLY APPROACH TO MATHEMATICAL OPERATION… ………………………… 1
1.2 PROGRAMS-IN-ROM…………………………………………………………………… 1
1.3 MC6839 FLOATING POINT (FP) ROM………………………………………………… 2

1.3.1 General……………………………………………………………………………… 2
1.3.2 Pin Assignment… ………………………………………………………………… 3

SECTION 2 STANDARD FLOATING POINT FORMATS……………………………………… 5
2.1 INTRODUCTION………………………………………………………………………… 5
2.2 NORMALIZED NUMBERS……………………………………………………………… 5

2.2.1 Single Precision Format… ……………………………………………………… 5
2.3.1 Zero… ……………………………………………………………………………… 7
2.3.2 Infinity… …………………………………………………………………………… 7
2.3.3 Small Number (Denormalized)…………………………………………………… 7
2.3.4 Not a Number (NAN)……………………………………………………………… 8

2.4 SPECIAL VALUES (EXTENDED FORMAT… ………………………………………… 8
2.4.1 Zero… ……………………………………………………………………………… 8
2.4.2 Infinity… …………………………………………………………………………… 8
2.4.3 Denormalized Numbers… ……………………………………………………… 9
2.4.4 NAN1… …………………………………………………………………………… 9
2.4.5 Unnormalized Numbers… ……………………………………………………… 9

2.5 BCD STRINGS………………………………………………………………………… 10
2.6 BINARY INTEGERS…………………………………………………………………… 11

SECTION 3 SUPPORTED OPERATIONS…………………………………………………… 12
3.1 INTRODUCTION……………………………………………………………………… 12
3.2 REQUIRED OPERATIONS…………………………………………………………… 12
3.3 EXTRA OPERATIONS………………………………………………………………… 13
3.4 ARCHITECTURE……………………………………………………………………… 13

SECTION 4 MODES OF OPERATION… …………………………………………………… 14
4.1 INTRODUCTION……………………………………………………………………… 14
4.2 ROUNDING MODES… ……………………………………………………………… 14

4.2.1 Rounding Precision… ………………………………………………………… 14
4.2.2 No Double Rounding…………………………………………………………… 14

4.3 INFINITY CLOSURE MODES… …………………………………………………… 15
4.3.1 Affine Closure…………………………………………………………………… 15
4.3.2 Projective Closure……………………………………………………………… 15

4.4 EXCEPTION MODES… ……………………………………………………………… 15



SECTION 5 FLOATING POINT CONTROL BLOCK… …………………………………… 17
5.1 INTRODUCTION……………………………………………………………………… 17
5.3 STATUS BYTE………………………………………………………………………… 18
5.4 TRAP ENABLE BYTE………………………………………………………………… 18
5.5 TRAP VECTOR………………………………………………………………………… 19
5.6 SECONDARY STATUS… …………………………………………………………… 19

SECTION 6 USER INTERFACE……………………………………………………………… 21
6.1 INTRODUCTION……………………………………………………………………… 21
6.2 OPERATION OPCODES AND ENTRY POINTS…………………………………… 21
1.3 STACK REQUIREMENTS… ………………………………………………………… 22
1.4 CALLING SEQUENCE… …………………………………………………………… 22

1.4.1 Register Call… ………………………………………………………………… 22
1.4.2 Stack Call… …………………………………………………………………… 23

APPENDIX A OPERATION DESCRIPTIONS… …………………………………………… 25
A.1 INTRODUCTION……………………………………………………………………… 25
A.2 NOTATION… ………………………………………………………………………… 25
ABSOLUTE VALUE… …………………………………………………………………… 27
ADD… ……………………………………………………………………………………… 28
BINARY FLOATING TO DECIMAL STRING… ………………………………………… 29
COMPARE… ……………………………………………………………………………… 31
DECIMAL STRING TO BINARY FLOATING POINT… ………………………………… 35
Divide… …………………………………………………………………………………… 36
FIX…………………………………………………………………………………………… 37
FLOAT… …………………………………………………………………………………… 38
INTEGER PART… ………………………………………………………………………… 39
MOVE… …………………………………………………………………………………… 40
MULTIPLY… ……………………………………………………………………………… 41
NEGATE… ………………………………………………………………………………… 42
REMAINDER… …………………………………………………………………………… 43
SUBTRACT………………………………………………………………………………… 44
SQUARE ROOT…………………………………………………………………………… 45

APPENDIX B APPLICATION EXAMPLE OF THE QUADRATIC EQUATION… ………… 47
APPENDIX C DETAILED DESCRIPTION OF OPERATIONS……………………………… 51

C.1 INTRODUCTION……………………………………………………………………… 51
C.1.1 Argument Type Matrix……………………………………………………………… 51
C.1.2 Reading The Matrix Table… ……………………………………………………… 51
C.2 ADD (FADD), SUBTRACT (FSUB)…………………………………………………… 52
C.3 MULTIPLY (FMUL)… ………………………………………………………………… 54



C.4 DIVIDE (FDIV)… ……………………………………………………………………… 55
C.5 REMAINDER (FREM)………………………………………………………………… 56
C.6 SQUARE ROOT (FSQRT)… ………………………………………………………… 57
C.7 INTEGER PART (FINT)… …………………………………………………………… 57
C.8 ABSOLUTE VALUE (FAB)… ………………………………………………………… 58
C.9 NEGATE (FNEG)……………………………………………………………………… 58
C.10 COMPARE (FCMP, nCMP , FPCMP, FTPCMP)… ……………………………… 58
C.11 FLOATING TO BINARY INTEGER (FFIXS, FFIXD)… …………………………… 61
C.12 BINARY INTEGER TO FLOATING (FFLTS, FFLTD)……………………………… 62
C.13 BINARY FLOATING TO DECIMAL FLOATING STRING (BINDEC)… ………… 62
C.14 DECIMAL FLOATING STRING TO BINARY FLOATING (DECBIN)… ………… 64
C.15 MOVE (MOV)………………………………………………………………………… 66

APPENDIX D ROUNDING AND EXCEPTION CHECKING ROUTINES… ……………… 68
D.1 INTRODUCTION……………………………………………………………………… 68
D.2 ROUNDING…………………………………………………………………………… 68
D.3 EXCEPTION HANDLING… ………………………………………………………… 69

D.3.1 Invalid Operation… …………………………………………………………… 69
D.3.2 Underflow…………………………………………………………………………… 69
D.3.3 Overflow… ………………………………………………………………………… 69

D.3.4 Division by Zero………………………………………………………………… 70
D.3.5 Inexact Result………………………………………………………………… 70
D.3.6 Integer Overflow… …………………………………………………………… 70
D.3.7 Unordered… …………………………………………………………………… 70
D.3.8 Error Trap Handling… ………………………………………………………… 70

D.4 ALGORITHMS FOR EXCEPTION PROCESSING………………………………… 70
D.4.1 Check for Invalid (CKJNVALID)… …………………………………………… 70
D.4.2 Test for Overflow (OVERFLOW)… …………………………………………… 71
D.4.3 Overflow With Traps Disabled (OVFL NO TRAP)…………………………… 71

D.4.4 Subtract Blas on Overflow (SUB BIAS)… ……………………………………… 72
D.4.5 Test for Underflow (UNDERFLOW)… …………………………………………… 72
D.4.6 Add Bias on Underflow (ADD BIAS)……………………………………………… 72
D.4.7 Underflow With Traps Disabled (UNFL NO TRAP)……………………………… 73

APPENDIX E PROGRAM DETAILS AND STACK FRAME DESCRIPTION……………… 74
E.1 PRE-PROCESSING / POST-PROCESSING… …………………………………… 74

E.1.1 Stack Frame… ………………………………………………………………… 74
E.1.2 FP (Floating Point) Variables… …………………………………………………… 77

E.1.2.1 POINTER TO FPCB (PFPCB)… …………………………………………… 77
E.1.2.2 TOS (TOP OF STACK) POINTER (PTOS)… ……………………………… 77



E.1.2.3 TEMPORARY PARAMETERS (TPARAM)… ……………………………… 77
E.1.2.4 TEMPORARY STATUS (TSTA)… …………………………………………… 77
E.1.2.5 RESULT PRECISION (RPREC)……………………………………………… 78
E.1.2.6 OPCODE (FUNCT)…………………………………………………………… 78
E.1.2.7 STICKY BYTE (STIKY)… …………………………………………………… 78
E.1.2.8 ARGUMENT TYPE (TYPEx)… ……………………………………………… 78
E.1.2.9 SIGNX, EXPX, FRACTX……………………………………………………… 79

APPENDIX F INTERNAL FORMATS………………………………………………………… 80
F.1 INTRODUCTION… …………………………………………………………………… 80
F.2 SINGLE INTERNAL FORMAT………………………………………………………… 80
F.3 DOUBLE INTERNAL FORMAT… …………………………………………………… 81
F.4 EXTENDED INTERNAL FORMAT… ………………………………………………… 81
F.5 ZERO…………………………………………………………………………………… 81
F.6 INFINITY… …………………………………………………………………………… 81
F.7 NANS…………………………………………………………………………………… 82
F.8 INTERNAL UNNORMALIZED NUMBERS… ……………………………………… 82

Appendix G BASIC LEVELS OF PRECISION……………………………………………… 83
G.1 SINGLE PRECISION SPECIFICATION… ………………………………………… 83
G.2 DOUBLE PRECISION SPECIFICATION…………………………………………… 84
G.3 EXTENDED PRECISION SPECIFICATION………………………………………… 85

APPENDIX H DEFINITIONS AND ABBREVIATIONS… …………………………………… 88



1

SECTION 1 INTRODUCTION

1.1 EARLY APPROACH TO MATHEMATICAL OPERATION

Since the earliest days of computers, it has been obvious that no computer was 
capable of doing all the desired mathematical operations in binary integer arithmetic. 
Some early implementations perform floating point operations as a long string of BCD 
characters. Although the accuracy of this approach and the ease of implementation 
make it a popular alternative, the speed is too slow for most applications. Even though 
BCD approach is still used today in most BASIC systems and in most systems doing 
dollars and cent calculations, most scientific calculations use a binary floating point 
representation.

As binary floating point became widely used during he 1960s, each computer 
manufacturer created his own floating point representation. There was (and is) a 
wide variation in formats and accuracy which almost guarantees that a program 
executed on one computer will get different results if executed on another computer. 
The mini-computer manufacturers improved the representations somewhat; but each 
manufacturer still had a different format and different ways to represent and handle 
exceptions and errors.

Meanwhile, research has been completed which formulates an optimal binary floating 
point representation. Unfortunately, the existing manufacturers had far too much 
money invented in software and hardware to incur the costs of conversion to a new 
standard. Powerful microprocessors, on the other hand, we in their infancy and the 
floating posting format for microprocessors. The IEEE appointed a committee to 
address the standard. This manual described an implementation of a proposed IEEE 
standard, for the MC6809 Microprocessor (MPU), which is in a ROM. The information 
discussed in this manual is not a “restatement of the proposed IEEE Standard;” 
instead, it addressed those areas that are required by the proposed IEEE standard 
and those optional areas that are implemented for the MC6809. Specific details of the 
proposed IEEE standard can be found in IEEE Proposed Standard for Binary Floating 
Point arithmetic Draft 8.0 (referred to as the proposed IEEE standard in this manual) 
which is available from the IEEE.*

Much of the information, and many of the suggestions, for the proposed IEEE standard 
originated in a series of papers, published by Jerome Coonen at the University 
of California at Berkeley, the mos recent of which is entitled “Specifications for a 
Proposed Standard for Floating Point Arithmetic” and appeared in the January 1980 
issue of Computer magazine.

1.2 PROGRAMS-IN-ROM

From its inception, the MC6809 MPU was designed to support a concept of 
“ROMable” software by using an improved instruction set and addressing modes. One 
way, and to some extent the only way, to reduce the escalating cost of software was to 
supply “software on silicon.” Since the original cost of developing the software can be 
amortized over a very large number of parts, the actual cost of the ROM part is low.



2

Shortly after completing the MC6809 MPU, Motorola selected floating point to become 
the first Motorola Standard Product ROM (SPR). Floating point was selected because 
it is standard software that can be used in many diverse systems. Furthermore, 
implementation of the proposed IEEE standard is sufficiently complex that many 
potential customers would not wish to develop the necessary expertise to write their 
own software; however, they would enjoy the advantages of its many benefits.

Hardware implementation of floating point are always much faster (and more 
expensive) than software implementation. However, the MC6839 Floating Point ROM 
substitutes increased functionality for speed. In addition, the MC6839 Floating Point 
ROM supports all precisions, modes, and operations required or suggested by the 
proposed IEEE standard.

1.3 MC6839 FLOATING POINT (FP) ROM

1.3.1 General

The MC6839 FP ROM provides floating point capability for the MC6809 and MC6809E 
MCUs. It implements the entire proposed IEEE standard providing a relatively simple, 
economical, and reliable solution to a wide variety of numerical applications. The 
MC6839 FP ROM provides three different formats, namely: single precision, double 
precision, and extended. Both the single and double precision formats provide results 
which are bit-for-bit reproducible across all proposed IEEE standard implementations.1 
The extended format provides the extra precision needed for the intermediate results 
of long calculations, particularly the implementation of transcendental functions and 
interest calculations. All applications benefit from the extensive error checking and 
well-defined responses to exceptions, which are strengths of the proposed IEEE 
standard.

The MC6839 FP ROM takes full advantage of the advanced architectural features of 
the MC6809/MC6809E MPU. It ls position independent and re-entrant, facilitating its 
use in real-time, multi-tasking systems.

A brief summary of the MC6839 FP ROM is shown below:

• Totally Position Independent
• Operates in any Contiguous 8K Block of Memory

• Re-Entrant
• No Use of Absolute RAM
• All Memory References are made Relative to the Stack Pointer

• Flexible User Interface
• Operands are Passed to the FP Package by One of Two Methods

• Machine Registers are Used as Pointers to the Operands
• The Operands are Pushed onto the Hardware Stack

• The Latter Method Facilitates the Use of the MC6839 FP ROM in High-Level 
Language implementations

• Easy to Use Two/Three Address Architecture
1	 This proposed standard was published in the April 1981 issue of Computer 
Magazine.



3

• The User Specifies Addresses of Operands and Result and Need Not be 
Concerned with any Internal Registers or Intermediate Results

• A Complete Implementation of the Proposed IEEE Standard
• Includes All Precisions, Modes, and Operations Required or Suggested by the 

Standard
• Includes the Following Operations:

• Add
• Subtract
• Multiply
• Divide
• Remainder
• Square Root
• Integer Part
• Absolute Value
• Negate
• Predicate Compares
• Condition Code Compares
• Convert Integer ↔ Floating Point
• Convert Binary Floating Point ↔ Decimal String

1.3.2 Pin Assignment

The MC6839 FP ROM is housed in one 24-pin 8K-by-8 mask programmable ROM: the 
MCM68364. It uses a single 5V power supply and is available with access times of 250 
or 350ns. For electrical characteristics, refer to the Advance Information Sheet for the 
MC68A39 (1.5 MHz) and MC68B39 (2.0 MHz).

Figure 1-1 shows a pin assignment diagram of the MC6839 FP ROM and Figure 1-2 
contains a block diagram of the device.

A7
A6
A5
A4
A3
A2
A1
A0
D0
D1
D2
VSS

1
2
3
4
5
6
7
8
9
10
11
12

24
23
22
21
20
19
18
17
16
15
14
13

VCC

A8
A9
A12
E
A10
A11
D7
D6
D5
D4
D3

Figure 1-1. Pin Assignment Diagram



4

 9 D0
 10 D1
 11 D2
 13 D3
 14 D4
 15 D5
 16 D6
 17 D7

 A0 8
 A1 7
 A2 6
 A3 5
 A4 4
 A5 3
 A6 2
 A7 1
 A8 23
 A9 22
 A10 19
 A11 18
 A12 21

 E 20

Figure 1-2. MC6839 FP ROM Block Diagram

Address
Decode

Memory
Matrix

(8192 x 8)

Three-State
Output
Buffers



5

SECTION 2 STANDARD FLOATING POINT FORMATS

2.1 INTRODUCTION

The MC6839 Floating Point ROM (also referred to as the floating point package in 
this manual) supports three precisions of floating point numbers: single, double, and 
extended. It supports normalized numbers plus four special types of numbers for each 
precision: zeros, infinities, NANs, and denormalized numbers. The following paragraphs 
describe how the numbers are represented in user memory tor each precision. Also 
described are the formals used to represent binary integers and BCD strings.

2.2 NORMALIZED NUMBERS

Normalized numbers are floating point numbers that are not one of the special types. 
The bulk of the numbers in any real program will be normalized numbers. Three 
different formats are used with normalized numbers, namely: single precision format, 
double precision format, and extended format.

2.2.1 Single Precision Format

All single precision numbers are represented in a four byte string as shown below:

S Exponent Significand

1 8 23 Bits

In single precision formats shown above, the exponent is biased by +127. That is, an 
exponent of: 0 is 127, 2 is 129, and -2 is 125.2 A normalized floating point number 
always has a 1 to the left of the binary point; this bit is not explicit in the memory 
formats. This saves one bit in memory which allows more precision with the same 
number of bits. In this specification, the fraction is referred to as significand in order to 
indicate that it has an implied 1.0 added to the fraction. Hence, significands lie in the 
range 1.0 < significand < 2.0. S is the sign of the significand. The significand is stored 
in sign magnitude rather than twos complement form. The equation for the single 
precision format representation is:

X	 = (-1)2 x 2(exponent - 127) x (1.significand).
S	 = sign bit = bit string length of 1.
exponent     	= biased exponent — bit string length of 8
significand	 = bit string length of 23 encoding the significant bits of the number 

that low the binary point, yielding a 24 bit significand digit field for 
the number that always begins “1.____”.

Examples:
+1.0 = 1.0 x 20 = $3F, 80, 00, 00
+3.0 = 1.5 x 21 = $40, 40, 00, 00

2	 A biased exponent makes floating point compare easier to implement since the 
exponent and significand can be considered as a long integer. Also an unsigned integer 
compare can be used to calculate the condition codes rather than a floating subtract.



6

-1.0 = -1.0 x 20 = $BF, 80, 00, 00
+7.0 = 1.75 x 22 = 140, E0, 00, 00
+0.5 = 1.0 x 2-1 = $3F, 00, 00, 00

2.2.2 Double Precision Format

All double precision numbers are represented in an eight byte string as shown below:

S Exponent Significand

1 11 Bits 52 Bits

In the double precision format shown above, the exponent is biased by +1023. 
Interpretation of the format is similar to the single precision format except the bias is 
+1023 instead of + 127. The equation for the double precision format representation is:

X=(-1)S x S(exponent - 1023) x (1.significand)

Examples:
7.0 = 1.75 x 22 = $40, 1C, 00, 00, 00, 00, 00, 00
16 = 1.0 x 24 = $40, 30, 00, 00, 00, 00, 00
30.0 = 1.875 x 24 = $40, 3E, 00, 00, 00, 00, 00
-30.0 = -1.875 x 24 = $C0, 3E, 00, 00, 00, 00, 00
0.25 = 1.0 x 2-2 = $3F, D0, 00, 00, 00, 00, 00

2.2.3 Extended Format

Single and double precision formats should be used to represent the majority of 
floating point numbers in the user’s system (e.g., storage of arrays). The extended 
format should only be used for intermediate calculations such as occur in the 
evaluation of a complex expression. In fact, extended format may never be required by 
most users; however, since it is required internally, it is optionally provided. Extended 
numbers are represented in a 10 byte string as shown below:

S Exponent Significand

1 11 Bits 52 Bits

A notable difference between this format and the single and double precision formats 
is that the 1.0 is explicitly present in the significand and the exponent contains no bias 
and is in twos complement form. The equation for double extended is:

X = (-1)S x 2(exponent) x significand

Where the significand contains the explicit 1.0.

Examples:
30.0 = 1.875 x 24 = $00, 04, F0, 00, 00, 00, 00, 00, 00, 00
0.5 = 1.0 x 2-1 = $7F, FF, 80, 00, 00, 00, 00, 00, 00, 00
-1.0 = -1.0 x 20 = $80, 00, 80, 00, 00, 00, 00, 00, 00, 00
384.0 = 1.5 x 28 = $00, 08, C0, 00, 00, 00, 00, 00, 00, 00



7

2.3 SPECIAL VALUES (SINGLE AND DOUBLE MEMORY FORMAT)

No derivable floating point format can represent the infinite number of possible real 
numbers, so it is very useful if some special numbers are recognized by a floating 
point package. These numbers are: +0, -0, +infinity, -infinity, very small (almost zero) 
numbers, and in some cases unnormalized numbers. It is also convenient to have a 
special format to indicate that the contents of memory do not contain a valid floating 
point number. This “not a number” might occur if a variable is defined in a high level 
language (HLL) and is used before it is initialized with a value. The most positive and 
negative exponents of each format are reserved to represent these special values. How 
these special format numbers enter into calculations will be covered in the detailed 
description of each operation (Appendix C).

2.3.1 Zero

Zero is represented by a number with both a zero exponent and a zero significand. The 
sign is significant and differentiates between plus or minus zero.

S 0 0

2.3.2 Infinity

The infinities are represented by a number with the maximum exponent and a zero 
significand. The sign differentiates plus or minus infinity.

S 1111…1111 0

2.3.3 Small Number (Denormalized)

When a number is so small that its exponent is the smallest allowable normal biased 
value (1), and 11 ls impossible to normalize the number without further decrementing 
the exponent, then the number becomes denormalized. The formal for denormalized 
numbers has a zero exponent and a nonzero significand. Note that in this form the 
implicit bit is no longer one but is zero. The interpretation for denormalized numbers is:

Single: X = (-1)S x 2-126 x (0. significand)

Double: X = (-1)1 x 2-126 x (0. significand)

Note that the exponent is always interpreted as 2-126 for single and 2-1022 for double 
instead of 2-127 and 2-1023 as might be expected. This is necessary since the only way 
to insure that the implicit bit becomes zero is to right shift the significand (divide by 
2) and increment the exponent (multiply by 2). Thus the exponent ends up with the 
interpretation of 2-126 or 2-1022.

The format for denormalized numbers is:

S 0 Non-Zero

Note that zero may be considered a special case of denormalized numbers where 



8

the number is so small that the significand has been reduced to zero. The concept 
of denormalized numbers has perhaps been the most controversial aspect of the 
proposed IEEE standard. However, the concept of allowing a number to “gently 
underflow” to zero seems intuitive and straightforward to most inexperienced users 
who do not have a built-in bias for some existing floating point representation.

Examples: .
Single: 1.0 x 2-128 = 0.25 x 2-126 = 00, 20, 00, 00
Double: 1.0 x 2-1025 = 0.125 x 2-1022 = 00, 02, 00, 00, 00, 00, 00, 00

2.3.4 Not a Number (NAN)

The format for NANs has the largest allowable exponent, a nonzero significand, and an 
undefined sign. As an implementation feature (not IEEE required), the nonzero fraction 
and undefined sign are further defined as shown below:

d t1111…1111 Operation Address 00…000

d:	 0 =This NAN has never entered into an operation with another NAN.
1 = This NAN has entered into an operation with other NANs.

t:	 0 = This NAN will not necessarily cause an invalid operation trap when operated 
upon.

1 = This NAN will cause an invalid operation trap when operated upon (trapping 
NAN).

Operation address:
The 16 bits immediately to the right of the t bit contain the address of the 

instruction immediately following the call to the floating point package 
of the operation that caused the NAN to be created. If d (double NAN) is 
also set, the address is arbitrarily one of the addresses in the two or more 
participating NANs.

2.4 SPECIAL VALUES (EXTENDED FORMAT)

The special values discussed below are implemented using the extended format which 
was discussed earlier in this section. As explained before, numbers are represented in 
this format as a 10 byte string.

2.4.1 Zero

Zero is represented by a number with the smallest unbiased exponent and a zero 
significand:

S 100…0000 0

1 15 Bits 64 Bits

2.4.2 Infinity

Infinity has the maximum unbiased exponent and a zero significand:



9

S 011111…11 0

1 15 Bits 64 Bits

2.4.3 Denormalized Numbers

Denormalized numbers have the smallest unbiased exponent and a nonzero 
significand:

S 100…000 Nonzero

1 15 Bits 64 Bits

The exponent of denormalized extended and internal numbers is -16384, and has the 
value:

(-1)S x 2-16383 x 0.f

Example :
1.0 x 2-16387 x 0.125 x 2-16384 x 40, D0, 08, 00, 00, 00, 00, 00, 00, 00

2.4.4 NAN1

These have the largest unbiased exponent and a nonzero significand. The operation 
addresses, “t” and “d”, are implementation features and were defined in an earlier 
paragraph of this section.

d 0 1011…1111 Operation Address 00000000

1 1 115 Bits 16 Bits 46 Bits

The operation address always appears in the 16 bits immediately to the right of the t 
bit.

2.4.5 Unnormalized Numbers

Unnormalized numbers occur only in extended or internal format. Unnormalized 
numbers have an exponent which is greater than the minimum established for the 
extended format (i.e.,they are not denormalized or normal zero); however, the explicit 
leading significand bit is a zero. If the significand is zero, this is an unnormalized zero. 
Even though unnormalized and denormalized numbers are handled similarly in most 
cases, they should not be confused. Denormalized numbers are numbers that are very 
small (have minimum exponent) and hence have lost some bits of the significance. 
Unnormalized numbers are not necessarily small (the exponent may be large or small) 
but the significand has lost some bits of significance, hence, the explicit bit and 
possibly some of the bits to the right of the explicit bit are zero.

S >100…000 Significand0.

Unnormalized numbers cannot be represented (thus, cannot represent a result) for 
single precision and double precision formats. Unnormalized numbers can only be 



10

created when denormalized numbers, in single precision or double precision formats, 
are converted to extended (or internal) formats.

Example :
0.0625 x 22 (unnormalized)= 00, 02, 08, 00, 00, 00, 00, 00, 00, 00

2.5 BCD STRINGS

A BCD string is the input to the BCD-to-FP operation and the output of the FP-to-BCD 
operation. All BCD strings are represented by a 26 byte string with the following format:

se sf p4 Digit BCD Exponent 19 Digit BCD Fraction
0Byte #: 1 5 6 25

ae = sign of the exponent. 0016 = plus, 0F16 = minus. (1 byte)
sf = sign of the fraction. 0016 = plus, 0F16 = minus. (1 byte)
p = number of fraction digits to the right of the decimal point. (1 byte)

All BCD digits are unpacked and right justified in each byte:

0 0 0 0 0-9
7 0

The byte ordering of the traction and exponent is consistent with all Motorola 
processors in that the most significant BCD digit is in the lowest memory address.

Examples:
2.0 = 2.0 x 100 (p=0)

00				    [se = +]
00, 00, 00, 00		  [exponent = 0]
00				    [sf = +]
00, 00, 00, 00, 00	 [fraction = 2]
00, 00, 00, 00, 00
00, 00, 00, 00, 00
00, 00, 00, 02
00				    [p = 0]

or 2.0 = 20,000 x 10-4	 [p = 0]
0F				    [se = -]
00, 00, 00, 04		  [exponent = 4]
00				    [sf = +]
00, 00, 00, 00, 00	 [fraction = 200000]
00, 00, 00, 00, 00
00, 00, 00, 00, 02
00, 00, 00, 00
00				    [p = 0]

(The above might be the output of an FP to BCD operation with k = 5.)
or 2.0 = 2.0 x 100 (p = 10)

00				    [se = +]



11

00, 00, 00, 00		  [exponent = 0]
00				    [sf = +]
00, 00, 00, 00, 00	 [fraction=20000000000]
00, 00, 00, 02, 00
00, 00, 00, 00, 00
00, 00, 00, 00
0A				    [p = 10]

2.6 BINARY INTEGERS

Two sizes of binary integers are supported: short and double. Short integers are 16 
bits long and double integers are 32 bits long. The byte ordering is consistent with all 
Motorola processors in that the most significant bits are in the lowest address.



12

SECTION 3 SUPPORTED OPERATIONS

3.1 INTRODUCTION

The supported operations are divided into two groups: those required by the proposed 
IEEE standard, and those implemented to support real data types tor Motorola 
Pascal. A larger number of operations are required by the proposed standard to insure 
portability of floating point algorithms.

3.2 REQUIRED OPERATIONS

The operations required to support the proposed IEEE standard are shown in Table 
3-1. The mnemonic column in Table 3·1 illustrates the suggested mnemonics although, 
at present, no Motorola assembler supports them. The opcodes are used when calling 
the MC6839 to differentiate the various functions. The method for calling is described 
in Section 6.

All routines shown in Table 3-1, except FMOV and the compares (FCMP, FTCMP, 
FPCMP, and FTPCMP), accept arguments of the same precision and generate a result 
containing the same precision.

Table 3-1. Required Operations to Support IEEE Standard

Opcode Mnemonic Operation

00 FADD arg1 + arg2 → result
02 FSUB arg1 - arg2 → result
04 FMUL arg1 x arg2 → result
06 FDIV arg1 / arg2 → result
08 FREM remainder (arg1 / arg2)
BA FCMP arg1 - arg2, set condition codes
CC FTCMP arg1 - arg2 set conditions codes, trap on unordered
BE FPCMP arg1 - arg2, affirm or disaffirm a predicate
D0 FTPCMP arg1 - arg2, affirm or disaffirm a predicate, trap on unordered
9A FMOV move (or convert) arg2 → result
12 FSQRT square root arg2 → result
14 FINT integer part of arg2 → result
16 FFIXS floating arg2 → short integer result
18 FFIXD floating arg2 → double integer result
24 FFLTS short integer arg2 → floating result
26 FFLTD double integer arg2 → floating result
1C BINDEC binary floating → decimal BCD string
22 DECBIN decimal BCD string → binary floating



13

3.3 EXTRA OPERATIONS

In order to support Motorola Pascal, two other operations are supplied. They include:

Opcode Mnemonic Operation

1E FAB Absolute Value of arg → result
20 FNEG - arg2 → result

3.4 ARCHITECTURE

All floating point operations are of the “two address” or “three address” variety; all the 
user need supply are the addresses of both the operand(s) and the result. The package 
looks for operands at the specified location(s) and delivers the result to the specified 
destination. For example:

arg1
<Source> + ➙

arg2
<Source>

Result
<Destination>

The only permanent state information is contained in floating point control block 
(FPCB) which defines the modes of the package. This control block is much like the 
control blocks frequently used to define I/O or operating system operations. The FPCB 
is discussed in detail in Section 5.



14

SECTION 4 MODES OF OPERATION

4.1 INTRODUCTION

In addition to supporting a wide range of precisions and operations,the MC6839 
Floating Point ROM supports all modes required or suggested by the proposed IEEE 
standard. These include: rounding modes, infinity closure modes, and exception 
handling modes. The various modes are selected by bits in the floating point control 
block (FPCB) that resides in user memory. Thus, a unique set of modes is available 
for user calculations. The selection bits in the FPCB are defined in Section 5 of this 
manual. Details of algorithms used for rounding and exception checking are discussed 
in Appendix C.

For most users,the default modes specified in the proposed IEEE standard will be 
sufficient. The strength of the proposed IEEE standard is that it provides experienced 
numerical analysts with the necessary tools (modes) to generate special complex pro· 
grams while, at the same time, making it easier for the average engineering user to get 
the best results possible by selecting the defaults.

4.2 ROUNDING MODES

For the following examples, assume z is the infinitely precise result of an arithmetic 
operation. Further, assume z1 and z2 are the nearest numbers that bracket z and can 
be exactly represented in the selected precision. That is: z1 < Z < z2 (barely). Then the 
following criteria are used to select the delivered result.

Round to Nearest (RN) — The nearer of z1 or z2 ls selected. In the case of a tie, either 
of z1 or z2 with a zero, least significant bit is chosen (round to even). This is the default 
mode.

Round Toward Zero (RZ) — The smaller in magnitude of z1 and z2 ls selected 
(truncation).

Round Toward Plus infinity (RP) — z2 is selected.

Round Toward minus infinity (RM) — z1 is selected.

4.2.1 Rounding Precision

Normally a result is rounded to the precision of its destination. However, when the 
destination is Extended Format, the user may specify that the result significand be 
rounded to the precision of the basic format of his choice, although the exponent range 
remains extended. This allows programs written for an implementation with only the 
smaller basic formats to be moved to a full implementation and still generate the same 
results.

4.2.2 No Double Rounding

The MC6839 Floating Point ROM is implemented such that no result will undergo more 
than one rounding error.



15

4.3 INFINITY CLOSURE MODES

The way in which infinity is handled in a floating point package may limit the number of 
applications in which the package can be used. To solve this problem, the proposed 
IEEE standard requires two types of infinity closures. A bit in the control byte of the 
floating point control block (FPCB) will select the type of closure that is in effect at any 
time.

4.3.1 Affine Closure

In affine closure: minus infinity < (every finite number) < plus infinity. Thus infinity takes 
part in the real number system in the same manner as any other signed quantity. The 
sign of zero also takes on meaning in affine mode such that:

+n / +0 = plus infinity > +n / -0 = minus infinity where n = floating point number.

In all other operations, +0 and -0 participate identically.

4.3.2 Projective Closure

In projective closure: infinity = minus infinity = plus infinity, and all comparisons 
between Infinity and a real number involving order relations other than equal (=) or 
not equal (≠) are invalid operations. In projective closure, the real number system can 
be thought of as a circle with zero at the top and infinity at the bottom. Thus, infinity 
+ infinity and infinity - infinity are invalid operations. Projective closure is the default 
closure.

4.4 EXCEPTION MODES

Existing floating point implementations vary in the way they handle exceptions, so the 
proposed IEEE standard carefully prescribes how exceptions must be handled and 
what constitutes an exception. Seven types of exceptions will be recognized by the 
MC6839 Floating Point ROM; however, only the first five are required by the proposed 
IEEE standard. These include:

1. Invalid Operation
2. Underflow
3. Overflow
4. Division by Zero
5. Inexact Result
6. Integer Overflow on FINT
7. Comparison of Unordered Values

For each exception the caller will have the option of specifying whether. (1) the routine 
should trap to a user suppled trap routine on exception or (2) deliver a default specified 
by the proposed standard and proceed with exception. In either case, a status bit is 
set in the FPCB status byte and remains set until cleared by the caller’s program. The 
selection of whether to trap or continue is made by setting bits in the enable by1e of 
the FPCB. For more details on the FPCB, see Section 5. For a detailed description of 
each exception, refer to Appendix D.



16

If a trap is taken, the floating point package supplies a pointer in the U register that 
points to the current stack frame (refer to Appendix D). This stack frame contains the 
following diagnostic information:

1. Which Event Caused the Trap (Overflow, etc.)
2. Its Location in the Caller’s Program
3. The Opcode
4. The Input Operands
5. The Default Result in Internal Format

In the event more thin one exception occurs, only one trap will be invoked according to 
the following precedence:

1. Invalid Operation
2. Overflow
3. Underflow
4. Division by Zero
5. Unordered
6. Integer Overflow
7. Inexact Result

The user supplied trap routine (If any) will usually accomplish one of the four items 
listed below .

1. Change the result on the internal stack to the desired result. This result can 
then be returned to the caller by the floating point package during its stack 
cleanup.

2. Correct the result directly in the memory space of the caller. In this case 
the floating point package does not overwrite the result during its stack 
cleanup.

3. Do nothing to the result and allow the floating point package to deliver the 
default value to the result.

4. Abort execution.

All user supplied trap routines must return to the floating point package (using an RTS 
instruction) for cleanup unless they abort. If the C-bit in the condition code register 
is set on return, then the result (possibly corrected by the trap) is returned to the 
destination; otherwise, no result is returned to the destination (with the assumption that 
the user supplied trap handler already returned a value to the destination).



17

SECTION 5 FLOATING POINT CONTROL BLOCK

5.1 INTRODUCTION

The floating point control block (FPCB) is a user defined block that contains 
information needed to select the operating mode for a particular call to the floating 
point (FP) package. The FPCB must be defined in user RAM. The FPCB is also used 
to pass status back to the caller or to invoke the trap routine . The caller of the floating 
point package must pass the address of the FPCB on each call (see Section 6, User 
interface, for calling sequence details). The general form of the FPCB is:

Control Byte
Enable Byte

0
1
2
3
4
5

Status Byte
Secondary Status Byte

Address of Trap Routine

The following paragraphs discuss the use of the various bytes in the FPCB.

Precision X NRM Round Mode A/P
7 6 5 4 3 2 1 0

Bit 0: Closure Bit
0 = Projective Closure
1 = Affine Closure

Bits 1·2: Rounding Mode
00 =Round to Nearest (RN)
01 = Round Toward Zero (RZ)
10 = Round Toward Plus Infinity (RP)
11 = Round Toward Minus Infinity (RM)

Bit 3: Normalize Bit
1 = Normalize denormalized numbers while in internal format before using. 

Precludes the creation of unnormalized numbers.
0 = Do not normalize denormalized numbers (warning mode).

Bit 4: Undefined, Reserved
Bits 5-7: Precision Mode

000 = Single
001 = Double
010 = Extended With No Forced Rounding of Result
011 = Extended - Force Round Result to Single
100 = Extended - Force Round Result to Double
101 = Undefined, Reserved
110 = Undefined, Reserved
111 = Undefined, Reserved



18

For move and compare operations, bits 5-7 are “don’t cares” since the source and 
destination precisions are specified by an extra argument passed to the routine. See 
Section 6, User Interface, for more details of the moves and compare.

Note that if the control byte is set to zero by the user, all defaults in the proposed IEEE 
standard will be selected.

5.3 STATUS BYTE

The bits in the status byte are set by the MC6839 if any errors have occurred. Note 
that each bit of the status byte is a “sticky” bit and must be manually reset (written) by 
the user. The floating point package writes bits into the status byte but never clears 
existing bits. This is done so that a long calculation can be completed and the status 
need only be checked once at the end.

INXX IOV UNOR DZ UNF OVF IOP
7 6 5 4 3 2 1 0

Bit 0: Invalid Operation (also see Secondary Status)
Bit 1: Overflow
Bit 2: Underflow
Bit 3: Division by Zero
Bit 4: Unordered
Bit 5: Integer Overflow
Bit 6: Inexact Result
Bit 7: Undefined, Reserved

5.4 TRAP ENABLE BYTE

If any bit of the trap enable byte ls set, it enables the floating point package to trap if 
that error occurs. The bit position definitions are the same as for the status byte. Note 
that if a trapping compare is executed and the result ls unordered, then the unordered 
trap will be taken regardless of the state of the UNOR bit in the trap enable byte.

INXX IOV UNOR DZ UNF OVF IOP
7 6 5 4 3 2 1 0

Bit 0: Invalid Operation
Bit 1: Overflow
Bit 2: Underflow
Bit 3: Division by Zero
Bit 4: Unordered
Bit 5: Integer Overflow
Bit 6: Inexact Result
Bit 7: Undefined, Reserved



19

5.5 TRAP VECTOR

If a trap occurs, the floating point package will initiate a jump indirectly through the trap 
address in the FPCB. An index in the A accumulator then indicates the trap type. Trap 
types are as follows:

0 = Invalid Operation
1 = Overflow
2 = Underflow
3 = Divide by Zero
4 = Unnormalized
5 = Integer Overflow
6 = Inexact Result

If more than one enabled trap occurs,the MC6839 Floating Point ROM returns the 
index of the highest priority enabled error . Index 0, which is an invalid operation, ls the 
highest priority, whereas, index 6 (inexact result) is the lowest.

5.6 SECONDARY STATUS

The floating point package writes a status into this byte whenever a new IOP occurs. 
As is the case with the status byte, it is up to the caller to reset the “IOP type” field.

X X X Invalid Operation Type
7 6 5 4 3 2 1 0

Bits 0-4 represent the invalid operation type field. These lour bits are encoded as 
shown below.

0 = No IOP error
1 = Square Root of: a Negative Number, Infinity in Projective Mode, or a Not 

Normalized Number
2 = (+Infinity) + (-Infinity) in Affine mode
3 = Tried to Convert a NAN to Binary Integer
4 = in Division: 0/0, Infinity/Infinity, or the Divisor is not Normalized and the Dividend is 

Not Zero and is Finite
5 = One of the Input Arguments was a Trapping NAN
6 = Unordered Values Compared via Predicate Other Than = or ≠
7 = k Out of Range for BINDEC or p Out of Range or DECBIN
8 = Projective Closure Use of +/- Infinity in Add or Subtract
9 = 0 x Infinity
10 = in Remainder arg2 is Zero, or Not Normalized in arg1 is Infinite
11 = Unused, Reserved
12 = Unused, Reserved
13 = Unused, Reserved
14 = Unused, Reserved
15 = Tried to MOV a Single Denormalized Number to a Double Destination
16 = Tried to Return an Unnormalized Number to Single or Double (also called invalid 



20

Result in the Proposed IEEE Standard).
17-31 = Unused, Reserved



21

SECTION 6 USER INTERFACE

6.1 INTRODUCTION

There are two types of calls to the floating point package: register calls and stack 
calls. For register calls, the user loads the machine register with pointers (addresses) 
to the operand(s) and to the result; the call to the floating point package ls then 
performed. For stack calls, the operand(s) is pushed onto the sack and the call to the 
floating point package is performed. The result then replaces the operands on the 
stack after completion. The operand(s) must be pushed least significant bytes first; 
this ls consistent with the other Motorola architectures in that the most significant byte 
resides in the lowest address. The two types of calls took like:

General form of a register call:
load registers
LBSR FPREG register call
FCB opcode

General form of a stack call:
push arguments
LBSR FPSTAK stack call
FCB opcode
pull result

6.2 OPERATION OPCODES AND ENTRY POINTS

The suggested mnemonics and the opcode values for the various operations available 
in this floating point package are shown below (in opcode order).

Mnemonic Opcode Operation Description

BINDEC 1C binary floating → decimal BCD string
DECBIN 22 decimal BCD string → binary floating

FAB 1E Absolute Value of arg2 → result
FADD 00 arg1 + arg2 → result
FCMP BA arg1 - arg2, set condition codes
FDIV 06 arg1 / arg2 → result

FFIXD 18 floating arg2 → double integer result
FFIXS 16 floating arg2 → short integer result
FFLTD 26 double integer arg2 → floating result
FFLTS 24 short integer arg2 → floating result
FINT 14 integer part of arg2 → result

FMOV 9A move (or convert) arg2 → result
FMUL 04 arg1 x arg2 → result
FNEG 20 - arg2 → result



22

Mnemonic Opcode Operation Description

FPCMP BE arg1 - arg2, affirm or disaffirm a predicate
FREM 08 remainder (arg1 / arg2)
FSQRT 12 square root arg2 → result
FSUB 02 arg1 - arg2 → result

FTCMP CC arg1 - arg2 set conditions codes, trap on unordered
FTPCMP D0 arg1 - arg2, affirm or disaffirm a predicate, trap on unordered

The two entry points to the MC6839 are referred to as FPREG (register call) and 
FPSTAK (stack call). Their addresses are:

FPREG = ROM starting address + $3D
FPSTAK = ROM starting address + $3F

The first $3C locations of the ROM contain a fixed size ROM header. The entry points 
for the floating package are located in a branch table immediately following this header. 
Therefore, the addresses of the entry points will remain constant for future versions of 
the ROM.

1.3 STACK REQUIREMENTS

When the MC6839 Floating Point ROM is called by the user, local storage ls reserved 
on the hardware stack by the floating point package. The input arguments are 
then moved from user memory to the local storage area, and are expanded into a 
convenient internal format. The operations use these “internal” numbers to arrive at 
an “internal” result. The “Internal” result is then converted to the memory format of the 
result and returned (as the result) to the user. For this reason, the user must insure that 
adequate memory exists on the hardware stack before calling the MC6839 Floating 
Point ROM. The maximum stack sizes that any particular operation will ever require 
are:

register calls: 170 bytes
stack calls: 200 bytes

1.4 CALLING SEQUENCE

1.4.1 Register Call

In this calling method the addresses of the arguments and the floating point control 
block (FPCB) are passed in the register:

U = address of argument 1
Y = address or argument 2
X = address of result
D = address of FPCB

If an argument is not used in a particular operation, it need not be included. In monadic 



23

operations, Y contains the address of the single argument. The result may be the same 
address as either of the arguments. All registers will be restored on exit.

Example of a position independent call to the add routine:

LEAU	arg1,PCR
LEAY	arg2, PCR
LEAX	FPCBPTR, PCR	 pointer to FPCB3

TFR	 X, D
LEAX	result, PCR
LBSR	fpreg
FCB	 FADD

Example of a position independent monadic call to the square root routine:

LEAY	arg2, PCR
LEAX	FPCBPTR,PCR
TFR	 X, D
LEAX	result, PCR
LBSR	FPREG
FCB	 FSORT

For some operations the arguments have slightly different meanings. See Appendix 
A for details. All subroutines in the floating point package are reentrant and position 
independent. However, the caller must use caution to insure that his call does not 
violate the rules of reentrant or position independence. For example, each calling task 
should have its own FPCB to remain re-entrant. Also, if in the previous examples load 
immediate had been used, rather than load effective address program counter relative, 
the calling program could not have been position independent.

1.4.2 Stack Call

In this mode the actual argument(s), not their addresses, and the address of the FPCB 
are assumed to be on the top of the hardware stack and they will be removed and 
replaced by the result on exit. If two arguments are on the stack, then argument 2 
should be above (lower address) argument 1. The address of the FPCB is on the top of 
the stack above the argument(s).

Example of a stack call to the add routine:

push argument 1
push argument 2
push FPCBPTR	 Pointer to FPCB
LBSR FPSTAK
FCB FADD
pull result

3	 Two instructions are required here if the caller wishes his call to remain position 
independent (there is no LEAD instruction)



24

For monadic operations, arg2 contains the single input argument and there is no 
arg1. On return, the FPCB pointer and any other parameters are lost from the top of 
the stack. The only object left on the stack alter an operation is the result. For some 
operations, the arguments have slightly different meaning . See Appendix A for details.



25

APPENDIX A OPERATION DESCRIPTIONS

A.1 INTRODUCTION

This appendix contains detailed information covering specific operations and their 
required calling sequences. The operations are arranged in alphabetical order with 
a summary listing on the last page of this appendix. Detailed descriptions of the 
algorithms are provided in Appendix B.

A.2 NOTATION

In describing each specific operation, symbols are used to indicate the operation. Table 
A-1 lists these symbols and their meaning. Abbreviations which are used tor the source 
form, various registers, bits, bytes, etc. are listed in Table A·2.

Table A-1. Specific Operation Notation

Symbol Meaning
→ Is Transferred as (Stored As)
⊕ Boolean Exclusive OR
+ Arithmetic Plus
- Arithmetic Minus
x Arithmetic Multiply

Table A-2. Abbreviations

Abbreviation Meaning

arg Argument
BCS Branch if Carry Set
BGE Branch if Greater Than or Equal to Zero
*BINDEC Binary Floating Point to Decimal String
*DECBIN Decimal String to Binary floating Point
*FAB Absolute Value of an Argument
*FADD Add
FCB Form Constant Byte (assembler directive)
*FCMP Compare / Compares two arguments and sets condition codes
*FDIV Divide / Divides one argument by another
*FFIXD Fix / Double converts an argument from a floating point number into a 32-bit binary 

integer
*FFIXS Fix / Single converts an argument from a floating point number to a 16-it binary integer
*FFLTD Float / Double converts a 32-bit binary integer into a floating point result
*FFLTS Float / Single converts a 16-bit binary integer into a floating point result
*FINT Integer Part / Floating point argument is converted to a floating point integer part



26

Abbreviation Meaning

*FMOV Move / Moves an argument to the result (with any implied conversions)
*FMUL Multiply / Multiples two arguments and stores the result
*FNEG Negate / Change the sign of an argument
FPCB Floating Point Control Block
*FPCMP Predicate Compare / Compares two arguments and affirms or disaffirm a predicate
FPREG Register Call Entry Point
FPSTAK Stack Call Entry Point
*FSQRT Square Root / Stores the square root of an argument
*FSUB Subtract
*FTCMP Trapping compare / Compares two arguments and sets condition codes / Traps on 

unordered
*FTPCMP Trapping Predicate Compare / Compares two arguments and affirms or disaffirm 

predicate / Traps on unordered
LBSR Branch to Subroutine

* These abbreviations represent the specific operations which are described in this 
appendix. See Appendix H for more definitions.



27

ABSOLUTE VALUE

Mnemonic: FAB
Operation: |arg2| → result
Description: Return absolute value of arg2 as the result.
Opcode: $1E
Precision: All. The result will have the same precision as arg2. The precision is 

specified in bits 5-7 of the FPCB control byte.
Register 
Calling 
Sequence:

load X with address of result
load Y with address of arg2
load D with address of FPCB
LBSR FPREG (FPREG = ROM start + $3D)
FCB FAB

The result is automatically returned to user memory. This calling 
sequence is the same for all monadic calls.

Stack 
Calling 
Sequence:

push arg2
push address of FPCB
LBSR FPSTAK (FPSTAK = ROM start + $3F)
FCB FAB
pull result

Only the result is left on the stack alter return from the subroutine. This 
calling sequence ls the same for all monadic calls.



28

ADD

Mnemonic: FADD
Operation: arg1 + arg2 → result
Description: Add arg2 to arg1 and store the result.
Opcode: $00
Precision: All. Both arg1 and arg2 must be of the same precision. The result will 

also be the same precision. The precision is specified in bits 5-7 of the 
FPCB control byte.

Register 
Calling 
Sequence:

load X with the address of the result
load Y with the address of arg2
load U with the address of arg1
load D with the address of the FPCB
LBSR FPREG (FPREG = ROM start + $3D)
FCB FADD

The result is automatically returned to user memory. This calling 
sequence is the same for all dyadic calls.

Stack 
Calling 
Sequence:

push arg1
push arg2
push address of FPCB
LBSR FPSTAK (FPSTAK = ROM start + $3F)
FCB FADD
pull result

Only the result is left on the stack after the call. This calling sequence is 
the same for all dyadic calls.



29

BINARY FLOATING TO DECIMAL STRING

Mnemonic: BINDEC
Operation: arg2 → BCD string with k significant digits
Description: Convert a floating point argument in arg2 to an unpacked BCD string 

in the result. A parameter k is also passed to the routine to indicate the 
number of significant digits desired in the result (1 ≤ k ≤ 9 for single; 1 ≤ 
k ≤ 17 for double).

Opcode: $1C
Precision: Single and double results are delivered to the accuracy required by 

the proposed IEEE standard. Extended results, however, are not 
necessarily more accurate than double and may take considerably 
more time to compute. The precision of arg2 is specified in bits 5-7of 
the FPCB control byte. The output BCD string is a standard 26 byte 
BCD string of the form:

se sf p4 Digit BCD Exponent 19 Digit BCD Fraction
0Byte #: 1 5 6 25

se = sign of the exponent. 00 = plus, $0F = minus.
sf = sign of the fraction. 00 =plus, $0F= minus.
p = number of fraction digits to the right of the decimal point (one byte).

All BCD digits are unpacked and right justified in each byte:

0 0 0 0 0-9
7 0

Since some special floating point values have no obvious BCD 
equivalent, the sign of the exponent (se) is used to indicate these 
special cases:

se	 00 = regular positive number.
0F = regular negative number.
0C = NAN. The four digit BCD exponent contains the unpacked 

hex address that was in the NAN.
0B = minus infinity. All remaining bytes of the BCD string are zero.
0A = plus infinity. All remaining bytes of the BCD string are zero.

Even though these special numbers can be created as output, they are 
not legal inputs to DECBIN.



30

Register 
Calling 
Sequence:

load X with address of result
load Y with address of arg2
load U with k
load D with address of FPCB
LBSR FPREQ (FPREG = ROM start + $3D)
FCB BINDEC

The resultant BCD string ls automatically returned to the user.
Stack 
Calling 
Sequence:

push arg2
push k
push address of FPCB
LBSR FPSTAK (FPSTAK = ROM start + $3F)
FCB BINDEC
pull BCD string



31

COMPARE

Mnemonic: FCMP, FTCMP , FPCMP, FTPCMP
Operation: arg1 - arg2 (return condition code register of affirm/disaffirm a 

predicate)
Description: Compare arg1with arg2. Both arg1 and arg2 maybe of different 

precisions. Two basic types of compares are provided. One returns 
condition codes in the condition code register to the user to indicate 
the result of the comparison. The other is given a predicate (e.g., is arg1 
equal to arg2?) and either affirms or disaffirms the predicate.

1) Condition code compares:

FCMP

Compare arg1 with arg2 and set the condition codes. Do not trap on 
unordered unless the trap on unordered bit (UNOR) is set in the trap 
enable byte of the FPCB.

FTCMP

Compare arg1 with arg2 and set the condition codes. Trap if the 
unordered conditions occur regardless of the state of the UNOR bit in 
the trap enable byte of the FPCB.

The intermediate result of any comparison can yield one of five possible 
results: arg1 is > arv2, arg1 ls < arg2, arg1 = arg2, arg1 ≠ arg2, or arg1 
cannot be compared to arg2 (unordered). The unordered condition 
occurs when a comparison is made between a NAN and anything 
else or when infinity is compared to anything except itself in projective 
closure. This intermediate result is then used to set the condition codes 
as follows:

Result N Z V C
> 0 0 0 0
< 1 0 0 0
= 0 1 0 0

unordered 0 0 0 1

The remaining condition code register bit (E, F, H, and I) are unaffected 
by compare.

This allows the following signed branches to be taken immediately 
following the return from FCMP or FTCMP.



32

Condition Branch Test for Branch
> (L)BGT [not (N ⊕ V)] and (not Z) = 1
≥ (L)BGE not (N ⊕ V) = 1
< (L)BLT not (N ⊕ V) = 0
≤ (L)BLE not (N ⊕ V) and (not Z) = 0
= (L)BEQ Z = 1
≠ (L)BNE Z = 0

unordered (L)BCS C = 1

If FCMP and the unordered trap is disabled, a BCS should immediately 
follow the call and precede any of the other branches:

LBSR	 fpxxx
FCB	 FCMP
BCS	 unordered
BGE	 label

Note that this implementation of compare conditions (as defined by 
the proposed IEEE standard) does not support the dichotomy principle 
normally associated with integer compare. For example, BGE is not 
necessarily the inverse of BLT (the result may be unordered too). 
Compiler writers must take care not to switch the condition of a branch 
during code generation.

2) Predicate Compares

FPCMP

Compare arg1 with arg2. Either affirm or disaffirm an lnput predicate. 
Do not trap on unordered unless the UNOR bit is set in the trap enable 
byte of the FPCB. For register calls the Z-bit in the condition code 
register is set to 1 for affirm (true) and set to 0 tor disaffirm (false). For 
stack calls a byte of zeros ls pushed on top of the stack for true and a 
byte of ones ($FF) is pushed for false.

FTPCMP

Compare arg1 with arg2. Either affirm or disaffirm an input predicate. 
Trap if the unordered condition occurs regardless of the state of the 
UNOR bit in the trap enable byte of the FPCB. For register calls the 
Z-bit in the condition code register is set to 1 or affirm (true) and set to 
0 tor disaffirm (false). For stack calls a byte of zeros is pushed on top of 
the stack for true and a byte of ones ($FF) is pushed for false.

Unordered conditions occur when a comparison is made between a 
NAN and anything else or when infinity is compared to anything except 
itself in projective closure.



33

The predicate to be affirmed or disaffirmed is passed to the compare in 
the parameter word:

≠ > = < U 0 arg1 0 arg2000
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

The predicates are >, =, <, and unordered, or a reasonable combination 
of these (e.g., > =). The intermediate, result of a predicate compare 
is either > , = , <, or unordered. The table below gives the predicate 
affirmed or disaffirmed for each possible intermediate result.

Intermediate Result Predicates Affirmed
less than < ≤

equal = ≤ ≥
greater than > ≥
unordered unordered

Intermediate Result Predicates Disaffirmed
less than = ≥ > unordered

equal < > unordered ≠
greater than = ≤ < unordered
unordered < ≤ = ≥ > < >

The result returned for affirmed is a zero byte and for disaffirmed it is a 
-1 or $FF byte for a stack call. For a register call, Z = 1 if the predicate 
ls affirmed.

Opcode: FCMP = $8A
FTCMP = $CC
FPCMP = $8E
FTPCMP = $D0



34

Precision: Since the compares allow arg1 and arg2 to be of different precisions, 
a parameter word must be passed on each call to any compare. The 
format of the parameter word is:

≠ > = < U 0 arg1 0 arg2000
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Where arg1 or arg2 is defined:

000		  Single
001		  Double
010		  Extended
011		  Unused (defaults to extended)
100		  Unused (defaults to extended)
101-111	 Undefined

Since the parameter word specifies both arguments of the compare, 
bits 5-7 of the control byte of the FPCB do not affect the compare 
instructions.

Register 
Calling 
Sequence:

load X with the parameter word
load Y with address of arg2
load U with address of arg1
load D with address of FPCB
LBSR FPREG (FPREG = ROM start + $3D)
FCB <Opcode>

The result ls returned in the condition code register. It is either a setting 
of the condition code register (condition code call) or the Z bit ls set to 
1 for affirm and z = 0 for disaffirm (predicate calls).

Stack 
Calling 
Sequence:

push arg1
push arg2
push parameter word
push address of the FPCB
LBSR FPREG (FPREG = ROM start + $3F)
FCB <Opcode>
pull result

If the compare is a condition code compare, no result is delivered on 
the stack — only the condition codes are returned in the condition 
code register. If the compare is a predicate compare, a 1-byte result is 
returned on top of the stack. The result = 0 for affirmed and -1 ($FF) for 
disaffirmed.



35

DECIMAL STRING TO BINARY FLOATING POINT

Mnemonic: DECBIN
Operation: BCD string-floating point result
Description: Convert a standard BCD string into a binary floating point result. The 

value “p” in the standard decimal string indicates the number of digits 
of the fraction that are to the right of the decimal point.

Opcode: $22
Precision: The precision of the result ls defined by bits 5-7 of the FPCB control 

byte. The input BCD string is a standard 26 byte BCD string of the 
form:

se sf p4 Digit BCD Exponent 19 Digit BCD Fraction
0Byte #: 1 5 6 25

se = sign of the exponent. 00 = plus, $0F = minus (one byte).
sf = sign of the fraction. 00 = plus, $0F = minus (one byte).
p = number of fraction digits to the right of the decimal point (one byte).

All BCD digits are unpacked and right justified in each byte:

0 0 0 0 0-9
7 0

The byte ordering of the fraction and exponent is consistent with all 
Motorola processors in that the most significant BCD digit is in the 
lowest memory address.

Register 
Calling 
Sequence:

load X with the address of result
load U with the address of the BCD input string
load D with the address of the FPCB
LBSR FPREG (FPREG = ROM start + $3D)
FCB DECBIN

The result is automatically returned to the user.
Stack 
Calling 
Sequence:

push the BCD string
push address of the FPCB
LBSR FPSTAK (FPSTAK = ROM start + $3F)
FCB DECBIN

pull floating point result



36

Divide

Mnemonic: FDIV
Operation: arg1/arg2 → result
Description: Divide arg1 by arg2 and store the result
Opcode: $06
Precision: Both arg1 and arg2 must be of the same precision. The result will also 

be the same precision. The precision is specified in bits 5-7 of the 
FPCB control byte.

Register 
Calling 
Sequence:

load X with the address of the result
load Y with the address of arg2
load U with the address of arg1
load D with the address of the FPCB
LBSR FPREG (FPREG = ROM start + $3D)
FCB FDIV

The result is automatically returned to user memory. The calling 
sequence is the same for all dyadic calls.

Stack 
Calling 
Sequence:

push arg1
push arg2
push address of FPCB
LBSR FPSTAK (FPSTAK = ROM start + $3F)
FCB FDIV
pull result

Only the result is left on the stack alter the call. This calling sequence is 
the same for all dyadic calls.



37

FIX

Mnemonic: FFIX, FFIXD
Operation: arg2 → binary integer result
Description: Converts arg2 from a floating point number into a 16- or 32-bit binary 

integer. If arg2 is infinity, then the integer returned is the largest or 
smallest twos complement integer.

Opcode: FFIXS = $16 (16-bit integer)
FFIXD = $18 (32-bit integer)

Precision: Same as absolute value except that the result will be a 16- or 32·bit 
integer as specified by the opcode.

Register 
Calling 
Sequence:

load X with the address of the result
load Y with the address of arg2
load D with the address of the FPCB
LBSR FPREG (FPREG = ROM start + $3D)
FCB FFIXS or FFIXD

The result is automatically returned to user memory. The calling 
sequence is the same for all monadic calls.

Stack 
Calling 
Sequence:

push arg2
push address of FPCB
LBSR FPSTAK (FPSTAK = ROM start + $3F)
FCB FFIXS or FFIXD
pull result

Only the result is left on the stack after return from the subroutine. This 
calling sequence is the same for all monadic calls.



38

FLOAT

Mnemonic: FFLTS, FFLTD
Operation: Binary integer arg2 → floating point result
Description: Converts a 16- or 32-bit integer into a floating point result.
Opcode: FFLTS = $24 (16-blt binary integer)

FFLTD = $26 (32-bit binary integer)
Precision: All. The size of the binary integer is specified in the opcode. The 

precision is specified in bits 5-7 of the FPCB control byte.
Register 
Calling 
Sequence:

load X with the address of the result
load Y with the address of arg2
load D with the address of the FPCB
LBSR FPREG (FPRET = ROM start + $3D)
FCB FFLTS or FFLTD

The result is automatically returned to user memory. The calling 
sequence is the same for all monadic calls.

Stack 
Calling 
Sequence:

push arg2
push address of FPCB
LBSR FPSTAK (FPSTAK = ROM start + $3F)
FCB FFLTS or FFLTD
pull result

Only the result is left on the stack after return from the subroutine. This 
calling sequence is the same for all monadic calls.



39

INTEGER PART

Mnemonic: FINT
Operation: Integer part (arg2) → floating point result
Description: The floating point argument in arg2 ls converted to its floating point 

integer part. This differs from FIX which returns a binary integer. Integer 
part returns a floating point number. For example, the integer part of 
3.14159 is 3.00000 if the rounding mode is round lo nearest.

Opcode: $14
Precision: All. The result will have the same precision as arg2. The precision is 

specified in bits 5-7 of the FPCB control byte.
Register 
Calling 
Sequence:

load X with the address of the result
load Y with the address of arg2
load D with the address of the FPCB
LBSR FPREG (FPREG = ROM start + $3D)
FCB FINT

The result is automatically returned to user memory. The calling 
sequence is the same for all monadic calls.

Stack 
Calling 
Sequence:

push arg2
push address of FPCB
LBSR FPSTAK (FPSTAK = ROM start + $3F)
FCB FINT
pull result

Only the result is left on the stack alter return from the subroutine. This 
calling sequence is the same for all monadic calls.



40

MOVE

Mnemonic: FMOV
Operation: arg2 → result
Description: For register calls, the move instruction moves arg2 to the result. Since 

moves allow mixed precisions, they can be used to convert a number 
from one precision to another during the move. For stack calls, the 
move is essentially a “convert precision of stack top” operation.

Opcode: $9A
Precision: The move allows arg2 and the result to be of different precisions. In 

order to specify the two precisions, a parameter word must be passed 
on each call to move. The form of the parameter word is:

0 0 0 0 0 0 arg2 0 result000
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Where arg2 (source) or result (destination) is defined:
000		  Single
001		  Double
010		  Extended
011		  Extended round to single
100		  Extended round to double
101-111	 Illegal

Since the parameter word specifies both arguments of the move, bits 
5-7 of the FPCB control byte do not affect the move operation.

Register 
Calling 
Sequence:

load X with the address of the result
load Y with the address or arg2
load U with the address of precision parameter word
load D with the address of the FPCB
LBSR FPREG (FPREG = ROM start + $30)
FCB FMOV

The result is automatically returned to user memory in the precision 
specified in the parameter word.

Stack 
Calling 
Sequence:

push arg2
push precision parameter word
push address of FPCB
LBSR FPSTAK (FPSTAK = ROM start + $3F)
FCBFMOV
pull result

Only the result is left on the stack alter the operation. The result has the 
precision (and size) specified in the precision parameter word.



41

MULTIPLY

Mnemonic: FMUL
Operation: arg1 x arg2 → result
Description: Multiply arg1 and arg2 and store the result.
Opcode: $04
Precision: arg1 and arg2 must be of the same precision. The result will also be 

the same precision. The precision is specified in bits 5-7 of the FPCB 
control byte.

Register 
Calling 
Sequence:

load X with the address of the result
load Y with the address of arg2
load U with the address or arg1
load D with the address of the FPCB
LBSR FPREG (FPREG = ROM start + $3D)
FCB FMUL

The result is automatically returned to user memory. The calling 
sequence is the same for all dyadic calls.

Stack 
Calling 
Sequence:

push arg1
push arg2
push address of FPCB
LBSR FPSTAK (FPSTAK = ROM start + $3F)
FCB FMUL
pull result

Only the result is left on the stack after the call. This calling sequence is 
the same for all dyadic calls.



42

NEGATE

Mnemonic: FNEG
Operation: -arg2 → result
Description: Negate arg2 by changing the sign and store as the result.
Opcode: $20
Precision: All. The result will also be the same precision as arg2. The precision is 

specified in bits 5-7 of the FPCB control byte.
Register 
Calling 
Sequence:

load X with the address of the result
load Y with the address of arg2
load D with the address of the FPCB
LBSR FPREG (FPREG = ROM start + $3D)
FCB FNEG

The result is automatically returned to user memory. The caning 
sequence is the same for all monadic calls.

Stack 
Calling 
Sequence:

push arg2
push address of FPCB
LBSR FPSTAK (FPSTAK = ROM start + $3F)
FCB FNEG
pull result

Only the result is left on the stack after the call. This calling sequence is 
the same for all monadic calls.



43

REMAINDER

Mnemonic: FREM
Operation: arg1 - (arg2 x n) → result [where n = integer part of (arg1/arg2) in round 

nearest]
Description: Finds the remainder of arg1/arg2 and stores it as the result. Note, 

as defined by the proposed IEEE standard, this is not the same as 
“modulo.” For example, the remainder of 8/3 is -1 not 2. This can 
be seen by substituting 8 and 3 in the equation in the operation 
description:

n - integer part of 8/3 = 3 (round nearest)
remainder = 8 - (3x3) = -1

This form of remainder was chosen for a number of reasons. First, it 
is the remainder most useful for scaling the inputs to trigonometric 
subroutines. Secondly, all other remainder type functions may be easily 
derived from this one. For example, the “modulo” function is found by 
taking:

Z = remainder (arg2/arg1);
if Z<0 then Z = Z + arg1

Opcode: $08
Precision: arg1 and arg2 must be of the same precision. The result will also be 

the same precision. The precision is specified in bits 5-7 of the FPCB 
control byte.

Register 
Calling 
Sequence:

load X with the address of the result
load U with the address of arg1
load Y with the address of arg2
load D with the address of the FPCB
LBSR FPREG (FPREG = ROM start + $3D)
FCB FREM

The result is automatically returned to user memory. The calling 
sequence is the same for all dyadic calls.

Stack 
Calling 
Sequence:

push arg1
push arg2
push address of FPCB
LBSR FPSTAK (FPSTAK = ROM start + $3F)
FCB FREM
pull result

Only the result is left on the stack alter the call. This calling sequence is 
the same for all dyadic calls.



44

SUBTRACT

Mnemonic: FSUB
Operation: arg1 - arg2 → result
Description: Subtract arg2 from arg1 and store the result.
Opcode: $02
Precision: All. Both arg1 and arg2 must be of the same precision. The result will 

also be the same precision. The precision is specified in bits 5-7 of the 
FPCB control byte.

Register 
Calling 
Sequence:

load X with the address of the result
load Y with the address of arg2
load U with the address of arg1
load D with the address of the FPCB
LBSR FPREG (FPREG = ROM start + $3D)
FCB FSUB

The result is automatically returned to user memory. The calling 
sequence

Is the same for all dyadic calls.
Stack 
Calling 
Sequence:

push arg1
push arg2
push address of FPCB
LBSR FPSTAK (FPSTAK: ROM start + $3F)
FCB FSUB
pull result

Only the result is left on the stack after the call. This calling sequence is 
the same for all dyadic calls.



45

SQUARE ROOT

Mnemonic: FSQRT
Operation: Square root of arg2 → result
Description: Returns the square root of arg2 as the result.
Opcode: $12
Precision: All. The result will also be the same precision as arg2. The precision is 

specified in bits 5-7 of the FPCB control by1e.
Register 
Calling 
Sequence:

load X with the address of the result
load Y with the address of arg2
load D with the address of the FPCB
LBSR FPREG (FPREG = ROM start + $3D)
FCB FSORT

The result is automatically returned to user memory. The calling 
sequence is 1he same for all monadic calls.

Stack 
Calling 
Sequence:

push arg1
push address of FPCB
LBSR FPSTAK (FPSTAK = ROM start + $3F)
FCB FSQRT
pull result

Only the result is left on the stack after return from the subroutine. This 
calling sequence is the same tor all monadic calls.



46

Table A-3. MC6839 Calling Sequence ad Opcode Summary Table

Function Opcode Register Calling Sequence Stack Calling Sequence1

FADD
FSUB
FMUL
FDIV

$00
$02
$04
$06

U → Addr of Argument #1
Y → Addr of Argument #2
D → Addr of FPCB
LBSR FPREG
FCB < opcode >

Push Argument #1
Push Argument #2
Push Addr of FPCB
LBSR FPSTAK
FCB < opcode >
Pull Result

FREM
FSQRT
FINT
FFIXS
FFIXD
FAB
FNEG
FFLTS
FFLTD

$08
$12
$14
$16
$18
$1E
$20
$24
$26

Y → ADDR OF Argument
D → ADDR OF FPCB
X → Address of Result
LBSR FPREG
FCB < opcode >

Push Argument #1
Push Addr of FPCB
LBSR FPSTAK
FCB < opcode >
Pull Result

FCMP
FTCMP
FPCMP
FTPCMP

$8A
$CC
$8E
$D0

U → Addr of Argument #1
Y → Addr of argument #2
D → Addr of FPCB
X → Parameter Word
LBSR FPREG
FCB < opcode >

Note: Result returned in the CC registers 
for predicate compares in the Z-Bit is set is 
predicate is affirmed, cleared if disaffirmed

Push Argument #1
Push Argument #2
Push Parameter Word
Push Addr of FPCB
LBSR FPSTAK
FCB < opcode >
Pull Result (if predicate compare)

Note: result returned in the CC register for regular 
compares. For predicate compares a one byte 
result is returned on the top of the stack. The result 
is zero if affirmed and -1 ($FF) is disaffirmed.

FMOV $9A U → Precision parameter word
Y → Addr of Argument
D → Addr of FPCB
X → Addr of Result
LBSR FPREG
FCB FMOV

Push Argument
Push Precision Parameter Word
Push Addr of FPCB
LBSR FPSTAK
FCB FMOV
Pull Result

BINDEC $1C U →k (# of digits in result)
Y → Addr of Argument
D → Addr of FPCB
X → Addr of Decimal Result
LBSR FPREG
FCB BINDEC

Push Argument
Push k
Push Addr of FPCB
LBSR FPSTAK
FCB BINDEC
Pull BCD String

DECBIN $22 U → Addr of BCD Input String
D → Addr of FPCB
X → Addr of Binary Result
LBSR FPREG
FCB DECBIN

Push Addr of BCD Input String
Push Addr of FPCB
LBSR FPSTAK
FCB DECBIN
Pull Binary Result

1 All arguments are pushed on the stack least-significant bytes first so that high-order 
byte is always pushed last and resides in the lowest address.

Entry points to the MC6839 are defined as follows:
FPREG = ROM Start + $3D
FPSTAK = ROM Start + $3F



47

APPENDIX B APPLICATION EXAMPLE OF THE QUADRATIC 
EQUATION

This appendix provides an application example using the MC6839 Floating Point ROM. 
The program shown below is one that finds the roots to quadratic equations using the 
classic formula:

-b ±   b2 - 4ac
2a

Note that the program uses a standard set of macro instructions to set up the 
parameters in the correct calling sequences. Perhaps the easiest way to program 
MC6839 Floating Point ROM is through the use of these macro instructions. Errors are 
reduced because, once the macro instructions are shown to be correct, their internal 
details can be ignored allowing the programmer to concentrate only on the problem at 
hand.

NAM QUAD
*
* HERE IS A SIMPLE EXAMPLE INVOLVING THE QUADRATIC EQUATION THAT
* SHOULD SERVE TO ILLUSTRATE THE USE OF THE MC6839 IN AN ACTUAL
* APPLICATION.
*
* LINKING LOADER DEFINITIONS
*
  XDEF  QUAD
*
  XREF  FPREG
*
* RBMS FOR THE OPERANDS, BINARY TO DECIMAL CONVERSION BUFFERS,
* AND THE FPCB.
*
ACOEFF RMB 26            COEFFICIENT A IN AX^2 + BX + C
BCOEFF RMB 26            COEFFICIENT B
CCOEFF RMB 26            COEFFICIENT C
*
REG1 RMB 4               REGISTER 1
REG2 RMB 4               REGISTER 2
REG3 RMB 4               REGISTER 3
*
FPCB RMB 4               FLOATING POINT CONTROL BLOCK
*
TWO FCB $40,00,00,00     FLOATING PT. CONSTANT TWO
FOUR FCB $40,$80,00,00                         FOUR
*
*
* HERE ARE THE EQUATES AND MACRO DEFINITIONS TO ACCOMPANY THE
* QUADRATIC EQUATION EXAMPLE OF AN MC6839 APPLICATION.
*
ADD  EQU 00
SUB  EQU 02
MUL  EQU 04
DIV  EQU 06



48

SQRT EQU $12
ABS  EQU $1E
NEG  EQU #20
BNDC EQU $1C
DCVN EQU #22
*
*
* MACRO DEFINITIONS
*
* HERE ARE THE CALLING SEQUENCE MACROS
*
MCALL MACR
*
*  MCALL SETS UP A MONADIC REGISTER CALL.
*
* USAGE: MCALL <INPUT OPERAND>,<OPERATION>,<RESULT>
*
 LEAY \0,PCR            POINTER TO THE INPUT ARGUMENT
 LEAX FPCB,PCR          POINTER TO THE FLOATING POINT CONTROL BLOCK
 TFR X,D
 LEAX \2,PCR            POINTER TO THE RESULT
 LBSR FPREG             CALL TO THE MC6839
 FCB \1 OPCODE
*
 ENDM
*
*
DCALL MACR
*
* DCALL SETS UP A DYADIC REGISTER CALL
*
* USAGE: DCALL <ARGUMENT #1>,<OPERATION>,<ARGUMENT #2>,<RESULT>
*
 LEAU \0,PCR              POINTER TO ARGUMENT #1
 LEAY \2,PCR              POINTER TO ARGUMENT #2
 LEAX FPCB,PCR            POINTER TO THE FLOATING POINT CONTROL BLOCK
 TFR X,D
 LEAX \3,PCR              POINTER TO THE RESULT
 LBSR FPREG               CALL TO THE MC6839
 FCB \1 OPCODE
*
 ENDM
*
*
DECBIN MACR
*
* DECBIN SETS UP A REGISTER CALL TO THE DECIMAL TO BINARY CONVERSION FUNCTION
*
* USAGE: DECBIN <BCD STRING>,<BINARY RESULT>
*
 LEAU \0,PCR              POINTER TO THE BCD INPUT STRING
 LEAX FPCB,PCR            POINTER TO THE FLOATING POINT CONTROL BLOCK
 TFR X,D
 LEAX \1,PCR              POINTER TO THE RESULT
 LBSR FPREG               CALL TO THE MC6839
 FCB DCBIN
*



49

 ENDM
*
*
BINDEC MACR
*
* BINDEC SETS UP A REGISTER CALL TO THE BINARY TO DECIMAL CONVERSION FUNCTION.
*
* USAGE: BINDEC <BINARY INPUT>,<BCD RESULT>,<# OF SIGNIFICANT DIGITS RESULT>
*
 LDU \2                   # OF SIGNIFICANT DIGITS IN THE RESULT
 LEAY \0,PCR              POINTER TO THE BINARY INPUT
 LEAX FPCB,PCR            POINTER TO THE FLOATING POINT CONTROL BLOCK
 TFR X,D
 LEAX \1,PCR              POINTER TO THE BCD RESULT
 LBSR FPREG               CALL TO THE MC6839
 FCB BNDC                 OPCODE
*
 ENDM
*
*
QUAD EQU *
*
 LDS #$6FFF               INITIALIZE THE STACK POINTER
*
 LEAX FPCB,PCR
 LDB #4
 WHILE B,GT,#0
   DECB                   INITIALIZE STACK FRAME TO
   CLR B,X                SINGLE, ROUND NEAREST.
*
 ENDWH
*
* CONVERT THE INPUT OPERANDS FROM BCD STRINGS TO THE INTERNAL
* SINGLE BINARY FORM.
*
 DECBIN ACOEFF,ACOEFF
 DECBIN BCOEFF,BCOEFF
 DECBIN CCOEFF,CCOEFF
*
* NOW START THE ACTUAL CALCULATIONS FOR THE QUADRATIC EQUATIONS
*
 DCALL BCEOFF,MUL,BCOEFF,REG1       CALCULATE B^2
 DCALL ACOEFF,MUL,CCOEFF,REG2       CALCULATE AC
 DCALL REG2,MUL,FOUR,REG2           CALCULATE 4AC
 DCALL REG1,SUB,REG2,REG1           CALCULATE B^2 - 4AC
*
* CHECK RESULT OF B^2 - 4AC TO SEE IF ROOTS ARE REAL OR IMAGINARY
*
 LDA REG1,PCR
 IFCC GE
   MCALL REG1,SQRT,REG1             CALCULATE SQRT(B^2 - 4AC)
   DCALL ACOEFF,MUL,TWO,REG2        CALCULATE 2A
   MCALL BCOEFF,NEG,BCOEFF          NEGATE B
*
   DCALL BCOEFF,ADD,REG1,REG3       CALCULATE -B + SQRT( B^2 - 4AC )
   DCALL REG3,DIV,REG2,REG3         CALCULATE (-B + SQRT( B^2 -4AC ))/2A
   BINDEC REG3,ACOEFF,#5            CONVERT RESULT TO DECIMAL



50

*
   DCALL BCEOFF,SUB,REG1,REG3       CALCULATE -B - SQRT( B^2 - 4AC)
   DCALL REG3,DIV,REG2,REG3         CALCULATE (-B + SQRT( B^2 - 4AC ))/2A
   BINDEC REG3,BCOEFF,#5            CONVERT RESULT TO DECIMAL
*
   LDA #$FF                         SENTENTIAL SIGNALING THAT ROOTS ARE REAL
   STA CCOEFF,PCR
*
 ELSE                               SIGN IS NEGATIVE; ROOTS IMAGINARY
   MCALL REG1,ABS,REG1              MAKE SIGN POSITIVE
   MCALL REG1,SQRT,REG1             CALCULATE SQRT( B^2 - 4AC )
   DCALL ACOEFF,MUL,TWO,REG2        CALCULATE 2A
   DCALL REG1,DIV,REG2,REG1         CALCULATE ( SQRT( B^2 - 4AC ))/2A
*
   DCALL BCOEFF,DIV,REG2,REG2       CALCULATE -B/2A
   MCALL REG2,NEG,REG2
*
   BINDEC REG1,BCOEFF,#5            CONVERT -B/2A TO DECIMAL
   BINDEC REG2,ACOEFF,#5            CONVERT (SQRT( B^2 - 4AC))/2A
*
   CLR CCOEFF,PCR
*
 ENDIF
*
*
 NOP
 NOP



51

APPENDIX C DETAILED DESCRIPTION OF OPERATIONS

C.1 INTRODUCTION

This appendix contains detailed algorithmic information for each operation. Some 
implementation is also given to help explain how the MC6839 Floating Point ROM 
operates.

C.1.1 Argument Type Matrix

In order to speed up execution of the operations, tables are used to define special 
actions required for most operations. That is, most operations require special handling 
of values such as +0, -0, infinities, etc. For monadic operations, the type of arg2 is 
used to index into a one dimensional table. The index is determined by the type of 
argument.

Index

arg2

Normalized 0
Zero 2
Infinity 4
NAN 6
Not Normalized 8

For dyadic operations, the type of both arguments determine the index.

arg2
Normalized Zero Infinity NAN Not Normalized

arg1

Normalized 00 02 04 06 08
Zero 10 12 14 16 18
Infinity 20 22 24 26 28
NAN 30 32 34 36 38
Not Normalized 40 42 44 46 48

The index is used by each operation to jump indirectly through a table of values that 
specifies the offset from the start of the ROM to the routine to be executed.

C.1.2 Reading The Matrix Table

Argument type matrix tables are used in the discussion of each operation which 
follows. An entry in the table that contains “arg1 “ or “arg2” means that the operation 
will return that argument as the result and that no other processing is necessary. A 
letter in the matrix indicates that the operations specified in the paragraph with that 
letter will be executed to calculate the result. An example table and explanation is given 
below:

Z

arg2

Normalized a
Zero arg2
Infinity c
NAN arg2
Not Normalized b



52

In this example, if the input argument (arg2) is normalized, infinity, or not normalized, 
then refer to a, b, or c (of that particular paragraph) respectively. If the input argument 
is a NAN or zero, then return that NAN or zero (arg2) as the result.

In the following operation,description “Z” is used to represent the floating point result 
of an operation and “I” is used to represent an integer result.

If a trapping NAN is one of the operands (arg1 and arg2) and the invalid operation trap 
is enabled, then an invalid operation (=5) trap will be taken before the operation begins 
and, hence, the matrix table will not be used. Trapping NANs can be used by the user 
to create new or special data types or to provide special handling.

If “NAN” appears is the table as the result, it implies that a new NAN is created. The 
MC6839 Floating Point ROM will return the address of the instruction immediately 
following the operation that caused the NAN to be generated. Since the NAN is a new 
NAN, the “d” (double NAN), and “1” (trapping NAN) bits will be set to zero. See Section 
2 for NAN details.

The final step for most arithmetic operations where the operands are well behaved 
includes checking for underflow, invalid operation, rounding, and overflow. In the 
operation descriptions, the following functions and procedures are used in algorithms 
without detailed explanations. For clarification, calls to these procedures and functions  
are always in upper case in the description of the operations. The functions and 
procedures used are:

CKINVALID Check for invalid result.
OVERFLOW Function. Returns true if overflow occurred.
UNDERFLOW Function. Returns true if underflow occurred.
OVFL_NO_TRAP Handles overflow when traps are disabled.
SUB_BIAS Handles overflow when traps are enabled by subtracting a bias.
UNFL_NO_TRAP Handles underflow when traps are disabled.
ADD_BlAS Handles underflow when traps are enabled by adding a bias.
ROUND Does correct rounding.

Detailed descriptions of the algorithms used for these functions and procedures are in 
Appendix D.

C.2 ADD (FADD), SUBTRACT (FSUB)

Z = arg1 + arg2; Z = arg1 +(- arg2)
Opcode = $00 (FADD)
Opcode = $02 (FSUB)



53

arg2
Normalized Zero Infinity NAN Not Normalized

arg1

Normalized b b arg2 arg2 b
Zero b a arg2 arg2 b
Infinity arg1 arg1 c arg2 arg1
NAN arg1 arg1 arg1 m arg1
Not Normalized b b arg2 arg2 b

a.

arg2
-0 +1

arg1 -0 -0 0
+0 d +0

d = +0 in rounding modes RN, RZ, RP
-0 in rounding mode RM

b.

1) Align binary points of arg1 and arg2 by unnormalizing the operand with the smaller 
exponent until the exponents are equal. Note if both operands are unnormalized.

2) Add the operands in internal form.
3) if arithmetic overflow occurs, right shift fraction one bit and increment exponent.
4) if all bits of the unrounded result are zero, then

sign (Z) = + in rounding modes RN, RZ, RP
sign (Z) = - in rounding mode RM
If either arg1 or arg2 was normalized after step 1, then exponent (Z) = most 

negative value (I.e., true zero).
Else (“Not all bits are zero”)
If, after step1, both operands were unnormalized,
then go to step 5.
else
Normalize the result, if necessary, by shifting left while decrementing the exponent until 

n = 1.
Zero or s may be shifted into r from the right.
5) if UNDERFLOW then

If trap enabled then
ADD_BIAS
ROUND

else
UNFL_NO_TRAP

endif
else

ROUND
CKINVALID
If OVERFLOW then

If trap enabled then
SUB_BIAS



54

else
OVERFLNO_TRAP

endif
endif

endif

c. If affine mode:

arg2
+infinity -infinity

arg1 +infinity + infinity c1
-infinity c1 -infinity

c1. Signal invalid operation =2. Z = NAN
If projective closure mode, return NAN and signal invalid operation = 8.

m. Return arg2 but set the “d” bit in the NAN to indicate that this is a “double” NAN.

C.3 MULTIPLY (FMUL)

Z = arg1 x arg2
Opcode = $04

The sign of Z is the “exclusive OR” of the signs of arg1 and arg2

arg2
Normalized Zero Infinity NAN Not Normalized

arg1

Normalized a 0* inf* arg2 a
Zero 0* 0* b arg2 0*
Infinity inf* b inf* arg2 inf
NAN arg1 arg1 arg1 m arg1
Not Normalized a 0* inf* arg2 a

* Sign determined by arg1 “exclusive OR” arg2

a.

1) Generate sign and exponent. Multiply the significands in internal form.
2) if arithmetic overflow occurs, then right shift the significand one bit and increment 

the exponent.
3) if UNDERFLOW then

If trap enabled then
ADD_BIAS
ROUND

else
UNFL_NO_TRAP

endif
else

ROUND
CKINVAUD



55

If OVERFLOW then
If trap enabled then

SUB_BIAS
else

OVERFL_NO_TRAP
endif

endif
endif

b. Signal Invalid operation = 9. Z = NAN.

m. Return arg2 but set the “d” bit in the NAN to indicate that this is a “double” NAN.

C.4 DIVIDE (FDIV)

Z = arg1/arg2 with sign of Z equal to the “exclusive-OR” of the signs of arg1 and arg2.
Opcode = $06

arg2
Normalized Zero Infinity NAN Not Normalized

arg1

Normalized c a 0* arg2 b
Zero 0* b 0* arg2 0*
Infinity inf* inf* b arg2 inf
NAN arg1 arg1 arg1 m arg1
Not Normalized c 0* 0* arg2 b

* With correct sign
a. Signal Division by zero.
Z = infinity with correct sign

b. Z = NAN. Signal Invalid operation = 4.

c.

1) Generate sign and exponent. Divide the significands in internal format.
2) if n=0, then left shift significand one bit and decrement exponent. S need not 

participate in the left shift. A zero or s may be shifted into r from the right.
3) if UNDERFLOW then

If trap enabled then
ADD_BIAS
ROUND

else
UNFLNO_TRAP

endif
else

ROUND
CKINVALID
If OVERFLOW then

If trap enabled then
SUB_BIAS



56

else
OVFL_NO_TRAP

endif
endif

endif

m. Return arg2 but set the “d” bit in the NAN to indicate that this is a “double”’ NAN.

C.5 REMAINDER (FREM)

Z = arg1 - arg2 x n
Where n = integer part of arg1/arg2 in round nearest.
Opcode=$08

arg2
Normalized Zero Infinity NAN Not Normalized

arg1

Normalized b a arg1 arg2 a
Zero arg1 a arg1 arg2 a
Infinity a a a arg2 a
NAN arg1 arg1 arg1 m arg1
Not Normalized b a arg1 arg2 a

a. Signal Invalid operation = 10. Set Z to NAN.

b. Create number of integer bits in quotient “n” as:
n = exp1 - exp2 - 1

Generate “n” quotient bits, leaving raw remainder “r.”
If r > arg2/2 then

remainder = r - arg2
else

remainder= r.
Normalize remainder
If UNDERFLOW then

If trap enabled then
ADD_BIAS
ROUND

else
UNFL_NO_TRAP

endif
else

ROUND
CKINVALID

If OVERFLOW then
If trap enabled then

SUB_BIAS
else

OVFLNO_TRAP
endif



57

endif
endif

m. Return arg2 but set the “d” bit in the NAN to indicate that this is a ~double” NAN.

C.6 SQUARE ROOT (FSQRT)

Z = SQRT (arg2)
Opcode = $12

Z

arg2

Normalized a
Zero arg2
Infinity c
NAN arg2
Not Normalized b

a.
1) For a positive normalized number: compute Z = SORT(arg2) to the number of 

bits required to produce a correctly rounded result. To round correctly in all 
cases, calculate two more bits of Z than the precision of the destination. 
ROUND as in Appendix C.

2) For negative normalized numbers: signal invalid operation= 1; Z = NAN.

b. Signal Invalid operation= 1; Z =NAN.

c.
1) For protective mode signal invalid operation - 1; Z = NAN.
2) in affine mode. for plus infinity, set Z = arg2. For minus infinity, signal invalid 

operation = 1; Z = NAN.

C.7 INTEGER PART (FINT)

Z = Integer part of arg2
Opcode = $14

Z

arg2

Normalized a
Zero arg2
Infinity arg2
NAN arg2
Not Normalized a

a.
1) if arg2 has no traction bits in its significand, then set Z to arg2. This occurs if 

the exponent is so large that no fraction bits exist, for example, in single 
precision a number with an unbiased exponent greater than or equal to 23.

2) if arg2 has fraction bits, right shift the arg2 significand, while incrementing 
the exponent, until no bits (zero or nonzero) of the fractional part of arg2 
lie within the rounding precision in effect. When this occurs, the unbiased 
exponent will be:

	 single		  23



58

	 double		  52
	 extended		 63

3) ROUND as specified in Appendix D.
4) if all significand bits are zero, then Z = 0 with the sign of Z, otherwise, normalize Z. 

Zero or s is shifted into g from the right since s = 0 after rounding.

C.8 ABSOLUTE VALUE (FAB)

Z = |arg2|
Opcode = $1E

Z

arg2

Normalized a
Zero a
Infinity a
NAN arg2
Not Normalized a

a. Z = arg2 with zero (plus) sign.

C.9 NEGATE (FNEG)

Z = -arg2
Opcode = $20

Z

arg2

Normalized -arg2
Zero -arg2
Infinity -arg2
NAN arg2
Not Normalized -arg2

C.10 COMPARE (FCMP, nCMP , FPCMP, FTPCMP)

CC = arg1 - arg2

Compare arg1 to arg2 and set condition codes accordingly or generate a true/false 
value for a predicate.

The four versions of compare are:

FCMP (Opcode - $8A) - Compare arg1 with arg2 and set the condition codes. Do not 
trap on unordered unless the trap on the unordered bit (UNOR) is set in the enable byte 
of the FPCB.

FTCMP (Opcode - $CC) - Compare arg1 with arg2 and set the condition codes: Trap 
if the unordered condition occurs regardless of the state of the UNOR bit in the enable 
byte of the FPCB.

FPCMP (Opcode - $8E) - Compare arg1 with arg2. Either affirm or dlsaffirm an input 
predicate. Do not trap on unordered unless the UNOR bit ls set in the enable byte of 



59

the FPCB. For register calls, the Z-bit in the condition code register is set to 1 for affirm 
or true, and set to 0 for disaffirm or false. For stack calls, a byte of zeros is pushed 
on the top of the stack for true and a byte of ones ($FF) is pushed for false. Predicate 
compares are used often by HLLs when evaluating the conditional expression in 
control statements like if.

FTPCMP (Opcode - $D0) - Compare arg1 with arg2. Either affirm or disaffirm an input 
predicate. Store the true or false indication in the result. Trap it the unordered condition 
occurs regardless of the state of the UNOR bit in the enable byte of the FPCB.

Since a compare allows different precision arguments, the X-register, on the call, 
contains a parameter specifying the precision of arg1 and arg2 and the predicate, if this 
is a predicate call. The format of the X-register is:

≠ > = < U 0 arg1 0 arg2000
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Where arg1 or arg2 is defined:

000			   Single
001			   Double
010			   Extended
011			   Unused (defaults to extended)
100			   Unused (defaults to extended)
101-111	 Undefined

The predicates are > , =, ≠, <, and unordered or the combinations: ≥ or ≤.

Once the arguments have been expanded into internal format, the following 
comparisons are made with the internal values.

arg2
Normalized Zero Infinity NAN Not Normalized

arg1

Normalized a a b f d
Zero a g b f d
Infinity c c e f c
NAN f f f f f
Not Normalized d d b f d

STEP 1.

a.

arg2
+ -

arg1 + * >
- < *

*Compare magnitudes of arg1 and arg2. Go to step 2.



60

b. If affine mode,then
If arg2 = +Infinity then < else >. Goto step 2.
If projective mode, signal unordered. Go to step 2.

c. If affine mode, then
If arg1 = +Infinity, then > else <. Go to step 2.
If projective mode, then signal unordered. Go to step 2.

d. Normalize one or both of the input arguments.
Set unnormal zeros to true zeros .
If both arguments are zero. then go to “g” else go to “a.”

e. In projective mode set to equal. In affine mode:
arg2

+ inf. - inf.

arg1 + inf. = <
- inf. < =

go to step 2.

f. Set unordered. Go to step 2.

g. Set to equal. Go to step 2.

STEP 2.

1) if condition codes are to be returned (FCMP or FTCMP), then set the returned 
condition code bits in the following patterns:

N Z V C
> 0 0 0 0
< 1 0 0 0
= 0 1 0 0

unordered 0 0 0 1

This allows the following signed branches to be taken immediately following the 
return from FCMP or FTCMP.

Condition Branch Test for Branch
> (L)BGT [not (N ⊕ V)] and (not Z) = 1
≥ (L)BGE not (N ⊕ V) = 1
< (L)BLT not (N ⊕ V) = 0
≤ (L)BLE not (N ⊕ V) and (not Z) = 0
= (L)BEQ Z = 1
≠ (L)BNE Z = 0

Unordered (L)BCS C = 1

If CMP and the unordered trap is disabled, a BCS should immediately follow the call 
and precede any of the other branches:



61

CMP	  arg1, arg2
BCS 	unordered
BGE 	 label

If unordered occurred, then set the UNDR bit in the status byte of the FPCB so that the 
trap will be taken during post processing.

2) if a predicate is to be returned, then:        

less than affirms:		  < ≠
equal affirms:			   = ≤ ≥
greater than affirms:		  > ≥ ≠
unordered affirms:		  unordered ≠
less than disaifirms:		  = ≥ > unordered
equal disaffirms:		  < > ≠ unordered
greater than disaffirms:	 = ≤ < unordered
unordered disaffirms:		 < ≤ = ≥ >

The result returned for affirmed is a zero byte and for disaffirmed it is a minus 1 or $FF 
byte for a stack call. For a register call, Z = 1 for affirm.

If unordered occurred, then set the UNOR bit in the status byte of the FPCB so that the 
trap will be taken during post-processing. Additionally, if the predicate is ≠, then set the 
result to true to give the user a test for a NAN; i.e., if A ≠ A returns true, then “A” is a 
NAN.

If unordered and TPCMP or PCMP then
If ≠ then

set result true
else if not (= or unordered) then

signal unordered and invalid operation = 6
so that a trap will be taken during post-processing

endif
endif

C.11 FLOATING TO BINARY INTEGER (FFIXS, FFIXD)

I = INTEGER (arg2)
I = 16 bit signed integer tor FFIXS (Opcode = $16)
I = 32 bit signed integer for FFIXD (Opcode = $18)

The resultant integer is stored on the internal stack in the first 2(4) bytes of the fraction 
for the result with the lower address containing the most significant byte.



62

I

arg2

Normalized d
Zero 0
Infinity a
NAN b
Not Normalized d

STEP 1.

a. Set V bit in returned condition code register and integer overflow bit in status. Set I 
as shown below:

short positive	 32767
short negative	-32768
long positive		  2,147,483,647
long negative	 -2,147,483,648

b. Signal Invalid operation = 3; return I = address of the instruction following the call to 
the floating point package.

c. If arg2 ls not an integer, then call FINT to convert it to an integer. Convert arg2 to 
a binary integer and return it to the destination. If the integer exceeds the size of the 
destination, then go to “a” above.

STEP 2.

Set the Z and N bits in the returned condition codes N will already be set if overflow 
occurred) according to the resultant integer.

C.12 BINARY INTEGER TO FLOATING (FFLTS, FFLTD)

Z = FLOAT (arg2)
arg2 = 16 bit signed integer for FFLTS (Opcode= $24)
arg2 = 32 bit signed integer for FFLTD (Opcode= $26)

The integer is stored on the internal stack in the first 2(4) bytes of the fraction for arg2. 

a. Convert arg2 to floating representation. If arg2 cannot be represented exactly, 
then ROUND as described in Appendix D.

C.13 BINARY FLOATING TO DECIMAL FLOATING STRING (BINDEC)

Opcode = $1C

Required Functions and Tables.

For both BINDEC and DECBIN, several functions and tables are required. BINSTR 
and STRBIN are required as well as a function to find the log_base_10(X). BINSTR 
converts a binary floating integer to a signed unpacked BCD string. STRBIN converts 
a signed decimal unpacked BCD string to a binary floating integer. Fortunately, the 
log_base_10(X) can be derived from:

log_base_2(X) x log_base_10(2).



63

Also, the log_base_10(X) need only be calculated to the nearest integer. Fortunately, 
this can be accomplished by noting that log_base_2(X) is approximately equal to the 
unbiased exponent of X. A table of the powers of 10 (in internal formal) will be needed. 
This table need not contain all powers of 10 as some can be derived from the others. 
Negative powers shall be obtained by dividing by the corresponding positive powers 
instead of multiplying. The following 31 values (to full internal accuracy) will be required 
in the table:

100

101

•
•
•
1026

1027

1054

10108

10216

Argument Requirements

For register calls, the U register contains the constant “k” that specifies the number of 
significant digits desired.

For stack calls, the input stack looks like:

/ / karg2 FPCB
Bytes

S

n 1 2

Where n = 4, 8, or 10 bytes
S = hardware stack pointer

The return string is a standard BCD string as defined in Section 2 (BCD Strings). 

Conversion Process

Given binary floating point number arg2 and an integer k (passed in arg1) with 1 < k < 
9 for single precision and 1 < k < 17 for double precision, we can compute the signed 
decimal strings I and E such that I has k significant digits and interpreting I and E as 
the integers they represent:

arg2 = I x 10(E + 1 - k) = sd dddddddd x 10E

where s is the sign of arg2 and the ds are the k decimal digits of I.

The size of I and E are defined by the output string generated by BINSTR for the 
supported precisions.



64

STEP 1.

String

arg2

Normalized c
Zero b
Infinity a
NAN d
Not Normalized c

  

a. For +infinity, deliver a nondecimal string with se = $0A and the remaining bytes equal 
to zero.

For -infinity, deliver a nondecimal string with se =$0B and the remaining bytes equal to 
zero.

b. I = string of “+0” or “-0”; E = String of “0.” Go to step 2.

c.

1) Remember sign of arg2. Let p = absolute value (arg2).
Remember whether arg2 is normalized.

1a) if arg2 is unnormal zero, then go to b.
2) if p is not denormalized, compute q = long_base_10(p); otherwise let q = log_

base_10 (smallest normalized number).
3) Remember the current rounding mode. Compute:

v = FINT(q) + 1 - k
with rounding mode RZ.

4) Compute w = FINT (p/10V) using powers of 10 from the tables with rounding mode 
RN. Restore original rounding mode.

5) Adjust w for special cases:
I. If W ≥ (10k) + 1, then increment v and go to 4. ·
II. If w = 10k, then increment v, divide w by 10 (exactly) and go to 6.
Ill. If w ≤ 10(k - 1) - 1 and arg2 was normalized in step 1, then decrement v
and

go to 4.
6) I = BINSTR (w with sign of arg2); E= BINSTR (v).

STEP 2.

Return a BCD string as defined in Section 2 (paragraph 2.5) with p = 0.

C.14 DECIMAL FLOATING STRING TO BINARY FLOATING (DECBIN)

Opcode = $22
Required Functions and Tables

For both BINDEC and DECBIN, several functions and tables are required. BINSTR and 
STRBIN are required. BINSTR converts a binary floating integer to a signed unpacked 
BCD string. STRBIN converts a signed unpacked BCD string to a binary floating 



65

integer. A table of the powers of 10 (in internal format) will be needed. This table 
need not contain all powers of 10 as some can be derived from the others. Negative 
powers shall be obtained by dividing by the corresponding positive powers instead of 
multiplying. Those required in the table are:

100

101

•
•
•
1026

1027

1054

10108

10216

Argument Requirements

For stack calls the input stack looks like:

BCD String FPCB
S

For the format of the BCD string see Section 2 (BCD Strings Paragraph). The total size 
of the BCD string is 26 bytes.

The result for stack calls is on top of the stack.

For register calls:

X = result
D = FPCB
U = pointer to input BCD string

The input argument is a standard BCD string as defined in Section 2 (BCD Strings 
paragraph) where “p” is set to the number of fraction digits to the right of the decimal 
point.

Conversion Process

The number to be converted (arg2) can be thought of as a number of the form:

arg2 = sddddd.DDDDDDDDD x 10E

On entry, arg2 contains a pointer to a string as defined in paragraph 2.4. Let t = 
sddddd.DDDDDDDDD. arg2 contains an integer p that indicates how many digits of I 
are to the right of the decimal point such that:

arg2 = I x (10-p) x (10E)

1) Compute U = STRBIN (I) and w = blnary lnteger of (E)



66

2) Compute result: Z = u x 10(w-p)

3) if UNDERFLOW then
If trap enabled then

Z = NAN
else

UNFLNO_TRAP
endif

endIf
If OVERFLOW then

If trap enabled then
Z = NAN

else
OVFL_NO_TRAP

endif
endif

C.15 MOVE (MOV)

Move arg2 -> result
Opcode=$9A

Since move allows for arguments of different precisions, it requires that the precisions 
be specified by the calling program in a size word parameter. The U-register is used to 
hold the size word in register calls. In stack calls the size word is pushed onto the top 
of the stack above arg2 but before the pointer to the FPCB. The format of the size word 
is:

0 0 0 0 0 0 arg2 0 result000
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Where arg2 (source) or result (destination) is defined:
000		  Single
001		  Double
010		  Extended
011		  Extended round to single
100		  Extended round to double
101-111	 Illegal

For stack calls the calling stack looks like:

/ / Size Wordarg2 Pointer to FPCB
S

Move allows the input argument and the result to be of different precisions. For stack 
calls the MOV operations transform the stack top from the source precision to the 



67

destination precision.

For moves where the precision of arg2 equals the precision of the result, the arguments 
will not be moved to the stack since no conversion is really needed; otherwise, the 
source argument (arg2) will be moved onto the internal stack. This is necessary since 
if the MOV were a conversion from a shorter to a longer precision value at the same 
address, the result might overwrite parts of the source before they have been read.

Result 
(Destination)

arg2 
(Source)

Normalized a
Zero arg2
Infinity arg2
NAN arg2
Not Normalized b

a.

If the destination is shorter than the source, then Z = arg2.
If UNDERFLOW then

If trap disabled then
UNFL_NO_TRAP

else
deliver to the trap handler the result in internal
format but rounded to the precision of the destination.

endif
endif

ROUND to the precision of the destination
CKINVALID
If OVERFLOW then

If trap disabled then
OVFL_NO_TRAP

else
deliver to the trap handler the result in internal
format but rounded to the precision of the destination.

endif
endif
If the destination field is wider than the source, then the move is exact.

b.
If (single to double) then invalid operation = 15

Else if (source = ext) and (dest< >ext) and (not denormalized)
Invalid operation = 16

else
goto a.

endif
endif



68

APPENDIX D ROUNDING AND EXCEPTION CHECKING ROUTINES

D.1 INTRODUCTION

The following routines and functions are used after the arithmetic operations to round 
and to detect error conditions.

D.2 ROUNDING

Rounding is accomplished using the v, 1, g, 4, and s bits as defined in the internal 
formats. In general, the significand of the number to be rounded looks like:

g srr…4n.fff………………1v

where:
v = overflow bit
n = 1 (explicit 1.0)
f = fraction
I = 1s bit of fraction
g = guard bit
r = round bits
s = sticky bit

The s bit is the logical ”OR” of all the bits to the right of the r bits. Thus during the 
calculation stage of an arithmetic operation, any nonzero bits which are generated that 
are to the right of the r bits show as a 1 in the s bit. If the precision mode specified 
in the control byte of the FPCB is 6 or 7, then rounding should be to the precision 
specified. The following algorithm is used to round the result to 1 of the four rounding 
modes:

begin
If g = s = r = 0 then result is exact
else (not all zero)

set inexact result flag bit
case rounding mode of

RM: if sign = 1 then add 1 to I
RP: if sign = 0 then add 1 to I
RN: if g = 1 and r = s = 0 then

If 1-1 then add 1 to g
else add 1 tog

(RZ falls through)
end case

If v = 1 then
shift right
increment exponent

endif



69

set g = r = s = 0
endif

end

where:
RM = round to minus
RP = round to plus
RN = round to nearest
RZ = round to zero

D.3 EXCEPTION HANDLING

D.3.1 Invalid Operation

Invalid operation encompasses problems arising in a variety of arithmetic operations; 
it is the blanket covering those errors which do not occur frequently enough or are not 
important enough to merit their own fault condition. The result to be delivered by an 
invalid operation is a NAN.

D.3.2 Underflow

In a general sense, underflow is the condition that exists when an arithmetic operation 
creates a result that is too small to be represented in the normal memory format for the 
destination. If the trap ls enabled when underflow occurs, the user can determine what 
he wants to do. The actual result of the operation will not be lost since the internal for· 
mats are capable of representing the underflowed number. If no trap ls enabled, the 
floating point package will automatically denormalize the result as discussed previously 
(gentle underflow). In the case of trap enabled, but the trap wishes to return the result, 
the delivered exponent will be the result of adding a bias adjust for each precision as 
shown below. This bias adjusts the exponent so that it will contain a number in the mid· 
die of the exponent range.

Bias adjust for overflow/underflow
Single 192
Double 1536
Extended 24576

D.3.3 Overflow

In a general sense, overflow is the condition that exists when an arithmetic operation 
creates a result that is too large and cannot be represented in the normal memory 
format for the destination.

Overflow is handled much more harshly and quickly than underflow and with a 
corresponding loss of information. The number system chosen is slightly biased 
towards underflow for this reason. If a trap is to be taken on overflow, then a bias is 
subtracted from the exponent to wrap it around into the range of valid exponents. The 
bias for each precision is given above. If no trap is to be taken, then a suitable result is 
returned.



70

D.3.4 Division by Zero

This exception occurs when a normal zero divisor occurs in a division. If the divisor is 
normal zero and the dividend is finite and nonzero, the default result is infinity with the 
correct sign. If the division by zero trap is enabled, then it is taken and the default result 
is returned.

D.3.5 Inexact Result

If the rounded result of an operation ls not exact or if it overflows to infinity, then the in· 
exact exception shall be signaled unless the result would be an invalid result. If the trap 
is enabled, it is taken; otherwise, the rounded result or the infinity that resulted from 
overflow shall be the default value returned.

D.3.6 Integer Overflow

This occurs when a large floating point number is converted to an integer that cannot 
be represented in the destination. If the trap is enabled, it will be taken and the caller 
can “fix” the result. If no trap is enabled, the largest positive or negative integer is 
returned.

D.3.7 Unordered

Unordered occurs when a comparison is made between a NAN and anything else or 
when infinity is compared to anything except itself in projective closure.

D.3.8 Error Trap Handling

When an error trap occurs, the post processing code passes control to the location 
specified in the FPCB vector with the U register pointing to the stack frame. The trap 
routine may then modify the result on the stack frame or it may choose to create a 
new result and store the result directly in memory. If the result on the stack frame is 
modified, the routine must remember that this number is in internal format. On return 
from the error trap routine, if the C-bit is set, the result in the stack frame will be moved 
to memory. If the C-bit is cleared, no result will be delivered to the destination.

On entry to the trap routine, the U-register will contain the pointer to the current stack 
frame. The temporary status stored in the stack frame should be used to determine 
the status of the last operation. If more than one bit is set in the status register, the 
floating point package will determine which trap should have precedence as discussed 
in Section 4 (Exception Modes paragraph}. In the case where the highest precedence 
exception does not have its trap enabled, then the next highest precedence will be 
checked, etc., until the highest precedence enabled trap, if any, is found.

D.4 ALGORITHMS FOR EXCEPTION PROCESSING

The following are the algorithms implemented in the MC6839 to check for the process 
exceptions.

D.4.1 Check for Invalid (CKJNVALID)

procedure CKINVALID



71

begin
If not infinity or true zero then

If destination precision is single or double then
If result is denormallzed
	 fix exponent for denorm result
else
	 If not normallzed then
		  iop = 16
	 endif
endif

endif
endif

end

D.4.2 Test for Overflow (OVERFLOW)

function OVERFLOW
begin

(*test for overflow*)
If the rounded result is finite and its exponent is too large for the destination then 

OVERFLOW: = true; set overflow flag
else OVERFLOW: = false

end

D.4.3 Overflow With Traps Disabled (OVFL NO TRAP)

procedure OVFL_NO_TRAP
begin

set inexact result flag;
If rounding mode is round to -infinity
then

clear overflow flag
If result is positive
then

If result is normalized
then
	 deliver largest positive
	 number to destination
else
	 deliver significand and largest
	 exponent to destination
endif (*result is normalized*) 

else (*result is negative*)
deliver -infinity to destination

endif; (*result is positive*)
endif; (*rounding mode is to -infinity*)
If rounding mode is round to +infinity



72

then
clear overflow flag
If result is negative then

If result is normalized then
	 deliver largest negative number to destination
else
	 deliver significand and largest
	 exponent to destination endlf; (*result is normalized*)
else (*result is positive*)
	 deliver +Infinity to destination
endif; (*result is negative*)

endif; (“rounding mode is to +Infinity”)
If rounding mode ls to nearest or to zero
then

deliver properly signed infinity to destination
endif; (*round to nearest or to zero*)

end

D.4.4 Subtract Blas on Overflow (SUB BIAS)

procedure SUB_BIAS
begin

subtract bias (from table shown in paragraph D.3.2) from exponent
end

D.4.5 Test for Underflow (UNDERFLOW)

function UNDERFLOW
begin

If exponent not = $8000 (true zero)
If exponent ls too small for destination format then
	 UNDERFLOW:= true; set underflow flag
else
	 UNDERFLOW:= false
endif

else
UNDERFLOW:= false

endif
end

D.4.6 Add Bias on Underflow (ADD BIAS)

Procedure ADD_BIAS
begin

add bias (from table shown in paragraph D.3.2) to exponent
end



73

D.4.7 Underflow With Traps Disabled (UNFL NO TRAP)

Procedure UNFL_NO_TRAP begin
denormalized unrounded result;
ROUND denormalized result;
If fraction = 0 then set to true zero

deliver denormalized and rounded (only once)
result to destination;

If rounding mode is either round
to -Infinity or to +Infinity
then

clear underflow flag;
endif; (*round to infinity*)

end



74

APPENDIX E PROGRAM DETAILS AND STACK FRAME DESCRIPTION

E.1 PRE-PROCESSING / POST-PROCESSING

All operations undergo a pre-processing step where the calling arguments are moved 
from their present locations to an internal stack frame and a post-processing step 
where the results are returned from the stack frame. In general, the operation of any 
function looks like:

All operations undergo a pre-processing step where the calling arguments are moved 
from their present locations to an internal stack frame and a post-processing step 
where the results are returned from the stack frame. In general, the operation of any 
function looks like:

save caller registers on the stack determine function opcode
If register call then

Initialize stack frame for register call
move argument(s) into internal stack frame
If no input erg is a trapping NAN, then do function check for traps
If (no traps) or (trap handler wants result returned)

then move result to user
cleanup stack

else (stack call)
adjust stack if necessary4

Initialize stack frame for stack call
move argument(s) to internal stack frame
If no input arg is a trapping NAN, then do function check for traps,
If (no traps) or (trap handler wants result returned)
then move result to stack top cleanup stack
adjust stack if necessary4

endif
restore caller registers
return

E.1.1 Stack Frame

Upon execution, the floating point package immediately reserves an area on the 
active hardware stack for its execution time local variables. Once this “stack frame” is 
initialized, it is used by all the modules of the program. The stack frame area is released 
on exit from the call.

The user may need to know the details of the stack frame if he plans to write trap 
routines to manipulate results in the internal format. Appendix F contains information 
on the internal format for floating point numbers on the stack frame.

Figures E-1 and E-2 are examples of the stack frame configuration. Figure E-1 is tor 
a register call and Figure E-2 ls for a stack call. Notice that from mnemonic “TYPE 1” 
4	 For stack calls, adjusting the stack before or after processing may be necessary 
if the total size of the input arguments is not equal to the size of the output argument.



75

down to the bottom of the stack, the two stack frames are identical. This allows the 
actual operation routines to be identical regardless of the type of call. During execution 
of the operation, the U register always points to the bottom of the stack frame.

Caller’s PC
Pointer to Argument 1
Pointer to Argument 2

Pointer to Result
Pointer to FPCB
Condition Codes
IREQs Return PC
arg1 Type (1 Byte)

Fraction
(9 Bytes)

Exponent (2)
Sign

arg2 Type (1 Byte)
Fraction
(9 Bytes)

Exponent (2)
Sign

Result Type (1 Byte)
Fraction
(9 Bytes)

Exponent (2)
Sign

Sticky Byte
Temporary Parameters (2)

Temporary Status (2)
Result Precision
Pointer to FPCB
Pointer to TOS

Opcode

Caller’s U
Caller’s Y
Caller’s X
Caller’s D
Caller’s CC

Argument 1
In Internal Format
(13 bytes)

Mnemonic
CALLPC

UREG. PARG1
YREG. PARG2

XREG. PRESUL
DREG. PFPCB2

CCREG
IREGPC
TYPE1

FRACT1
EXP1

SIGN1.arg1
Type 2

FRACT2
EXP2

SIGN2. arg2
TYPER

FRACTR
EXPR

SIGNR. RESULT
STIKY
TSTAT

TPARAM
PPREC
PFPCB
PTOS

FUNCT

Argument 2
In Internal Format
(13 bytes)

Result
In Internal Format
(13 bytes)

FP Local Variables

U

Figure E-1. Register Call Stack Frame



76

Caller’s PC
Caller’s PC
Caller’s U
Caller’s Y
Caller’s X
Caller’s D

Condition Codes
ISTACKs Return PC
arg1 Type (1 Byte)

Fraction
(9 Bytes)

Exponent (2)
Sign

arg2 Type (1 Byte)
Fraction
(9 Bytes)

Exponent (2)
Sign

Result Type (1 Byte)
Fraction
(9 Bytes)

Exponent (2)
Sign

Sticky Byte
Temporary Parameters (2)

Temporary Status (2)
Result Precision
Pointer to FPCB
Pointer to TOS

Opcode

Argument 1
In Internal Format
(13 bytes)

Stack
Before
Call

CALLPC
UREG. PARG1
YREG. PARG2

XREG. PRESUL
DREG. PFPCB2

CCREG
IREGPC
TYPE1

FRACT1
EXP1

SIGN1.arg1
Type 2

FRACT2
EXP2

SIGN2. arg2
TYPER

FRACTR
EXPR

SIGNR. RESULT
STIKY
TSTAT

TPARAM
PPREC
PFPCB
PTOS

FUNCT

Argument 1
Argument 2

FPCB (2)

Argument 2
In Internal Format
(13 bytes)

Result
In Internal Format
(13 bytes)

FP Local Variables

U

TOS
Mnemonic

Figure E-2. Stack Call Stack Frame

Special handling of the stack frame occurs for BCD string conversions. The actual BCD 
strings will not be moved onto the stack frame. A pointer to the strings will be stored 
in the stack frame instead. The operations will access the strings directly in the user’s 
memory or stack.



77

Special handling also occurs for MOV with equal precision arguments. In this case the 
stack frame will not normally be created since it would slow down rather than speed up 
the operation. However, a stack frame will be created for a MOV with different precision 
arguments. This enables the trap handler to do intelligent processing.

All operations have a result except for nonpredicate compares which only return with 
the appropriate bits set in the condition code register. Predicate compares only return a 
1-byte “yes” or “no” as the result.

For operations that convert from an integer to floating point, the integer will be stored 
in the fraction of argument 2. For operations that convert from floating point to an 
integer, the resulting integer is stored in the fraction of the result.

Note that space for argument 1 is reserved on the stack frame even if the call is 
monadic. This insures consistent use of subroutines to manipulate arguments on the 
stack.

If bit 3 (NRM) of the control byte in the FPCB is set, then all denormalized (not 
unnormalized) numbers will be normalized during the move onto the stack frame.

E.1.2 FP (Floating Point) Variables

E.1.2.1 POINTER TO FPCB (PFPCB)

This word contains the address of the start of the FPCB to be used by this call.

E.1.2.2 TOS (TOP OF STACK) POINTER (PTOS)

For stack calls, this word points to the top floating point argument on the stack when 
the floating point package was initially called. This may not be the address just above 
the caller return PC, since it might have been necessary to reserve some empty stack 
space when the result of a function uses more bytes on the stack than the input 
arguments. Note that the pointer to the FPCB, as passed by the user, is always at 
PTOS-2.

E.1.2.3 TEMPORARY PARAMETERS (TPARAM)

This temporary two byte location is used by DECBIN and BINDEC to store parameters. 
It ls also used by calls to MOV or the com- pares to store the parameter word and may 
be used by other operations as a scratch location .

E.1.2.4 TEMPORARY STATUS (TSTA)

This temporary two byte status is used by the floating point package to generate 
status bytes of this operation. The first byte (lower address) has a format identical to 
the status byte in the FPCB. Al the completion of the operation this temporary status is 
logically “ORed” into the existing status in the caller FPCB. The second byte contains 
a temporary byte that has the same format as the secondary status byte in the FPCB. 
At the completion of the operation, if an invalid operation occurred, this byte will be 
written into the secondary status.



78

E.1.2.5 RESULT PRECISION (RPREC)

The index stored at this location defines the precision of the result.

Index Precision
0 Single
2 Double
4 Extended
6 Extended Rounded Single
8 Extended Rounded Double

For compares, this location contains the index of arg2 instead of the result.

E.1.2.6 OPCODE (FUNCT)

This byte contains the opcode picked up from the user’s calling sequence. This is used 
by various subroutines. It also allows an error trap to determine what operation caused 
an error. Some bits in the opcode have special meaning:

bit 7 1 Mixed size arguments (MOV, CMP)
bit 6 1 Trap on unordered compare
bit 5 0 Function number

E.1.2.7 STICKY BYTE (STIKY)

This byte is used during arithmetic operations to “OR” all the least significant bits of 
an operation. The sticky byte is then used during rounding. Some sticky bits are also 
picked up by “ROUND” from the low order bits of the internal fraction .

E.1.2.8 ARGUMENT TYPE (TYPEx)

A byte is reserved for each argument to indicate its type. The routine that initializes the 
stack frame initializes the values for TYPE 1 and TYPE 2. The values are:

0 Normal, in range, normalized value
2 Normal zero
4 Infinity
6 Not a number
8 Not normalized

Note that an unnormalized zero will have an index = 8, ≠ 2.

This byte occupies the highest address of the fraction for each argument.



79

The type of the result may not be valid at the time of a trap.

E.1.2.9 SIGNX, EXPX, FRACTX

The bytes describe the fields in internal format numbers. Appendix F provides details of 
internal format numbers.



80

APPENDIX F INTERNAL FORMATS

F.1 INTRODUCTION

The memory formats are chosen to provide the greatest amount of precision in the 
least amount of memory, whereas, the internal formats are selected to permit the 
easiest and fastest implementations of the desired operations. A caller to a floating 
point subroutine passes arguments in memory formats and receives the result in 
memory format; however, internally the floating point package converts to the internal 
formats, does the operation, and then converts the result back to memory format.

F.2 SINGLE INTERNAL FORMAT

This format consists of 7 bytes:

Sign

Unbiased Exponent

1. 23 Bit Fraction g  r  r  r  r  r  r  s

8 Bits

16 Bits

24 Bits 8 Bits

Where:
Sign positive or negative byte containing the sign of the fraction. 

Only the most significant bit is defined:

b7 0 plus
b7 1 minus

unbiased exponent twos complement exponent
g guard bit
r rounding bits
s sticky bit

The f, r, and s bits are used for rounding as described in Appendix D.



81

F.3 DOUBLE INTERNAL FORMAT

Sign

Unbiased Exponent

1. 53 Bit Fraction g  r  r  r  r  r  r  r  r  s

8 Bits

16 Bits

54 Bits 10 Bits

F.4 EXTENDED INTERNAL FORMAT

Sign

Unbiased Exponent

1. 63 Bit Fraction

8 Bits

16 Bits

64 Bits

g  r  r  r  r  r  r  s

8 Bits

Note that single, double, and exteded internal formats differ only in the number and 
location of the g, r, and s bits.

F.5 ZERO

Zero is represented by a number with the smallest unbiased exponent and a zero 
significand:

S 100…0000 0

F.6 INFINITY

Infinity has the maximum unbiased exponent and a zero significand:

S 011111…11 0



82

F.7 NANS

NANs have the largest unbiased exponent and a nonzero significand. The operation 
addresses, “t” and “d,” are implementation features and are defined in Section 2 (Not a 
Number paragraph).

d 0 t011…1111 00000000Operation Address

The operation address always appears in the 16 bits immediately to the right of the t 
bit.

F.8 INTERNAL UNNORMALIZED NUMBERS

Unnormalized numbers occur only in extended or internal format. Unnormalized 
numbers have an exponent greater than the internal formats minimum (i.e., they are 
not denormalized or normal zero) and the explicit leading bit is a zero. If the significand 
is zero,this is an unnormalized zero. Even though unnormalized and denormalized 
numbers are handled similarly in most cases,they should not be confused. 
Denormalized numbers are numbers that are very small (have minimum exponent) and 
hence have lost some bits of significance. Unnormalized numbers are not necessarily 
small (the exponent may be large or small) but the significand has lost some bits of 
significance, hence, the explicit bit and possibly some of the bits to the right of the 
explicit bit are zero.

S >100…000 Significand0.

Note that unnormalized numbers cannot be represented (hence cannot exist) for single 
and double formats. Unnormalized numbers come into existence when denormalized 
numbers, in single or double formats, are represented in extended or internal formats.



83

Appendix G BASIC LEVELS OF PRECISION

G.1 SINGLE PRECISION SPECIFICATION

Length in Bits 32
Fields:
	 s = sign 1
	 e = exponent 8
	 f = significand (1) + 23
Storage Format: s e f

Interpretation of Sign:
	 positive 0
	 negative 1
Normalized Numbers:
	 Interpretation of e unsigned integer
	 bias of e 127
	 range of e 0 < e < 225
	 Interpretation of f 1.f
	 relation to represent real numbers (-1)S x 2(e - 127) x 1.f

Signed Zeros
	 e = 0
	 f = 0

Reserved Operands:
	 Denormalized Numbers: 0
	 e = 126
	 bias of e 0.f
	 interpretation of f nonzero
	 relation to represent real numbers (-1)S x 2-126 x 0.f

Signed Infinities:
	 e = 255
	 f = 0



84

NANs
	 e = 255
	 f = nonzero
	 interpretation of f don’t care

Ranges:
	 maximum positive normalized 3.4 x 1038

	 minimum positive normalized 1.2 x 10-38

	 minimum positive denormalized 1.4 x 10-45

G.2 DOUBLE PRECISION SPECIFICATION

Length in Bits 64
Fields:
	 s = sign 1
	 e = exponent 11
	 f = significand (1) + 52
Storage Format: s e f

Interpretation of Sign:
	 positive 0
	 negative 1
Normalized Numbers:
	 Interpretation of e unsigned integer
	 bias of e 1023
	 range of e 0 < e < 2047
	 Interpretation of f 1.f
	 relation to represent real numbers (-1)s x 2(e - 1023) x 1.f

Signed Zeros
	 e = 0
	 f = 0

Reserved Operands:
	 Denormalized Numbers:
	 e = = 0



85

	 bias of e 1022
	 interpretation of f nonzero
	 relation to represent real numbers (-1)s x 2-1022 x 0.f

Signed Infinities:
	 e = 2047
	 f = 0

NANs
	 e = 2047
	 f = nonzero
	 interpretation of f don’t care

Ranges:
	 maximum positive normalized 18 x 10307

	 minimum positive normalized 2.2 x 10-308

	 minimum positive denormalized 4.9 x 10-324

G.3 EXTENDED PRECISION SPECIFICATION

Length in Bits 80
Fields:
	 s = sign 1
	 e = exponent 15
	 j = integer part 1
	 f = significand 63
Storage Format: s e j.f

Interpretation of Sign:
	 positive 0
	 negative 1
Normalized Numbers:
	 Interpretation of e twos complement integer
	 bias of e 0
	 range of e -16384 ≤ e < 16383
	 Interpretation of f j.f
	 relation to represent real numbers (-1)S x 2e x j.f



86

Signed Zeros
	 e = -16384 ($4000)
	 significand = 0

Reserved Operands:
	 Denormalized Numbers:
	 e = -16384
	 bias of e 0
	 interpretation of significand 0.f
	 range of f nonzero
	 relation to represent real numbers (-1)S x 2-16384 x 0.f

Signed Infinities:
	 e = 16383 ($3FFF)
	 significand = 0

NANs
	 e = 16383 ($3FFF)
	 f = nonzero
	 interpretation of f don’t care

Ranges:
	 maximum positive normalized 6 x 104931

	 minimum positive normalized 8 x 10-4933

	 minimum positive denormalized 9 x 10-4952



87

Ty
pe

Pr
ec

is
io

n
N

or
m

al
iz

ed
Ze

ro
In

fin
ity

N
A

N
D

en
or

m
al

iz
ed

U
nn

or
m

al
iz

ed
Single

Memory
Single

Internal
Double
Memory

Double
Internal

Extended
Memory

Extended
Internal

8
S

S
1 

Fr
ac

t
.

S

U
nb

ia
se

d 
Ex

p
16

24
8

Ex
p

S Bi
as

 =
 1

27
 =

 $
7F

0 
< 

Ex
p 

< 
$F

F

Si
gn

d
8

1
23

0
S

0
8

23
23

1
$F

F
S

0
8

1
$F

F
d d 
– 

D
ou

bl
e 

N
AN

t –
 T

ra
pp

in
g 

N
ANAd

dr
8

1
t1

16
6

0
S

≠0
8

1
23

N
ot

Po
ss

ib
le

Ex
p

S Bi
as

 =
 0

$4
00

0 
< 

Ex
p 

< 
$3

FF
F

-1
63

84
 <

 E
xp

 <
 1

63
83

1 
  S

ig
nd

15
1

64
$4

00
0

S
0

15
64

64
1

$3
FF

F
S

0
15

1
$3

FF
F

d d 
– 

D
ou

bl
e 

N
AN

t –
 T

ra
pp

in
g 

N
AN

Ad
dr

15
1

0
t

1
1

16
96

$4
00

0
S

0 
F 

(≠
0)

15
1

64
Ex

p
S

0 
F

15
1

64

Ex
p

S Bi
as

 =
 1

02
3 

= 
$3

FF
0 

< 
Ex

p 
< 

$7
FF

Si
gn

d
11

1
32

0
S

0
11

32
32

1
$7

FF
S

0
11

1
$7

FF
d d 
– 

D
ou

bl
e 

N
AN

t –
 T

ra
pp

in
g 

N
ANAd

dr
11

1
t1

16
32

0
S

≠0
11

1
32

N
ot

Po
ss

ib
le

8
S

0

$8
00

0
16 32

8
S

$7
FF

F
16 32

8
d 0

1
Ad

dr

$7
FF

F
16

1
1

16
14

8
S

0 
 F

 (≠
0)

$F
F8

2
16 32

8
S

0 
 F

U
nb

ia
se

d 
Ex

p
16 32

8
S

S
1 

Fr
ac

tio
n

.
S

U
nb

ia
se

d 
Ex

p
16

64
8

8
S

0

$8
00

0
16 72

8
S

$7
FF

F
16 72

8
d 0

0
1

Ad
dr

$7
FF

F
16

1
1

16
34

8
S

0 
 F

 (≠
0)

$C
00

0
16 72

8
S

0 
 F

U
nb

ia
se

d 
Ex

p
16 72

8
S

S
1 

Fr
ac

tio
n

.
S

U
nb

ia
se

d 
Ex

p
16

53
19

8
S

0

$8
00

0
16 72

8
S

$7
FF

F

016 72

8
d 0

1
Ad

dr

$7
FF

F
16

1
1

16
34

8
S

0 
 F

 (≠
0)

$F
F0

2
16 72

8
S

0 
 F

U
nb

ia
se

d 
Ex

p
16 72

Ta
bl

e 
G

-1
. M

C6
83

9 
Fl

oa
tin

g 
Po

in
t R

O
M

 M
em

or
y 

an
d 

In
te

rn
al

 D
at

a 
Fo

rm
at



88

APPENDIX H DEFINITIONS AND ABBREVIATIONS
This appendix defines several terms and abbreviations used in this manual which are 
peculiar to the MC6839 Floating Point ROM. Many of these definitions are also found in 
the IEEE Proposed Standard for Binary Floating Point Arithmetic Draft 8.0.

User - The user of a floating point system is considered to be any person, hardware, 
or program having access to and controlling the operations of the programming 
environment.

Binary Floating Point Number - A bit string characterized by three components: a sign, 
a signed exponent, and a significand. Its numerical value, if any, is the signed product 
of its significand and two raised to the power of its exponent. A bit string ls not always 
distinguished from a number it may represent.

Exponent - That component of a binary floating point number which signifies the 
power to which two is raised in determining the value of the represented number. 
Occasionally, the exponent is called signed or unbiased exponent.

FP - An abbreviation for “floating point.”

FPCB - An abbreviation for “floating point control block.”

Biased Exponent - The sum of the exponent and a constant (bias) chosen to make the 
range of the biased exponent non-negative.

Significand - That component of a binary floating point number which consists of an 
explicit or implicit leading bit to the left of its binary point and a fraction field to the right 
of the binary point.

Fraction - The field of the significand that lies to the right of its implied binary point.

Normal Zero - The exponent is the minimum established for format and the significand 
is zero. Normal zero may have either a positive or negative sign. Only the extended 
format has any unnormalized zeros.

Denormalized - The exponent is the minimum established for the format, the explicit 
or implicit leading bit ls a zero, and the number is not normal zero. To denormalized a 
binary floating point number means to shift its significand right while incrementing its 
exponent until it ls a denormalized number.

Unnormalized - The exponent is greater than the minimum established for the 
extended format and the explicit leading bit is zero. If the significand is zero, this is an 
unnormalized zero.

Normalize - if the number is nonzero, shift its significand left while decrementing its 
exponent until the leading significand bit becomes one; the exponent is regarded as if 
its range were unlimited. If the significand is zero, the number becomes normal zero. 
Normalizing a number does not change its sign.

Double Rounding - Double rounding occurs if any single operation causes a result to 
be rounded more than once.



89

NAN - Not a number.

Sticky Bit - A status bit that, once set by the system as the result of some operation, 
remains set until explicitly cleared by the user. This feature relieves the user of the 
constraint of having to examine this bit in any particular time window.

Hardware Stack - The stack defined on the MC6809 by the S (or SP) register. This 
stack is also used by the hardware during subroutine calls and interrupts.

Floating Point Package - A package of subroutines that supports the basic capabilities 
required to do calculations with real numbers.

Internal Format - A format resembling extended format that is used by the MC6839 
during calculations. It does not exist before the package is called nor does it exist after 
the package returns and it is only an intermediate format.


	SECTION 1 INTRODUCTION
	1.1 EARLY APPROACH TO MATHEMATICAL OPERATION
	1.2 PROGRAMS-IN-ROM
	1.3 MC6839 FLOATING POINT (FP) ROM
	1.3.1 General
	1.3.2 Pin Assignment


	SECTION 2 STANDARD FLOATING POINT FORMATS
	2.1 INTRODUCTION
	2.2 NORMALIZED NUMBERS
	2.2.1 Single Precision Format
	2.3.1 Zero
	2.3.2 Infinity
	2.3.3 Small Number (Denormalized)
	2.3.4 Not a Number (NAN)

	2.4 SPECIAL VALUES (EXTENDED FORMAT
	2.4.1 Zero
	2.4.2 Infinity
	2.4.3 Denormalized Numbers
	2.4.4 NAN1
	2.4.5 Unnormalized Numbers

	2.5 BCD STRINGS
	2.6 BINARY INTEGERS

	SECTION 3 SUPPORTED OPERATIONS
	3.1 INTRODUCTION
	3.2 REQUIRED OPERATIONS
	3.3 EXTRA OPERATIONS
	3.4 ARCHITECTURE

	SECTION 4 MODES OF OPERATION
	4.1 INTRODUCTION
	4.2 ROUNDING MODES
	4.2.1 Rounding Precision
	4.2.2 No Double Rounding

	4.3 INFINITY CLOSURE MODES
	4.3.1 Affine Closure
	4.3.2 Projective Closure

	4.4 EXCEPTION MODES

	SECTION 5 FLOATING POINT CONTROL BLOCK
	5.1 INTRODUCTION
	5.3 STATUS BYTE
	5.4 TRAP ENABLE BYTE
	5.5 TRAP VECTOR
	5.6 SECONDARY STATUS

	SECTION 6 USER INTERFACE
	6.1 INTRODUCTION
	6.2 OPERATION OPCODES AND ENTRY POINTS
	1.3 STACK REQUIREMENTS
	1.4 CALLING SEQUENCE
	1.4.1 Register Call
	1.4.2 Stack Call


	APPENDIX A OPERATION DESCRIPTIONS
	A.1 INTRODUCTION
	A.2 NOTATION
	ABSOLUTE VALUE
	ADD
	BINARY FLOATING TO DECIMAL STRING
	COMPARE
	DECIMAL STRING TO BINARY FLOATING POINT
	Divide
	FIX
	FLOAT
	INTEGER PART
	MOVE
	MULTIPLY
	NEGATE
	REMAINDER
	SUBTRACT
	SQUARE ROOT

	APPENDIX B APPLICATION EXAMPLE OF THE QUADRATIC EQUATION
	APPENDIX C DETAILED DESCRIPTION OF OPERATIONS
	C.1 INTRODUCTION
	C.1.1 Argument Type Matrix
	C.1.2 Reading The Matrix Table
	C.2 ADD (FADD), SUBTRACT (FSUB)
	C.3 MULTIPLY (FMUL)
	C.4 DIVIDE (FDIV)
	C.5 REMAINDER (FREM)
	C.6 SQUARE ROOT (FSQRT)
	C.7 INTEGER PART (FINT)
	C.8 ABSOLUTE VALUE (FAB)
	C.9 NEGATE (FNEG)
	C.10 COMPARE (FCMP, nCMP , FPCMP, FTPCMP)
	C.11 FLOATING TO BINARY INTEGER (FFIXS, FFIXD)
	C.12 BINARY INTEGER TO FLOATING (FFLTS, FFLTD)
	C.13 BINARY FLOATING TO DECIMAL FLOATING STRING (BINDEC)
	C.14 DECIMAL FLOATING STRING TO BINARY FLOATING (DECBIN)
	C.15 MOVE (MOV)

	APPENDIX D ROUNDING AND EXCEPTION CHECKING ROUTINES
	D.1 INTRODUCTION
	D.2 ROUNDING
	D.3 EXCEPTION HANDLING
	D.3.1 Invalid Operation

	D.3.2 Underflow
	D.3.3 Overflow
	D.3.4 Division by Zero
	D.3.5 Inexact Result
	D.3.6 Integer Overflow
	D.3.7 Unordered
	D.3.8 Error Trap Handling

	D.4 ALGORITHMS FOR EXCEPTION PROCESSING
	D.4.1 Check for Invalid (CKJNVALID)
	D.4.2 Test for Overflow (OVERFLOW)
	D.4.3 Overflow With Traps Disabled (OVFL NO TRAP)

	D.4.4 Subtract Blas on Overflow (SUB BIAS)
	D.4.5 Test for Underflow (UNDERFLOW)
	D.4.6 Add Bias on Underflow (ADD BIAS)
	D.4.7 Underflow With Traps Disabled (UNFL NO TRAP)

	APPENDIX E PROGRAM DETAILS AND STACK FRAME DESCRIPTION
	E.1 PRE-PROCESSING / POST-PROCESSING
	E.1.1 Stack Frame

	E.1.2 FP (Floating Point) Variables
	E.1.2.1 POINTER TO FPCB (PFPCB)
	E.1.2.2 TOS (TOP OF STACK) POINTER (PTOS)
	E.1.2.3 TEMPORARY PARAMETERS (TPARAM)
	E.1.2.4 TEMPORARY STATUS (TSTA)
	E.1.2.5 RESULT PRECISION (RPREC)
	E.1.2.6 OPCODE (FUNCT)
	E.1.2.7 STICKY BYTE (STIKY)
	E.1.2.8 ARGUMENT TYPE (TYPEx)
	E.1.2.9 SIGNX, EXPX, FRACTX


	APPENDIX F INTERNAL FORMATS
	F.1 INTRODUCTION
	F.2 SINGLE INTERNAL FORMAT
	F.3 DOUBLE INTERNAL FORMAT
	F.4 EXTENDED INTERNAL FORMAT
	F.5 ZERO
	F.6 INFINITY
	F.7 NANS
	F.8 INTERNAL UNNORMALIZED NUMBERS

	Appendix G BASIC LEVELS OF PRECISION
	G.1 SINGLE PRECISION SPECIFICATION
	G.2 DOUBLE PRECISION SPECIFICATION
	G.3 EXTENDED PRECISION SPECIFICATION

	APPENDIX H DEFINITIONS AND ABBREVIATIONS

