
Constructing Crossword Grids:

Use of Heuristics vs Constraints

Gary Meehan�and Peter Grayy

Dept. of Computer Science

University of Aberdeen

Kings College

Aberdeen

UK, AB24 3UE

September 17, 1997

Abstract

This paper reports on the construction of crossword puzzles, by �lling in

dense blank grids (consisting mostly of white squares) until all the white squares

contain letters and all across/down words in the grid are valid English words in

the usual crossword style. Two approaches are compared.

The �rst approach used Prolog and C to build puzzles on a word-by-word

basis, using a variety of heuristics to determine the order in which to �ll in

words and then which words from a large dictionary to put in the grid. The

second method used a constraint (CLP) language and its C language interface,

to construct puzzles on both a word-by-word and a letter-by-letter basis, using

the same constraints as the Prolog/C method but a di�erent search strategy.

Conclusions are drawn about the need to incorporate better facilities in the

CLP language which will use constraints of this kind actively in the search

mechanism.

1 Introduction

The construction of crossword grids by hand is a surprisingly labour-intensive task,

involving much perusal of dictionaries and backtracking over choices. It precedes the

even more di�cult stage of actually generating clues, and is an area that is ripe for

automation. The earliest serious work was by Mazlack [5], who viewed it as a heuristic

(state-space) search problem. However, he only had a small dictionary (2000 words

of 3-4 letters) and a 212K IBM370 mainframe. He could not solve it with whole

words as variables (see Section2.1) and so retreated to a letter by letter approach

with backtracking.

�Currently at the Department of Computer Science, University of Warwick, Coventry, U.K.,

CV4 7AL. E-mail garym@dcs.warwick.ac.uk
yE-mail: pgray@csd.abdn.ac.uk

s a t e p o d m l e a

i m i t l e w o o z y

m e c h a r e r a r e

a s k e r s l l a m a s

r i m l e s

p l a s m i s l a m

o e r e t a

d w e l l o s i e r

l e o i n k

m a c a w s n e a r e r

i t e m i n k t a m e

c o d a e e l e r i e

a m e s r o e d e l l

Fig. 1. Example output from �lling a 13� 13 grid

Fifteen years later Ginsberg et al [4] (1990) revisited the problem using a Sym-

bolics Lisp machine with 2 megawords and a 24,000 word dictionary with words of

up to 15 letters. They formulated the problem in terms of constraint satisfaction,

alternately choosing a variable to solve (word to �ll in) and then picking a value

from the dictionary. Various combinations of strategies for �lling and picking were

experimented with. They concluded (a) that arc-consistency (see Section 2.1.3) and

the cheapest-�rst heuristic were essential to solve any of the puzzles; (b) that back-

jumping (a kind of intelligent backtracking) was needed for the harder puzzles; and

(c) they advocated dynamically recomputing the number of combinations of choices

remaining for �lling in words crossing a given word, rather than estimating it from

pre-computed averages. With these techniques they managed to �ll up to 13 � 13

crosswords with remarkably dense grids (high numbers of words crossing other words)

before their method failed to terminate on bigger examples.

Since then, the technique of Constraint Logic Programming (CLP) has been devel-

oped by van Hentenryck [6] and others, and has attracted wide interest. It overcomes

the classic shortcomings of backtracking, by dynamically reordering the goals, and

has built-in checks for arc consistency (called lookahead). We have been using one

such CLP system CHIP [1, 3] for various projects and thought it was timely to re-

investigate this classic problem, using the builtin facilities of CHIP for solving �nite

domain problems. CHIP looks syntactically like Prolog, but many of the goals are

delayed and stored in an internal constraint network until the so-called labelling phase

which tries to solve constraints on speci�ed variables for values.

Thus we followed the approach of [4] and used three of their test grids, including

the hardest 13� 13 one, a completed example of which can be seen in Figure 1. We

used the most-constrained strategy provided by CHIP for choosing which word to �ll

in, and hoped to discover that the problem was much easier written for a CLP solver

than as a special purpose Prolog program. However, although we solved for all the

grids, the problem proved less well adapted to CHIP than expected.

As [4] points out, the problem contains large numbers of variables (up to 60) with

surprisingly large domains (up to 16,000 values in our case, or 7,000 in theirs). Thus

it is worthy of serious consideration, even with machines of large main memory (up

to 320 Mb in our case).

2 Constructing Crossword Puzzles

2.1 Word-by-word Instantiation

The word-by-word instantiation method �lls the grid by repeatedly picking an empty

word pattern from the grid and �lling it with a word from our dictionary (see Figure 2).

The method terminates when the grid is full, i. e. there are no more word patterns

to instantiate. If, at any point, we are unable to �nd a word from the dictionary that

�lls the pattern then we backtrack to �nd another match for a pattern that was �lled

previously. An example of this can be seen Figure 3 (we use `?' to represent an empty

square).

A

A

P L E

S
B

S S
R E

A

A

P L E

S
B

S S
R E

N N
B A

Fig. 2. Finding a pattern to �ll and �lling it

The e�ciency of our instantiation relies on the e�ciency of the three parts of our

algorithm (as noted by [2]):

1. Choosing which pattern to �ll (i.e. which variable to solve for).

2. Picking a suitable word (i.e. which value to select).

3. Choosing where to backtrack to when we reach an impasse.

As noted above, Prolog employs a simple backtracking method which goes back to

the last choice point (as seen in Figure 3) but CHIP has an `intelligent' backtracking

method. It was part of our research to compare the two forms of backtracking.

A

A

P L E

S

S S

N
B

B

A ER
A

A

P L E

S

S S

N
B

B

A ER

B O S
A

A

L E

S

S S

N
B A ER

B SBO
P

Fig. 3. After instantiating `??b?' to `bobs' we �nd that we we have no match for `pb?'

and thus we must backtrack and �nd another match for `??b?'.

Pattern Number of Matches

`s?n?' 30

`?l??' 151

`p??' 52

`?r?e' 10

`??b?' 73

`??s' 38

A

A

P L E

S
B

S S
R E

N

Fig. 4. Finding the most constrained pattern.

2.1.1 The Fill (Delete) Strategy

The process of picking a pattern from the grid is alternately known as the Fill or

the Delete strategy. The latter is from CHIP nomenclature and comes from the

process of deleting a uninstantiated constraint variable from a list of such variables

and instantiating it.

Our aim when picking a pattern to �ll is that we should maximise the number of

choices for the remaining words in the grid and thus maximising our chances of �lling

the grid with the minimal number of backtracks. To achieve this maximisation we

use the CLP strategy of instantiating the most constrained pattern, i. e. the pattern

which can be �lled by the minimum number of words (see Figure 4).

The reasoning behind using the most constrained strategy is as follows. Suppose

we have n patterns, p1; p2; : : : ; pn say, yet to instantiate and that each of these pi

patterns has ci choices, i. e. words that match it. Then a (very) rough estimate of the

total number of choices is
Q

n

i=1
ci. If we instantiate pattern pj, say, then the number

of choices is reduced to
Q

n

i=1;i6=j
ci. This product is maximised when cj (the deleted

factor) is minimised, i. e. when pj is the most constrained pattern.

Of course, this proof is only applicable if the patterns are independent of each

other, a case which certainly does not arise in crossword puzzles. Indeed, it is the

dependence of the patterns which forms the whole basis for crosswords. However the

most constrained strategy forms a useful heuristic in practice. It only remains to

determine how we determine the most constrained pattern in the grid. CHIP will

determine this automatically (see Section 4.2); with Prolog we develop a number

of di�erent methods for determining the most constrained pattern based on exact

counting methods and statistical analysis (see Section 3.2).

2.1.2 The Pick Strategy

Above we noted that the various patterns in the grid are heavily dependent on each

other, a fact we ignored when developing our �ll strategy, but one that we acknowledge

when determining which word from the dictionary to instantiate our pattern to.

For instance, in Figure 5 we have two possible instantiations for the pattern `??a?t':

`start' and `quart'. If we pick the former then we will eventually have to �nd matches

for the pattern `s??'; if the latter then we need matches for `q??'. There are 60 matches

in our dictionary for `s??' but only 2 for `q??' so obviously, following our strategy for

maximising choice, we choose to instantiate `??a?t' to `start' rather than `quart'.

Therefore when choosing a word to �ll a pattern with, we choose the word that

A

S
B

S S
R E
A TQ U R

A

S
B

S S
R E
A T

A

S
B

S S
R E
A TRTS

Fig. 5. Two possible instantiations for `??a?t'.

will lead to the maximum number of choices for the rest of the patterns in the grid.

As with the �ll strategy, there are a number of ways in which we can calculate this

choice (see Sections 3.3 and 4.3)

2.1.3 Arc-consistency

Figure 3 shows us a grid that cannot possibly be completed, as there is no match for

the pattern `pb?'. In technical terms, the grid is not (directionally) arc-consistent.

The question is, when do we discover this?

If we are lucky, then we will try to instantiate `pb?' immediately after instantiating

`??b?' to `bobs' and thus be able to deduce that this instantiation was illegal (with

respect to making sure that we can �ll the grid) and we can immediately try another

instantiation. However, we may not try to match `pb?' until it is the last empty

pattern in the grid. A simple backtracker, for example Prolog's, will spend many

fruitless backtracks re-instantiating all the patterns between `bobs' and `pb?' in an

e�ort to �nd one that will transform the uninstantiable `pb?' into an instantiable

pattern (this is why Ginsberg et al recommend smart back-jumping).

It is thus much more e�cient to check that a grid is arc-consistent, i. e. still

�llable, every time we instantiate a pattern. Some �ll and pick methods include arc-

consistency checking as an `added bonus'; some strategies need a separate check for

arc-consistency. See Sections 3.4 and 4.4 for further details.

2.2 Letter-by-Letter Instantiation

The letter-by-letter instantiation method works by repeatedly picking an empty square

from the grid and instantiating it to some letter. The method terminates when all

squares have been instantiated. At each instantiation, we must ensure that instantiat-

ing a word with a letter does not preclude any word patterns that contain that square

from being instantiated to a word from our dictionary. This is actually a check for

arc-consistency, since if we have an arc-consistent grid before we instantiate a square,

and the pattern(s) that contain this square are �llable after instantiation, then the

whole grid must remain arc-consistent as the instantiation a�ects no other words.

For instance, consider the grid in Figure 6. If we instantiate the grey square to

`q' then we have to �nd a match for the pattern `qre?', a match that does not exist

in our dictionary. On the other hand, instantiating with `b' does lead to a pattern

(`bre?') for which a match exists (e. g. `bred'). If, at any point, we have a grid with

patterns that cannot be instantiated then we backtrack to �nd another match for a

square that was instantiated previously.

ER A
R

EE

E

ER A
R

EE

E
ER A
R

EE

EQ B

Fig. 6. Two possible instantiations for the grey square; one legal, the other not.

We have a similar strategy to the word-by-word instantiation method. Again the

e�ciency of the algorithm relies on the three component parts:

1. Picking which square to instantiate.

2. Picking which letter to instantiate it with.

3. Choosing where to backtrack to when we reach an impasse.

The remarks on backtracking are identical to those made about backtracking in the

word-by-word method made in the previous section.

2.2.1 The Fill (Delete) Strategy

As with the word-by-word �ll strategy, we adopt the principle of instantiating the

most constrained square �rst. But how do we determine which square this is? There

are a number of dynamic strategies which will be discussed in Section 5.3. In this

section we shall discuss a static strategy, i. e. one that can be determined before we

start instantiating the grid and never alters.

This strategy was developed by Mazlack [5] who realized that squares that ap-

peared in long patterns and on the intersection points of patterns were the most

critical and should be instantiated �rst1. He gave a formula for determining the

criticality of a square, s say, which we shall denote as the Mazlack value, M(s):

M(s) = # squares adjacent to s+# squares directly connected to s

1The more critical a square is, the less room for manoeuvre we have when instantiating it and

thus the more constrained it is.

A square is adjacent to another if they share a common boundary. Two squares are

directly connected if they occur in the same word pattern. Two examples of this

calculation can be seen in Figure 7. Here we see that the centre square, sitting in the

intersection of two �ve-letter patterns (the longest patterns in the grid) has a much

higher Mazlack value, i. e. is more critical, than the bottom-left square which sits

on the intersection of two 3-letter words, which corresponds with our intuitive belief.

Hence, when using the Mazlack strategy we choose to instantiate the empty square

with the highest Mazlack value.

12

6 Adjacent square

Directly connected
square

Fig. 7. The Mazlack values for two squares.

2.2.2 The Pick Strategy

When investigating the word-by-word pick strategy, we discovered that some words

were more preferable to others. Similarly, when instantiating a square with a letter,

some letters are better than others. Indeed, if the letters lead to non-�llable patterns

then the letters are no good at all. We should choose letters that are consistent with

our strategy of maximising choice, i. e. instantiate squares with letters that maximise

the number of choices for the pattern(s) which the squares lie in. The exact methods

are detailed in Section 5.3.

2.3 The Dictionary

The program repeatedly searches through a dictionary looking for matches to patterns,

so obviously we have to ensure that this searching is as fast as possible. We thus choose

to use C to handle the dictionary and pattern matching using Prolog's foreign language

interface and CLIC to interface the C code with Prolog and CHIP respectively.

One rather useful characteristic of our problem is that we always know the length

of the pattern that we are trying to �nd a match for. We thus order our dictionary by

length and restrict our search to that subset of the dictionary which contains words of

the same length of the pattern we are trying to match. We also sort these subsets of

the dictionary (sub-arrays to be exact) lexicographically, thus enabling us to exploit

binary search to some degree, that degree being dictated by the length of the initial

segment of the given pattern that has been instantiated. The dictionary itself was

sourced from

ftp://sable.ox.ac.uk/pub/wordlists/dictionaries/knuth words.Z

and uses American English. All words were converted to lower case and all puctuation

stripped out. All possible abbreviations were removed and an arbitrary limit of 15

Word length Number Word length Number

2 134 9 15,045

3 853 10 12,705

4 3,342 11 9,707

5 6,894 12 6,920

6 10,745 13 4,635

7 14,574 14 2,809

8 15,901 15 1,633

Fig. 8. Frequency of words of length 2{15 letters in the dictionary

letters was placed on the lengths of the words. The resulting dictionary contains

105,897 words of length 2{15 as detailed in Figure 8.

2.4 Seeding the Grid

A number of the �ll and pick strategies are deterministic and when presented with the

same grid will always �ll it with the same words. This is a little counter-productive,

and we thus seed the grid by placing a random word in a random pattern before

starting the instantiation process. The more patterns this pattern intersects with, the

more random the grid will be. For this reason, we choose to seed (one of) the longest

pattern(s) in the grid.

3 The Prolog/C Word-by-Word Implementation

3.1 Data Representation

The patterns in the grid are stored as an indexed list of tuples of the following form:

grid_string(StartX, StartY, Direction, Length, Freedom)

StartX and StartY hold the coordinates of the starting square for this pattern,

Direction its direction (down or across) and Length its length. Freedom is a measure

of how constrained a pattern is (see Section 3.2.

Our strategy detailed in Section 2.1.1 translates thus:

1. Delete the tuple from this list with the lowest Freedom.

2. Instantiate the corresponding pattern in the grid.

3. Propagate this instantiation to the remaining patterns into the grid, in particular

updating the Freedom of each pattern. Note that only patterns that intersect

with the instantiated pattern are a�ected and it is only these that we need to

consider.

4. If the grid is not arc-consistent try another possible reinstantiation of the chosen

pattern. If no further matches are possible then backtrack.

Following [4] we limit the number of choices that the program can try before back-

tracking to an arbitrary limit of 10. This is based on the principle that if we haven't

found a successful match after a certain number of tries we aren't likely to �nd one.

3.2 The Fill (Delete) Strategies

We shall now detail the ways of calculating which pattern is the most constrained.

For simplicity, we shall refer to them as the �ll strategies even though they use the

same underlying strategy and only di�er on how they make their calculations.

most constrained We count exactly how many matches every pattern has. This

has the bene�t that if the grid isn't arc-consistent then some patterns will have

a Freedom of 0 and thus will be considered �rst, fail and force an immediate

backtrack. Hence no separate arc-consistency check is required.

ratio For every pattern we calculate the ratio of uninstantiated letters to the length

of the pattern, e. g. `??b?' has a ratio of 0.75. Patterns with a higher ratio

should have more choice of instantiations, conversely those with a lower ratio

are more constrained.

est constrained We estimate the constraints on a variable by using a pre-computed

probability table containing the values of P (l; n; c) which is the probability that

a l-letter word has character c at position n (starting from 0). Note that if c is

uninstantiated then we presume that this probability is 1. If we have a pattern

of the form c0c1 � � � cn�1 then an estimate of the number of matches is:

T (l)�
n�1Y

i=0

P (n; i; ci)

where T (l) is the total number of l-letter words (see Figure 8).

The di�erent methods are compared in Section 3.5.1.

3.3 The Pick Strategies

We now detail the di�ering pick strategies:

first n We ignore our principle of maximising choice and consider the �rst n (in our

case, 10) matches to the pattern. However, this does lead to a profusion of words

from the beginnings of the various sections of the dictionary. This clustering

means that if one of our matches fails then there is a higher than expected

chance of the other matches failing as they have more letters in common than

average.

random To alleviate the problem of clustered matches we pick a random selection of

n (again 10) matches from a large subset of matches.

dynamic After obtaining a set of n random matches, we sort them by how much they

preserve the choice in the grid. This is done by calculating the product of the

number of choices of the intersecting patterns (this number is counted exactly

as in the most constrained �ll strategy). The higher this product, the more

choice.

prob Similar to dynamic but we use the est constrained method to estimate the

number of choices for each intersecting pattern.

The di�erent methods are compared in Section 3.5.2.

5� 5 9� 9 13� 13 15� 15

Words 10 20 64 30

Constraints 29 52 196 92

Fig. 9. Statistics for the test grids

3.4 Ensuring Arc-consistency

All combination of pick and �ll methods, bar those involving the most constrained

�ll strategy require a separate check for arc-consistency. This is achieved by checking

that the intersecting words of the just-instantiated pattern all have matches. We have

no need to check the entire grid as only these patterns are a�ected by the instantiation

presuming, of course, that the grid was arc-consistent before the instantiation.

3.5 Results

The results were computed using a SPARCserver 10/512 with 2 50MHz SuperSPARC

processors (135 MIPs each) and 320MB of memory and were averaged out over 10

executions of the constructor. Quintus Prolog 3.1.3 and the Sun C compiler were the

language implementations used. A `|' indicates that the program did not run to

completion in satisfactory time or crashed the computer. These crashes are probably

due to memory fragmentation problems (a lot of allocation/deallocation was done in

C which has no automatic garbage collector).

The various grids used are shown in Appendix A. They vary in number of words

and constraints (number of words + number of intersecting squares) as shown in

Figure 9.

3.5.1 Comparing the Fill Strategies

The results in Figure 10 were computed using the prob pick strategy (Section 3.3)

and show total times (�ll+pick) averaged out over 10 executions.

Size ratio most constrained est constrained

Time (s) Backtracks Time (s) Backtracks Time (s) Backtracks

5 � 5 0.4 31.8 0.89 18.2 1.1 59.4

9 � 9 0.33 3.9 0.89 1.7 0.84 8.6

13 � 13 12.95 3167.6 6.24 226 60.15 2961

15 � 15 4.98 130.9 8.6 1.5 4.75 4.6

Fig. 10. Prolog Fill Strategies by Time and Backtracks

The �rst surprise is that all the di�erent delete strategies take no longer and

far less backtracks for the harder 9 � 9 grid than for the 5 � 5 one. This change

in performance may be explained by the relative scarcity of the shorter words that

appear in the 5 � 5 grid as opposed to the longer ones in the 9 � 9 one, though this

is only a guess. The various delete strategies do not di�er wildly from each other,

though the most constrained is overall the best and proved to be the stablest as

well.

3.5.2 Comparing the Pick Strategies

The results in Figure 11 were computed using the most constrained �ll strategy and

again show total times averaged out over 10 executions of the constructor.

first n random prob dynamic

T (s) Btracks T (s) Btracks T (s) Btracks T (s) Btracks

5 � 5 1.02 35.3 0.96 67 0.89 18.2 0.95 75.1

9 � 9 0.65 28.6 0.93 33.2 0.89 1.7 1.28 72.3

13 � 13 | | 8.43 526 6.24 226 6.65 293

15 � 15 4.79 9.2 6.98 34.8 8.6 1.5 5.12 7.9

Fig. 11. Prolog Pick Strategies

As with the di�ering delete strategies, we have the surprising similarity in perfor-

mance from a 5 � 5 grid to a 9 � 9 one, though the di�erence in backtracks is not so

marked this time. While the simple strategies first n and random perform well on

the smaller grids, as the grids become larger and more complex the extra work done

by the more involved strategies begins to pay o�.

4 The CHIP/CLIC Word-by-Word

Implementation

4.1 Data Representation

We can view the word-by-word instantiation method as a constraint logic problem

in which the patterns in the grid have to be instantiated, with a constraint that the

instantiations form words from our dictionary.

We represent the various patterns in the grid as tuples of the form:

grid_string(StartX, StartY, Direction, Pattern, Word)

StartX, StartY and Direction are the same as in the Prolog method (see Section 3.1).

Pattern is a tuple of squares from the grid, held in Chip domain variables, which

form the pattern. Word is a domain variable representing all possible matches for the

pattern. Each word, w, is represented by an integer. If w has k letters and occurs

at index n in the dictionary array, and the k-letter words start at index ik in the

dictionary (remember that all the k-letter words occur in one contiguous block), then

we represent w as the o�set n � ik. This is motivated for two reasons: we instantly

discount any words which don't share the same length as the pattern that we are

trying to instantiate; and CHIP has a size-limit of 100,000 on domain variables and

we have over 105,000 words in our dictionary.

4.2 The Fill (Delete) Strategies

Our policy of picking the most constrained pattern in the grid to �ll in next can be

simply achieved using CHIP's most constrained predicate. This deletes the most

constrained domain variable from a list of such variables. In our case, as we have a

list of grid string tuples, we supply an index telling CHIP which �eld of the tuple

holds the domain variable that we are interested in.

4.3 The Pick Strategies

After we have obtained the most constrained pattern, we can instantiate it using

CHIP's indomain predicate. This instantiates the pattern to some word in its domain,

this domain being the �fth element of the the grid string tuple.

After instantiation and arc-consistency checking (see the next section), we have

to update the domain of the other patterns. This has to be done ine�ciently (see

Section 6) as CHIP is unaware of any connection between the squares forming the

pattern and its domain variable. We remove all the words (or rather their o�sets) that

don't match the updated patterns from the domain variable representing the possible

matches for the pattern.

4.4 Ensuring Arc-consistency

We employ the same C predicate as was used for the Prolog check (see Section 3.4).

4.5 Results

The same machine as was used for the Prolog/C method was used along with CHIP

v4. The results in Figure 12 are only sample results, rather than averaged, as the

program proved too brittle to get a complete set of results (Ginsberg also reported

problems of non-termination). The backtracking is reduced as expected, compared to

Prolog/C, but at a high cost in performance (see Section 6).

Size Time (s) Backtracks

5 � 5 7.5 7

9 � 9 10.8 3

13 � 13 71.1 206

15 � 15 60.3 10

Fig. 12. CHIP Word-by-Word Instantiation results

5 The CHIP/CLIC Letter-by-Letter

Implementation

5.1 Data Representation

We can view the letter-by-letter instantiation method as a constraint satisfaction

problem in which the letters in the grid have to be instantiated, constrained such that

the patterns which they form contain words from our dictionary.

The squares in the grid are stored in a list, and are represented by tuples of the

form:

let(X, Y, Letter, MazlackValue, Domain)

X and Y are the coordinates of the square. Letter is the domain variable representing

the square. MazlackValue is the Mazlack value of the square. Domain is a list of

possible instantiations (from the letters `a'{`z') for the square. This list is sorted

according to the letter's suitability for instantiating a square (see Section 5.3) and is

separate (though equivalent set-wise) to the domain of the variable Letter.

5.2 The Fill (Delete) Strategies

We sort our list of let tuples according to their Mazlack value (in descending order)

and simply choose the head of this list to instantiate at each stage of the algorithm.

As a comparison, we also delete the squares from the list using CHIP's first fail

predicate (a variation of the most constrained predicate recommended when the

domains of our variables are of roughly the same size).

5.3 The Pick Strategies

In Section 2.2.2 we said that we should pick certain instantiations over others to

maximise choice. This method is denoted the sorted strategy. We now elaborate on

how to actually do this.

A square can occur in either one pattern or two. In the �rst case it must be the

ith character of a n-letter word. Let N(n; i; c) be the number of n-letter words with

character c at the ith position. Then, to maximise choice, we sort, in descending order,

our domain (the �fth element of let) using N and try possible instantiations from

the head of this list and proceed accordingly. If the square occurs in two patterns,

say as the iath letter of an na-letter word and the idth letter of a nd-letter word,

then we order the characters c on the product N(na; ia; c)�N(nd; id; c). This product

represents the total number of combinations of words that intersect at that point

which is instantiated to the character c. We only have to do this calculation and sort

once, as with calculating and sorting on the Mazlack value. Note that if we are using

the first fail delete strategy, then we must also ensure that this domain and the

domain of Letter are kept consistent.

For comparison purposes, we also instantiate letters using the indomain predicate.

5.4 Results

Disappointingly, the program proved even more brittle than the word-by-word imple-

mentation and none of the methods could handle the 13� 13 grid. Thus the �gures

detailed in Figure 13 are only samples and not averages. The Mazlack heuristic was

almost useless on the dense grids but, unlike the first fail method, was able to

deal with the the less dense 15� 15 grid.

first fail Mazlack

Size indomain sorted indomain sorted

T (s) Btracks T (s) Btracks T (s) Btracks T (s) Btracks

5 � 5 6.05 3024 0.67 248 67.76 14994 3605 181590

9 � 9 0.72 110 0.49 13 6.9 14754 0.55 17

13 � 13 | | | | | | | |

15 � 15 | | | | 413.35 3539 39.14 478

Fig. 13. CHIP Letter-by-Letter Delete and Pick Strategies

6 Discussion and Conclusions

In general, the selling point of CLP techniques is that they enable one to understand

the problem better and to specialise and use with ease powerful constraint solving

techniques that one would be unlikely to code directly in Prolog. It also overcomes

the classic shortcomings of Prolog depth-�rst backtracking. However, in this case

the Prolog version was similar in length to CHIP and outperformed it (both versions

needed to use shared C routines).

There are various reasons for this:

� The Prolog version makes extensive use of call-outs to fast C routines which

compute the choice factors and update an array representation of state. The

CHIP version has di�culty in updating its �nite domains e�ciently. It has to

call C routines to construct and return long lists of words that don't match, and

then to recurse over this list creating CHIP inequality constraints in order to

remove items from the domain. This is a slow process, made much harder by

the size of domains (up to 16,000). In many cases it would be easy to supply a

small list of the remaining values, but CHIP cannot use the information easily

in this form.

� In the word-based version it is not easy for CHIP to use arc-consistency checks

(lookahead) e�ciently. Normally this relies on CHIP's own internal constraint

representation. For example, in the paradigmic Eight Queens problem, the

constraints are simple integer inequalities between domain variables, comparing

the position of a queen in one column with that in a neighbouring column.

Thus a change in the value of a variable is quickly and easily propagated and

checked for arc consistency. In the crossword version, however, an equality

holds between a component (letter) of one word and a component of a variable

holding a crossing word. This could not be represented as a direct constraint in

our version of CHIP. Thus arc consistency could only be used as a passive �lter,

by calling out to a C routine, and not actively in the constraint network.

� In an e�ort to make more e�cient use of CHIP we changed to a version based

on letters in grid squares as variables. These values can be easily used in CHIP

constraints. Now, alas, we had great di�culty in forming the constraint that

a group of letters formed a valid word! Again this check could only be made

by passively calling C routines. In theory one could write the constraint as

an enormous disjunction of combinations of values (each representing a valid

word). However, CLP is not good at using disjunctive constraints. Commonly,

they are handled by testing one disjunction and then backtracking to modify

the constraint in the network and try again. This can be done with modest

numbers of disjunctions, but not with many thousands!

� There are minor di�erences in our results with those of Ginsberg on the same

grid. We found 9� 9 easier than 5 � 5, but this is probably because we had a

di�erent choice of short words in our dictionary.

� In the letter-based version we were able to retry Mazlack's original heuristic.

This proved to be very weak, however, when using the much larger dictionary

and more dense grids. In fact, the greatly increased memory of modern machines

makes the word-based approach more viable, and it proved to be much faster.

In conclusion, we did solve a classic problem using a constraint logic solver, but found

that it lacked certain key constructs, which stopped us using the constraints actively

through CHIP's own constraint network. Instead they were represented in external

C code. The CHIP word-based version did manage to reduce backtracking greatly

compared to the Prolog one, but only at a cost of great computational overhead

leading to signi�cantly slower overall performance. Thus the CLP strategy is working

in principle, but needs improvements to the constraint network before this pays o� in

performance.

7 Acknowledgements

This paper is based on work done while Gary Meehan was studying at Aberdeen

University for his M.Sc., supported by an European Social Fund studentship. We are

very grateful to Kit Hui at Aberdeen who suggested improvements to the algorithm

and ran o� extra results on a Sun with larger memory.

A Sample Grids

Figure 14 shows the example grids used through this paper. Grids A, B and C are

sourced from Ginsberg's paper [4] while grid D was sourced from The Times crossword

puzzle.

Fig. 14. Example grids.

References

[1] COSYTEC. CHIP V4 User's Guide, COSYTEC SA., Parc Club Orsay Universite,

France, 1994.

[2] R. Dechter and J. Pearl. Network-based heuristics for constraint-satisfaction prob-

lems Arti�cial Intelligence 34, pp 1{38, 1988.

[3] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, F. Berthier.

The Constraint Logic Programming Language CHIP Proc. Int. Conf. on Fifth

Generation Computing Systems (Tokyo), pp 693{702, 1988

[4] M. L. Ginsberg et al. Search Lessons Learned From Crossword Puzzles Automated

Reasoning, pp 210{215, 1990.

[5] L. J. Mazlack. Computer Construction of Crossword Puzzles Using Precedence

Relationships Arti�cial Intelligence 7, pp 1{19, 1976.

[6] P. Van Hentenryck. Constraint Satisfaction in Logic Programming MIT Press,

1989.

