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Preface

This book is for programmers. It is written for the reader who wants to write
32000 assembler programs and has access to a 32000 system and the usual
reference manuals,

Despite previous experience, coding from a reference manual often
involves searching back and forth from instruction definition to addressing
modes to assembler directives, just to write a single line of code. This book sets
out to bridge the gap between experience and applying it in 32000 assembler.
To do this, it introduces both instructions and addressing modes together,
starting with the basic modes and integer instructions and progressing to
grander things — by the end of Chapter 3, it should be possible to write simple
programs. .

Chapters 3 to 8 include exercises to enable the reader to test his
comprehension. They should be written and then run on a 32000 system to
check that the code produces the right result—desk checking is not a
substitute. To do this it is essential that your 32000 system has a machine code
debugger. The exercises can not be done properly without one and writing
assembler, relying on system calls to show how the program is working, isa
short-cut to a padded cell. If no debugger is available, make sure your system
supplier knows of and appreciates your distress.

The reader is expected to have a fair amount of computing experience.
Typically, he may be an assembler programmer adding the 32000 series to his
repertoire or a programmer competent in two or more high-level languages
wishing to tackle 32000 assembler in order to speed up a procedure or because
unhindered access to the system makes it more convenient.

Nothing very abstruse is needed: no explanation of bits, bytes or words is
given. An understanding of arrays, the concept of stacks (the actual machine
implementation is minutely described in Chapters 7 and 8), records as used in
Pascal (or the C struct) and the idea of a heap as a source of blocks of storage
provided by such system routines as new( ) in Pascal or malloc( ) and friends
in C is assumed.

The book would also be useful to undergraduates with projects to develop
on a 32000 system. Most of the computer terminology should be familiar and
any missing background could be made up in lectures.
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The first chapter is an introduction to and a survey of the 32000 series
architecture. It presents the 32000 programming model, its general and special
registers, the data types it can handle, the instruction classes and memory
organization. You will then be able to compare and contrast the 32000 with
other architectures you are familiar with.

Chapter 2 introduces the assemblers used by the 32000. There are two
forms: those based on the National Semiconductor ASM16 assembler; and the
Acorn ZASM running on the Cambridge second processor (for the BBC
micro), the Cambridge workstation and the Master Scientific. As the
differences lie mainly in the directives, the code throughout this book is in
Acorn ZASM with notes on the changes required to convert to NatSemi
format where necessary.

Chapter 3 includes a section on binary arithmetic for those who are not
familiar with it and discusses the instructions for handling integers, including
comparison and conditional branches. It also introduces the basic addressing
modes and their assembler syntax.

In Chapter 4 boolean and logical instructions are discussed. In contrast to
the requirements of some other languages, boolean for the 32000 series is not
synonymous with logical as the instructions act only on the least significant bit
and therefore allow TRUE to be represented by 1 and FALSE by 0. The shift
instructions are included in this chapter as they are often used in conjunction
with logical instructions.

The fifth chapter deals with the 32081 Floating Point Unit and its
instructions which provide hardware floating point arithmetic to the IEEE
standard with a few minor exceptions. The first part of the chapter introduces
the IEEE standard, its single and double precision formats, rounding modes
and special operands — infinities and NaNs. This is followed by the instruction
definitions and ends with an example.

In Chapter 6 bits and bit fields are described in detail, together with the
32000 instructions for operating on them. These replace the sequences of
ANDs, ORs and shifts usual on less advanced architectures.

Chapter 7 shows how the 32000 addressing modes provided for handling
arrays, records and stacks can be used, ending with a section on the string
move, search and comparison instructions.

Chapter 8 starts with a description of the branch and jump instructions
not fully dealt with in the preceding chapters and moves on to calling
procedures and the use of the stack for passing parameters and returning
results. The very important topic of 32000 modules and module support is then
dealt with, together with the assembler format of a module — the usual form of
an assembler program.

Chapter 9 presents an actual 32000 operating system — Acorn’s Panos
—with its library routines and parameter passing conventions. The Panos
scheme for handling exceptions and program errors is an excellent example of
the high standard of design possible with the 32000°s CPUs.

Exceptions, both interrupts and traps, and the programming needed to
handle them are dealt with in Chapter 10, together with the 32000’s support
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for operating systems through its recognition of supervisor and user states and
the instructions used in writing operating system kernels. The last section of
the chapter describes the main features of the Memory Management Unit.

There are three appendices.

The first is a 32000 instruction reference. In the main body of the text the
instructions are described and illustrated in sufficient detail to make possible
the writing of programs. Later on, however, questions on the allowable
addressing modes of the operands or details of the instructions’ actions will
arise and are best dealt with in a reference summary. This appendix goes into
detail on the different operand types and access classes and closes with a brief
description of each instruction (in alphabetical order) showing its operands,
the PSR and FSR flags which can be set by the instruction and the traps which
may occur during its execution.

The second appendix lists the instructions grouped by function. It will be
of use when you know what you want to do and want to find out which
instruction will do it for you.

The third appendix is a collection of five small programs, all written for
the Acorn assembler under Panos but which may easily be changed for another
assembler and system. It is hoped that these will provide an initial model for
your own programming and also some useful code.
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1 Introduction

This book is a complete reference to programming the National Semiconduc-
tor 32000 series of microprocessors, including the programming details needed
to use the associated NS32081 Floating Point Unit. There is also a description
of the main points of the NS32082 Memory Management Unit and the
vectored interrupt processing mode made available by the NS32202 Interrupt
Contro! Unit.

The different instruction groups are described and illustrated by
presenting some of the smaller routines commonly found in utilities and
library routines. These routines have been chosen to show the economy and
style of programming the 32000. Sometimes only central sections of a routine
are presented as the complete code would be too long for an example. All the
routines have been run on a 32000 system and work correctly. They have been
written to show how the programmer can make the best use of the instructions
and addressing modes supported by this chip.

The members of the 32000 series available include the 32016, the 32008
and the 32032. The 32016 has a 16-bit path to memory, reading a word at a
time, the 32008 (intended for smaller systems) reads a byte at a time and the
32032 (with a 32-bit memory path) reads a double word at a time; the wider the
path to memory, the faster the CPU can get instructions and data and the
faster programs will run. The ultimate aim of NatSemi is to produce the CPUs
(and supporting chips) in CMOS with the lower power consumption which
allows more transistors to be squeezed into the same area without melting the
silicon.

Also in the series are the 32C016 (32016 in CMOS) and the 32332. The
final conjunction of the CMOS and NMOS paths will take the form of the
32C532.

The 32032 has a speed advantage of some 50% over the 32016, and the
32332 is an enormous step up on this (250%), showing both NatSemi’s
commitment to the series and the soundness of the design in providing such a
steady base for the leap forward. Earlier models have a 24-bit address but later
models have 32 bits for the address, allowing an address space of 4 Gbytes
(4096 Mbytes). With 16 Mbytes already available, it doesn’t seem long ago that
people stood up and cheered when given a measly 64K.
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The support chips are not to be forgotten in the advance of the CPUs. The
Memory Management chip (NS32082) is backed by the 32382 which supports a
4 Gbyte address space and a memory cache allowing high-speed access to
instructions and data without having to wait for slow memory-chips and the
32081 FPU is supplemented by the 32381 numerical processor.

The 32000 follows the Motorola 68000 in time and has a similar
architecture supporting a direct addressing range of 16 Mbytes. The earlier
16-bit microprocessor chips from Intel and Zilog have a segmented architec-
ture which is more difficult to program and more awkward to use.

The Motorola chip was the first to have 32-bit internal data paths and, as
the price for being first, the architecture contains some pitfalls. It would
appear that the architects of the NatSemi 32000 learned from this, as its
instruction set is exceptionally symmetrical and it has designed-in rather than
added-on support for virtual memory and interrupt dispatch tables.

The NS32000 instruction set is very advanced and a full appreciation of it
and its addressing modes requires a knowledge of compiler code generation
and the intricacies of multiprocessing and multitasking operating systems.
However, the majority of assembler programmers writing within the ambit of
an operating system will still find a rich store to delve into.

1.1 THE 32000 PROGRAMMING MODEL

In a high-level language (hereafter abbreviated, in line with convention, to
HLL) data is kept in variables the length of which varies with the size of the
object to be kept there. It is possible to have byte variables (usually containing
characters), 16-bit word variables (short integers) and 32-bit double word
integers. There may also be provision for short reals, 32 bits in length, and
long or double precision reals which are 64 bits long. Arrays and structures
form variables of greater lengths than these. Variables usually occupy one or
more bytes in main memory though the C language does contain a ‘register’
specifier which causes the value to be held in a CPU register if possible.

CPU registers are similar in many respects to memory except that a
register has a maximum length of data object it can hold. This length in bits is
often used to characterize the CPU: for instance, the registers on the 32000 can
contain data up to 4 bytes or 32 bits in length and it is therefore called a 32-bit
microprocessor.

The main advantage of CPU registers is that data in them can be accessed
very much faster than data in memory. On the 32016, adding two 32-bit
numbers in registers takes four machine cycles while adding the same two
integers stored in memory takes 32 cycles, a considerable increase.

Because of this speed advantage, the CPU also keeps many of its own
variables in registers, called special or dedicated registers. Some of these
registers may be altered by a program but, since the CPU’s behaviour stands
or falls (crashes) on their contents, any program altering them must have
displayed a much higher degree of trustworthiness in operation than a mere
user program. For this reason, the CPU operates in two modes: user mode and
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supervisor mode. In user mode the instructions altering some of the special
registers are not available but in supervisor mode there are no restrictions. This
separation of the modes is also an aid to debugging, as a program fault which
leaves the system intact gives the user a greater chance of finding its cause.

The CPU assumes that its general registers will only be used to contain
integers though these may be bytes, words or double words. Floating point
numbers will usually be handled in the registers on the FPU chip, unless of
course it is absent, in which case routines must be written to simulate the
floating point operations in the CPU registers. This will be expensive in both
time and programming effort, fitting the FPU chip is much cheaper.

1.2 THE REGISTERS

The CPU has sixteen 32-bit registers in all, eight of which are general registers
which may be used without restriction by the programmer, the remaining eight
being the CPU’s special registers. Some of these dedicated registers may be set
or altered by the programmer but this will usually be done by the operating
system rather than the user.

The eight general registers can be used to hold byte (8-bit), word (16-bit)
or double word (32-bit) objects. These objects may be data, offsets or
addresses — the registers are not specialized in any way. A register used for a
byte operand holds it in the least significant 8 bits, a word operand is held in
the least significant 16 bits. Moving a byte or a word operand into a register
affects only the bits actually occupied, the high-order bits being unchanged.
The general registers are referred to as R0 to R7.

The eight special registers are the program counter (PC), the two stack
pointer registers SP0 and SP1, the frame pointer register (FP), the module
register (MOD), the static base register (SB), the interrupt base register
(INTBASE) and the processor status register (PSR).

PC, the program counter, contains the address of the first byte of the
instruction being executed.

The stack pointer register SPO is used by the operating system for its own
private stack; SP1 is for the user stack, holding the program’s temporary data
space and procedure call information. The frame pointer register is used in
conjunction with SP1 to allow a user procedure to refer to its own data on the
stack.

The module register (16 bits long) points to the descriptor of the currently
executing software module (in modula-2 terms), and the static base register
points to this module’s global variables.

INTBASE holds the address of the start of the current exception
(interrupts and traps) dispatch table.

The processor status register (16 bits long) is divided into an upper and a
lower byte. The lower byte is for user programming, containing bits indicating
such things as the result of the last comparison; the upper byte is for system
use as it shows whether the processor is in supervisor or user mode, whether
interrupts are enabled and so on. The user byte of the PSR will be covered in
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Chapter 3 while the supervisor byte, which is concerned with interrupts and
user/supervisor mode will be covered in Chapter 10.

The program counter need not be described further as it is only altered by
the processor itself while executing instructions, being incremented during
normal instruction sequencing or replaced as a result of a jump, branch or
subroutine entry or exit.

SP1, the user stack pointer, and FP, the frame pointer, will be discussed
in Chapter 7 (stack addressing modes) and Chapter 8 (procedure calls). SPO, as
the interrupt stack pointer, and INTBASE, the interrupt base register, will be
dealt with in Chapter 10 (exception handling).

The module register will be discussed in Chapter 8.

There is one further register, the 4-bit configuration register, which has
not been mentioned so far. It is intended to acquaint the processor with the
presence of the optional support chips, the Interrupt Control Unit (ICU), the
Floating Point Unit (FPU), the Memory Management Unit (MMU) and the
Custom Slave Processor. The register’s four bits are set and cleared by a single
instruction (SETCFG) which is intended to be used only on system
initialization after a reset. The four bits are called C, M, F and I. The I bit is
set when the system includes an ICU, the M bit when it includes an MMU, the
F bit if there is an FPU chip and the C bit for a Custom Slave Processor. If the
I bit is set, interrupts will be vectored; otherwise they will be non-vectored (see
Chapter 10 for the discussion of these terms). If the M bit is clear the memory
management instructions will cause an ‘undefined’ trap to be executed. If the
F bit is clear, the floating point instructions will be taken as undefined, and if
the C bit is clear the same fate will befall the Custom instructions.

1.3 MEMORY ORGANIZATION

The earlier members of the 32000 series can directly address 16 Mbytes of
memory; addresses can extend to 24 bits. Later members and support chips
can use 32-bit addresses, extending the address space to 4 Gbytes (4
gigabytes — over 4000 Mbytes).

Memory can be handled as bytes, words (16 bits) or double words (32
bits), as shown in Fig. 1.1. A word is made up of 2 bytes in consecutive
addresses. The least significant byte of the word is in the lower address (which
need not be even) as in Fig. 1.2. A double word is made up of four contiguous
bytes or two consecutive words. Again, the least significant byte of the double
word is in the lowest address and this does not have to be a multiple of four
(Fig. 1.3).

7 0 15 87 0
A A+1 A

Fig. 1.1 Byte at address A. Fig. 1.2 Word at address A.
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31 23 15 87 0
A+3 A+2 A+1 A

Fig. 1.3 Double word at address A.

Note that both bit numbers and addresses increase from right to left. To
have the highest bit number to the left of the lowest is usual, but addressing is
usually contrariwise and illogical. This scheme is used in all the National
documentation and to use a different convention here would make it more
difficult for those who were later to consult the manufacturer’s documen-
tation.

Memory is addressed as a sequence of bytes but the 32016 accesses it a
word at a time on an even address and the 32032 addresses it a double word at
a time with the first byte at an address which is a multiple of four. While the
programmer is not restricted to even addresses for words or quad byte
addresses for double words, starting on the wrong boundary will mean extra
memory accesses. If you are counting the cycles it would be wise to make sure
the data starts on the right address.

1.4 MEMORY MAPPING

Running large programs on a 32000 system does not need a lot of memory to
be present if the Memory Management Unit is fitted. This works together with
the CPU to translate the addresses referred to by the instructions (in this case
called virtual addresses) into addresses corresponding to the memory which is
physically present (physical addresses).

This means that a program too large to fit into memory can be broken
down, leaving part in memory with the rest on disk. When the MMU is passed
an address corresponding to a part of the program on disk, it can inform the
CPU which arranges a swap. When this is complete the CPU can continue by
restarting the instruction.

Of course, this tactic need not be confined to running large programs. If,
on a workstation with a 32000 and MMU, you are writing a letter with a word
processing program and you find you need to look up some figures in a file on
the disk, you don’t need to save the letter and read in a database program. You
can simply ask for the database program, which will be read into memory,
displacing part of the word processor, run the database to get the figures and
then continue with the letter. All the movement of parts of the database, parts
of the letter, database program and word processor will be taken care of by the
system running on the 32000 working in conjunction with the MMU. Until
very recently, this sort of system was available only on expensive machines
with expensive operating systems. Now it can be done on a 32000 workstation.

It is clear that if all of a program in memory had to be written to disk
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every time another program was to be rum, there would be a considerable
wait — an unnecessary one if the incoming program was much smaller than the
outgoing one. To avoid this, the 32000 divides memory into pages of 512
bytes, the address space containing 32768 such pages, programs being divided
into pages to be stored in memory. The pages need not be contiguous or even
in sequence; the MMU’s address translation registers take care of the
correspondence by mapping each page in the program into a page of physical
memory. Each 24-bit address is broken up into a 15-bit page number and a
9-bit offset within that page, the MMU replacing the virtual page number with
the physical page number but leaving the offset unchanged. In this way only a
few pages need to be transferred to and from disk, giving the system a short
(and satisfying) response time.

This is not the limit of the MMU’s capabilities. As a means of stopping
programs destroying themselves when they mistakenly use a piece of data as an
address, programs are divided into areas which may be read from but not
written to (code and constants fall into this category), areas which may be both
read from and written to (variable data space) and, for the benefit and
continued survival of the operating system, areas which a user program may
neither read from nor write to. Should a program misuse an area, the MMU in
conjunction with the CPU can stop it in its tracks, allowing the programmer to
catch the fault before it has pulled the ladder up after it.

This protection of pages is performed in the MMU by setting and clearing
extra bits on each of the logical/physical address translation registers it
contains. In fact, this is given an extra dimension as the bits (two of them) are
given different meanings in supervisor mode to those in user mode. In user
mode the program can be completely shut out of certain pages while being
allowed read-only or read and write access to others. The supervisor (a trusted
program) is given both read and write access to all the user’s pages while being
able to mark its own pages as read and write or read-only.

1.5 DATA TYPES

Previous microprocessors have all been able to handle data in bytes and some
have had special instructions to handle 16-bit words: it is only very recently
that microprocessors have appeared in the marketplace which are capable of
handling 32-bit double words. The NS32000 has been designed so that all its
general instructions have three varieties, one dealing with byte quantities, one
with words and one with double words. These are not three separate
instructions but an identical instruction performing a given action which the
programmer can choose to be applied to byte, word or double word; only a 2-
bit field in the basic instruction needs to be changed. (Note: Throughout the
following text, these general instructions will be suffixed by the letter ‘i’.
Where the form of an instruction is required which acts on operands which are
bytes, this is replaced by the letter ‘b’; for word operands it is ‘w’; and for
double word operands it is ‘d’.)
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Another unusual feature of these 32-bit processors is that most
instructions have two general operands; that is, they not only allow
register-to-memory and memory-to-register operations but memory-to-
memory and register-to-register as well. The interesting thing is that for a basic
operation like move or add, it is the addressing mode of the operand which
decides where the source operand is to come from and where the result is to go
to. This of course is an enormous convenience to the harried compiler writer
who no longer has to have a list of several instructions or even instruction
sequences to perform the same high-level language operation under all
circumstances. Now one instruction (or sequence, the millenium has not yet
arrived) can be used in all cases by choosing the appropriate addressing modes
for its operands.

It is also unusual for both signed and unsigned integers to be catered for,
and in the same instruction: for instance, the comipare instructions provide a
result which can be treated either as the result of an unsigned comparison or as
a signed one, the decision being taken by the choice of the conditional branch
instruction following the comparison.

If the NS32081 Floating Point Unit is available, the CPU can handle both
32-bit and 64-bit floating point quantities as easily as integers. This it does by
handing the operation and the operands over to the FPU. This (and the
Memory Management Unit, the Interrupt Control Unit and a Custom Slave
Processor) work very closely with the CPU which fetches operands and stores
results for the slave chip—unless, of course, they are in the chip’s
registers — with the slave performing the operation while the CPU can do
something else. Because of this close relationship when, later on, integration
technology advances to the point that they can all fit on to the same piece of
silicon as the CPU, no change in the program will be needed; it will simply run
faster.

As well as integers and floating point numbers, the NS32000 can set and
clear single bits and operate on fields of bits (up to 32 bits in length). The
addressing modes available make it possible for the programmer to start the
field at any bit using a bit offset — the number of bits from the base address.
The single bit instructions also have two special interlocked versions which
read the bit and then either set it or clear it as a single indivisible instruction. In
a system which contains more than one processor, the same byte (word, double
word) of memory could be written to by a second processor just after the first
had read it; if the first processor then makes a decision based on what it has
read (which the second processor has just changed) it could lead to confusion
and a hung system. These interlocked instructions guarantee that a second
processor will not be allowed a byte until the first one has completed its read
and write cycle.

There are also instructions to add and subtract numbers in packed
decimal form. I am not going to say much about these —not that I dislike
COBOL (how could I? I’m paid by a COBOL program) — but because packed
numbers do not feature in programs as frequently as the other data types.
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1.6 OPERATORS

Integers are treated equally by the instructions which apply to them, the
identical instruction operating on bytes, words or double words. The primary
instructions are the moves which, as pointed out before, can be memory-to-
memory, register-to-register or a combination of these. The moves include
variations which can convert a smaller quantity to a larger one (byte to word or
double word, word to double word) with either sign or zero extension, thus
keeping the integer as signed or unsigned.

There are also the usual addition and subtraction instructions both with
and without the carry bit in the sum, to make multiple precision arithmetic
possible without distress.

The multiplication and division operators in the instruction set have
carefully chosen varieties to cover all needs. There is a single length
multiplication, a word by a word giving a word result, and, in addition, a
double length multiplication in which a word by a word gives a double word
result and double word by double word gives a quad word (64-bit) result. The
NS32000 is the only microprocessor to do this. Divisions are even more
generously provided. There are both single length divisions (in which a word
divided by a word gives a word result) and a double length division in which,
for instance, a quad word dividend and a double word divisor give a quad
word result —the upper half of the quad word is the quotient and the lower
half the remainder. Using the double length division the programmer can
decide either to round or to truncate the result. Where microprocessors
provide a single length division, it is usually the CPU that decides whether the
result will be rounded or truncated. Each of these two types of division has a
corresponding remainder instruction (one is called MID as it corresponds to the
mathematical modulus function).

It is clear that programmers have been given a considerable say in the
design of this chip.

Floating point operations are performed by the NS32081 Floating Point
Unit, though in a system without it they would be performed by software
alerted by a specific ‘undefined’ trap. The floating point equivalents of the
integer arithmetic operations are all implemented (the symmetrical architec-
ture) with add, subtract, multiply and divide as well as compare, negate and
absolute value. A most unusual, and sadly needed, feature of the FPU is the
provision of illegal floating point quantities. These are values which, when
encountered by the FPU, cause a trap to be executed. By filling all otherwise
uninitialized reals with these values, a program attempting to use a real it has
not set can be caught in the act —leading to the publication of fewer erroneous
results.

The move instructions for floating point values have, as well as a move
from one general address to another, a conversion from long floating point to
short floating point and short to long and from any integer type to either
floating point type. In addition, there are conversions from either floating
point type to any integer type in three flavours: converting to the nearest
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integer (rounding), to the integer nearest to zero (truncating) or to the largest
integer less than or equal to its value (the floor function). No tricky
subroutines to write here —buy the floating point chip instead, it must be
cheaper!

For logical operations the chip has a special NOT operator which operates
on the standard values for TRUE and FALSE in HLLs (1 and 0 respectively)
to convert them into the opposite value. There is also a set condition operator
which puts 1 (TRUE) in its destination if the condition code matches and 0
(FALSE) if it doesn’t: the instruction $GEi sets its destination to TRUE if the
result of the last comparison was greater than or equal, otherwise it is set to
FALSE.

1.7 HLL DATA STRUCTURES

Languages like Pascal and C provide the programmer with the means to define
data structures which correspond more closely to the objects being mapped
than simple integers, reals, booleans and characters.

The array is an ordered sequence of data, all the elements of the array
being of the same type, a particular element being accessed by subscripting the
array name with one or more indices.

If the data to be represented is a mixture of types as would be found, for
instance, in a personnel record having both character fields (names and
addresses) and numerical fields (age, length of time employed and so on), the
C struct or Pascal record is used instead, permitting data of as many different
types as required to be grouped together and increasing human readability.

Another data structure less visible than these, but underlying the working
of all modern languages, is the stack. It is most widely used to provide a clean
procedure calling method but is also used in the evaluation of arithmetic
expressions in interpretive implementations of languages such as BASIC. Data
is pushed on to or popped off the stack. An item is popped off it by reading it
from the address held in a dedicated register (the stack pointer) and then
incrementing the register by the length of the item. Pushing a data item is the
reverse of this: the stack pointer is decremented by the length of the data which
is then written to the stack pointer address. This description implies the usual
implementation of a stack (which is also the NS32000 implementation) which
starts in the highest memory address and builds towards lower addresses; in
some implementations, though, the stack starts at the first byte past the end of
the program and builds upwards.

These are the data structures commonly found in HLLs and the designers
of the NS32000 have taken some trouble to provide addressing modes and
instructions which make them easy to deal with.

Array elements are accessed in older architectures by performing a series
of multiplications and additions (one of each for each dimension) and putting
the result into an index register as an offset to the address of the first element
of the array. If the elements of the array are not bytes (the basic addressing
step) the result must be multiplied by the length of each element.
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The N$32000 reduces array indexing to two basic steps. The instruction
INDEXi performs the calculations necessary for the indexing step for one
dimension, accumulating the result in a register. When this instruction has
been repeated for each array dimension, the scaled index addressing mode uses
the accumulated index to access the array element no matter whether the
element size is byte, word, double word or quad word —the index is scaled
according to element size. There is yet a further instruction available, CHECK1,
which performs a range check on the index for each dimension and removes
the addressing bias from it at the same time.

Addressing the components of a record is done with the base and
displacement addressing mode: the base register is set to the address of the
start of the record and the fixed offset to the item required is then put in the
displacement.

Very often an item of data occupies a byte or word when its range of
values take up only a small part of the range of values available. In Pascal it is
possible to pack items in a record so that they occupy only the minimum
number of bits needed to cover their range. For instance, an integer in the
range 0 to 7 can have all its values represented in three bits (one for the sign).
The item may then span byte or word boundaries and needs a logical AND and
a shift to extract it: to insert it requires a shift, an AND and an OR. In addition
to the code generated, an extensive table of masks may need to be kept in
memory where every such instruction sequence can get at it easily.

With the coming of the NS32000 all this is gone. To extract a sequence of
bits (up to 32 bits in length) no matter where they start you simply use EXTi. If
the offset of the field is constant you can economize by using the EXTSi
instruction instead. To insert a bit field you have the complementary
instructions INi (for variable offset) and INS5i (for fixed offset). Compiler
writing is going to become too casy!

To use a stack as a procedure calling mechanism the CPU has two
instructions: enter and exit (clearly named, too). The enter command sets up
a link to the preceding stack frame, makes space in the new stack frame for the
called procedure’s local variables and optionally saves some or all of the
general registers. Within the procedure both the parameters with which the
procedure was called and the local variables can be accessed by fixed
displacements from the frame pointer register. The exit instruction reverses
this process, restoring the registers (if they were saved), resetting the stack
pointer to where it was before the enter instruction was executed so that the
appropriate return instruction can continue execution of the calling program.

As well as this way of using a stack, there is also the top of stack (TOS)
addressing mode. In this the access class of the instruction’s operand is used to
determine whether the stack is pushed or popped. If the operand is a source
operand (read access class) the stack will be popped if TOS is used; if it is a
destination operand (write) it will be pushed. This is very useful in putting
parameters on the stack. For each parameter, a TOS mode MIVi before enter
will put either values or addresses on the stack where they can be easily
accessed by the called procedure.
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Strings are widely used in high-level languages, most often as strings of
bytes representing characters to be input or output. In the NS32000
architecture, strings are not limited to bytes but may be words or double words
as well. There are instructions to move a string from one place to another,
compare two strings and search a string for a given value. The instructions can
run through a string either forwards or backwards and may also be under the
control of an until/while condition, the instruction terminating either when a
particular value is encountered or when a value different from the given one is
encountered. If the string elements are bytes there is also a translation option;
the bytes can be translated by using them as an index into a table before they
are moved, compared or tested.

1.8 JUMPS AND CONDITIONAL JUMPS

The branches and conditional branches use an addressing mode which gives
the effective address in terms of a displacement from the program counter.
This displacement comes in three sizes: byte size with a range of —64 to 63,
word size with a range of —8192 to 8191 and a double word displacement with
a range of —2% to 22— 1 to cater for the extension of the addressing space to
32 bits, (though at present assemblers will probably not allow displacements
outside —22¢+1 to 22*—1). There are also jump instructions which take a
general mode operand: they can be used to make indirect jumps.

The branches available in the CPU’s instruction set include a conditional
branch in which the condition is encoded in the basic instruction, allowing the
compiler writer to use the same instruction sequence to encode boolean
expressions by simply taking the appropriate code from a table to perform the
test required. The conditions also include an unconditional condition (making
it a plain jump), so the same basic instruction can be used throughout the
section of code being generated.

Both Pascal and C have an indexed jump, called case in Pascal and switch
in C, which is usually coded as a jump into a table of addresses. The CPU has
a case branch to perform this jump based in the value in a register; to make
sure the jump is to a legitimate address, the CHECKi instruction (mentioned in
connection with array indices) can be used before the CASEL jump.

Encoding for loops usually requires three instructions; increment the loop
index, compare it with the limit and then branch on the result. The 32000 has
one instruction, ACBi, which performs all three actions and, as the increment is
set into the instruction as a 4-bit signed integer, it can be any number from —8
to 7 rather than just 1 and —1.

The procedure call instructions have already been mentioned, they are for
entering code in another module. There is also a isr (jump to subroutine) and
a bsr (branch to subroutine) which are used to call routines within the current
module. isr takes a general addressing mode operand while bsr uses a
displacement from the program counter.




2 The 32000 assemblers

2.1 INTRODUCTION

This chapter starts with the assembler directives used to define constants and
allocate space for variables of different types beginning with a brief survey of
the different data types the assembler recognizes. The second part of the
chapter covers the forms of expressions the assembler accepts as operands to
the directives and instructions.

2.2 ASSEMBLER DATA TYPES

The data types handled by the 32000 series can be divided into two classes:
those, like integers, for which it provides instructions to perform the usual
operations on the data type; and those, like arrays, for which it provides a
basic set of operations required in the manipulation of the data.

The assembler data types are therefore integers, bytes, words and double
words and short and long reals — all else is the work of man.

2.3 THE ASSEMBLER

The species 32000 Assembler has (at present) two subspecies, ASM16
(originating in North America from National Semiconductor) and ZASM (the
British variety, coming from Acorn). As this book is being written in Britain,
the subspecies ZASM is easier to observe, but note will be taken of the
differences between ZASM and ASMI16: the assembler syntax of the local
subspecies will be used in examples but, where necessary, a note showing the
differences will be added. In the following sections, the assembler directives

used in allocating storage areas and constants of the data type being discussed
will be given.

2.4 THE ASSEMBLER LINE
An assembler operates on lines like FORTRAN (the first high-level assembler):
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each line is syntactically independent of all the other lines. A line has the
following general format

{label} {mnemonic {operands}} {;comments}
where

@ label is optional (though mandatory on certain directives) and must start
in the first character position of a line. The NatSemi assembler expects
every label to be followed by a colon (:)—as compensation, labels need
not start in column 1. If the label is followed by two colons, it is
considered public and can be referred to by code in another module; if the
label is followed by a colon and a hyphen, it is taken as referring to data
or a procedure in another module which is defined there. This method of
defining external labels is not very satisfactory and the use of the ‘import’
and ‘export’ directives makes for a more readable (and therefore less
confusing) program. These directives and a complete description of
modules are to be found in Chapter 8.

@ mnemonic, the directive or instruction code, is followed by operands (if
needed). Operands are separated by commas.

e comments (preceded by the mandatory semicolon) are optional. They are,
however, very important as they give clues, which may prove to be
invaluable, as to your intent when you wrote the instruction.

Each field of the source line must be separated from the next by a tab or one or
more spaces.

In the rest of this chapter, only assembler directives will be mentioned, in
particular, those which define constants and allocate memory. Most directives
may be labelled and followed by comments. Each of the following directives
may have one or more operands, separated by commas.

In NatSemi’s ASM186, directives are distinguished from instruction codes
by a prefixed ‘.” but the Acorn assembler doesn’t follow this lead —it does,
however, make it easy to distinguish the two varieties.

25 INTEGERS

The 32000 series will operate directly on integers of three different sizes and in
two different modes. The three sizes are bytes (8 bits in length), words (16 bits)
and double words (32 bits). There are also instructions which perform
operations (division, multiplication) on quad words (64 bits). The differences
between the ‘sizes concern the programmer only in the range of numbers which
can be used with a particular size, and the amount of memory they occupy.
Apart from this, operating on one or other of the sizes makes little difference
to the code; just one letter in the opcode has to be changed. This may seem
obvious enough but is an enormous advantage — an advantage not yet evident
in some mainframe architectures I could mention! Instead of having to
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remember different rules for each integer size you have to remember only one
way to add, subtract, compare, multiply or divide, which applies across the
board. Even the difference between the two modes has been simplified by
thoughtful design — writing a comparison between two unsigned integers needs
only a slight change to the condition tested afterwards.

In structure, a signed integer has one bit reserved for use as a sign
indicator. By tradition this bit is the most significant one in the integer and it
indicates a negative number if it is set to 1 and a positive number (or zero) if it
is 0.

A signed byte has the structure shown in Fig. 2.1. A signed word is two
bytes long but only the most significant byte contains a sign bit (Fig. 2.2). A
signed double word contains 4 bytes with again only the most significant
carrying the sign bit (Fig. 2.3).

H S
I T N T o Y |

7 0 15 87 0
A A+1 A

Fig. 2.1 A signed byte. Fig. 2.2 A signed word.

H

31 23 15 7 0
A+3 A+2 A+1 A

Fig. 2.3 A signed double word.

Unsigned integers have the same structure except that the sign bit becomes
another value bit, allowing the integer to take twice as many positive values for
the loss of the negative ones a signed integer can take. The ranges of signed
and unsigned integers of the three different sizes are shown in Table 2.1.

The Acorn assembler directives to define integer constants are:

dcb operand {, operand ...}
and to allocate space in bytes:

allocb operand

Table 2.1 Ranges of signed and unsigned integers.

Signed Unsigned
byte —128 to 127 0 to 255
word —32768 to 32767 0 to 65535
double word —2147483648 to 2147483647 0 to 4294967295
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where ‘operand’ is the number of bytes to allocate.

A dcb operand can be an expression which has a value in the range —128
to 255: you chose the appropriate range depending on whether you consider it
an unsigned or a signed byte. The operand may also be a string which may
have as many characters as will fit on a single line.

The NatSemi assembler has two directives to define byte constants:

.byte { [repl } operand ...

and

.sbute { [repl } operand ...
The first is used to define unsigned and the second to define signed constants
and the operands must lie within the appropriate ranges. In all the NatSemi
directives, an operand may be preceded by a repetition factor in brackets: [513
would be equivalent to the sequence 3,3,3,3,3 if written out in full.

To define one or more words, use

dcw operand ...
A word operand can be an expression in the range —32768 to 65535 or a
two-character string. NatSemi again has two directives, one for signed
constants and one for unsigned. Signed constants are defined by

.sword { [repl } operand ...
and unsigned ones by

.word { [repl } operand ...
To define double word integers in the Acorn assembler, use

dcd operand ...
A double word operand may be an expression in the range —2147483648 to
2147483647 (signed or unsigned), or a string of up to four characters. The
equivalent ASM16 directives are

.sdouble { [repl } operand ...
and

.double { [rep] } operand ...

though the highest unsigned constant cannot exceed the highest signed value.
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For the moment, expressions will be taken to be simply integer or string
constants and will be explained more fully in the next section.

Integer constants may be written in binary, octal, decimal or hexadecimal,
the default being decimal. Decimal numbers are written without a base. In the
other cases the format is an optional sign followed by the base followed by one
or more digits, the number depending on the size of the integer being defined.
If the sign is omitted it is regarded as positive; otherwise it can be either ‘+° or
¢—. The base code is #b for binary, #o for octal and #x for hexadecimal.

Some examples of integer constants are

#b1110201111
#o347

231

Hxe?

Because hexadecimal constants are so frequently used, the Acorn assembler
allows them to be written in a shortened form: :e7 instead of #xe? shown
above.

The NatSemi assembler uses b' instead of #b for binary, o' or q' for octal
and h' or x' for hexadecimal. It also allows a d' prefix for decimal constants.
The above constants in ASM16 format would be

b'11100111
0'347

231 or d'231
x'e? or h'e?

Strings are equally simple to define. They consist of one or more ASCII
printing characters enclosed in apostrophes ('). The Acorn assembler has a
counted string form: enclosing the characters of the string in quotes (") causes
a count byte to be put in front of the string which can be used in printing or
moving it. There is also a string escape character (*) which can be used to insert
non-printing characters like line feed (*2a) and carriage return (*2d). The
presence of this escape character means that to insert the character (*) into a
string you must double it (#*); an apostrophe or quotes must also be preceded
by an asterisk (or doubled) if it appears in a string delimited by the same
character. Some examples of strings are:

‘This string does naot start with a count byte.'
"This string is counted.”

'Non-printing characters: #*@a*dd’

"A counted string with embedded *""

'Embedded '' here.’

In the NatSemi assembler, a string may be delimited by either apostrophes (*)
or quotes ("): it makes no difference to the contents. If a string delimiter
appears in the string, it must be doubled.
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Examples of the Acorn directives are:

dcb  -128 isigned byte

dch 240 junsigned byte

dcb '¥',:8c,:0d iunsigned bytes

dcw 32000 junsigned word

dcw  -512 isigned word

dcd -1a0a000a isigned double word
ded 4000000000 junsianed double word
dcb  'A string with CR-LF',:da,:0d

Examples of the NatSemi directives are:

.byte 3

.sbyte -3

.byte 3,'A' h'0A'  h'BD!

.word [21h'BARD

.sword  -64

.double h'FFFFR00R, h'DQRAFFFF
.sdouble 'abed’

.byte 'A string with CR-LF',h'BA, h'DD

2.6 REALS

Single precision reals take 4 bytes and double precision ones take 8 bytes. A
real number can be divided into two parts, the exponent and the fraction. This
will be familiar to anybody who has programmed in a high-level language
where the number 1000000 is commonly written le6 (1IE6 for FORTRAN
freaks), Here the exponent denotes a power of ten. In real life, though, a
power of two is used (a Very Large Business has used 16 but it is not as
satisfactory) and the number 256 would be represented as 1b8 (1 times 2 to the
power 8).

Single precision reals have 8 bits devoted to the exponent and 23 bits for
the fraction, the most significant bit of the 4-byte quantity being used for the
sign bit. The format is shown in Fig. 2.4. The format of a double precision real
(8 bytes long) is shown in Fig. 2.5.

All floating point numbers are held in normalized form; that is, the most
significant non-zero bit of the fraction is shifted left or right (while altering the
exponent appropriately) until it is just to the left of the binary point, in the

1 8 23

LA " :

s| exponent fraction

31 23 0
A+3 A

Fig. 2.4 Single precision real number.

_—_—_
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1 11 52

y—" = e \
s exponent fraction

63 52 0
A+7 A

Fig. 2.5 Double precision real number.

units position. Since the first bit of the fraction is always a 1 it makes sense to
omit it, allowing the fraction to be 1 bit longer for the price of a little extra
complication.

The value in the exponent field of a single precision real ranges from 1 to
254, representing the exponent values —126 to 127. The exponent is biased by
127 to make it positive so that no sign bit is needed; when the value in the
exponent field is 127 the true exponent is zero. The remaining two values are
reserved for special floating point values. One is zero, which is represented as
an all-zero exponent and fraction. (Zero is not included in the range of the
ordinary format of floating point numbers as the ones nearest to zero are
1.18¢—38 and —1.18e—38, leaving a gap.) The other special values are the

group of numbers with 255 as their exponent. These are used to denote positive |

and negative infinity if the fraction is zero or Not-a-Number (NaN) otherwise.
NaNs can be used to initialize floating point variables before a program starts;
they cause a reserved operand exception on any attempt to use them, and bring
to light subtle errors caused by using variables before they have been set.

For a double precision real, the value of the exponent field ranges from 1
to 2046, representing the exponents —1022 to 1023; again the exponent is
biased, this time by 1023. The zero value is associated with double precision
0.0 and the double precision infinity has exponent field 2047.

The range of values spanned by single precision reals is from 2'?" X (2 —2%)
to 2% in positive values and from —2-% to —2!% X (2 — 2%) in negative values.
The largest number is approximately 3.4 x 10*® and the smallest approximately
1.17x 1038,

Double precision reals go from 2192 x (2 —2-2) to 212 and from -2 to
—21023 % (2 —2-2), In decimal the largest is approximately 1.8 10%® and the
smallest 2.2 x 107308,

There are in fact two forms of real zero. Both have the fraction and
exponent fields zero but the sign bit can be either 0 or 1 —both varieties will be
taken to be zero when a floating point compare is used.

Short real constants are defined in Acorn’s assembler by the directive dcf,
long reals by dcl; the real number itself is written in the familiar FORTRAN
way. It may contain either an ‘E’ (or ‘¢’) or a decimal point or both, or it may
take the form of an integer constant. In addition, the digits may have a sign
before the first one and the ‘E’ may be followed by a signed or unsigned
number — the exponent. Examples of real constants are:
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.123 1.23 123. -12.3 +0.123 123
123e -1.23e2 123e-2 3eb
123e+5 123.0e-9

Real constants defined in the assembler are:

dcf 0.301029957 ;a short real
dcl 2.3025850929 ia long real

The NatSemi assembler uses .float and .long instead of Acorn’s dcf and
dcl. The constant must also have either a decimal point or end with an
exponent (just ‘e’ will do) and must start with a digit. The constant may be
signed but integer constants are not acceptable. Some examples of legal
NatSemi real constants are:

@.123 1.23 123. -0.123 +123.0
+123e+0 12.3el -12.3e-5

Some example directives are:

.float +12.3e+12
.float [219.01
.long 2.30825850929

2.7 ASSEMBLER EXPRESSIONS

The full range of possible expressions is, in fact, astonishing. If it included real
numbers it would be possible to write programs in it!

This is an area in which the usage of the NatSemi and Acorn assemblers
differ sharply and it will be necessary to deal with them separately to make
sure that each assembler is adequately covered. However, before embarking
on a tour of the two assemblers, a description of their common approach to
symbols can be factored out.

The rules governing symbol names differ, but the way they are used is the
same. A symbol is a name for a value, which can be a constant, an address in
memory or a synonym for a register. It is clear therefore that a symbol takes
not only a value but also a type. A symbol that has a constant value is called an
absolute symbol, a symbol referring to an address is called relative, and a
symbol representing a register has to be defined in a special way so that its type
is clear.

The different types of symbols are given values in different ways. An
absolute symbol is given a value in a similar way to variables in a high-level
language: the symbol appears on the left-hand side of a ‘becomes’ (the symbol
appears in the label position of an ‘equates’ directive) and the value given it is
the value of the expression on the right-hand side (the operand).
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There are two kinds of relative symbol; one which refers to a name which
is defined in another, separately assembled, part of the program, and one
which refers to a location in the current assembly. The first is called,
reasonably enough, an external symbol and the second type takes a value
which is an offset to a particular base register. The value is defined by both the
offset and the base register. A label on an instruction will have the offset
shown in the assembler listing as the ‘address’ of the instruction and the base
register will be the program counter. The base register for a label on a data
generation or storage allocation directive will (usually) be the static base
register with the offset as shown in the listing.

There are several symbols which cannot be used as variable names as these
are reserved for the names of the general registers, the floating point registers
and some others:

RO R1 R2 R3 R4 RS R6 R7

FO F1 F2 F3 F4 F5 F6 F7

FP SP SB PC

T0S EXTERNAL

UPSR PSR INTBASE MOD

MSR PTB@ PTBL EIA PF@ PF1 BPR® BPR1 BCNT SC

The first three lines contain the names of the general and floating point
registers and the CPU base registers. T08 is the symbol for top-of-stack
addressing and EXTERNAL for external addressing. The general registers have
been covered in detail but, of the others, only PC has been explained; the
floating point registers come in the next chapter and the FP, SP and SB base
registers will be found in Chapter 8 on procedures. The symbols on the last two
lines are the names of the special CPU registers and the registers in the
Memory Management Unit — both of which are covered in Chapter 10.

2.7.1 Acorn constants

The form of constants used in the Acorn assembler is reviewed in Table 2.2,
where <digits> is to be interpreted as 0 to 9 for decimal, 0 to 9 and A (or a) to
F (or f) for hexadecimal, 0 to 7 for octal and 0 or 1 for binary. The octal
designator is letter ‘O’ or letter ‘o’. All constants are unsigned (any minus sign
preceding the first digit is taken as an arithmetic operator) and are taken as
32-bit quantities: the largest decimal number is 2147483647. In hexadecimal
this is : 7§44, in octal Ho17777777777 and in binary a sequence of thirty-one
1s.

Table 2.2 Integer constants.

decimal <digits>

hexadecimal #¥<hex digits> or #x<digits>
:<hex digits>

octal #0<oct digits> or #o<digits>

binary #B<digits> or #b<digits>

e
B e
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Finally, short strings of up to four characters in the uncounted form
(enclosed in apostrophes) or up to three characters in the counted form
(enclosed in quotes) can be used as constants in expressions. The equivalence
between strings and numbers should be noted carefully as, though logical, it is
not immediately obvious. Strings are, as you would expect, laid down in
memory with the left-most character (or the count byte) first. Numbers,
however, are laid down in memory least significant byte first. Thus the string
‘' (uncounted) is equivalent to :41 but the string 'AB' is equivalent to : 4241 as
the number :4241 will enter memory least significant byte first; that is, as :41,
:42. With counted strings the effect is still more bizarre: "abc" is equivalent to
the number :63626103 as "abc" is laid down in memory as :@3, :61, :62, :63. If
strings are to enter into expressions, you are well advised to do some little tests
first —and, since the result may not be what the reader of your program
expects, each occurrence should be carefully commented.

2.7.2 Acorn symbols

In the Acorn assembler, symbols may be made up from upper- and lower-case
letters, digits and underscores(_) but must begin with a letter or an underscore.

Symbols may be of any length from 1 to 255 characters (the longest
acceptable assembler line) of which 63 are significant. Symbols with the same
first 63 characters will be considered identical: external symbols (names of
procedures, entry points and common blocks), however, are kept to 31
characters and, with this, Acorn can be considered to have finally dragged
linkers out of the 8-bit past (external symbols were once limited to as little as
six or eight characters, even on some mainframes).

A few acceptable symbols are:

pi Pi PI
Label9 a9left 11052
InterfaceFacility
BlockUWrite
_MainGlobals

SetBinaruTime
read_input

The Acorn assembler distinguishes between cases in symbols by default,
so the first three symbols will be taken as different. If for some reason,this is
not desirable, using OPT +C on the command line will cause upper- and lower-
case letters to be considered the same and the three symbols above will be
taken as identical.

Absolute symbols are given values by either the directive equ, which
creates the symbol, giving it the value of the expression in the operand
position, or by the directive set, which has the same effect as equ except that,
if the symbol has already been used, it will simply be given a new value. The
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equ directive expects to create the symbol and will fail with an error message if
the symbol already exists.

It can sometimes be useful to define a symbol as an alias for a register
name. If a procedure in a high-level language is being translated and it is
possible to use registers for some of the local variables rather than memory,
this can be made clear by equating the variable name to the register name. The
name can then be used in instructions as a register but the name makes it easier
to see what is going on. The directive to do this is equr (equate register.)

Relative symbols, other than external ones, are defined by being used to
label an instruction or a data or storage directive. Again, this procedure
creates them and it is an error for them to have appeared before. There is one
special relative symbol which may appear in expressions and has a variable
value, the symbol $. It always has the value of the current location counter —in
an instruction it is the address of the first byte of the instruction and in a data
or storage area it is the value of the location counter at the start of the line in
which it appears.

External symbols are defined by appearing in the operand field of an
import or importc directive, making symbols defined outside the module
available to it, or of an export or exportc directive, making symbols defined

within a module available outside it. If the symbol is a procedure entry point,,

importc or exportc must be used; if it denotes data, import or export must be
used. These four directives are dealt with in Chapter 8 (Procedures and
modules).

2.7.3 Arithmetic

Assembler arithmetic is performed with 32-bit numbers, ignoring any
overflow; there are six arithmetic operators (Table 2.3).

For ‘-’ to be taken as a unary minus, it must be the first character of the
expression or appear immediately after a left parenthesis.

The modulus operator gives the remainder when its left operand is divided
by the right one and uses the REMi instruction: both 31 7 1@ and 31 Z ¢(-18) give
the result 1 and both -31 7 18 and -31 7 (-18) give -1 since the remainder is
calculated as

dividend — ( dividend QUO divisor ) x divisor

Table 2.3 Acorn arithmetic operators.

unary minus
multiply
modulus
divide
subtract

add

- 0N N Okt
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where the division rounds down to zero and the remainder always has the sign
of the dividend; so

-31-(-31/10) x 10
gives

-31-(-3) x10 = -1

2.7.4 Acorn logical operators

The assembler has conditional NOT, conditional AND and conditional OR
operators as well as the usual AND, OR, Exclusive OR and complement
operators (Table 2.4).

Table 2.4 Logical operators.

~ bitwise complement

& bitwise AND

! bitwise OR

~ bitwise Exclusive OR
! conditional NOT

1) conditional AND

H conditional OR

AND, OR and Exclusive OR treat their operands as 32-bit words and
perform the appropriate logical operation pairwise on the bits. Complement is
a unary operator and shares the same symbol as Exclusive OR: the symbol is
taken to be complementary whenever it appears as the first character of an
expression or immediately after a left parenthesis (like unary minus). In any
other position in an expression, it is taken as Exclusive OR.

The conditional operators !, && and || have the same effect as ~, & and !
respectively. They differ only in their precedence. So, if

a equ 1
b equ 2
c equ -9

then the expression
I a<b

would evaluate to zero (equivalent to FALSE) as the complement of a<b
(TRUE with the value —1 or :ffffffff) but

~ a<b




24 Programming the NS32000

would be evaluated as
(»a) < b

which will be TRUE (-1) since ~ a is —2. These operations should be used
when combining the logical results of relational expressions.
Some other examples of the use of the logical operators are:

precl equ 2 jvalue is :ff ff ff fd
prec2 equ v 2<<3 jvalue is :ff ff ff eB
condl eaqu 3 > 2 &% 3 = 2 ifalse ()
cond? eaqu 3 > 2 i1 3=2 itrue (-1)

The expression ¥ 2 complements a double word of thirty-one 0s with a 1 bit in
bit 1, making thirty-one 1s with a 0 bit in bit 1. In the assembler printout, the
value : £¢ #f #¢ £d will be printed as :fd £f ¢ ff as it prints the bytes in the
order they are in memory. The least significant byte in binary is #b11111101, so
when shifted left 3 bits this becomes #b1118109@ which is :e8.

2.7.5 Acorn shift operators

There are two shift operators, a left shift and a right shift. The left shift is
represented as << and the right shift as>>and there must be no gap between
the characters. The shifts are logical shifts: they feed in zeros into the vacated
bit positions at either end. This can give unexpected results when shifting
negative numbers and, if you intend doing this, it is worth writing a small piece
of assembler to check that the result is what you expect. In action, the
left-hand operand is shifted by the number of bit positions given by the
right-hand operand; negative shift counts perform the opposite shift. An
example of their use is:

11234 >> 2 —  :48d
11234 << 2 > :48d0

2.7.6 Relational expressions

All six of the possible relations (Table 2.5) are available and always perform
signed comparisons. If the relation is true all 1s (: f££££f) are returned, if it is
false all Os are returned.

Table 2.5 Relational operators.

greater than

greater than or equals
equals

not equals

less than or equals
less than

AANANINL VYV
v
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2.7.7 Precedence and parentheses

As in high-level languages, there is a precedence ranking between operators
which determines how an expression is to be evaluated in the absence of
parentheses (Table 2.6). Thus the expression

183 << 2154~7
will be evaluated as

CCCCL) & (3<K20) 1 S v 7) > 2

Table 2.6 Acorn operator precedence.

(highest)
unary minus, complement
left shift and right shift
AND, OR and Exclusive OR
multiply, divide, modulus
add, subtract
relational operators
conditional NOT
conditional AND and OR
(lowest)

2.7.8 Absolute, relative and external expressions

If the symbols in an expression are all absolute, any of the operators may be
used. If, however, one of the symbols is relative or external then it may only be
used in conjunction with a plus or minus sign followed by an absolute
expression. For a relative symbol only an absolute, positive or negative offset
can be applied to it —there is no obvious sense in shifting or multiplying a
relative symbol. Finally, the only operator allowed between two relative
symbols (which may not be external) is a minus, which will give the gap

between them as an absolute value. The two symbols must also be relative to
the same base register.

2.7.9 NatSemi constants

The syntax of constants used by the NatSemi assembler is given in Table 2.7,

Table 2.7 Integer constants.

decimal D' <digits> or <digits>
hexadecimal R' <digits> or H' <digits>
octal 0" <digits> or ' <digits>

binary B' <digits >
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where < digits> is one or more digits from 0 to 9 for decimal, f;o(;n 0 tg 19 afnd
A to F for hexadecimal, from 0 to 7 for octal, and a sequence of Us and is 1or
: mitted range of an integer constant is determined by the

e pexrant intended for a byte must lie in the range —128 to 255, for a
Soriest A cm:'s in the range —32768 to 65535, and for a double word in the
o “—;Ilﬂfa'iﬂ}l;ﬁiis to 2147483647. No integer may lie outside the double word
::::g:. All integers may be signed; b:oth a preceding plus sign zjmd a minu-s sign
is acceptable —an unsigned integer is assumed to have a prgfxxcd plus sign.

Floating point constants may not take the form of an integer; they must
contain either a decimal point or an exponent (or both). The decimal point
may not be the first character but may be the last or may be in the middle. An
exponent is the character ‘E’ followed by a decimal number of between one
and three digits. This number may be signed and will be assumed positive if
not. The assembler allows both long and short floating point values to be used
but stores them both internally as long.

Further details on floating point numbers will be found in Chapter 5.

String constants are sequences of ASCII characters delimited by either
apostrophes (') or quotes ("): there is no difference between strings delimited
by apostrophes and those delimited by quotes. The maximum length of a
string is determined by the context in which it is used: in a byte context it may
consist of a single character only, in a word context it can contain two
characters and in a double word context, four. When used as the only operand
of a .byte directive, it can contain as many characters as will fit on the line
after the directive —a line may contain up to 132 characters.

2.7.10 NatSemi symbols

In the assembler, symbols are used to refer to a constant, an address or a
register, so symbols have both a value and a type associated with them. A
number of symbols are reserved and may not be used. They include the register
names and the instruction mnemonics, the directive names, and the logical,
arithmetic and shift operator names.

A symbol may contain upper- and lower-case letters, digits, underscore ()
and period (.). The first character of a symbol may not be a digit. A symbol’s
length is limited only by the length of a source line, but two symbols with the
first eight characters the same will be taken as identical. The assembler does
not distinguish between upper- and lower-case letters.

There are many more reserved symbols in this assembler than in the
Acorn one. They are

all the instruction mnemonics,

all the directive names,

all the CPU, MMU and FPU register names,
the names of the operators, and

EXT and T0S.

Symbols fall into three classes: constant, relative and register synonyms.
Constant symbols may have an integer, a floating point or a string value: the
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Table 2.8 NatSemi operators.

+ unary plus

n unary minus

CCH unary complement
NOT conditional NOT
* multiply

/ divide

MaD modulus

AND bitwise AND

OR bitwise OR

KOR bitwise Exclusive OR
SHL shift left

SHR shift right

+ add

= subtract

limit on the length of a string symbol is set by the ultimate context the string
will be used in.

The value of a relative symbol is an offset to one of the four base
registers, PC, SB, SP or FP. PC and SB relative symbols may be defined by
using them as labels on an instruction (PC relative) or a data or storage
directive (SB relative). It is also possible to define them directly by giving the
offset (as an absolute expression) together with the base register or by another
relative symbol combined with an absolute expression.

External symbols are defined by appearing in the operand field of an
-import or .importp directive, making symbols defined outside the module
available within it, or an .export or .exportp directive, making symbols
defined in a module available outside it. If the symbol is a procedure entry
point, .importp or .exportp must be used; if it denotes data, .import or
-export must be used. These directives are discussed at greater length in
Chapter 8 (Procedures and modules).

The operators provided by the NatSemi assembler are shown in Table 2.8.
The unary plus has no effect at all. The unary minus is only recognized when it
is the first character of an expression or when it occurs immediately after a left
parenthesis. The shift operators both feed 0s into the vacated places.

The operators are applied to the symbols and constants in an expression
with a precedence given in Table 2.9.

Table 2.9 NatSemi operator precedence.

(highest)
unary plus, unary minus, unary complement, conditional NOT
multiply, divide, modulus, AND, shift left, shift right
add, subtract, OR, Exclusive OR
(lowest)
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Expressions using only constants and absolute symbols may contain any
of the operators. A relative and an absolute term may be combined by
multiplication, division, MOD, AND, SHR, SHL, addition, subtraction, OR
and XOR. Of these only addition and subtraction would be used in practice as
the results of the other operators would be highly dependent on the value of
the offset of the relative symbol. This is easily changed by inserting or
removing a line of assembler, with what could be disastrous results.

An external term may only be combined with an absolute expression using
either addition or subtraction; when using subtraction, the absolute expression
must be subtracted from the external symbol.

Two relative symbols may only be subtracted from each other, the result
will then be absolute.

3 Integer arithmetic

3.1 BINARY ARITHMETIC

This first section on the details of binary arithmetic is intended for readers not
fully conversant with carry and overflow and how they arise in binary integer
arithmetic. It may be skipped if it has nothing new for you.

The addition table for binary digits is very simple. Figure 3.1 shows
addition when there is no carry from the right: when both bits are 1 the result is
0 with a carry, represented by 10.

0 4.1 0, 1

0| O 1 ol 1 10

1 1 10 1110 | 1

Fig. 3.1 Binary addition Fig. 3.2 Binary addition
with no carry. with carry.

Figure 3.2 shows the results of adding two bits together when there is a
carry from the right. Here the result of adding 0 and 0 is 1 as the addition is
0+ 0+ carry and the addition of 1 and 1 is 1 with a carry.

As an example, the sum of #b181100111 and #b100@1 is

le11e@111 359
10001 17

101111000 376

The addition of the two right-most bits (taken as the least significant ones)
gives 0 with a carry; the following two 1 bits each give 0 with a carry which
eventually winds up as 1 in the fourth bit; the lower number is extended to the
left by zeros and the sum of each of these is clear.

In the above example it has been tacitly assumed that there is no limit to
the number of bits to the left, but as memory is divided into bytes, words or
double words, addition in terms of the 32000 is not quite so simple. To save

29
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space, examples will be in terms of bytes though the principles can be extended
in an obvious way to words and double words.
Take for example the addition of the two bytes #b@911100@ and

#b11001111:

20111000 56
11001111 207

————

100000111 263

The result contains 9 bits, the least significant 8 bits of which will find room in
the byte result with the most significant 1 out in the cold. The excess bit is, in
fact, preserved in the PSR and is called the carry bit. After an addition, it is set
to 0 if the addition does not result in a carry or a 1 if it does. The advantage of
this can be seen if you consider the above 8-bit sum as two separate 4-bit sums:
the lower 4 bits give rise to a carry which is added into the lowest bit of the
upper 4 bits. This process can be used to extend the length of sums which the
32000 can handle to muitiple double words when the carry is included in the
additions of the more significant parts of the sum.

The example shown above is considered to be an addition of two unsigned
bytes as the sign bit has been taken to be a value bit. In the integer formats
given in the previous ‘chapter, this sign bit has been introduced simply as an
indicator (0 means positive, 1 means negative), but there is more to it than
that. The sign bit is part of a convention for dividing the unsigned values that a
memory unit can take into two equal groups, one taken as representing
negative numbers and the other representing positive numbers. The conven-
tion used by the 32000 (and almost all other computers) is called the two’s
complement representation, as the negative numbers are considered to have
been subtracted from the power of two just too large to fit into the unit. For
example, the largest power of two just too large for a byte is 28— it requires 9
bits to represent it. To get the representation of —1 in two’s complement, 1 is
subtracted from 2%

100000000
1

11111111

Using conventional arithmetic, 1 from 0 won’t go, so borrow 1. From the
addition table, 1 from 10 leaves 1. The borrow must be collected in the next
column, giving 1 from 0 again. This continues until the eighth bit is subtracted
from the eighth and ninth bit of the minuend giving 1 and completing the
transaction. !
Similar examples show that the negative numbers are represented as:

L 11111111 -1
11111110 -2
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10000001  -127
10000000 -128

The remaining unsigned numbers form the positive two’s complement
numbers, taking the same values as they have when considered as unsigned

91111111 127
21111110 126

00000021 1
00000020 0

This does give a rather peculiar end-to-end effect, with the lowest negative
number coming immediately after the highest positive one, but this arrange-
ment is defensible on two grounds: firstly, it is more convenient electronically
and, secondly, it goes unnoticed.

The same applies to words and double words with an appropriate increase
in the number of bits considered.

Addition is performed in exactly the same way as for unsigned quantities
(thus the electronic convenience of two’s complement) with the sign bit being
added in the same way as the other bits, giving a result correct in both sign and
magnitude. For example,

aplidige 452
11111018 -6

100101110  +46

The carry is ignored in signed arithmetic; as you can see, the result is positive
(0 sign bit) and is the two’s complement representation of +46. It also works
the other way round:

11001100 -52
oodealin t6

11010012 -46

In this case there is no carry but, as it is being ignored anyway, this is of no
consequence.

Although very convenient, there is the problem of overflow. For example,

ie11e@11  -77
10100000 -96

101010011  +83
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The correct result is —173 which is smaller than the lowest signe.d byte valge,
—128. As you can see, the addition of the two bit 75 has_resulted in a zero with
a carry and there has been no compensating carry into bit 7 to keep the sign the
same. If one of the bit 6s is changed to a 1 you get

19110011 =77
11102202 -32

110018211  -189

which is perfectly all right. You can make similar examples from positive
numbers each with a 1 in bit 6 or each with a 1 in bit 5 and one with a 1 in bit 6.
I have a Casio fx-570 to do this binary arithmetic on, otherwise (being a poor
arithmetician) I couldn’t have guaranteed the above results.

Strictly speaking, overflow occurs when the carry from the addition of the
bit 6s (talking bytes) differs from the carry resulting from the addition of the

bit 7s.

3.2 ADDITION

The NS32000 has nine add instructions, in three generic groups. The first is
add, plain and simple, and in its generic form it is written

ADDi src, dest

The src integer is added to dest and the result stored in dest. (Of course, addb
is required for a byte operand,kaddw for a word operand and addd for a double
word operand.)

The two operands the add instruction takes are described as the source
(src) and destination (dest) operands and from Appendix A you can see that
either may take any one of the forms of a general operand. The whole might
and panoply of the general operand will not be arrayed here for fear of the
effect that future shock might have on you: to start with, only the register,
immediate and memory space forms will be used.

To demonstrate the register form, here is an addition of two words in
registers:

addw R1, R@

The word in bits 0 to 15 of general register 1 will be added to the word in
register 0 and the result will overwrite the destination word.

Note that whenever a byte or a word in a register is changed, only bits 0 to
7 (for a byte) or bits 0 to 15 (for a word) are altered; the higher order bits
remain unchanged. This is important to realize at the outset, as there are two
operand modes used for indexing in which all 32 bits of the general purpose
register are used and it is fatally easy to use word or byte operations to set or
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alter the register contents forgetting about the high-order bits which may not
be all zeros!

To demonstrate the immediate form let us suppose that the byte in register
R7 contains a number in the range 10 to 15 decimal and that it is to be turned
into an ASCII code from ‘A’ to ‘F’—a stage in a binary-to-hexadecimal
conversion. If the number is 10, it must become ‘A’ so the expression 'A' - 11
must be added to it.

addb  ='A'-18, R7

is the instruction required. The src expression is a constant and is actually
incorporated into the instruction itself, being then called an immediate
operand. This usage has the advantage of speed as its value is known as soon
as the instruction is read; no further memory access is needed. The space taken
up in the instruction by an immediate operand is determined by the size of
integer demanded: here both src and dest operands are bytes and the constant
will be stored as a byte, but if a double word was required (addd) the constant
would take up 4 bytes in the instruction. Note that dest may not be an
immediate operand as it would be overwritten and this is not usually (meant to
be) the fate of constants. The assembler will mark this as an error.

To distinguish an immediate operand, the Acorn assembler requires an =
before the expression. The NatSemi assembler will take any expression with an
absolute value (that is, not relative to an address) as immediate: the above
example for the NatSemi assembler would be

addb '‘A'-18, RT

simply omitting the Acorn =.

The final operand form (for the moment) is Memory Space, which has
four forms. The first is used to read parameters and to read and write to local
variables in procedures — it will be dealt with in Chapter 8. The second form is
used to read and write to the stack and will also be processed in Chapter 8. The
third form is used in accessing variables and blocks of storage in the static data
area which acts as a local ‘global’ area for all the procedures in a module.
While the details of this must wait again for Chapter 8 it will be tacitly
assumed that variables, arrays and records have been allocated storage in this
area. The last Memory Space operand form is addressing relative to the
program counter. This form of address can be used for variables and arrays,
and will be used if no static area is declared, but is more usually associated
with labels as the object of jump and conditional jump instructions and will be
dealt with later in this chapter. The actual operand form is concealed from the
user as the assembler generates it automatically on being given a name as an
operand, be it label or variable. Assuming, then, that a double word variable
has been declared earlier in the program and has been initialized:

addd =12, sum
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will add the immediate value 10 decimal to the double word sum. As it is a
double word to double word addition, 10 will be kept as part of the instruction
in 4 bytes even though one is sufficient to hold it.

If the value to be added had been in the range —8 to 7, it would have been
possible to use one of the ADDai instructions instead. Like the ADDi
instructions, these exist in the three operand sizes and add the ‘quick’ operand
to the destination: the quick operand is kept as a 4-bit value in the instruction
allowing an economical addition of a small integer. The quick range has been
selected so that an address in a register may be decremented by up to the size of
a quad word or incremented by up to double word size plus a bit for luck. If we
take it that RS has the address of a block of double words in it, then to get the
address of the next double word we need

addqd 4, RS

The 4 will be sign-extended up to a double word before being added to the
register. A word add might have sufficed but be careful when adding negative
numbers to a register used as an index — any bits between 16 and 31 will not
take part in a word addition and you may have an exasperating circular
addressing problem to unpick.

The last of the three types of add instruction is one in which the carry bit
is included in the addition. Its mnemonic is ﬁDlzci and the effect of

added a, b

is that b becomes the sum atb+c, where c is the value of the carry bit in the
PSR: 1 if it is set, O if reset. This is only useful when doing multiple precision
adds, when the objects to be added together consist of two or more double
words. Assuming that the numbers consist of three double words each, the
following code will perform a multiple precision addition

addd a, b
addcd at4, b+4
addcd at8, b8

The first addd adds the least significant double words, a and b, leaving the
result in b and any carry out of the sum in PSR C. The second addcd adds the
middle double words together with any carry and the last one does the same.
The result, if carry is not set (unsigned) or F is not set (signed), i$ the multiple
precision sum. In multiple precision numbers, only the most significant unit
has the sign bit; all the other bits are taken as ordinary value bits.

The effect on the flags in the user byte of the PSR of an addition is
confined to the C and F flags: the C flag is left at 1 if a carry occurred and 0
otherwise; the F flag is set to 1 if an overflow occurred, otherwise it is set to 0.
The negative (N), zero (Z) and low (L) flags are not changed by either addition
or subtraction. Only comparison operations are empowered to alter them.
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This is a considerable step away from 8-bit and 16-bit microprocessors where
these flags are changed not only by addition and subtraction but by load
instructions as well. When there is only one register (or one arithmetic
register) it seems reasonable to alter the machine state flags according to the
value of this register, but with eight integer and eight floating point registers
this practice has little to recommend it.

3.3 MOVEMENT AND CONVERSION

It is fine to add, but first there must be something to add. Up to this point, it
has just been assumed that the registers and memory variables have the desired
contents. This can be guaranteed for variables with a dcb, dcw or ded, but
registers are born with indeterminate contents and must be set dynamically.
This introduces the move instructions, four generic groups of them, two
similar to the add groups, MOVi and MOVQi, and two capable of converting a
smaller unit to a larger one, byte to word for instance.

MOVi is easily defined. It moves the source operand to the destination
operand and has the standard byte, word and double word varieties.

MOWi  src, dest

moves the contents of src to overwrite the contents of dest. The src operand
can also be in immediate mode.

mavb'  =-55, byte

sets byte to —55. As with the add group, if the value is in the range —8 to 7,
MOVRi can be used instead: to set register 3 to zero,

movad @, R3

will serve. It may not be necessary to set all 32 bits (the quick 0 will be extended
to a double word 0) but make sure that R3 is not used as an index.

The two other move groups are used to extend a shorter unit to a longer
one. There are two ways of doing this: either the shorter unit is taken to be
unsigned and the higher bits are all zeroed, or it is taken as signed in which case
the higher bits are all set to the sign bit of the shorter unit. The generic name
for the unsigned extension is MOVZii, and the possible varieties are novzbu (byte
zero extended to word), mavzbd (byte extended to double word) and mavzud
(word to double word). Earlier on it was pointed out that the immediate
operand =10 would be kept in 4 bytes as it was a double word operand. Here is
a way to save a little space at the price of a couple of machine cycles.

mivzbd =10, R@

will set R@ to (double word) 10 while keeping the value in a byte.
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Signed extensions are very similar; the generic opcode is MOVKii with the
same variations as MW2ii.

mouxbd =-18, R@

will set all 32 bits of Ra to —10.

3.4 SUBTRACTION

Subtraction is the addition of the minuend and the two’s complement of the
subtrahend. The PSR C bit is set if there is a borrow condition which occurs
when there is no carry out of the top bit; otherwise the C bit is cleared:

@1ie211a  +1@2
- ooeeelln 6

becomes
91100110  +1@2 %
+ 11111010 -6

1011092000 +96

In this case the result can be contained in 8 bits and the carry out of bit. 7 n}eans
(for a subtraction) that no ‘borrow’ has occurred and the PSR C bit will be

cleared. . .
In the following example the minuend and the subtrahend differ in sign

and, with the values chosen, the result is too large for 8 bits:

g11om110  +1@2
- 11100010 -30

becomes

@1100110  +1@2
+ 02311119 +30

lo000100  -124

The lack of a carry out of bit 7 indicates that the result is too large for 8 bits
and the C bit will be set. The F bit will also be set as the carry into bit 7 (a 1)
differs from the carry out of bit 7 (a 0). Comparing this with the first
subtraction you will note that the carry into bit 7 and the carry out are the
same (a 1).

The subtraction instructions parallel the addition instructions except that
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there is no quick version. There is the form which ignores carry, SUBi, and the
form which includes it, SUBCi. For instance,

subw i, §

subtracts the contents of the word called i from the contents of the word called
i, leaving the result in J.
Multiple precision subtraction is like addition.

subd  m, n
subcd m+4, nt4
subcd m#8, n+8

performs a multiple precision subtraction of the three double words called m
from the three called n with the result being left in n.
Two further instructions in the same line of business are

NEGi src, dest inegate an integer

and

ABSi src, dest iget the absolute value

These are both simple instructions, but nonetheless welcome. The code
required to perform these functions in their absence is a nuisance to write, and
being able to use a single instruction instead of two or three (with conditional
jumps which can be troublesome) is a boon to the compiler writer. However,
they also have their little ways.

There is always one number that ABSi must fail on. You will have noticed,
in the discussion above on two’s complement, that there was no counterpart to
the most negative number for a given unit. For a byte this number is —128 and
the highest positive number that will fit into a byte is +127 (255 is, of course,
only available when the byte is considered unsigned). For a word it is —32768
and for a double word —2147483648.

If ABS1 is asked to get the absolute value of one of these numbers it will set
the F flag and the number will be transferred to the dest operand unchanged.

NEGi calculates the two’s complement of the src operand by subtracting it
from 0 and placing the result into the dest operand. This is in all respects a
normal subtraction and the C bit in the PSR will be set if there is a borrow —
as there will be for every number except zero. Like ABSi, the largest negative
number for a given i cannot be negated and, if this is attempted, NEGi will set
the F flag and transfer the src operand to the dest operand untouched.

3.5 COMPARISON AND CONDITIONAL BRANCHES

Comparison can be viewed as a subtraction of the first operand from the
second keeping only the sign of the difference and whether it is zero or not.
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This information about the difference is kept in the N, Z and L bits of the
PSR: the sign is kept in the N bit. If the difference is negative, the N bit is set;
otherwise it is clear. The Z bit is set if the difference is zero and it is clear if the
difference is non-zero. The L bit is quite interesting; it records the result of the
comparison when the two operands are regarded as unsigned numbers. It is set
if the first operand is greater than the second one. In considering binary
addition, it was shown that the same process produced the result which could
be thought of as signed or unsigned depending on the operands. Here it is
brought into sharper focus. The same comparison instruction gives rise to two
results, one to be used if the operands were considered unsigned, the other if
they were signed.

All three bits are set by each comparison. If you consider the quantities
signed, the result of the comparison will be sought in the values of the Z and N
bits; if the quantities were unsigned, the bits tested will be Z and L.

Normally, this level of detail is unnecessary as the testing will be done by a
“branch on condition’ or a ‘save condition’ instruction. For comparing signed
numbers (CMPi A, B) the mnemonics are:

bgt Branchif A > B ?
bge Branchif A > B

beq Branchif A = B

bne Branchif A <> B

ble Branchif A < B

blt Branchif A < B

For comparing unsigned numbers (CMPi A,B) the mnemonics are:

bhi Branchif A > B
bls Branchif A < B
beq Branchif A =B
bne Branchif A <> B
bhs Branchif A > B
blo Branchif A < B

Here hi stands for ‘Hlgher’, 1s for ‘Lower or the Same’, hs for ‘Higher or
the Same’ and 1o for ‘LOwer’, distinguishing them from the signed conditions.
beq and bne are used for both signed and unsigned numbers as the same
instruction serves equally well for either. It is important to keep the above
tables in mind as, if you go into the details of what bat tests, you will find that
it branches on the N bit being set; that is, if A is subtracted from B and you get a
negative result it shows that A is greater than B. This is just an explanation of
what might appear puzzling and perhaps incorrect on close examination but
the choice of the condition name has been made to correspond to the result of
the comparison of A and B rather than the sign of the difference.

There are also branch instructions for testing for carry and overflow from
the integer arithmetic instructions —the C and F flags. These are:
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bes Branch if carry is set
bce  Branch if carry is clear
bfs Branch if flag is set
bfc  Branch if flag is clear

and an unconditional branch
br Branch unconditionally

These can be used to call attention to an unexpected carry or overflow and the
unconditional branch will be used whenever a piece of code must be skipped.
For instance, when translating an IF ... THEN ... ELSE ... FI construction,
the last instruction in the THEN clause would be an unconditional branch to the
code following the FI.

The operands of these branch instructions will almost always be labels as
the length of 32000 instructions is not simple to calculate. The labels will be
translated by the assembler into Memory Space mode using a displacement
from the PC register. This displacement can go up to some 16 million bytes
positive or negative and the familiar ‘offset out of range’ errors of the older
8- and 16-bit processors fade into the awkward past.

The compare instructions are in two groups, integer comparisons (CMPi)
and quick comparisons (CMPQi).

cmpqd @, unsg
blo nz

will compare the contents of unsg with zero and branch to nz if unsg is not
zero. The use of unsigned comparisons with CMPQi must be carefully thought
out. It is possible to write

cmpqd @, unsg
bhi nz

unthinkingly expecting it to jump to nz if unsg is not zero. However, a
moment’s thought will show that 0 can never be higher than unsg and that
therefore the branch will never be taken — the quick values other than 0 don’t
seem to cause the same confusion. In most cases it will be useless to compare
the negative quick values with an unsigned number (in word units, —1
corresponds to the unsigned 65535) unless you are being devious — not a good
idea in assembler.

3.6 MULTIPLICATION

There are two forms of multiplication, one chiefly for use by compiler writers
.and the other by assembler programmers. The first form (MULi) multiplies two
Integers putting the product in the destination integer. The multiplication is
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single length as the product is assumed to be no larger than the integer size
and, in fact, any high-order bits will be truncated. As an example

mulw =5, R@

will multiply the contents of bits 0 to 15 of R@ by 5, leaving bits 16 to 31
unchanged. If the result of the multiplication exceeds 65535 (unsigned) or the
range —32768 to 32767 (signed) then without warning the excess bits will be
lost, leaving the true result modulo —2'¢. This suits compiler writers as there is
no high-order part of the product to check or make space for. (They have ways
of checking range before the multiplication and can avoid potential
overflows.) It can also be extremely useful for writing linear congruential
random number generators which are based on expressions like

r=a*bMODm

Often m can be chosen to suit the CPU word length and the truncation
above means that no MOD operation is needed. .

Extended multiplication (MEIi) can sometimes be more useful than MULi as
it develops the full double length product of the integers. The operands are
interpreted as unsigned —only MULi gives a signed multiplication. The source
operand for MEIi (the first one) is taken to be integer length while the
destination is double integer length. Using meib, the source is one byte in
length but the destination is two bytes long; with meiu the source is one word
long while the destination is a double word; and for meid the source is a double
word and the destination two double words or a quad word.

Before the multiplication, the second operand must be in the least
significant half of the destination. If this is in memory, the least significant
integer is the one with the lower address.

src dcb 39

dest dcb 7
dcb ')
meib  src, dest

After the multiplication, src will still be 55 but dest will be 129 and dest+1 will
be 1. The result is 385 which is 256 + 129.

If the destination is to be a general register, two registers will always be
used whether the integer is a double word or not. The registers will be taken as
an even—odd pair with the even register name being used as the operand; the
pair is taken as the even register and the next consecutive odd one. The second
integer operand is put into the appropriate part of the even register and the
result will have the low-order integer (of the resulting integer pair) in the even
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register and the high-order integer in the following odd one. For comparison,

the same multiplication will be done but with dest being the even—odd register
pair R4—RS.

movab 7, R4
weib =35, R4

imultiplier
imultiplicand

The result will be in two bytes, the low-order one in bits 0 to 7 of R4 and the
high-order one in bits 0 to 7 of RS. None of the other bits in either register will
have been changed.

This multiplication is, of course, perfect for multiple precision work.
Using our friends a and b from the addcd example earlier their product can be
calculated by

A ded 1, 2 ithe digits AQ and A1l
B ded 4,5 ithe digits B@ and B1
C dcd @, @, @, @ ;the digits CB, C1, C2 and C3

movd B, RO i nyltiply BO by AB
meid A, RO iresult in RO-R1

movd RO, C iresult to CD-C1

movd R1, C+4

movd B, R@ i¥ek pultiply B@ by Al
meid A+4, RO

addd R@, C+4 iadd result to C1-C2

added R1, Ct8

movd B+4, R@ % multiply B1 by AD
meid A, RO

addd RO, C+4 ;add result to C1-C2
addcd R1, C+8

movd B+4, R@ ¥ nultiply Bl by A1
meid A+4, R@

addd R@, C+8 iadd result to C2-C3
addcd R1, C+12

This algorithm is a specialized form of Algorithm M (Multiplication of
non-negative integers) on page 253 of the second volume of Donald Knuth’s
The Art of Computer Programming. To save you going and fetching your
copy (you haven’t got a copy!?) the algorithm works on the same principle of
I{apc.er and pencil multiplication of decimal numbers. Starting with the least
51gn1ficant digit of the multiplier, multiply it with each digit (starting again
with the least significant) of the multiplicand adding the product digits to the
partially formed sum. The only difference is that these digits, instead of going
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from 0 to 9 or 0 to 15, go from 0 to 4 294 967 295! After the multiplication the
values of C to C+3 will be 4, 3, 1 and 1 respectively.

3.7 DIVISION, MODULUS AND REMAINDER

The 32000 is unusually generous in its provision of division operations, There
are two single length divisions and a double length one corresponding to HEIi
above, and, as well as this, there are two remainder operations, one for each of
the single length divisions.

Both the single length divisions (called DIVi and QUO1) take byte, word or
double word integers and provide a single length integer result, Division does
not always give an exact integer result and the difference between the divisions
lies in the steps they take to deal with any fraction.

QU0i behaves rather as one has come to expect a single length division to
behave; it simply throws the fraction away. DIVi, however, rounds the
quotient down to the next lower or more negative integer. So, for positive
numbers, both divisions will give the same result. For instance, dividing 111 by
10, DIVi will round the exact result (11.1) down to 11 and QUOi will return the
same result by throwing away the fraction. It is with negative results, obtained
when the signs of dividend and divisor differ, that the quotients delivered by
the two divisions can part company.

In dividing —97 by 20 using DIVi, the exact quotient —4.85 will be
rounded down to —S, the nearest integer less than or equal to —4.85. The
same division performed using QUOi will give —4 as the result. This is the
nearest integer less than or equal to the absolute value of —4.85. You will
probably not find the quotient from positive numbers surprising but you
should think carefully when negative numbers are involved.

Each single length division has a corresponding remainder function which
is calculated by the same algorithm: MODi corresponds to DIVi and REMi to Quoi.
In both cases the remainder is calculated from

dest — ((dest DIV src) TIMES src)

where dest DIV src is calculated in the same way as DIVi or QUOi and TIMES is
a conventional multiplication. The remainder always takes the sign of the
divisor (the src operand).

To take the same examples as before, the remainder from 111 DIV 10 will
be 1 whether using MODi or QUOi but the remainder from -97 DIV 20 will be
3 (—97 = (=5x20)) using MODi and —17 (—97—(—4x20)) from REMi. Some
high-level languages like Pascal use DIVi and MODi to implement their DIV and
MOD operators; others, like FORTRAN, use QUOi and REMi instead. When using
QU0i and REMi be very careful when negative numbers are expected.

Double length division, DEIi, takes its operands to be unsigned like MEIi
but, while MEIi starts with a single length destination operand and ends with a
double length one, DEIi starts with a double length dividend (destination) and

Integer arithmetic 43

ends with two single length results — a quotient and a remainder. MEIi and DEIi
also use registers in a similar way. The double integer destination operand
must be set to a double length value before the DEIi instruction: after the
division the lower integer of the destination contains the remainder and the
higher integer the quotient. As with MEIi, if the destination is in memory, the
lower integer has the lower memory address; if the destination is to be a
register, an even—odd pair must be used with the even register containing the
lower integer and the odd register the higher. After the division, the even
register will be left with the remainder and the odd register with the quotient.
As an example of its use, here is a binary-to-decimal conversion

dec alloch 1@ inumber of decimal digits
bin dcd 1234

movd bin, R2

movzbd =10, R4
loop  movad 0, R3

deid =10, R2  ;get BIN MOD 1@

addb ='0', R2 imake an ASCII digit

novb R2, dec-1[R4:bl

movd R3, R2 ;old quotient to new dividend

achd -1, R4, loop

ilower inteager
jindex to DEC
izero extended

This example contains an instance of a new instruction and a new addressing
mode.

The instruction is ACBi (Add, Compare and Branch). It is intended for
loop control and has three operands; the first is a quick integer (-8 to 7), the
second a register and the third a label. It adds the quick integer to the register
(the i determines what length of the register takes part in the addition) and
then, if the result is not zero, it branches to the label. It is treated more fully in
Chapter 8.

The new addressing mode is scaled indexing, which comes in two parts:
the first part is a general operand except that it may not be an immediate
operand or contain a scaled index itself, and the second is the scaled index. In
this case the general operand is a variable name with an offset (dec-1) and the
scaled index is a byte index on the value of R4 ([R4:b]). It need not be a byte
index (word, double word and quad word scaling is provided for), and the
effect is to multiply the value in the register by 1, 2, 4 or 8 before using it. This
allows the same value in the register to access sequences of any of these four
integer (or floating point) types. It is vital to realize that the register is used as a
signed, 32-bit value and you must make sure that all its 32 bits are correct.
Scaled indexing is dealt with in more detail in Chapter 7.

In this simple case, the scaled index operand dec-1[R4:b] causes the value
of R4, considered as a signed, 32-bit integer, to be added to the address dec-1.
R4 starts with the value 10 and on the final pass through the loop it has the
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value 1; the destination operand of the moub therefore goes through the values
dectd to dec and the successive digits will be putlinto dec in reverse or'der as
required, since the first digit is the least significant one of the equivalent
i r.

decm”;‘atlllenrgtb eof this short program is quite simple. The flouble_ length
dividend, made up from the value in bin (to be turned into decimal), is fnade
into a quad word integer by extending it with a doub!c word zero. Signed
values would be dealt with by saving the sign and converting the absolute value
(cf. ABSH). | . :

The number is then divided by 10 and the remainder (in R2) is. the next
digit in the conversion. To make it into an ASCII character it just needs the
value of the character 0 adding to it as the ASCII characters 0 to 9 are an
ascending sequence. The final act is to transfer the quotient from R3 to R2 to
make the next dividend, then extend it with zeros, and so on. The loop ends
when ten digits have been converted.

EXERCISES
3.1 Given the following definitions:
a ded 100Q
b dcd 768
c dcd 312
e allocd 1

a) What happens when
movd c, e

is executed?
b) Assuming that e has been set to 4 zero bytes, what value does it have
after
MoV c, e
¢) If e is again double (4-byte) zero, what value does it have after

movb b, e
d) What value does e have after

naovd a e
addd b, e

¢) What value does e have after

movad B, e
Mmovw a, e
mulw c, e

Check your answer with a program.
f) What value does e have after
novad B, e

mavd b, e
divd c, e

3.2

33

34

35
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g) If RO contains 1000 (as a double word) and R1 contains 800 (also as a
double word), what do they contain after

deib =250, R@
Check your result again against a small program.

The text gives an example of a multiple precision (MP) multiplication,
using meid with the ‘digits’ of the MP number being represented by double
words. The product of an MP number and a single precision (SP) number
is simpler—as in long multiplication by hand, each digit of the MP
number is multiplied by the SP digit with the carry from the preceding
multiplication being added in. For instance:

768

X9
Starting with the least significant digit, 9 x 8 is 72, put down 2 and carry
7, and so on. Using bytes to represent the digits, write and test a program
using meib to multiply the 5-byte MP number (0, 1, 1, 1, 1) by 10—the
answer should, of course, be (0, 10, 10, 10, 10). To check that the carry is
correct, multiply this result by the SP digit 100 — the product should be (3,
235, 235, 235, 232). Note that the sign must be handled separately as MEI1
performs unsigned multiplication.

Division of an MP number by an SP number can be done using DEIi and
the rules of long division. To start the process, a zero digit together with
the first digit of the dividend is divided by the SP digit: the quotient gives
the first digit of the result and the remainder (as the high-order digit)
together with the next digit of the dividend (as the low-order digit) form
the next two digits to be divided. The final remainder can be ignored —if
the precision is considered sufficient —or the result can be rounded to
even, as described in Chapter 5, Section 5.1.2.

A year is a leap year if it is divisible by 4 and not divisible by 100 or if it is
divisible by 400. Thus, 1984 was a leap year but 1900 was not; the year
2000, however, will be. Write a program which takes the number in a
word called Year and sets a byte called LeapYear to 1 if the Year is a leap
year and 0 if it is not. Test the program with a selection of years to make
sure that it returns the correct result in all cases.

The day of the week (DaW) for the 1st of January of a given year is
calculated by:

DoW = (1-d)MOD 7
where

d = 7—(Year + Year/4— Century + Century/4 —1—Leap ) MOD 7

Century is 19 for the years from 1900 to 1999 and the results 1-7
correspond to the days Sunday-Saturday. Write and test a program to
calculate the day of the week corresponding to the 1st of January for the
year in the word called Year, using the leap year code from Exercise 3.4.
Check your results against some calendars.




4 Boolean, shift and logical
operations

4.1 LOGICAL OPERATIONS
The AND function is performed by

ANDi  src, dest

Each bit in dest corresponding to a 0 bit in src is set to 0, the bits
corresponding to 1s in src remaining unchanged. The result is put into dest.
As usual, there are three forms for byte, word and double word operands. The
AND operation is generally used to mask off a part of memory unit. For
instance, to get at bits 6 to 10 of a word you could use

D dcuw #bioooiioiveiiiall
movw =H#bl1111000002, RO
andw D, R®

and the result, in k3, will be #b10100000000. As it is not much use stuck in the
middle of a word, the next step would be to shift it 6 bit positions right, to
bring its least significant bit (bit 6) into bit 0 of R@. Of course, this can be done
more efficiently with the Extract and Insert instructions (which will be
discussed in Chapter 6). However, ANDi does have a number of other uses. As a
simple example, it can determine the modulus of numbers with respect to a
power of two, to see whether a number is odd

movw number, RO
andv =1, R@
cmpqw @,R0

beq even

inumber is odd

and, more adventurously, to see whether a number is divisible by 16
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mavb

quorum, RS
andb  =#bl1111, RS
cmpak @, RS
beq divié

inumber is not divisible by 16

AND1 isolates the bottom 4 bits (which will be zero if the number is divisible by
16) so that CMPQi can test them against zero, if they are all zero then the number
is divisible otherwise it is not.

Finally, it can be used to see if each of a selection is set or whether one or
more are- set. For instance, suppose you are scanning a market research
data})ase in which each entry has a selection of important attributes coded as
bits in a word and you are looking for men aged 40—45 who are houseowners
and‘ read the Boy’s Own Paper. Let’s assume that the bits assigned to these
attributes are: men— bit 0 set; age 40—45 — bit 5 set; houseowners — bit 10 set:
and readers of the Boy’s Own Paper— bit 15 set. ’

The word you are looking for, then, has the value :8421 (the other bits are
set to 0 here but their actual value doesn’t matter). So, to pick out the required
entries, given that the word from the entry is in R®,

iselect the bits
icheck that each is 1
jdump if successful

andw =:8421, R@
cmpw  =:8421, RO
beq found

The andu isolates the bits in question, setting all the others to zero, then cmpu
tests the bits to see if each is set to 1 and, if they all are, the brar’lch will be
taken. If, on the other hand, entries with at least one of these attributes (rather
Fhan all) were being sought, the result after andw could be tested against zero; if
it was non-zero, then at least one of the bits was set. ’

While AND is used to extract bits by setting unwanted bits to zero, OR is
used to set specific bits to 1. The 32000 instruction is ’

ORi src, dest

Each.b.it in dest corresponding to a 1 bit in src is set to 1 with the other bits
remaining unchanged; the result is put into dest.

. Page 43 in the previous chapter gives a piece of code to do a
binary-to-decimal conversion and, as part of this, the remainder after division
by 10 was converted into an ASCII digit character. The operation required was
to convert the remainder (0 to 9) into the ASCII code for the digits 0 to 9
wl.uc.h is 48 to 57. The means chosen was to add 48. The usual way of doing,
this is to use an OR instruction as, in hexadecimal, the digits 0 to 9 have the
values :30@ to :39 and the instruction to use is
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jget BIN MOD 19
;make an ASCII diait

deid =10, R2
arb ='@', R2

The deid has been put in to show where in the previous piece of code the
change should be made. The immediate operand ='2' has the value :30 and has
been deliberately chosen instead of the alternatives =48 or =:30 as it makes the
purpose of the instruction clearer —always a good thing in assembler
programming. It is possible to use addb but this implies that the byte is being
used as an integer rather than a set of eight bits, making the code harder to
understand. In another example, it is used to make a letter lower-case. In this
example, it is assumed that the byte variable char contains the next byte to be
made lower-case — if it is a letter between ‘A’ and vZE,

cmpb  char, ='A’
blt NotALetter
cnpb  char, ='2'

bat NotCaps

orb =#b100@0@, char inow lower-case

Note that the second operand of CHPi can be immediate as it is not written to.
The first four instructions check to see if the value of char lies between the
ASCII codes for ‘A’ and ‘Z’ —if it doesn’t, the conditional branches cause the
lower-case function to be skipped. The instruction which does this relies on the
fact that the ASCII code for ‘A’ is #b01000021 and the code for ‘a’ is
#b01100001, the difference being #b20100220 —and this difference is the same
for all the letters. Inserting this bit with an ORi will therefore convert any
upper-case letter into a lower-case one.

It might be instructive to see the above coding changed to upper-case
letters; the alterations are quite small. The tests must now check for letters in
the range ‘a’ to ‘z’ and the orb becomes andb with the immediate bit string

complemented:

cmpb  char, ='a'
blt NotLower
cmeb  char, ='2'

bat NotALetter

orb =#b11011111, char inow upper-case

The XOR function is a very interesting and slightly mysterious function,
though this is not obvious from its truth table. It can, for instance, be used to
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change one value into another and back again. Take the ASCII codes for the letters
‘A’ and ‘Z’ which are : 41 and :5a respectively; if you XOR these together (again
the Casio fx-570 comes into its own) you get :1b. Now, you will find that
‘A* xor :1bis '2' (:41 xor :1b = :5a)and that '2' xor :1bis 'A'. This is a very
useful way of toggling a variable between two values while using only an XOR
with a constant operand —the XOR of the two values. Using this as an
example,

A2 decb ‘A’

xorb ='A' ~ 'Z' ; now toagled
The complement function simply inverts all the bits in the src operand
and places the result in the dest operand: '

COMi  src, dest

For instance,

hi dcb  #bl111000@

comb hi, R?

will end up with R? containing #b®2@21111 in bits 0 to 7 —the other bits will be
unaffected. Note that COMi inverts a// the bits in the src operand; to invert only
part of an integer, you should use the X0Ri instruction. If only bits 2 to 5 of hi
were to be inverted this would be done by XORing hi with the mask #b11112@
which has 1s in bits 2 to 5:

hi dcb #bl1110000
movb  hi, R7 iget src
xorb  =Hb1111@9, R7Y

which will leave #b112@1102 in R7. The inversion takes place because every 1 in
src which corresponds to a 1 in the mask will become 0 and every 0 in src
corresponding to a 1 in the mask will become 1. The bit positions
corresponding to Os in the mask will remain as they are— mysterious?
Definitely!

. The last instruction in this group simply clears bits. This can be done by
uS}ng ANDi with a mask of 1s in every position except those to be cleared, but
this instruction is more direct. The Bit Clear instruction
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BICi src, dest

clears the bits in the dest operand which correspond to 1 bits in the src
operand. For instance, to clear bits 2 to 5in a byte operand

cl dcb  #10112111

bicb =#b111100, cl

leaves the byte at cl as #bl0ease1il.

4.2 BOOLEAN OPERATIONS

The logical operations described above operate on all the bits in the dest
operand and some languages choose to recognize only the numbers 0 and 1 as
truly boolean. Pascal insists that TRUE be greater than FALSE as well, which
can be arranged with these values.

Using the numbers 0 and 1, AND, OR and XOR all deliver only 0 or 1
when applied to operands with either of these values. Only complement will
not work and, for this reason, a boolean complement instruction called NOT1 is

provided
NOTi src, dest

It inverts the least significant bit of the src operand, placing the result into
dest; NOT 1 gives 0 (COM 1 would be —2) and NOT 0 gives 1 (COM 0is —1).
The other boolean operation (or rather group of operations) is
Scondi dest

which expands into

SEQi dest  ;EQual

SNEi  dest iNot Equal

§CS1i dest iCarry Set

SCCi  dest iCarry Clear

SHIi dest iHIagher

SLSi  dest iLower or the Same
SGTi dest iGreater Than

SLEi dest iLess than or Equal
SFSi dest iFlag Set

SFCi  dest iFlag Clear

SL0i dest  iLOuwer

SHSi dest  ;Higher or the Same
SLTi dest ilLess Than

SGEi  dest iGreater than or Equal
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This converts the condition code which is set after a comparison instruction
(EQ, NE, HI, LS, GT, LE, LO, HS, LT, G6E) or an arithmetic operation (CS,
¢, FS, FC) into a boolean value. If the condition is true, dest will be set to
the integer 1; otherwise it will be set to 0. As for all the other integer instruc-
tions, there are byte, word or double word forms.

This instruction will be mainly used by compiler writers in the code to
evaluate logical expressions. For instance, the code to evaluate

L=5 .LE. I .AND. I .LT. 1R

(I knew you’d recognize the language) could be

cmpad 5, I

slew L
cmpd ; =1@
sltw RQ
anduw RQ@, L

The first comparison sets the condition code and slew then uses it to set L true
if 5 < I or false if not. The second comparison together with s1tuw puts the
(boolean) result of I < 10 into Re. Finally, L is set to the desired result by
ANDing R® with it, the result being placed in L. The quaint variation in the
sizes of logical and integer variables will be remembered with affection ...

4.3 SHIFT OPERATIONS

The high-level language user will not have come across shifts (unless
enlightened and a C user). Shift instructions move a binary bit pattern up or
down a word. The word is considered to have its most significant bit (bit 15) on
the user’s left and its least significant bit (bit 0) on the right; thus a right shift is
equivalent to dividing the word (unsigned) by 2 and a left shift multiplies it by
2. To demonstrate: taking a word as the memory unit being shifted, let it have
the value 160 which is #b1010000. If this is divided by 2 it becomes 80 which
has the bit pattern #b@1010000 —the same pattern but moved one bit to the
right, While shifts can be used instead of division or multiplication when the
divisor or the multiplier is a power of two, they can only give correct results on
unsigned integers.

All the shift instructions on the 32000 have the same form. They have two
operands, the first of which is the count of the number of binary positions the
pattern is to be shifted and the second is the address of the pattern or the name
of the general register containing it. Both operands are general operands but
_only the count can be an immediate operand and the count is always a byte
integer, the i on the instruction only affecting the size of the destination
integer. The second operand acts both as the source and the destination; it
contains the pattern in its initial state and the pattern after shifting is placed
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back there. The count is signed: if it is positive the shift is to the left, ‘towards
the most significant bit position, and if it is negat'{ve it is towards the r}ght, the
least significant position. A zero count is permitted .and dO?S nothmg: The
count has strict limits on it: if the destination is a byte mleg'er it must be in the
range —7 to 7; if a word is being shifted the count must be in the-range.—ls to
15; and for a double word the range is —31 to 31. If the count is outside this
range, the result is undefined. . 44 Mg

There are three different types of shift instruction, dlffen’ng in the way
they fill the emptied bit positions left when the original pattern is shlfted..The
first type is the Arithmetic shift, so called because, when t.he pattern is .Shlftefi
to the right, the most significant bit positions are filled with the sign b‘1t. T}us
means that it can be used to divide even signed numbers by 2 (behaving h_ke
DIVi) as long as the number is not —1; shifting —1 to the r.i,c?'ht gives -—1 again.
In shifting patterns to the left the least significant bit positions are filled with
zeros. This cannot be used as a multiply by 2 for signed numbers without a lot
of pain, as the first zero shifted into the sign bit changes the signl of the
number. Note that an arithmetic left shift behaves exactly like a logical left
shift.

In either direction, the bits shifted down past the least significant position
or up past the most significant position are lost.

This shift instruction is

ASHi  count, dest

Several examples of its use are

a dcb  #b20110121
b dcb  #bloooliaa
c dow -334 ;#bl11111121@110010
ashb = 1, a  ileaves #b@1101021@
ashb =-2, b ileaves #blllo@21l
ashw =-%, ¢ ileaves #b111111111111111@

The last example divides —334 by 256 and comes up with the answer —2. '!“his
is the same as the result obtained by dividing by 2 eight times in succession,
rounding each inexact result to the more negative integer like DIVi — be careful.
The second type of shift instruction is the logical shift. This simply moves
the bit pattern to the left or the right, losing 1s off one end and filling with
zeros at the other. Its mnemonic is
L5Hi  count, dest

Using the same examples as for ASHi to show up the differences between them,
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a dcb #bool10i01l ;S3

b dcb #bidool1i0e ;140

c dcw -334 idbl1111110101100102
1shb =1, a ileaves #b01101010 = 106
1shb  =-2, b ileaves #b@R120211 = 35
lshw =-8, ¢ ileaves #b00ODADEO11111110

The result of the first example is the same as it was for arithmetic left
shift —both ASHi and LSHi bring zeros into the least significant bit on a left
shift. In the second example, the sign bit is set and while ASHi copies it into the
vacated bits at the high end as it shifts, LSHi simply moves it right and brings in
zeros. This is true of the third example as well.

Considering the integers as unsigned, you will see that the first shift
multiplies a by 2 and the second divides b by 4. The third starts with an
unsigned value of 65202 (word two’s complement 65536 — 334) and ends up
with 254 which is the truncated division of 65202 by 256 (28).

The last of the three shift instructions is ROTi, standing for rotate: it
rotates the integer bit pattern to the left or the right with bits falling off one
end being inserted into the resulting empty bit position at the other. This is
used to present a portion of the pattern at either the top or the bottom end of
the integer without destroying it. If you need to count the number of 1 bits in
an integer without destroying the integer, you could write

movd int, R7 iget the integer
movad @, R6 ibit count
movb =32, RS ino. of bits to count
count cmpad @, R7 iis the top bit set?
blt rotate ino, rotate left
beq finish ino more bits
addqd 1, R6 iyes, count one bit
rotate rotd =1, R7 imove the next bit up
acbb -1, RS, count icontinue loop
finish

The variables needed by the code (the count of the number of 1 bits, the
number of bits in the integer to count and the bit pattern itself) are kept in
registers but, if this is not convenient, they could be kept in memory instead, at
the cost of slower execution. R7 contains the bit pattern to be tested. This is
taken to be a double word though it could, of course, be a byte or a word
instead. R6 contains the count of the number of 1 bits found and is set initially
to zero. RS contains the number of bits in the integer, 32 for a double word.

The cmpad instruction together with the blt is used to test if the top bit is
set. If it is, the register will appear to contain a negative integer and the b1t will
fail: note that the test here is whether 0 is less than R7 and that this will be true
only if R7 is positive. If R7 is negative the addad instruction will add one to the
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bit count in Ré, counting off the 1 bit now in the most significant bit position
of the integer. In either case, the bit pattern in R7 will be rotated to the left,
bringing the bit in position 30 into the sign bit position while the erstwhile sign
bit goes into the vacated bit 0.

The loop will continue with the value in RS being decremented by 1 before
control is passed to the cnpad instruction again; the loop will end when, after
decrementing, the value in RS is zero.

EXERCISES

4.1 In the following, use one of the instructions described so far to perform
the required function to a double word. In each case the src operand will
be a constant and can be written as an immediate operand in an
appropriate radix. Only the bits mentioned are to be changed: all the
other bits in the double word must remain unaffected.

a) Clear bits 7-9 of the double word.

b) Set bits 1620 to 1s.

¢) Invert the values of bits 20-25.

d) Invert only the 1 bits in the double word.
e) Clear bits 7, 15, 23 and 31.

4.2 Using one or more logical instructions, perform the following functions
on a word:

a) Set bits 5-10 to the value #b101101.

b) Part (a) would normally be coded using two instructions, the first
preparing bits 5-10 for the second instruction which sets them to
the required values. Do Part (a) again with a different first
instruction.

¢) Do Part (a) a third time, this time with a different second instruction.

This sequence has been prepared assuming the conventional solution to
Part (a)—an unconventional solution to (a) may mean that both
instructions have to be changed for (b) and make (c), as written,
impossible. There are three sets of instructions which may be used to
perform this function and the exercise requires all three to be found — the
sequence (a), (b), (c) is in the nature of a hint.

4.3 a) Using a shift and a logical instruction, put the contents of the (much
abused) bits 5—10 of Exercise 4.2 into bits 05 of register 4 with bits
6—31 being all zeros.

b) Repeat Part (a) with bits 8—15.
4.4 Using logical instructions and a shift, put bits 0-3 of register 0 into bits

8—11 of a word — do not assume anything about the state of the other bits
in the register and do not change any of the other bits in the word.
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4.5 U‘sing shifts and logical instructions (and an add), add 1 to the value in
bits 8—11 of a word ignoring any carry out of the most significant bit. Do
not alter any of the other bits in the word.

4.6 Rewrite Exercise 3.4 to use boolean operations to set the value of
LeapYear.




B The floating point unit

5.1 THE IEEE STANDARD

In 1977 the Intel standard for floating point arithmetic was published by John
Palmer after consultation with Professor W. Kahan of the University of
California at Berkeley. At the end of that year, the IEEE formed working
group 754 to draft a standard for binary floating point arithmetic and, at
Professor Kahan’s suggestion, it adopted an expanded form of the Intel
standard to work on.

Now, Draft 10.0 (dated 2 December 1982) is still awaiting official
adoption by the IEEE!

In those years many people worked on the standard and several prepared
alternative drafts but the draft resulting from the extraordinarily detailed and
unremitting work of Professor Kahan’s graduate student, Jerome T. Coonen,
was eventually put forward as the result of the group’s deliberations. Nearly a
hundred people are cited in the draft standard as having contributed to it,
coming from big brand-name companies like Hewlett-Packard, Apple
Computer, Intel, DEC, Motorola, NatSemi (of course) and even IBM. It
seems likely, however, and just, that this milestone in computer architecture
will be linked to the names Kahan and Coonen.

The standard is a fascinating document and delving deeper into the papers
published explaining its implementation and details leads one to the belief that
all computers must be like this some day. At present, moving mathematical
software (like the NAG library) from one machine to another is fraught with
numerical danger —you are lucky enough if it works without detailed
modification, don’t even think of getting the same answers!

In the future, there will be no trouble at all in moving software from one
IEEE standard machine to another —even the answers will be identical.

5.1.1 Floating point arithmetic

To understand the FPU properly —and if you don’t know what’s going on
you’re really only toying with it—you need some acquaintance with the
operations which must be performed between accepting two floating point
operands and returning a result.

56
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To do this while avoiding large numbers, I shall use a toy floating point
representation with a 4-bit exponent and a 6-bit fraction. This will be laid out
like an IEEE standard system, except for the format, both because the
standard system is the best there is and to make it easier to transfer ideas from
the model to real life.

When doing arithmetic by hand, the floating point operands will be
written down as

1.fff££f be

with an f representing each bit of the fraction, b (by analogy with the
FORTRAN E) meaning ‘2 to the power of’ and e being the number’s signed
power of two. The fraction, when it has the implicit 1. in front of it, is called
the significand.

The actual bit layout (compare the floating point formats in Chapter 2) is
shown in Fig. 5.1. The sign bit s is the most significant bit but it is not in a
two’s complement format like the integers. Changing a number from positive
to negative is done by changing the sign bit from 0 to 1; no other change is
made. This is known as sign and magnitude format. The exponent is not
signed but takes the values from 0 to 15, with O being the lowest exponent
value and 15 the highest. With this format, two floating point numbers (with
the same sign) can be compared like integers as, with the same exponent, the
fractions increase from 0 to 63 and different exponents compare as unsigned
numbers. To convert from this form of exponent to the true, signed form a
bias value is subtracted: in the standard this is chosen as the exponent value
211...1 which in this model system is @111 or 7. Thus the true exponent
corresponding to @111 is 0 and that corresponding to @1 is —6.

s| exponent fraction

Fig. 5.1 Model floating point format.

Floating point significands are always normalized; that is, if the
significand of any result does not lie between 1 and 2 (may equal 1, must be
less than 2), it is multiplied or divided by 2, while altering the exponent
appropriately, until it does. A normalized significand must therefore always
start with a 1 bit. If so, why keep this 1 in the format? If it is understood to be
there but is not, there is room for another bit at the end of the fraction —and
s0 it is: the significand, without the leading 1, is called the fraction and is
marked frc in Fig. 5.1.

Before any arithmetic operation can start, the exponent and fraction of
the operands are split and put into separate internal registers; the fraction is
then given the leading 1 bit and becomes the significand.

Floating point (hereinafter shortened to FP) addition and subtraction are
pretty well the same operation, except that, for subtraction, the sign of the
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source operand is changed.
The first example shows 7 (1.118802 b2) being subtracted from 64

(1.000000 b6):

1.000000 b6
-1.11000@ b2

Before adding, the binary points must be aligned, which is done by shifting the
fraction with the smaller exponent to the right until the exponents are equal:

1.000000 bb
-0.000111 bb

0.111001 bé
The result must now be normalized giving
1.110010 bS
When multiplying, the significands are simply multiplied as they stand
and the result exponent is obtained by adding the (true) operand exponents:

multiplying 15 (1.111000 b3) by 3 (1.1000089 b1):

1.111000 b3
1.100000 bl

10.11010000000@ b4

In this case normalization means a shift to the right with the exponent being
increased from 4 to 5 giving

1.0110102 b5

when the trailing zeros have been removed to reduce the fraction to the 6 bits
allowed.

Addition (or subtraction) can result in a shift of one bit to the right (as
above) or up to six bits to the left; multiplication will only ever require one
right shift and not always even that.

Division is performed in a similar manner to multiplication except, of
course, that the fractions are divided and the divisor’s exponent is subtracted
from the dividend’s. The result will be greater than 1/2 and less than 2 so the
fraction will need at most one left shift to normalize it.

There is a problem with floating point arithmetic caused by the fraction
being a window into the true result showing only the top 6 bits. If two nearly
equal numbers are subtracted, the result will be left with a number of leading
zero bits reducing its accuracy. For instance, if 5.125 (1.010010 b3) is
subtracted from 5.75 (1.011182 b3) you get
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1.211100 b3
-1.010010 b3

2.001010 b3

and you can see that the original 7 significant bits have shrunk to only 4, as the

original trai!ing.bits of the exact representation of each operand have been lost
and normalization will insert trailing zeros.

A si.milar effect comes from subtracting a small number from a large one:
subtracting 0.078125 (1.810000 b-6, 5,64) from 1 (1.000000 b®) we get

1.000000 bo
-1.010000 b-6

Aligning the binary points gives
1.000000002 bb

-0.0a0000101 b6
0.11111011 bé

anq the result has one more bit than can be fitted into the format. This is the
basis of a simple test to find out how many effective bits the fraction has. A
number, initialized to 1, is repeatedly divided by 2 and subtracted from 1 until
the result no longer differs from 1; that is, the single bit in the minuend has
dropped below the last significant bit of the FP representation of 1. In our
model system, the last subtractions would be

1.000000 b0 (1.0)
-1.000000 b-6 (1,64)

After alignment, we have:

1.000000 bo
-0.000001 bR

9.111111 bo
This is followed by

1.000000 b2 (1.9)
-1.000000 b-7 (1,128)

which after being aligned gives

1.000000 @ ba
-0.000000 1 bo

0.111111 1 b@
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If this last subtraction returned the value 1, the effective length of the
fraction would be 6; most FP systems, however, have a guard bit beyond the
last true fraction bit and this subtraction could still leave a result less than one
(depending on the rounding mode in use). A guard bit appears only in the FP
registers; it disappears (by rounding) when the number is moved from the
register into memory. '

The IEEE standard implementation guide suggests three bits past the last
official fraction bit: a guard bit, a rounding bit and a ‘sticky’ bit which shows
whether the last true result had any 1s after the guard and rounding bits.

5.1.2 Rounding
If 15.5 (1.111100 b3) and 2.5 (1.01220@ b1) are multiplied together we get

1.111102 b3
1.0100002 bl

108.011211 200000 b4

This is the exact result of the multiplication — two places before the binary
point and twelve after. Now, if this is normalized, the bit in the sixth binary
place is moved into the seventh and is in imminent danger of getting lost. To
get the best possible representation of the exact result in the given FP format
(that is, the number in the FP format which is ‘nearest’ to the exact number),
the significand is rounded to six binary places — and there are several ways of
rounding. The IEEE default rounding mode is ‘round-to-even’ and, to
illustrate this, the two FP numbers next to the exact result are

1.001101 b4 (lower)
1.8011011 b4 (exact)
1.001110 b4 (higher)

The rule for round-to-even says that, of the two numbers next to the exact
result, the one with a least significant zero bit is to be chosen: this is
1.091110 b4 (19.5 decimal). The exact result differs from this by only half a bit
in the least significant fraction place. As the result is not exact, the standard
requires that an ‘inexact result’ flag be set, accessible to the programmer.

This is one of four rounding methods that the standard says must be
available and the choice of this one as the default method.is underlined by
Richard Karpinski’s story in ‘Paranoia: a Floating Point Benchmark’ from the
February 1985 Byte (McGraw-Hill). It appears that the Vancouver Stock
Exchange decided to provide a stock index. This started with a nominal value
of 1000.00 and was up-dated after each transaction by recalculating it to 5
decimal places and then truncating the last two. After 22 months the index
stood at around 520 though stock prices had been going up! There were about
2800 transactions per working day and all those lost fractions had produced a
value that was badly out.
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It may be thought that simple rounding would have been enough but
Richard Karpinski points out in his article that if the digits 01 to 49 had been
rounded down and those from 50 to 99 rounded up there would still be a
consistent 1% error: 49 times in a random sample the value is rounded down
but it is rounded up in 50. The answer to this is to round down from 01 to 49
round up from 51 to 99 and when a 50 comes up, round it so that the resulting,
last digit is even — beautifully simple, beautifully exact.

This is the standard’s recommended default rounding method. The three
other methods are rounding towards zero and rounding towards positive or
negative infinity.

Round-to-zero is usually known as truncation as the excess bits are simply
snipped off, the remaining bits being unchanged. If 4.5 were being rounded to
an integer in this mode it would become 4 and —4.5 would become —4, the
positive numbers going down towards zero and the negative coming up.

Rounding to either of the infinities means that, of the two FP numbers
next to the exact result, the lower would always be chosen when rounding
towards negative infinity and the higher when rounding to positive infinity.
Rounding 4.5 towards positive infinity would give 5, rounding —4.5 would
give —4: rounding towards negative infinity the results would be 4 and —5.

5.1.3 Special operands

The IEEE standard reserves the lowest and highest exponent values for special
operands. The lowest (0), together with a zero fraction, is used to represent
zero; with a non-zero fraction, it represents the denormalized numbers. The
highest exponent, when all the exponent bits are 1, is used for positive and
negative infinity (zero fraction) and the class ‘Not-a-Number’ (non-zero
fraction).

Zero does not, at first sight, seem a suitable bedfellow for curiosities like
infinities, denormalized numbers and NaNs, but it is not included in the FP set
with the legal exponents and fractions. The smallest (least magnitude) FP
number in our model is 1.2@8281 b-6 which has #0001 as a fraction and 01 as a
(biassed) exponent. This number is 1.015625*2-6 or 0.01586914 —a far cry
from zero. Even in a real FP system the smallest numbers are still, given the
accuracy, noticeably different from zero. Even given that zero is represented
by a zero exponent and zero fraction, the gap is still an embarrassment as the
difference between the smallest and next smallest FP numbers is 1/, 64th of it,
and sensitive routines can be upset when confronted by large steps. This
consideration led to the introduction of denormalized numbers, represented by

:h zero exponent and a non-zero fraction. They are taken (in our model) to have
e value

Q.fffffFf b-6

Any o_f the bits given as f may be zero, even the leading bits — they cannot
be normalized as the exponent cannot be decreased. If they are considered as

——
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an extension of the FP numbers below the heretofore smallest, the gap is
reduced from about 1/64 to 1/4096, the same on either side of the smallest
number. This allows a very small number to dip into the denormalized
numbers at one point in a calculation and re-emerge later on with no more
than a loss of precision — the jump from 1/64 to 0 represents a complete loss of
precision! _

The 32081 FPU does not handle denormalized numbers and so does not
support the standard’s gradual underflow: if they are used, they cause a
‘reserved operand’ exception and a number dropping below the smallest FP
number will be set to zero by default.

5.1.4 Overflow

At the other end of the scale stands overflow. In the model, the multiplication
of 45 (1.911019 b5) by 6 (1.100000 b2) gives

1.011010 bS
1.100000 b2

10.000011 100000 b7

which when normalized and rounded gives

1.000@20 b8

However, the highest legal exponent is 7 and therefore this number is too large
to be represented and constitutes a case of overflow. This is an exception in
everybody’s book and how exceptions are handled is up to the system designer.

In the past, operations such as divide by zero have been treated as an
overflow, but in a standard conforming system they not only cause a distinct
exception but the two infinities have been provided to give the system a
suitable response, the appropriate one being chosen by the sign of the
dividend.

There are other operations like taking the square root of a negative
number, subtracting two infinities of the same sign, multiplying zero by
infinity and dividing zero by zero for which there is no suitable result but the
NaN. These show that the operation does not have a number as a result. Two
classes of NaNs are described by the standard: signalling and non-signalling.
Signalling NaNs cause an exception when used; non-signalling (or quiet) NaNs
propagate through operations.

In the 32081 FPU both NaNs and infinities are reserved operands and will
always cause an exception when an attempt is made to use them for arithmetic.
They can be moved around without trouble though. The NaNs can still be
useful; however, if uninitialized FP variables and arrays are set to a NaN, any
attempt to use them will cause the program to fail and allow the programmer
to correct it. Since any non-zero fraction can be used, it can be set to a value
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which will show the variable it originated from (in case it has been moved
around a bit) —a further aid to debugging.

5.1.5 Standard FP operations

As well as the usual four arithmetic operations, an FP system which conforms
to the standard will have a remainder operation defined by

r=x REM y
with
r=x—y*N

where ‘N is the nearest integer to x/y. At first sight this seems a peculiar
operation tt_) choose for a standard, but an operation which provides r accurate
to the fraction length in use is vital to the accuracy of the sin and cos routines.

These must reduce their argument, perhaps many times larger than n, to the
range

-n<f<n
using the transformation
f=xREMn

where x is the argument.

A further unusual hardware operation required by the standard is square
root: this is a minor variation of division and is used almost as frequently.

There must also be conversions from integer to floating point and
rounding conversions of floating point to integer, the choice of rounding mode
to be the same as for the arithmetic operations.

Finally, binary-to-decimal conversions must be provided, and the

standard lays down that the conversion should be accurate enough for a
decimal string to be converted to floating point and back again without
change.
_ The 32081 has the arithmetic operations and the integer-to-FP, FP-to-
mte.ger conversions but does not have remainder, square root or binary-to-
decimal conversions. Both the remainder operation and binary-to-decimal
conversion need the extended formats, which add a minimum of an additional
8 bits to the single length fraction and 11 bits to the double length one, to be
performed accurately, and the FPU does not support them.

5.2 ARITHMETIC INSTRUCTIONS

There are seven floating point arithmetic instructions: the four arithmetic
oOperations together with negate, absolute and comparison. All of them come




e ——

64 Programming the NS32000

in a version for single precision operands and for double precision and they all
take two general class operands.

There are the obvious differences between these instructions and the
integer ones. The register names are those of the floating point registers
(FQ, ..., F7 for short reals and the names of the even registers, @, F2, F4 and Fé
for long reals) and immediate values are either 4-byte single or 8-byte double
values depending on the instruction. In other words, they have the same status
and standing as any of the CPU instructions; no incantations, divining of
entrails or casting of runes needed.

The four arithmetic instructions are

ADDf src, dest
SUBf src, dest
MULf src. dest
DIVf src, dest

The  at the end of the instruction is replaced by F if a single precision
operation is required and by L for double precision. Of the two operands, the
first is the source operand and the second the destination; in each case the
result of the operation is placed in the destination. SUBf subtracts the source
operand from the destination and DIV{ divides the destination operand by the
source.

The absolute value and negate instructions are

ABSf src, dest
NEGf src. dest

The absolute value and negate operate only on the sign bit of the source
operand: with ABSf the destination operand receives the source operand with a
zero sign bit (a positive value) and NEGF copies the source operand into the
destination with an inverted sign bit.

The comparison instruction is

CMPf srcl, src2

1t compares the first operand with the second, setting the CPU’s PSR Z (zero)
bit if they are equal or if they are zeros with opposite signs, and setting the N
(negative) bit if the first operand is greater than the second. The L bit, used in
integer comparisons to indicate the result if the integers are considered
unsigned, is always cleared so that bhi will never branch, bls always will, and
blo will have the same effect as bne and bhs as bea.

The other conditional branch instructions will behave in the same way as
with an integer comparison.
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5.3 MOVEMENT AND CONVERSION

There are seven instructions for moving and converting floating point values
and integers and they fall into three groups. There is an instruction which just
moves a floating point value from one place to another; the second group
moves floating point values from one place to another while converting a short
real to a long real or the other way around; and finally, there is a group which
converts from integer to real and vice versa.

The plain movement of reals, preserving their length, is done by

MOVf  src, dest

where, as with the arithmetic instructions, the f is replaced by either F for
single precision or L for double precision.
Lengthening or shortening reals is done by

MOVFL
MOVLF

src, dest
src, dest

where the tag FL indicates conversion from short (F) to long (L) and LF the
reverse.

Converting from integer to real is done by
MOVif  src, dest
where the i may be either b for byte, w for word or d for double word and f is
replaced by F or L depending whether the real is to be short or long. The first
operand contains the integer and, if it is a register, it must of course be one of
the general registers RO, ..., R7; the second operand is the destination of the
cor_1verted integer and again, if a register, must be an appropriate floating
point register — F@ to F7 for short, an even one for long.

The final three instructions in this set tackle the task of converting reals to

integers and, as is clear from Pascal at least, there are several ways of skinning
this particular cat. The instructions are:

ROUNDfi  src, dest
TRUNCfi  src, dest
FLOORfi src, dest

ROUNDfi (f and i are replaced in the same way as in the MOVif instruction)
rounds the real to the nearest integer —if the integers above and below are
equally close, the even integer is chosen. TRUNCFi truncates the real, returning
the integer closer to zero; that is, simply removing the fraction. FLOORfi
converts the real to the largest integer less than or equal to it. ROUNDfi is the
standard’s real-to-integer conversion in round-to-even mode, TRUNCfi is the
conversion in round-to-zero mode and FLOORfi is the conversion in round-to-
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negative infinity mode; there is no conversion in round-to-positive infinity
mode.

To show how they work they will be applied in turn to the numbers —2.3,
-2.7, —4.5, -5.5, 2.3, 2.7, 4.5 and 5.5 (see Table 5.1). As can be seen, the
effects of ROUND are foreseen fairly easily, as are those of FLOOR and TRUNC for
positive values — they have the same effect. They differ, however, for negative
numbers and do not provide immediately obvious results; if they are to be
used, careful thought should be given to the result to forestall unwanted
surprises. -

Table 5.1 Converting reals to integers.

Source real Destination integer

ROUND TRUNC FLOOR
2.3 -2 -2 -3
2.7 -3 -2 -3
—4.5 —4 —4 =5
5.5 -6 -5 -6
2.3 2 2 2
2.7 3 2 2
4.5 4 4 4
5.5 6 5 5

5.4 AN EXAMPLE

The following example illustrates the use of the floating point instructions in a
real piece of code. The code comes from Numerical Methods, Software, and
Analysis by John Rice (McGraw-Hill Book Company, 1983) and is part of a
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all kept in registers instead of memory. sum is in F, the double length floating
point register takes over F1 as well, term is in F2 and F4 is used to hold the
floating point forms of the integer factors before they are incorporated in
term. The code for this program can be improved but is written so as to parallel

the FORTRAN code as an illustration. The first part of the program defines pi
and calculates the initial values of sum and term:

pi dcl 3.14159265358979324
movl =3.0, F@ iinitial sum
movl Fa, F2 iterm = sum ...
mull =0.25, F2 i... *.25 ...
divl =6.0, F2 iz b

In the next section of the program, the loop count is set up in R@. The loop runs
from 2 to 30 and therefore is executed (30— 2 + 1) times; the initial value of K
(=2) is set up in R1 and the existing value of term is added into sum:

movb =308-2+1, RO ithe loop count
novqw 2 R1 iinitial K
loop addl F2, Fo isum = sumttern

Now the new value of term is calculated starting with (2K-1)%%2 which is
calculated in integer and then converted into double precision floating point.
The result so far is then multiplied by 0.25 to get the numerator:

novy R1, R2 iform 2K-1 ...
program in FORTRAN he gives to show the effects of round-off in adduw R2, R2 i... in R2
computation b}; calculating = in five different ways. This is the second method addqu -1, R2
in which 6*ARCSINC@.5) is calculated to give an approximation to «. The isquare (2K-1) in integer
FORTRAN code is mulw R2, R2
iconvert (2K-1)%%2 to double precision
DATA PI ~ 3.14159 26535 89793 23846 / movwl R2, F4
c iterm = term * (2K-1)%%2
c 2. TAYLOR'S SERIES FOR ARCSINC®.5) TIMES 6. mull F4, F2
C TERM = NEXT TERM IN SERIES FOR ¥ = 0.5 iterm = term * 9.25
SUM = 3.0 mull =0.23, F2
TERM = SUM*B.253,6
D0 20 K=2, 30 . ,
SUM = SUM+TERM Now the denominator is calculated with 2K being formed in R2 and, from this,
TERM = TERM#(2%K-1)¥¥2%Q 25, (2%(*(2%(+1)) 2K+1 in R3; they are multiplied, converted to double precision and tern divided
ERR = SUM - PI by the result:
20 CONTINUE
In the assembler program, pi is defined as a double precision constant (all novw R1, R2 iK to R2
the floating point arithmetic is done in double precision) and the variables are addu R2, R2 i2K in R2 ...
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ROV R2, R3 i... and in R3

addqu 1, R3 i2K+¢1 in R3

nulw R2, R3 i2K(2K+1) in R3

movwl R3, F4 jconverted in F4
;term = term ~ (2K(2K-1))

divl F4, F2

Though the last instruction looks wrong (as if dividing F4 by F2) it is correct:
the source operand is the divisor and the destination the dividend. All that
remains now is to calculate the difference, increment K and decrement and
check the loop count:

movl Fa, F4 isum into F4
iErr = Sum - Pi

subl pi, F4

addqu 1, R1 iK = K¢l

jcontinue the loop if the decremented
iloop count is not zero
acbb -1, R®, loop

No call or code to print the floating point values has been included as this
will depend on the operating system or assembler library available.

5.5 THE FPU STATUS REGISTER

It may seem, at first glance, that the round-to-even mode makes the others
superfluous: however, the modes rounding to the infinities can be used to
implement interval arithmetic or, at the very least, a sensitive calculation could
be made twice—once in round-to-positive infinity and then in round-to-
negative infinity. The two results would then be the upper and lower bounds
on the true result and would give very useful information on the error involved
in the calculation.

The rounding modes are changed by setting the FPU’s status register, the
FSR, and this can only be done with the instructions

1fsr src iput src into FSR
sfsr det iput FSR into dest
reserved SWF RM|i | Ljuu{TT
31 15 8 654320

Fig. 5.2 The FSR.
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The FSR is a double word with the fields shown in Fig. 5.2. The SWF field is
not used by the FPU and is reserved for use by NatSemi software; the
rounding mode field (RM) takes the following values

@2 round-to-even (default)

81 round towards zero

10 round towards positive infinity
11 round towards negative infinity

The inexact result flag (‘i’, bit 6) is one of the standard’s sticky bits. It is
initialized to zero (as are all the other fields) by power on or a hardware reset
and will be set to 1 when a result has too long a fraction after normalization
and the bit left over contains a 1 bit; that is, the exact resuit of an operation lies
in between two FP numbers. Once it is set, it remains set until reset by the
programmer (using sfsr and 1fsr) or a hardware reset —the sticky part.

The underflow flag (‘u’, bit 4) is another sticky bit: it is set when a result
has a (biassed) exponent less than 1. If the underflow trap is not enabled the
result will be set to zero and execution will continue.

The function of the other bits is concerned with traps and is dealt with in
Chapter 10.

To set the rounding mode, you need the code

sfsr Ra iget the FSR
inssb =/108, R8, 7, 2 iset rm to positive infinity
1fsr R@ ireturn FSR

The sfsr and 1fsr instructions copy the FSR into R@ and copy R@ into the
FSR respectively. The inssb instruction (discussed in the next chapter) inserts
the bit field 1@ into bits 7 and 8 of R@. Similar code can be used to set new
values in any of the fields.

To examine any of the FSR flags, say the underflow flag, the code needed
is:

sfsr RO iget FSR
cbitb =4, RO

1fsr R@ ireturn FSR
bfs uflow ibranch if usf

The cbitb instruction copies bit 4 (the underflow flag) into the PSR’s F flag
and then clears the bit for the next time. The bfs instruction branches to the
code to deal with the underflow if bit 4 of the FSR was set.

EXERCISES

5.1 Both the first volume of Knuth’s The Art of Computer Programming
(Appendix B) and The Handbook of Mathematical Functions edited by
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5.2

53

5.4

M. Abramowitz and A.l. Stegun (Washington, DC: U.S. Govt. Printing
Office, 1964), have tables of mathematical constants in octal to .h.igh
precision. Using the information given in this chapter on double precision
floating point format, convert the values of e and pi given in octal below
to 64-bit floating point numbers:

e 2.55760 52130 50535 51246
pi = 3.11037 55242 10264 30215

Check your results by putting the resulting 64-bit hexadecimal numbers
into double precision reals (using a compliant language) and printing
them in decimal.

A crude way of converting binary floating point numbers into their
decimal representation is to convert them to a suitable range (say 10.0 to
0.000001) by multiplying or dividing them by an appropriate power of ten
and then repeatedly multiplying them by ten, removing the leading digit
and printing it. Write a program to do this assuming that the numbers are
less than 10.0 and positive. The first digit is extracted by using TRUNCfi on
the real and printing the integer; then, subtracting the integer, multiplying
by ten and printing the next digit can be repeated to give the number of
decimal places required.

Single precision floating point should give an accuracy of about 7 decimal
digits. Using the program in Exercise 5.2 to print the digits, examine the
effect on the result of the 4 rounding modes. These will only affect the
multiplication by ten as the extraction of the leading digit is forced to be
in round-to-zero mode.

A crude way of converting the decimal representation of a real number
into binary floating point is to take each digit of the decimal, multiply it
by an appropriate power of ten and accumulate it. Write a program to
convert the decimal representations of e and pi below into double
precision floating point and compare it with the results of Exercise 5.1.
Why do they differ, which is the more accurate representation and what is
the source of the error?

2.71828 18284 59045 23536
3.14159 26535 89793 23846

e
pi

6 Bits and bit fields

6.1 INTRODUCTION

Modern high-level languages like Pascal and C allow the programmer to put
information into spaces which are smaller than the basic machine storage unit
or which cross unit boundaries. While this practice is, in general, open to
question unless a machine-dependent object is being represented or space is to
be conserved at the expense of time, it is of enormous help in handling
bit-mapped graphic images where objects, and even text, must be placed at any
position on the screen and it must be possible to examine any bit or sequence

aof bits.

On older (obsolete?) architectures, getting the value of a bit (in the general
case) involved bringing the byte or word containing the bit into a register,
shifting the bit to the least significant position and then performing an AND
instruction to leave the bit in an otherwise empty register.

Thus, three instructions were usually needed to extract a bit and in
addition, for a bit array, the compiler writer had to prepare code to calculate
the address of the byte containing the indexed bit and the shift required.

For bit fields the position was similar but, as well as the address of the
byte, the number of bytes covering the field had to be calculated too. Very
often the position or length of the field had to be restricted otherwise the
instruction sequence to extract it would be too complicated.

This was the situation when the day of the 32000 series dawned. In these
CPUs both bits and bit fields are addressed by a simple base and offset and all
the work is done in one instruction. The base can be thought of as the base
address of an array and the offset as a count (either positive or negative) of the
number of bits from the least significant bit of the byte addressed by base.
What could be easier?

The base can be either the address of a byte in memory or the name of a
register. If it is a register, there are two obvious restrictions: as the offset is
taken from the least significant bit, a negative offset has no meaning and the
maximum offset is 31.

Only the eight general registers can be the object of a bit or field
instruction, though there are instructions to set and clear bits in the PSR which
will be dealt with in Chapter 10. When the base is a memory address the sky is

7
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truly the limit in the case of the offset. It may range from —2 147 483 648 to
2 147 483 647 bits corresponding to —268 435 456 to 268 435 455 bytes, at
which the Instruction Set Reference Manual laconically observes ‘this is
considerably greater than the memory space currently implemented’.

As you would expect, the byte containing the bit described by base and
offset is:

EACbase) +(offset DIV B8)

where the function EAC) returns the effective address of base after all indexing
and indirection is complete: though perfectly clear, a picture or two will not go
amiss. In the first example, base is the name of a register, R4, and the offset is
19 — the bit pointed at is bit 19 of R4 (Fig. 6.1).

offset

31 19 15 0

Fig. 6.1 A bit in a register.

For a register, the offset number is the same as the number of the bit
pointed at. With bits in memory, things are a little more complicated. Before
using this form of bit addressing it is wise to draw a picture or do a little
calculation as one bit looks very much like another and it may not become
obvious that you have got hold of the wrong one until it is too late. Figure 6.2
shows an example of a positive offset to a byte in memory; the byte address
has been selected as :1080 to ease the strain of the mental arithmetic involved
and the offset is 25.

offset

31 23 15 87 0
1003 1002 1001 1000

Fig. 6.2 A bit in memory (offset>0).

The offset is measured from bit O (the least significant) of the byte at
address :1800. 25 DIV 8 gives 3 with 1 over so the offset is 3 bytes and one
further bit. Adding 3 to :100@ gives the address of the byte with the designated
bit, :10083; the offset from bit O of this byte is 1, making bit 1 of the byte at
:1003.

To appreciate the difference between positive and negative offsets, now
take the offset —25 from the same byte at : 1000 (Fig. 6.3).
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offset

7 07 07 07 Q7 0
-1 -8 -16 —24 -32
1000 Offf Offe 0ffd Offc

Fig. 6.3 A bit in memory (offset<0).

The starting point is still bit 0 of :1000 and the bit Os of the bytes
preceding 1000 are at offsets of -8, —16 and so on. The offset —25 breaks
into —24 and —1 giving the bit addressed in the fourth byte before 1000 and
the top bit, bit 7.

Bit fields are designated by a bit address, as above, together with a length;
the offset in the bit address may be negative but the length may not, as it is
always taken in the direction of increasing bit number and increasing address.
This, though eminently logical, does make bit fields addressed with a negative
offset a mite disconcerting.

Like bits, bit fields may be applied to (general) registers as well as memory
and, when applied to registers, there is the obvious restriction (in addition to
the restrictions on bit addressing in registers) that the bits in the field must not
fall outside the register; in other words, the sum of the offset and the length
must not exceed 32.

When the bit field is in memory, the bit addressing is as generous as
before but the field length may not exceed 32 bits. There is a further restriction
on fields of more than 25 bits that they may not span more than three byte
boundaries; that is, the field must be contained within four bytes. This
restriction is due to the CPU accessing memory in double words. Figure 6.4
may help here — from which one may surmise that (offset MOD 8) + length must
not exceed 32.

by 25 maximum L|
- 32 maximum 0,
P 1
39 31 23 15 7 0
A+4 A+3 A+2 A+1 A

Fig. 6.4 The limits of a bit field in memory.

Some examples of bit field definitions in pictures may prove helpful when
you are trying it out for yourself: first, a register (Fig. 6.5). The offset is 7 and
the length is 5; the bit field described consists of bits 7 to 11 inclusive of the
register.
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offset
1 7

7

Fig. 6.5 A bit field in a register.

Now consider a field in memory with a positive offset. In Fig. 6.6, the
offset is 19 from byte A which is bit 3 of the second byte up from A. The length
of the field is 10 and therefore extends from bit 3 of A+2 to bit 4 of A+3
inclusive. When the offset is negative you find that the bit field extends back
over the offset; if the offset is —19 with the same length you get Fig. 6.7. Here
the 10 bits start at bit 5 of A-3 and go up to bit 6 of A-2; note that measuring
from bit 0 of A, bit 0 of A-1 is offset —8, bit 0 of A-2 is offset —16 and so on.

offset
. s 1
7 07 07 07 07 07 0
A+5 A+4 A+3 A+2 A+1 A

Fig. 6.6 A bit field in memory (offset> 0).

offset |
= —

5

7 07 07 07 07 07 0
A A-1 A-2 A-3 A4 A-5

Fig. 6.7 A bit field in memory (offset< 0).

6.2 BIT INSTRUCTIONS

The bit instructions fall into three groups: the first group changes or tests the
bit, the second searches for a bit and the last converts an address and offset
into a bit address.

The instructions in the first group are:

TBITi offset, base test bit

SBITi offset, base set bit

SBITIi offset, base set bit interlocked
CBITi offset, base clear bit

CBITIi offset, base clear bit interlocked
IBITi offset, base invert bit
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In all the instructions the i is to be replaced by b, w or d which gives the size of
the offset operand: as the object affected by the instruction is a bit, the use of
the integer suffix in these instructions is not used to give the object size. The
of fset integer is always taken to be signed and may be an immediate operand.

The base operand must be either a general register name or an address; it
cannot be an immediate value.

Another peculiarity of these instructions is that there is only one object
which takes both the parts played by source and destination operands in the
instructions; that is, the set, clear and invert instructions change the operand.
This will be familiar ground for readers coming from less sophisticated
architectures, but almost all the instructions described so far have had a source
operand which is read but not written to and a destination operand which is
read and written.

All the instructions copy the bit given by base and offset into the F bit in
the PSR where it can be tested by a bfs (branch if F set) or bfc (branch if F
clear) instruction. The addressed bit is then modified as described in the list
above; except, of course, for TBITi which leaves it unchanged. To illustrate
this command, take the form

tbith R1, array

where array is a boolean array in its true form — one bit to an element. By

* making the operand integer a byte the offset may range from —128 to 127 and,

avoiding unnecessary complication, the address array would be either the first
or the last byte of the array. Assuming it is the first byte and R1 contains the
array index (0 to 127), any of the boolean elements in the array may be
examined.

It is often necessary to expand the boolean to word size in order to use it
in a logical expression. This can be done by using the Scondi instruction
described in Chapter 4: 5FSi can be used to set a byte, word or double word to
Lif F is set and 0 otherwise, or, if the inverted value of the boolean is needed
SFCi will set the integer operand to 0 if F is set and to 1 if it is clear. ,

The set, clear and invert bit instructions can be dealt with together as they
differ only in the effect they have on the bit. The $BITi instruction sets the bit
addressed to 1, the CBITi instruction sets it to 0 and the IBITi instruction leaves
it the opposite to how it found it — 0 if it was a 1, 1 if it was 0.

These instructions also test the bit as TBITi does, by copying it into the F
bit; this can be useful in ordinary programs but finds its greatest use in
operating systems in which, as instructions are not interrupted, it can be used
to implement semaphores.

The set bit and clear bit instructions have a second form which will be
more fully discussed in Chapter 10 on operating system support. In this form
they perform the same function as $BITi and CBITi but, while executing, they
set the Interlock pin on the CPU. If there are two or more CPUs accessing the
same memory, any other CPU will be stopped while this operation takes place,
preventing the other CPU changing the bit after it has been read.
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As an illustration of the use of the test, set and clear bit instructions here
is a form of the Sieve of Eratosthenes which you will find in the answer to
Exercise 8 of Section 4.5.4 in the second volume of Donald Knuth’s The Art of
Computer Programming.

The Sieve has achieved prominence recently due to two articles in Byte,
the first in September 1981, and the second in January 1983. The first
proposed using a particular implementation of the Sieve algorithm as a
benchmark both for different machines and, on the same machine, different
languages. The second article has the same algorithm written in nine languages
from Forth to COBOL, taking in FORTRAN, C, Pascal and BASIC on the
way.

The purpose of the Sieve is to find all the primes up to a given number N.
In its simplest form this is done by writing out the integers from 2 to N and
then striking out all the multiples of 2, then all the multiples of 3, and so on.
At the end of this process the remaining numbers will be the primes.

This procedure can be simplified by removing all the even numbers to
start with so that (in programming terms) the length of the array of numbers is
halved; now the array element X[;] represents the number 2j+ 1 and, as all
that is needed is to show whether a number has been struck out or not, X can
be an array of bits.

The description of the algorithm is in four steps; the number M which
appears in the description is the number of elements in the array X.

1. Set X[k to 1 for k=1...M. Set j=1, k=1, p=3 and g=4.
2. If X(j1=0, go to (4), otherwise output p (the next prime) and set k=gq.
3. If k < Mset X[kl =0, k=k+p and repeat this step.
4. Setj=j+1,p=p+2,g=q+2p-2. If j<M go to (2).
The simplest way to set all X to 1 is to make sure it is contained in an

integral number of double words and then set them all to —1, but that would
be cheating and it also wouldn’t show off the set bit instruction. The code is:

N equ 16384 ifind all primes up to N
| equ N2 inumber of elements in ¥
b allocd N>>3 i32 bits in a double word
movw =M-1, R@ ik running from M-1 to 1
setX sbitw R@, ¥ iset X[kl
acbuw -1, R@, setX i loop
sbitw =0, % imissed X[@], so do it
movad 2, R1 id =@
movad @, R2 ik = @
movad 3, R3 ip = 3 (the second prime)
movgd 3, R4 iq =3
testy tbitw R1, ¥ iK[i)=07?
bfc loop igo on to next bit
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iK[J]l is set and so p is the next prime.

movd R4, R2 ik = q
cleark cmpd R2, =M ik < N?

bge loop

cbhitu R2, ¥ iklk]l = @

addd R3, R2 ik = kip

br cleary irepeat the loop
laop addqd 1, R1 id = i+l

addqd 2, R3 ip = pt2

addd R3, R4 iq = qt2p-2

addd R3, R4

addad -2, R4

cmpd R1, =M id < N?

blt testi

The code departs slightly from the statement of the algorithm by making
i, k and q one less than the algorithm values. For J and k this allows their
value to be used directly as the offset as this starts from 0 and, in the code, the
index of ¥ runs implicitly from O to M-1 rather than the algorithm’s 1 to M. Since
k is set from q in step 2, q also had to be reduced by 1.

The second group of bit instructions mentioned consists of only one
instruction:

FFSi base, offset find first set bit

The meaning of base in this instruction is different from that in the test,
set, clear and invert instructions. In those instructions it was an address to
which the offset was added to point to a bit; in this instruction base is the
address of the operand to be searched. To point up this difference, the base
and of fset operands are reversed with base coming first, in the others of fset
was first and base second. Another difference is that the offset length is fixed
at byte and the i suffix applies to the base operand which is to be searched.
The offset is an unsigned number and the range of values which it may take is
limited by the number of bits in the base operand: for ffsb it must be in the
range 0 to 7, for ffswin the range 0to 15 and for ffsd 0 to 31. FFSi searches for
the first 1 bit in the base operand, starting at the bit given by the offset and
continuing until it finds a 1 bit or reaches the last bit in the base object. If a 1
bit is found, the offset is changed to the offset at which the bit was
encountered and, to show that it has been successful, the F bit in the PSR is
cleared. If no 1 bit is encountered before the end of the base operand, the
offset is set to zero and the F flag is set to 1 to distinguish the case where the
least significant bit of the base operand is 1.

Note that if a further scan from the last point reached is required then the
offset must be incremented otherwise the same bit will be discovered.
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As an example, here is a piece of code to sum the number of 1 bits in a
double word:

du ded 112345678 iunlucky for some!
movab 2, R@ ibit count starts at @
movqb @ R1 ioffset starts at @
bits ffsd du, R1
bfs fin ino more bits
addab 1, R@ ione more bit
addab 1, R1 ioffset advanced to next bit
cmpb =32, R1 ilast bit already checked?
bat bits ino, R1 < 32
fin ibit count in R@

The double word du is presented as a dummy. In a real program it would
probably be passed in a register or as a parameter. The register R@ holds the
count of the number of 1 bits found and R1 is the current offset. The FFSi
instruction searches for the next bit and if none is found the bfs instruction
(branch on F set) takes execution out of the loop. This can happen
immediately, in which case the count is zero, or later when the count will be
left as it was on the last time through the loop. If the flag (F) is clear, a bit has
been found, the count is incremented, the offset is incremented to pass over
the bit just found and its value tested to see if it has now passed the end of the
double word.

The third group also has one instruction, cutp — convert to bit pointer. So
far, bits have been addressed by the combination of a base address and an
offset. (This you may call a relative bit address; if the base address is zero then
the bit offset becomes an absolute bit address, giving the number of bits from
the least significant bit in the whole memory space.) As the base is zero it can
be ignored and you are left with a 32-bit quantity as the absolute bit address.
This is the result of cutp, the base address (the number of bytes from the start
of memory) is converted into an absolute bit address by multiplying it by 8 and
adding the offset.

This can be a considerable advantage in languages like Pascal and C
which keep their pointers in double words: it allows them to introduce bit
pointers in the same format as their present pointers.

In this instruction there are three operands:

cvtp offset, base, dest

none of which may be immediate. offset must be a register; base and dest may
be registers. As the base operand must be an address in memory, the use of
register mode for it is taken to mean that the address is contained in the
register.
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6.3 BIT FIELD INSTRUCTIONS

There are two bit field instructions which each exist in a short and a long form;
the instructions perform the load and store operations for bit fields. The bit
field load instruction is called extract and the store instruction is called
insert. Their mnemonics are:

EXTi Extract Field
EXTSi Extract Field Short
INSi Insert Field

INSSi Insert Field Short
Dealing with the short forms first, the instruction format is:

EXTSi base, dest, offset, length
INSSi src, base, offset, lenath

base is a general operand in both instructions but has the same restrictions as
the base operands for the bit instructions. In effect, it must be an address so a
register name is assumed to contain the address to be used and immediate
values are not allowed.

src and dest are fully general operands except for the machine-wide
restriction that operands which are written to (like dest) cannot be immediate;
thou shalt not overwrite a constant. The integer suffix i applies to the src and
dest operands only; these may be bytes, words or double words.

In the short instructions, offset and lenath are both coded into a single
byte. of fset gets 3 bits and length 5; the offset can therefore be any bit within
the byte addressed by base. length is the usual 1 to 32 bits with the extra
restriction on lengths over 25 bits.

As an example of the use of the short instructions here is a binary-to-
hexadecimal conversion:

hextbl dcb '0123456789abcdef!
binary dcd :89abcdef
string alloch 8

movad 4, RO ifour bytes to convert ...
movqd -8, R1 i... into 8 bytes

loop extsd binary-1[R2:bl, R2, 4, 4 iget hi nybble
movb  hextblIR2:bl, string+8IR1:b] ienter into string
addad 1, R1 ipoint to next byte in string
extsd binary-1[RO:bl, R2, 0, 4 iget lo nybble
movb  hextbl[R2:bl, string+8[R1:b] ;enter into string
addqd 1, R1 ipoint to next byte in string
acbd -1, RO, loop igo back for more

In this example the nybbles of a binary number binary are being converted into
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hexadecimal bytes and put into string. As you may notice (among other
things), the converted bytes are put i_nto the string in the reverse o.rder to tl_le
nybbles read out of the number; this is because Vthe binary m{mber is stf)red in
memory as shown in Fig. 6.8, taking up 4 bytes. Each byte is divided into its
component nybbles to show how the hexadecimal digits are ordered in

memory.

4 0 4 0 4 0 a4 o0
A+3 A+2 A+1 A

Fig. 6.8 A binary double word in memory.

After the code has run the string has to be as shown in Fig. 6.9, with the
divisions now representing the bytes of the string. As you can see, the nybbles
of each byte of binary have to be converted in the opposite order to the order
of the bytes in memory: there must therefore be two extract commands in the
loop.

f e d c b a 9 8

A+7 A+6 A+5 A+4 A+3 A+2 A+1 A

Fig. 6.9 A packed decimal double word in memory.

The addressing mode used to access the bytes of the binary number and
the string bytes is called scaled indexing and will be dealt with in the next
chapter as it is closely connected with arrays. At the moment it would be a help
if you could just accept that the operand

binary-1[RQ:b]

accesses the byte at binary-1+R0. RO starts at 4 and diminishes to 1 (the last time
through the loop), so as R® goes from 4 down to 1 the byte addressed goes
from binary+3 down to binary,

Similarly,

string+8IR1:b]

addresses the byte at string+§+R1: as R1 varies from -8 to —1 (the last time
through the loop) the byte addressed varies from string+® up to string+7.
Those of you familiar with arrays in BASIC or C will not be shaken by the idea
of an array which starts at 0 as both these arrays, binary and string, do.
The use of an index running from 1 to 4 to access array elements in
binary[®] to binaryl3] may be a bit more unexpected, but is due to the
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indexing arrangements depending on the instruction ACB. This terminates a
loop when the index is zero. All through this book you will find loop indices
running from —n up to ~1 and from n down to 1 with the indexed operands
being biassed to compensate.

In the above example, to get the actual byte of binary accessed to go from
binaryt3 to binary+® while the index ran from 4 down to 1, the operand in the
indexed instruction was binary-1. In the opposite direction string+8 was used
in combination with an index running from -8 to —1, accessing the bytes
stringt@ up to stringt?,

The extract instructions convert the extracted field to the integer size given
by 1 (here d) by filling the rest of dest with zeros. In this program it is very
important that the 4-bit nybble be converted to a 32-bit integer, as the scaled
indexing mode always uses all 32 bits of the register. If the upper bits of R2
were not cleared, the indexed operand could be accessing a byte in memory far
away from the desired one.

If the extracted field is longer than the destination integer, the high-order
bits of the field are discarded.

The short insert instruction can be illustrated by the reverse, converting a
string of bytes representing a hexadecimal number into binary. The code
layout is very similar to the previous one.

binary alloed 1 iresulting binary double word
string dcb  '89abcdef’
novad 4, RO iindex to binary
wovad 2, R1 iindex to string
loop mouvb strinalR1:bl, R2 iget string bute
cmpb R2, ='a’ ibyte > 'a'?
blt nybl ino, make a digit
subb ='a'-:Qa, R2 iconvert into :Qa..:0f
nybl inssb R2, binary-1[RO:b1, 4, 4;into packed
addqd 1, R1 ipoint to next byte in string
movb stringlR1:bl, R2 iget string byte
cmpb R2, ='a' ibute >= '3'?
blt nyb2 ino, make a digit
subb ='a'-:0a, R2 iconvert into :Qa..:0f
nyb2 inssb R2, binary-1[R0:bl, 8, 4;into packed
addad 1, R1 ipoint to next byte in string
acbd -1, R@, loop igo back for more

The integer size i suffix on the INSSi instruction applies to the src operand, in
this case a byte. In inserting the src field into the destination bit field
(described by base, offset and length), the src operand is right justified in the
field; that is, bit 0 of the src operand goes into the least significant bit of the
field and, if the length of the src integer is greater than the bit field, only the
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lowest length bits of the src integer are used. If the src integer is smaller than
the length of the bit field, the upper part of the field will be filled with zero
bits. In this case only the least significant 4 bits of the src byte will be put into
the field, the remaining high-order bits being discarded.

The long forms of the extract and insert instructions differ from their
short cousins in that the offset has a full register to itself instead of 3 bits,
though length stays the same.

Effectively the difference is that, in the short instructions you must
address down to the byte containing the first bit of the field, and in the long
form of the instructions the full range of the offset may be used to address any
byte in memory. Very probably, the long form will be used by compiler writers
who can arrange more easily for the compiler to calculate the bit offset from a
fixed base address than to calculate the address to the nearest byte. On the
other hand, hand-programmers will probably use the short version as the
address calculations will not be too complex and the offset will usually be
fixed. To alert the programmer to the fact that a different form of the
instruction is being used, the operands are in a different order:

EXTi offset, base, dest, lenath
INSi offset, src, base, length

offset must be in one of the general registers, base has the same restrictions as’

in the short instructions, as do src and dest, and lenath is again a constant.
The hexadecimal-to-binary code is not suitable as an example of the long
instructions, as these instructions draw their strength from the use of the offset
register to proceed in increments of the bit field length through the object in
memory. However, packed decimal numbers are ordered by i increasing bit
number and a double word packed decimal looks like Fig. 6.10.

d7 d6 d5 d4 d3 d2 d1 do

4 0 4 0 4 0 4 0
A+3 A+2 A+1 A

Fig. 6.10 A double word packed decimal number.

The subdivisions are nybbles with the first bit of the field, within each
byte, marked in. Now it is possible to convert from packed decimal to decimal
with the offset increasing from 0 to 28 in steps of 4. The desired string result is
in exactly the same format, with the subdivisions marking bytes rather than
nybbles. The code is:

packed ded 112345678
string alloch 8
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movad 2, Ra iinitial offset
movad -8, Rl istring index

loop extb R®, packed, R2, 4 ;get next digit
orb ='®', R2 iconvert into '@'..'9"

movb R2, string+8IR1:b] ;enter into string
addad 4, Ra ipoint to next nybble in packed
achd 1, R1, loop inext byte in string

As you can see, this code is considerably simplified by being able to use
the offset register, so having only one extract instruction. The use of a register
for the offset has made no difference, in this case, to the number of registers
used by the code; the nybble is again extended, by high-order zeros, to byte
length.

To illustrate the insert instruction, the obvious choice is conversion of a
string of bytes into a packed decimal:

allocd 1
'12345678"

packed i8 digit packed decimal

string dcb

movad 2, RO iinitial offset

movqd -8, Rl istring index

loop movb string+8[R1:bl, R2 ;get next string byte
insb R@, R2, packed, 4 iput decimal into packed
addad 4, Ra i point to next nybble in packed
achd 1, R1, loop inext byte in string

There is little new here; the INSi instruction, like its INSSi cousin, right
justifies the src operand in the bit field, discarding any high-order bits if the
src integer is longer than the bit field or zero filling the high-order bits in the
bit field if the src integer is shorter. Here the sre integer is a byte but only the
low 4 bits are used; these will be put into the nybble in packed with the 4
high-order bits of src being discarded.

EXERCISES

A disk filing system keeps track of the allocation of sectors on the disk by
means of a bit map. The disk has 1536 sectors of which the first 32 are used for
the catalogue —the bit map must therefore contain 1504 bits or 47 double
words. Sector numbering starts at zero and the first free sector is number 32, A
sector is allocated when the corresponding bit in the map is 1 and is
unallocated when it is 0.

6.1 Write and test a small program to leave the number of the first
unallocated sector (if there is one) in RO or zero if they are all in use.

6.2 Write and test another program which, given the number of an
unallocated sector, marks it allocated.

6.3 To delete a file, the system simply marks the sectors it uses as unallocated
again. The numbers of the sectors used by the file are held in one or more
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‘extents’ of 16 words, the end of the list being marked by a zero sector
number. Assuming that the file does not have more than 16 sectors, write
a program to read the sector numbers from the extent .an.d set the
corresponding bit in the bit map to zero. Note that the description above
implies that the program ends either when it encounters a zero sector
number or has dealt with all 16 sectors.

6.4 Tests to see if a character is in a particular character class are widely used
in programming: for instance, to find the end of an identifier the check
may be whether the character is a letter or a digit. This can be very
conveniently implemented as a test on a bit in a set of 128 or 256 bits
depending on whether 7-bit or 8-bit ASCII is in use. Using one of the
instructions from this chapter and an appropriately initialized bit string
(128 bits, 4 double words), write the code to check whether a byte in
register O is a letter or a digit, setting the F flag if it is either.

6.5 Try Exercise 4.2 using an instruction from this chapter rather than shifts
and logical instructions.

6.6 Try Exercise 4.5 using an instruction from this chapter rather than shifts
and logical instructions.

6.7 A packed array of integers in the range 0—31 is represented in memory as a
sequence of 5-bit elements. Write a program which, given an index in the
range 0—127 in register 1 and a value in the range 0—31 in register 0, inserts
the value into the appropriate element of the array: the index correspond-
ing to the first element of the array is 0.

6.8 Write a program which, for the same array as in Exercise 6.7, searches it
for the first element with the value 15.

7 Arrays, records, stacks and
strings

7.1 ARRAYS

There are two instructions for dealing with arrays and a number of
instructions for string handling but, in the main, the high-level language data
structures in the chapter title are handled by special addressing modes.

One of these addressing modes, the scaled index mode, appeared briefly
in the last chapter. When a compiler has to translate an array reference like

int rand[12];

randlil = srand();

it needs to know three things: the value of the index; the value of the index for
the first element of the array (here, in C, arrays always start at 0 but in Pascal
or FORTRAN 77 they can start at any number, even negative); and the length
of each element.

Later in this chapter the instructions for checking and calculating general
array indices will be described but, for the moment, only the method of getting
the address of the correct element in this simple case will be examined. The
compiler has the address of the start of the array (the base address) and the
index of the first element is 0, so to get the address of the first element adding
the index value to the base address is enough. The index of the second element
is 1 and, to get the address of the second element this must be multiplied by the
length of the element — if this is a 32-bit integer, the appropriate multiplier is 4.
In general, therefore, the address of the ith element is base+4%i.

Now the compiler is likely to have the number i in a register and it is
inconvenient to have to shift it or multiply it as this may need another register.
However, for the common element sizes, the 32000 series provides automatic
scaling as part of an addressing mode. To illustrate it:

rand allocd 12 ;the array declaration
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movd i, RO iget the index
movd rand[RQ:d], Rl ;element into R1

The scaled index mode is here applied to the array base address, though it can
be a more complex addressing mode, and the value in R@ is scaled by 4 (4 bytes
in a double word) before it is added to rand.

The general format of this addressing mode is

modelRn:il

with i being replaced by b, w, d or q (in this case and in this case only, g is
added to the letters which i may be replaced by; it stands for quadword, 8
bytes) and Rn is scaled by 1 for b, 2 for w, 4 for d and 8 for 9. Mode may be any
of the other addressing modes except immediate and another scaled
index —you can’t address multidimensional arrays with one cluster of scaled
index modes.

The effect of

movd rand[R@:d], R1

is to take the double word value in R0, multiply it by 4 (in a private place, the
register remains unchanged) before adding to rand (Table 7.1).

Table 7.1 Effect of scaled index.

R® value Effective address
0 rand+0
1 rand +4
2 rand+ 8
n rand+4n

Note well: scaled index mode always treats the index register as a double
word. 1t is usually best to use double word operations on such registers even
though (if you are using small unsigned numbers as the index) word or perhaps
byte operations are sufficient. A later change to the program (using a negative
index or increasing the range of the index) may cause a working program to
misfunction with subsequent loss of hair, sleep, etc.

You may sometimes have a collision of interests between the register, seen
as an index, and the same register seen as a loop counter. The loop instruction
in the 32000 series, ACBi, stops the loop when the register reaches zero (from
either direction) while an index must usually be allowed to take the value zero:
the solution is to apply a negative offset to the addressing mode before the
scaled index.

B e ——
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for (i=0; i<8; it$)
rand[i] = srand();

would be translated as

rand allocd 8
movd =8, RO iloop counter and index
loop cXPp srand jassume result in R1
movd R1, rand-4[R@:d]
achd -1, R@, loop

The instruction cxp is a function call and its full explanation is to be found in
the next chapter.

This formulation ensures that R1 is moved to rand-4+4 the last time round
the loop which is as desired. You will notice that the elements of rand are filled
in reverse order, starting with the last one. If this is undesirable for some
reason you can code the translation:

rand allocd 8
movad =-8, R iloop counter and index
loop cXp srand ;assume result in R1
movd R1, rand+8*4[R@:d]
achd 1, R@, loop

In this example, when R@ has the value —8 the first time round the loop, the
value in R1 is moved to the address rand+8¥4-4*8, which is the first element of
rand, and the last time round the loop it is rand+8%*4-1%4 which is rand+7*4, the
last element of rand. As an additional bonus, you can use movad which is a
shorter instruction than movd since the immediate value adds 4 bytes to the
instruction length.

This is a special case, where the index starts at zero and where there is only
one dimension. In the general case there can be several dimensions and, in
Pascal and FORTRAN 77, the upper and lower bounds of arrays may be any
numbers, positive or negative, as long as the lower bound does not exceed the
upper one. The beauty of the 32000 series for compiler writers is the provision
of two instructions which together do all the calculations needed to translate
indices into an offset to the base array.

To explain these instructions, a little excursion into the underlying details
of arrays may be welcome. Take as a first step the FORTRAN array:

DIMENSION A(S,7)

This in memory looks like:
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1 2 3 4 5

0 1 2 3 4
5 6 7 8 9
100 11 12 13 14
15 16 17 18 ‘19
20 21 22 23 24
25 26 27 28 29
30 31 32 33 34

—
NN AW

In FORTRAN the first index moves fastest as one goes sequentially
through memory. The numbers inside the square give the offset (for the I of
the column and the J of the row) of the byte ACI,J) from the first byte
allocated to the matrix: the offsets are calculated by subtracting 1 from I to get
the offset along the row and then adding 5 times (J-1) to it.

Generalizing this, the calculation required, given

DIMENSION BCM.N)
to get B(I.J) is
B4(J-1)%M+(I-1)

where B is the base address of the array.

Each of the indices I and J have been zero adjusted by subtracting the
index value of the first element in that row from them: the second index, after
zero adjusting, is multiplied by the length of a row of the matrix. In Pascal,
this example would be

b: array [1..N, 1..M] of real;

as in this language arrays have their last index moving fastest as you go
through memory. The indexed element chosen above would be blJ,il.

In the general case, where the upper and lower bounds can be any
integers, the index calculation is slightly more complicated and, to make it
clear, it is helpful to introduce adjusted indices and dimension lengths.
Adjusted indices (called zero adjusted above) are the indices with the lower
bound of the dimension subtracted from them to make them start from zero
(and positive). This transforms them from something ‘user-friendly’ into an
offset — a real world object. To distinguish the adjusted form from the original

——r
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index, the index letter will be given an apostrophe, i', and the length of the

dimension corresponding to the index i (the difference of the upper and lower

bounds) will be called Di — the actual dimension length is, of course Di+1.
With these conventions, the index calculation for the (Pascal) array

a: array [1..u, m..v, n..w] of real;

for the element ali,i k1 with Di=v-m, Dk=w-n (Di, the length of the first
dimension, is not used) is

a + (i'%(Dj+1)+5")¥(Dk+1) 4k’

If another dimension was added to a making it
a: amay [1..u, m..v, n..w, p..q] of real;

and the element indexed was ali,i. k., r] the calculation would be extended to
a t CCi¥(DI+1I+3" )% (Dkt1)+k'I¥(Dreldtr!

(with Dr being 4-p) and the way to extend it further is clear.
Now the 32000 instruction

CHECKi  dest, bounds, src

both checks that the index, say i, lies within the bounds 1 and u and subtracts
the lower bound from it leaving the result in dest; this is the first operation
required in the index calculation.

The instruction

INDEXi accum, lenath, index
performs the calculation
accun*(length+1) + index

which, by comparing it with the index formula, is the remaining part.

The CHECKi instruction requires the bounds operand to point to two
integers (size given by i in the usual way) with the upper bound given first.
This is easy to get wrong, as the natural way of thinking of them is
lower—upper. The src operand is the index to be checked and its size is given
by i; the dest operand must be a register and is always a 32-bit value.

If the index does not lie in the given bounds, the F flag in the PSR is set
and can be tested by the conditional branches bfs or bfc; otherwise it is
cleared.
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Both the index and length operands of INDEXi may be registers or in
memory and their size is governed by i though they are zero extended to 32 bits
before use; accum must be a register and is always 32 bits.

The index operand is expected to be zero adjusted; the dest operand of
CHECKi suits it perfectly. The length operand must be the difference of the
upper and lower bounds of the dimension, one less than the number of
elements.

The way the instructions are combined can be shown by considering the
calculation of the offset from the base of the array declared as

markov: array [4..13,—11..—5,6..7] of real;
and indexed by
markov (i, j, k] : = [F2];

where the unPascal right-hand side is used as shorthand for an expression
which is waiting in the FPU register F2.

First the bounds need to be set up for the three dimensions together with
the length. As noted above, the actual value of length asked for is (upper
bound —lower bound), another example of 32000 service. The upper bound is
first, followed by the lower bound and the length:

bl dcb 13, 4 iupper bound then lower
b2 dcb -5, -11, 6
b3 dcb 7; 6:1

The length of the first dimension of the array is never needed, so has been
omitted. Bytes have been chosen as the integer size for this example as the
dimensions fall into the signed byte range. Now, just to make a complete
example, here are the declarations of the three indices:

i decb 6 irange 4, .13
L] dcb -1@ irange -11..-3
k dcb 7 irange 6..7

The index calculations take place in three stages: a single CHECKi for the
first index (in FORTRAN this is the last index), which is the one moving
slowest as you go through memory; two CHECKi/INDEXi pairs, one for each of
the remaining dimensions; and an instruction with a scaled index operand
which uses the calculated offset to access the array element.

checkb R8, b1, i
checkb R1, b2, J

icheck & adjust i
icheck & adjust 3J

r‘ TSRS
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indexb R, b2+2, R1
checkb R1, b3, k
indexb RO, b3+2, R1
movf F2, markov[R@:d]

(1R (DI+1)+§")
icheck & adjust k
i OO*(Dk+1)¢k'-finished

Very neat — very clear.

7.2 RECORDS AND STRUCTURES

In C they are called structures; in Pascal they are called records and they even
have something in common with that venerable old FORTRAN institution, the
COMMON area. In terms of assembly language (that means in real life) all these
high-level language constructions, however new, exciting and state-of-the-art
they may seem, consist of a base address and a series of fixed offsets from that
base. For instance, the C structure

struct dir_entry {

char name[8];

char typel4];

short extent, record, map[16];
} disco;

consists of an area of 48 bytes with the first byte called disc0; the bytes of name
have offsets 0 to 7 from disc0, the bytes of type have offsets from 8 to 11,
extent has an offset of 12, record of 14, and the 16 short integers (taken to be
words here) of map have offsets 16, 18, ...,47. The NatSemi assembler has the
best directives for describing structures; disc0 would be:

.dsect
name .blkb 8
type .blkb 4
extent blkw 1
record .blkw 1
mnap .blkw 16

.endseg

The Acorn assembler does not have equivalent directives to .dsect and
.endseg; instead you would have to write:

idir_entry offsets

name equ R ioffsets 0..7
tupe equ 8 ioffsets 8. .11
extent equ ) 12 ioffset 12
record equ 14 ioffset 14
wap equ 16 ioffset 16..47

ientry length 48 bytes.
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which has the same effect but doesn’t allow you to, say, add another byte to
type and have all the other offsets alter automatically .(and correctly).
’ The advantage of these formulations is that if you have an array

directory declared as
struct dir_entry directory[31]

then you can easily access the different items in each entry of directory by

addr directory, R1 jaddress to R1
nove extent(R1), this_extent
nove record(R1), this_record

;adiust R1 to point to the next entry
addd =48, R1

To get extent into this_extent and record into this_record '(addr puts the
address of the first operand into the second operand, see Section 7.3 below)
and to access the words in map in sequence:

movd =-16, R2
mapl novw map+2¥16(R1)[R2:wl, R

i... do something with it ...

acbd 1, R2, mapl icontinue until finished

Accessing COMMON is similar except that the common area is external to tl}e
piece of code using it and though the principle of a base addre'ss and offset .Stl.ll
holds, the base address is classed as external and is handled differently. This is

discussed in the next chapter.

7.3 POINTERS

Another high-level language feature which is simple or even obv1.ous 11;
assembler is the pointer. Many and strange are the ways used by the writers o2
weighty tomes labelled {A guide to} /{First Course in}, {Pascal} /{C} (ﬁerm

from 4) to explain pointers where the assembler programmer accepts them as

Arrays, records, stacks and strings 93

those perfectly natural components of the real world, addresses, and their use
as indirect addressing, An example has already been given in the section above,
where the address of the first byte of an area has been put into a register and
the parts of that area are accessed by using the register with a constant offset,
Assembler programmers graduating from 8-bit CPUs (hi there, welcome to the
future) will be used to indirect addressing as it was often the only way to get
variable addressing.

The simplest form of indirect address has already been used throughout
this book:

movd rand, R1

Here, it is the contents of rand which is put into R1 (and you would be very
surprised if it wasn’t), not the address of rand. The address is used to find the
bytes in memory to put into R1; it is a pointer to the first of these bytes. Of
course, the bytes themselves could be another address and to use this second
address to get to the final bytes you would write:

movd rand, R1 iget the address
movd B(R1), R2 iget the contents

" The first instruction moves the 4 bytes starting at the address rand into R1, then

the second instruction uses these contents as an address to get the final
sequence of 4 bytes into R2. Many books on high-level languages take pages to
explain this.

It can also be written as one instruction:

movd B(rand), R1

provided rand is addressed relative to the frame pointer, the stack pointer or
the static base register: see Section 8.2 on memory relative addressing in the
next chapter.

The addr instruction also has a part to play in this; its format is:

addr src, dest

This instruction places the address of the src operand into dest. dest is always
a double word and src can be any addressing mode other than immediate. If
src is a register, the register is assumed to contain an address and the 32-bit
contents of the register is transferred to dest.

The register relative addressing mode has almost exactly the same effect as
the register mode. The instruction

addr B(R2),dest
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transfers the contents of R2 to dest exactly as

addr R2, dest

does. However, register relative mode has a displacement which is added to the
contents of the register to make the address, so

addr S(R2), dest

i i by 5 to dest.
will transfer the contents of R2 incremented . .
It is wise to avoid using register mode for the src operand in tl;;s
instruction as it can be more than a little confusing to a reader, even yourself,
after the passage of a little time. . . .
The addr instruction can be seen as directly 1mplemfent1ng the & operzt?r
in C. This returns the address of the object it is applied to and is used in
initializing pointers. For instance, the piece of C code

char *cp, str[32];
cp = &str[5];
would be translated into

cp dcd ] ipointer to char .
str allocb 32 istring
addr strt3.cp

If, later in the program, you had
cp = &strlil;
this would be translated as

movd i, R3 iget i '
addr strlR3:bl,cp istore pointer

7.4 STACKS AND STACK ADDRESSING

The 32000 makes provision for two stacks,_ one for' the user and qnecfl(:r ttl;i
supervisor. The supervisor, which will be d1§cussed in more depth 1nth apser
10, is a service program with one essential propgrty—wha?evehr. : 1? tuthe
program gets up to, the supervisor will not crash. It is to help in thls atacks
supervisor gets its own stack, which tl.le user cannot access. 1?031 t eiie srl ks
are manipulated by the same addressing modes so, while all the talk i
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section will be about the user stack, the same methods can be used to deal with
the supervisor stack — if you’re so privileged,

The stack is managed by the stack pointer (SP) register; there are two,
SPO0 and SP1. SP0 is used when the User bit in the PSR is set to 0, showing that
the CPU is running in supervisor mode. SP1 is used when the bit is 1 and it is in

obtained by $PRi, Normally, neither of these instructions will be needed as the
operating system you are running under will initialize the stack pointer to what
it considers a suitable value. The actual value of the stack pointer is only of
interest if you want to make sure it isn’t encroaching on your code or
data — something that will again usually be done by library routines acting for
the supervisor. Nevertheless, both these instructions and their effect on the
system will be dealt with in Chapter 10,

The stack is used by procedure jump and entry instructions (covered in the
next chapter) and it is also available to act as temporary memory during a
calculation.

The stack grows downward in memory. Its first location is us ually in high

memory and creeps down towards the locations where your code is loaded
(Fig. 7.1).

start stack top of memory
SP—p
1 1
user
code
bottom of memory

Fig. 7.1 Typical 32000 memory layout.

Negotiations with the stack are performed with the top-of-stack (TOS)
addressing mode, the use of which could not be easier, To ‘push’ an item on to
the stack you use

movd src, TOS

where the movd could be replaced by either of the other two integer moves or
either of the floating point moves. What happens is that the stack pointer is

decremented by the length of the item deposited on the stack and then the
object is moved there.
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SP—>

:3ecO

:3ebe

:3eb8

:3ebd

:3eb0

Fig. 7.2 The stack before a

If we assume that before the double word move the sta
been pushed on to the stack, it will look like Fig.
e, if the integer is only a
it will decrease by 2; if a

Fig. 7.2, then, after src has
7.3, with zzzz the newly pushed quantity. Of cours
11 decrease by 1; if a word,
it will decrease by 8.
le. The TOS addressing mode is

byte, the stack pointer wi
double precision floating point value,
Popping items off the stack is as simp

double word push.

used as the src operand and

novw

Using
differences between the use of TOS mode as
operand, the stack is simply popped, the item
stack pointer incremented. Used
popping will be done as the value 0
the arithmetic operation and the

value.

Even if both operands are
operand performs as described above, leaving t
previous entry and then the dest operand reads

TOS, dest

will move a word off the stack into dest and
I is entirely the responsibility of the user to
or reals on the stack.

the stack with arithmetic instructions is as easy,

back on top of it.

To find out exactly what happens in a particular

as a dest operan

1 XXXX

YYYY :3ecO

SP—>» zz22 :3ebc
:3eb8

:3eb4

:3eb0

Fig. 7.3 The stack after a
double word push.

ck looks like

increment the stack pointer by 2.
keep track of the sizes of integers

though there are
src and as dest. Used as a src
being taken off the stack and the
d, however, no pushing or
f the operand is read from the stack, used in
result written back on top of the original

in TOS mode there is still no fuss. First the src
he stack pointer pointing to the
this entry and writes the result

instruction you must

consider the access classes of the operands. The src operand above has a ‘read’

access class and for this class the stack is poppe
‘read — modify — write’ access class and fo
pointer is made, the value being read, mo
then written back to the same position it left n

since.

r this cla

d. The dest operand has a
ss no alteration to the stack
dified as the instruction sees fit and
o more than a couple of clocks

Arrays, records, stacks and strings 97

The MOVi dest operand has a ‘write’ access class and this, in combination
with the TOS addressing mode, causes the value addressed by the src operand
to be pushed on to the stack.

The access classes for each operand of each instruction are given in
Appendix A. The sizes of the operands are also given in this appendix and
show how much space on the stack is used.

Some instructions either do not have an i or f indicator associated with
them or, if they do, also have an operand with a fixed length. addr always
writes a double word to its dest operand, the count operand for shifts is always
a byte and mouxbd reads a byte and writes a double word.

There is, however, one instruction where you do have to be careful and
that is the MEIi instruction —multiply extended integer. This instruction (see
Chapter 3) multiplies two integers of size i together and puts the full double
length result back in dest. If dest is on the stack, then before the instruction is
initiated the space for the double result must have been allocated. It does not
pop an i integer and then push a 2i one.

7.5 BLOCKS AND STRINGS

Strings are sequences of integers (bytes, words or double words) with a length
limited only by available memory. The instructions provided to handle them
allow the general integer sequences to be moved, compared or scanned. These
instructions have translating variants, but only for byte strings, using a
256-byte table to translate each byte of the string before it is operated on.
Strings of bytes may thus be easily translated from one code to another with a
move instruction, compared using a different collation sequence or scanned
with a coded table to find the next one of a group of delimiters. However,
while these instructions perform operations which on a more primitive CPU
would require a complex loop with several instructions, there is a price to be
paid. At least two and, for some forms, as many as five registers need to be set
up before an instruction. For this reason simpler block instructions are
provided in which the size of the strings is limited to 16 bytes (8 words or 4
double words) and no registers, other than any used by the operands, have to
be set up. The block instructions also exist in only two varieties, move and
compare, the move prototype being

MOUMi  blockl, block2, length

where block1 is the address of the first byte of the first block and block?2 of the
second. The length operand has a range of 1 to 16 if the blocks are bytes (i is b),
1 to 8 for word blocks and 1 to 4 for double word blocks. As the blocks are
moved in double word chunks, if block2 overlaps blockl, black2 will be left
with indeterminate contents. If you want to fill a section of memory with the
same value or the same sequence of values, you will have to use a string move
instead.
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The compare instructions have a similar form

CMPMi  blockl, block2, lenath

with the same interpretations of the operands and the same restrl.ctlt:n:rczﬁ :ﬁ:
range of the length operand. The blocks are compare-d integer ?y n Entil we
same way as the CMPi instruction and the comparison .contmllizz e el
unequal integers are encountered or the e.nd of the block is reac N b.e e
integers are equal, the Z bit in the PSR w1l! be ‘set, otherwise it wSult S
if two unequal integers are found, the N bit will be. set _for the rte e
two integers are considered signed and the L bit will bfe se i
unsigned result. The conditional branches used ' after tplsb concg i,
exactly the same ones as would be used after a CMPi: bat will raOnding et
unequal integer in blockl ils1 (signed)hgreater than the corresp
2 and so on for the other branches. '
blc)c'fl“he string instructions may use some or all of registers R toaer. ;‘;g ;};rzesz
types, move, compare and scan, use R and Rl‘; move 'anc.l cogng4 e
well; R3 is used for the translating form of the 1n§tructlon, ax:i
either the ‘until match’ or the ‘while match’ options are used. S
R@ contains the number of elements in the string and R? the a i
first element of the first string (source string for a move); (Sicagmpare e
string’ SKPSi) operates on only one string but. both move an siring for move)
the address of the first byte of the second string (destlnatl(in il et
in R2. All three registers R®, R1 a;'lﬁ tha a;rgei Stgfld o
ities — make sure the length in R fills the re - .
quanzfllishree registers are altered by the instructlor}s: R_ID is leftl :&I:it-aé?lslfdtig
number of string elements not used whep the operation is com]?ed ov,e Hanc
are left with the address of the next string element to be wor
instruction not ended.
The three instruction types are

MOVSi
CMPSi
SKPSi

Il in registers) but may have options.

and take no op?xiigisct(iglrfy\:irglzut optiins, will simply move elements from
the f;l;}slf srtli?r:,ge tlo the secor,ld }1ntil RO is zero; R1 and R2 will point to the byte
f e endeofn:?:l?ctsit;ilngcontinues until it finds two unequal strii'lg

= com;;lar tops; it clears the Z bit (indicating that they are unequal) in
e er:hse oth,er bits to show the result of the final comparison taken
e F SR s nsigned integers and as between two signed ones: Ro contains
e twf0 :::megnts not compared and R1 and R2 point, respectively, to the
;betnu:llzzfl"a? el:me“ts in strings 1 and 2. If all the elements compare equal, the

irst u

‘r‘
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instruction stops when R is zero and sets the Z bit: R1 and r2 point past the end
of their respective strings.

The scan instruction (SKPS1) is only intended to be used with either the ‘while
match’ or the ‘until match’ option —it doeg nothing useful otherwise. These
options are selected by putting [w] for ‘while’ or [ul for ‘until’ in the
instruction’s operand field,

The compare and move instructions may also have either of these options
selected

Movsi [w]
CMPSi [ul

ivhile option
iuntil option

in which case their operation is modified by the presence or absence of a match
between the current element in string 1 and the integer in R4. If the option is
‘while’, the operation continues only as long as the current element from string
1 is the same as the integer in R4, If the option is ‘until’, the operation stops as

Note that the NatSemi assembler does not require the brackets an
around the option letters — this is the Acorn format.

As the string operation can end either because all the elements have been
looked at or because of a while or until match, the F bit is used to give a single
quick way of distinguishing the cases: if the string ends on a while or until
condition, the F bit is set; otherwise it is clear.

backwards movement, the letter b must appear (in brackets for the Acorn
assembler) in the operand field; if it js combined with the while or the until

option then the b must be separated from the w or y by a comma (both
assemblers)

MOVS i [b]
CMPSi [b,wl
SKPSi [b,u]

ibackwards
ibackwards and while match
ibackwards and until match

To illustrate the versatility of these instructions, they will be used to code
two of the C standard string functions,

In C, strings are terminated by a zero byte (a null string will contain just
this byte) and all C strings have a fixed maximum length which, for the
burposes of this illustration, will be assumed to be given as the constant MAXL.

— L
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The function index searches the string s for the first occurrence o.f the
character c: if the character is found the function returns its address; if the
character is. not found an address of 0 is returned which C interprets as the

special pointer value NULL.

ifirst find terminator to get lenath to search

movd =MAKL, R@ imax string length
addr s, Rl ifirst byte
mouvqb 0, R4 iterminator
skpsb [ul iseek zero bgte.
subd =MAXL, R@ iget actual string lenath
negd Ra ino. of bytes to scan
iterminator found: search for c
addr s, R1 ifirst byte
movb c, R4 ibyte to match
skpsb [ul iscan until
. [} ')
juhat's haﬂ:ZSEd. fin ifound, pointer in 81
movad B, R1 inot found, null pointer

fin

There is a bit more than just letting SKPSi rip since, as i.t is lookm_g.for on:i:
character, it could easily slip past the string tern.linator 'w1thout.notlcmg (an 1
perhaps scan through the rest of memory lookmg. for it), so flrst the Tct'l:lha

string length up to the terminator must be c.astabhshed by doing exa}cit yf the
same scan but this time for the zero byte, limited by the declared length o ! e
string. In a proper version of the routine there would' be arrangementsf or
bringing parameters in and plasfsing fsqlts qut tp;:, in the absence of an

i nvention, this is left to the imagination.

eStab’i'lIsltepdrggedure strc’mp is rather easier as the until option can be use'd a.t tge
same time as the comparison to stop it at the end of the shorter strlx}g, the
procedure compares two strings (here called s1 and 52)- and retl_lrns an mtegelr
(here assumed to be a 32-bit integer) with the value 0 if thfe strings are fequa(i
—1if s1 is less than s2 or 1 if s1 is greater than s2. The strings are con51de.re1
equal if they are identical, the same length anfl thef same sequence of b.ytesi s

is considered less than s2 if, at the first c.hffermg byte, the byte in si is
(unsigned) less than the corresponding byte in s2.

movd =MAKL, R imax lenath of si
addr sl, Rl

addr s2, R2

movqb 0, R4 iterminator

mpsb [ul _

Ef‘: ends iend of string

shid R@ il if s1>52 else @
addd R@, RO i2 if s1>s52 else @
addqd -1, RO il if s1>52 else -1
br fin
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ends cmpqb @, A(R2) iequal if string 2 also zera
shed Ri i® if both ended else 1
negd RO, RA iQ if both ended else -1

fin

The number of characters to be searched can be set to MAXL since the cmpsh
will stop either at the first dif: fering byte or at the string terminator (match on
the byte in R4).

If it ends on finding the terminator (which will be s1’s terminator), the
strings are equal if the byte in s2, pointed at by R2, is also a terminator;
otherwise s1 must be shorter than s2 and is therefore less than s2.

If the cmpsb ends on a differing byte, the shid instruction, together with
the two following instructions, will leave 1 in R@ if the byte in s1 was greater
than that in s2 and —1 otherwise. Note that this includes the case where 2 is

shorter than s1 as the byte in s1 (which cannot be zero) will compare high to
s2's terminator.

EXERCISES

7.1 Exercise 6.7 accessed an array under the assumption that the index had
already been checked and was in the correct range. Using instructions
from this chapter, add checking code to that program for the index. If the
index (instead of running from 0 to 127) ran from —64 to 63, what
changes would have to be made to the checking code?

7.2 In Exercise 6.3, a program was written to delete a file by deallocating all
its sectors: as presented there, a file could only have at most 16 sectors.
The DFS is enhanced (by popular request) to allow more than 16 sectors
to a file by adding another word to the sector list which points to a
continuation of the list with another extent of identical format. The
pointer on the last (or only) list is zero. Extend the program from Exercise
6.3 to delete files with sector lists in the new format. You may assume that
the sector lists are in memory and that you are given the address of the
pointer word for the first one in register 1: the pointers are all unsigned
offsets to this address. The layout of each sector list is:

next allocw 1
list allocw 16

izero or offset

1.3 The business end of an integer desk calculator program contains six
routines:

1. Push the double word in register 0 on to the stack.

2. Pop the double word at the top of the stack into register 0.

3. Add the top two double words on the stack together, leaving the
result en the stack.

4. Subtract as in routine 3 above.
. Multiply as in routine 3 above,
6. Divide as in routine 3 above.

W
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1.4

1.5

7.6
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The division routine should have a check for an attempted division by
zero, leaving the maximum negative double word integer on the stack as
an error return. The various routines are selected by a 32-bit value in the
range 1-6 in register 1, the call to routine 1 assuming the presence of the
value to be pushed in register 0.

Write a program to these specifications.

To test the program you’ve written, write a small loop to exercise it,
taking the values as a sequence of double words with a count and result.
For instance, to multiply 3 by 6 and check the answer, use

test ded 7,1, 3,1,6, 5 2, 18

where the first value is the count of double words (not including itself)
followed by the four commands and the result (as the final double word).
The push command 1 above is followed immediately by the value to be
pushed.

Write and test a piece of code which returns the address of the first
non-blank character in a buffer. The buffer is declared as:

buffer allech 1 ino. of bytes
allocb 80  ;buffer contents

The first byte is the count of bytes in the buffer and is in the range 0—80,
the first byte in the buffer being found at buffer+1. The flag F should be
set if a non-blank byte is encountered, otherwise it should be clear. If the
buffer is empty F should be clear on exit.

In Exercise 6.4 a bit test was used to see¢ whether a character was in a
certain character class or not. This is oftén only part of the job as it is used
in a loop to collect the identifier byte by byte. A more efficient means of
doing this is available in the skpst instruction: with a translation table set
up to contain 1s in the bytes corresponding to letters and digits and zeros
elsewhere, it can be used in one form to skip over bytes which are neither
letters or digits and then, in another form, to skip over letters and digits
until it comes to the first byte after the identifier. With the address of the
first byte of the identifier and the first byte which follows it, a mousb can
be used to transfer it from the buffer to a place of its own (say ident, 32
bytes long).

Using the declaration of buffer in Exercise 7.4 above, write and test a
piece of code to extract an identifier from it. What changes would be
needed to cope with

a) an empty buffer,

b) a buffer which does not contain an identifier?

What changes would be needed if the code was to be used to extract not
only the first but the following identifiers from the same buffer?

As the string instructions operate not only on bytes but on words and
double words too, they can be used as efficient table lookups as well as the
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more u'suz'll string searches. Assuming that register 4 contains a three letter
?,I:!b-rew‘natlon of a month name with the fourth byte zero, using a suitably
initialized table and a skpsd instruction write a piece of code to convert the

mont.h name into a month number (1-12) setting F if it is successful and
clearing it if not.

— #— —
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In this fragment of code, the bytes are taken from strin
this is not convenient you can write

3 Jumps, procedures and string  alloch  gp

g in reverse order. If

byte alloch 1
S movxbd =-80, R1
mOdUIe loop moub stringt80IR1:b], byte

... do something ...

acbd 1, R1, loop

Note how the movzbd has had to change to mouxbd to sign extend the byte —80

8.1 JUMPS to double word. R1 must be a ful] double word integer because it is used in the
; in high-level scaled index operand of noub,
i nterpart of the much maligned GOTO in : )
EDNIEE tl;el reiltllllt:sg(l):nguapges which haven’t dropped it in shame) and are The compensating offset is calculated so that the value of the index plus
langua_lges (ath eavsvell-heing of assembler programs. Some jumps have already the offset (which can, of course, be negative) is zero at the appropriate point in
Essentlalr:t(‘)on:d in connection with comparison in Chapter 3 —these were the the loop. In the first loop, this point is the last time through when R1 is 1 and
een menti i

conditional branches together with the unconditional branch br.

14+(-1) is zero as desired; in the second loop the calculation is done for the
first time through when g1 is —80.

Things get a little more com
indexing is used — an example of

Another branch instruction, ACBi, has been used from tir'ne.to time in
loops with a brief explanation. Now is the time for a full description.

plicated when word, double or quad word
The general format of the instruction is

double word indexing should be enough:
ACBi  inc, index, dest

int allocd 25

i i i I allocd 1
where inc is a quick integer — a small constant in t!le range 78 to 7, index 15; a
general operand addressing an integer of length given by i in the mrt}emor; li:é i _—
and dest is a label in the program (it could be given as an offset from Toop b T T
instruction itself but this is unsafe programlpmg). . |
e In operation, inc is sign extended to the integer le_ngth and added to index o
with the sum replacing the previous value. If the sum is nctt zero, the pro_gratr)n
will be resumed at dest; otherwise the instruction following the ACBi will be achd -1, R1, Toop
executed.

It is used for controlling loops and, since a§sembler loops tendt;o l}zlir\::
index registers addressing arrays, a subterfuge 1s’needed t9 getb tat . ee e
element (offset 0) as ACBi ends ﬂ:le loop on a zero index. Tl;lfs slut e:l;hegarmy
generally take two forms, the simplest be_mg to add an o- ;e .ot o
address to compensate for the index stopping short of zero; for insta ,

which goes through int starting at the end and

int allocd 25
I alloed 1

mouxbd =-25, Rq

string alloch ?0 loop  movd int+25%4[R1:4d], I
allochk

byte e ... do something ..
movzhd =80,

loop movb string-1[R1:b), byte

achd 1, R1, IOOP
... do something ...

going forwards through int.
acbd -1, R1, loop

104
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In each of the last two loops, R1 is multiplied by 4 before use so, in the last
time,through the first loop, R1 will be 1 which will be converted to 4 before
being added to the address int-4. In the first time through the second loop, R1
will be -25 scaling to -25%4 which when added to int+25*4 gives int+@ as
required.

In choosing the mnemonics for the different jump instructions, NatSemi
chose the name ‘branch’ for those that took their destination as a distance
relative to the current address in the program counter (the first byte of the
instruction) and gave the name ‘jump’ to those instructions that used a more
general address.

The branch instructions add their operand value (a constant which can be
either positive or negative) to the address in the PC which causes execution to
continue at the new address. Normally the operand will be a label as the length
of 32000 instructions is not at all easy to calculate, but it is possible (though
foolhardy in the extreme) to use the PC symbol, $, to give the offset directly

br  $+3
nop
nop
nop

In this artificial example the br instruction takes two bytes, one for br and one
for the operand; the expression $+3 adds 3 to the PC, starting execution again
at the second nop. If you were to replace the first nop by a simple, no-nonsense,
plain, common or garden old movb you could find the second nop moved away
from the br by anything from 2 to a theoretical 18 bytes, depending on the
addressing mode of the two operands: you could easily drrange for the branch
to land in the middle of an instruction—a fate so easily avoided by using a
label instead.

The branch instructions will be more generally used in assembler
programs as jumps are most useful in getting exotic effects. There are two
instructions with the title ‘jump’. One is jump, which causes execution to
continue at the address given by its operand and, as this is a general operand,
the address may be in a register or on the stack or it may be reached indirectly
through an address in one of these places. One example of the use of this
instruction is in implementing an alternative return from a FORTRAN
subroutine where the address is passed as a parameter. It would also be used
to jump into a ROM where the code s at a fixed physical address, though it is
more likely that the second jump, isr jump to subroutine (see next section),
would be used instead.

There is also a multi-way branch which acts like the computed GOTO in
FORTRAN; it is called

CASELi sre

The operand is an integer (with its size given in the usual manner by i), which
is added to the address in the program counter (the address of the first byte of
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the instruction) to give the point at which execution is to continue. As in the
case of the computed GOTO, the instruction has a table of address offsets, one
of which is picked by the operand which will usually be in scaled index mode.
An example will help:

one ia label
two ianother label
three  a third label
movd i, R3 iset jump index
casel caseuw addrl[R3:w]
addril dcw ohe-casel
dcw two-casel
decw three-casel

The labels one, two and three are to be understood as being scattered through
the text preceding case; immediately before case there is an instruction which
sets R3 to one of the values 0, 1 or 2, depending on whether the branch is to be
to one, two or three. The scaled index mode operand of case multiplies R3 by 2
before adding the result to addr to get the entry in the table; the word entry is
then extended to 32 bits internally before being added to the PC.

The case instruction has a label on it so that the offsets in the table give
the distance from the first byte of case to the label; as execution will never
reach the byte following case (unless by accident — a fatal one), the table can
follow immediately. Note that all the offsets will be negative and that they will
be sign extended to 32 bits before being added to the PC. The offsets can be
bytes if the distances are short enough; or double words; it just depends on the
way i'is replaced. If you are using the scaled index mode, though, the scaling
must agree with the integer size.

8.2 PROCEDURES

There are two types of procedures, internal and external: in this section only
internal procedures will be dealt with as external procedures are closely tied up
with modules and belong in the next section.

Procedures are familiar from high-level languages where they may be
called subroutines or functions instead. A great deal is made of the difference
between procedures and functions, but from an assembler point of view they
are the same thing: a piece of code entered with a special instruction,
arguments passed in by one means or another, results passed out perhaps and
then another special instruction to continue with the calling program. The
difference between a procedure here and another there is not whether results

are made available to the calling program but how arguments and parameters
are passed.

TIIII——“S"—_——
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This is not the place to catalogue the methods used in antiquity, but the
means provided by the 32000 series for the task: the stack. The stack is a
perfect method for keeping track of procedures. It provides an apparently
infinite expanse of memory so there is no need to calculate a size for the largest
parameter list, and it is, again apparently, capable of holding the information
for any number of routines calling routines calling routines ...

There are two instructions to call internal procedures and they are
distinguished in the same manner as jump and br; isr takes a general operand
as its address to jump to and bsr takes an offset from the program counter. bsr
would therefore be used to call procedures directly by name, whereas isr
would be used if the procedure was being called indirectly. In C terms, jsr
would be used to call a procedure via a pointer or even a pointer to a pointer to
a function returning. .. Apart from this they both behave in the same way,
they jump to the address given by the operand while pushing the address of the
next instruction after bsr/isr on to the stack. Internal procedures, whichever
means is used to call them, end with the same return instruction, ret; this
removes the return address from the stack and puts it into the PC, returning
execution to the instruction following the call.

This is just the bare mechanics of call and return. There is also the matter
of passing parameters to the called routine and returning results. This, by
32000 convention, uses the stack and MOVi and MOV with TOS addressing mode
for the destination to put them there. As this takes place before the call and the
return address is pushed on to the stack at the call, they are to be found at a
positive displacement from the stack pointer and what is called memory space
addressing mode must be used to fetch them. For illustration, assume that a
procedure needs three parameters passed to it; one double word integer, an
address and a single precision real. The calling sequence would go a little like
this:

movd int, TOS iint to stack
addr struct, TOS ;addr to stack
movf x, TOS ireal to stack
bsr proc inow call routine

On entry into proc (if the value of the stack pointer had been :0£81@ before the
movd) the stack would look like Fig. 8.1. The integer double word occupies the
bytes :8f@df to :dfd0c, the address the bytes :@f@db to :0f@d8, the real :@9fOR7
to :@f@04 and finally the return address is in :@f223 to : {000,

In all these cases the least significant byte of the object is, as usual, in the
lowest addressed byte of the four it occupies and, when it is pushed on to the
stack, the stack pointer is decremented to point to this byte.

Before the first stack instruction in the example above, the stack pointer
had the value :@f218 and was pointing at the least significant byte of the object
that had last been pushed on to it; pushing the int caused the stack pointer to
be decremented by 4 and the int to be written to that address. After the call,
SP has the value :0f800 in it.

ﬁfﬁ*
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+3 +2 +1 +0
T T
?2?7? :0f010 {old SP)
-
i I I
int :0f00c
——
addr :0f008
——
real :0f004
+—+—
return '0f000 «— gp
| | 1

Fig. 8.1 Procedure arguments on the stack on entry.

The procedure would, quite reasonab
arguments and here there is a difference in tl
from the way the NatSemi assembler allo
symbols to be given the addres
could be defined as:

ly in my view, like to get at its
1e way the Acorn assembler does it
ws. The NatSemi assembler allows
ses of objects on the stack and thus symbols

int .equ x'Bc(SF)

iSP + offset x'
struct .equ x'B8(SP) iSP + offset & ‘
real .equ x'04(SP) iSP + offset 4

80 you could use them in instructions like
movd  int, R@

and
movf  real, F@

;l"l:;'bA]corn assen}bler will 'allow only absolute, SB-relative or PC-relative
a{ ols to be defined and, if you wanted to use symbols to make it easier to
ter the program, you would have to write

int equ : .
struct ey gg ioffset from SP understood
real equ :04

with a corresponding change in the instructions

movd int(SP), Ra

and

mouf real(SP), F@

The addressing mode allowin

g us to write disp(SP) is ¢
Space mode and can be used with t alled the memory

he PC as well as the stack pointer. There are
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two other dedicated registers it can also be used with, the static base register
and the frame pointer register. Using these two registers will be dealt with
shortly.

The address parameter called struct is intended to be the address of a
structure (or record) and there is a truly amazing addressing mode which
allows the programmer to get at the fields of the structure without the necessity
of putting its address into a register first: it is called memory relative. For the
purposes of illustration, let us assume that the struct whose address is the
second parameter has the following fields:

a decl 1.2

i dow 3

d ded 4

s dcb 'A string'

The long real a is the first object in the structure and has offset 0, the word i
has an offset of 8, the double word d has an offset of :@a and the first byte of
the string has an offset from the beginning of the structure of :@e. Using the
memory relative addressing mode in the procedure you can write

movd  :Ba(B(5P)), R3

to move the contents of d in the structure pointed at by the second parameter
to the register R3 —in one addressing operation. Disentangling it you get 8(SP)
as the address of the pointer to the structure and :8a(8(SP)) takes the pointer,
adds the displacement :8a to it and ends up with the address of the first byte of
the double word d; this could be done with older architectures but it required
setting indirect bits all over the place, which removed a bit from the addressing
range and required whoever sent the parameter to be sure and set its indirect
bit —a fruitful source of error. Here it is all done in the instruction wanting to
access the object and much more under control.

Now that a way of gettingat parameters is available, one of the next
concerns is the use of registers. With so many registers, it soon becomes a
habitual part of the 32000 programming style to keep things in registers as far
as possible. When this is extended to procedures, an element of caution enters
on to the scene as one of the registers used by the procedure may contain
something the calling procedure would rather not have spoilt. This problem is
solved by two further instructions, one to save registers on the stack and the
other to restore them. There is some controversy about the best way to do this.
One faction holds that to save all the registers a procedure uses on entry to the
procedure is wasteful as some of the registers may not be in use by the calling
procedure and therefore need not be saved. In this line of thought each
procedure should, just before calling another procedure, save any registers it
feels necessary. The other opinion thinks that the saving is slight and the
additional convenience (to the caller) of being confident that none of the
registers will be altered by the called procedure is more important. NatSemi

Y’—<*
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have not taken sides in this ar
sets of register saving instruc
other for use on entry to a
or other convention.

The msFructions just to save and restore registers are, as you have come to
expect, sensibly named. Another company not only chose mnemonics which
nobody b.ut a memory freak could remember but also copyrighted them!
!Excellent idea — somebody else might have decided that they were some kind of
industry standard instead of choosing the more obvioys and memorable
ones. However, the 32000 instructions are called ’ ’

gument, they have simply provided two separate
tions, one for use by a calling procedure and the
procedure - the operating system can plump for one

save reglist

and

restore reglist

reglist is a list of one or more general register names, separated by commas
and enclosed by brackets; to save registers R1, R3 and RS you would write

save [R1, R3, R5]
and to restore them later

restore [R1, R3, R51

They are saved on the stack and, if the stack pointer before the save is :1¢doa

after the save instruction the stack looks like Fij i i
g el ig. 8.2 and the stack pointer is

+3 42 +1 +0

| R i

7?7? :1fd00
—+—

R1 11icfc
——+

R3 :1fcf8
(S .,
T T T

R5 i1fcf4 - «— gp
[ ! 1

Fig. 8.2 The stack after save [R1, R3, RS1.

The registers are saved starting with the lowest numbered one: that is
after the save, the stack pointer contains the address of the most si’gnifican;
byte of the double word containing the highest numbered register.

The other pair of register savers goes rather further than this as it includes
some of the other things procedures can usefully do on entry. If an error
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occurs while a procedure is executing, it is very helpful to be able to print out
the chain of procedure calls and each procedure’s variables from the point of
error. To do this, the part of the stack used by a particular procedure (a stack
frame) needs to contain the address of the start of the stack space used by the
procedure that called it — and so on up to the main program. Each part of the
stack used by a procedure is called a stack frame and the NS32000 architecture
provides a frame pointer which is set up by the procedure entry instruction
(and cleared by the procedure exit) to offer just such a service. These
instructions are called

enter realist, constant

and
exit reglist

with reglist given as for save and restore. (The purpose of constant will be
unveiled later.)

If we assume that the stack pointer has the value :1d28@ and the frame
pointer has the value :1d1@@ then, after executing the instruction

enter [R2, R4]1, @

the stack will have the appearance of Fig. 8.3. The old value of the frame
pointer has been pushed on to the stack and the frame pointer now points to
this stack entry; the two registers R2 and R4 have also been pushed on to the
stack (in order from R@ to R7) and the stack pointer is left pointing to the last
entry. As it would be cruel to deny the procedure use of the stack while it is
performing its task, it will need to save a pointer to the parameters or perhaps
move them from the stack into memory. However, since the frame pointer
remains in the same position (as far as the procedure is concerned) until the
exit instruction, it can be used to access the parameters instead, leaving the
stack pointer free for other purposes. To show how this can be done, the
parameter setting and call and the procedure entry code will be combined as:

+3 +2 +1 +0

] 1 1

7 :1d080 (old SP)
1 1 1

) L )

:1d100 :1d07¢  <— FP
—+—

R2 :1d078

—+—

R4 :1d074 <—SP

! 1 1

Fig. 8.3 The stack after enter [R2, R4]1, 0.

RS
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movd int, TOS iint to stack

addr struct, TOS iaddr to stack

mouvf x, T0S ireal to stack

bsr proc inow call routine
proc enter [R2, R4], @

which gives the stack picture shown in Fig. 8.4 after the enter instruction has

been executed.

+3 +2 +1 +0
?;?? : :1d090 (old SP)
ir:rt ! :1d08c (FP+:10)
ad:dr II :1d088 (FP+ :0c)
re:al : :1d084 (FP+ :08)
ret:urnlr :1d080 (SP on entry)
:‘ld}IOOJI :1d07¢ -—Fp
F(:Z II :1d078
—
; Rr4 : :1d074 ~—Gp

Fig. 8.4 The stack with procedure arguments after enter.

Now the stack can be used as desired while the parameters can be accessed
from any part of the procedure code by using an FP-relative (memory space
ad(_lressing mode) operand. The two forms of addressing mode given above
which used the stack pointer, can also be used with the frame pointer. The’
address parameter, in the example on accessing parts of the structure it was
supposed to point to, was used to move its double word field into R3 with the
following instruction and memory relative addressing mode:

movd :0a(8(SP)),R3

As§uming the same layout for the structure but the offsets shown for the frame
pointer above, the operand can be rewritten as:

novd :0a(:0c(FP)), R3

—_______________ . __
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The last topic in internal procedures arises from automatic variables, also
known as local variables. They are allocated space in the current stack frame
and disappear when the procedure exits (or, rather, when the exit command is
executed) — this being the purpose of the mysterious constant on the enter
instruction. The full description of enter is: first, it pushes the contents of the
frame pointer on to the stack and then copies the resulting value of the stack
pointer into the frame pointer; second, it subtracts the value of the constant
(second) operand of the enter instruction from the stack pointer, thus making
a space of (constant) bytes in the stack frame; and third, it pushes the contents
of the registers given in the reglist operand on to the stack after the space. To
illustrate this, we can assume that the procedure must make a copy of the
structure addressed by the second parameter in the example above. The
procedure will now need 22 bytes of local storage to hold it. Just taking the
procedure entry code this time, with the alteration to allocate local storage, we
get:

proc enter [R2, R4]1, 22
novmw BC12(FP)),-22CFP), 7

novnw 14C12(FP)),-8C(FP), 4

The instruction moumw has been used here on the assumption that a 32016 is in
use. Transferring bytes when the bus width allows words to be moved doesn’t
make much sense; if a 32032 is being used instead, then as far as possible
double words should be used.

After execution of the enter instruction and the two following move block
commands the stack would look like Fig. 8.5. The stack picture has been
structured to show the fields of the structure as separate elements on the stack;
the fields can now (and throughout the code) be referred to as, for example,

movl =16(FP), F2 ; long real
movd ~=@c(FP), R4 ; dbl word

The exit instruction reverses the actions taken by enter. First, it restores
the registers saved by enter. It assumes that it has the correct reglist, popping
double words off the stack and putting them into registers, starting with the
highest numbered in the list. Second, it restores SP to the value it had before
enter by copying the current contents of the frame pointer into it. Lastly, it
restores the frame pointer by copying the value saved in the stack back into it.

There is one further item which has been kept, appropriately, till last; the
return instruction. This has the format

ret constant

and takes the return address off the stack, putting it into PC, causing
execution to continue immediately after the isr/bsr call. There are some

I 22—
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+3 42 +1 +0
T T T
?I?? :1d090 {old SP)
[
I I 1
int :1d08¢ (FP+:10)
| | 1
1 I
addr :11d088 (FP+ :0c)
1 L
| I
real :1d084 (FP+ :08)
| 1
1 T
return :1d080 (SP on entry)
] L
T I 1
:1d100 :1d07¢ -—Fp
——
an jr
t s Al :1do74 (FP—:08)
| 1 1
1 T
4 :1d070 (FP—:0c})
L 1 |
I
3 -1d06e (FP—:0e)
—
1.2
w :1d066 (FP—:186)
I ] 1
R2 :1d062
—t—+
R4 :1d05e -—SP

Fig. 8.5 The stack with procedure arguments after a block move.

obvious provisos. ret assumes at its execution that the stack pointer is pointing
to the return address placed on the stack by the call, and care must be taken

movd int, Tos iint to stack
addr struct, TOS iaddr to stack
mouf x, T0S ireal to stack
bsr proc inow call routine

_ I
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proc enter [R2, R41, B
exit [R2, R4]
ret 12 iremove parameters from stack

There is, however, a case in which the routine can’t tell how many
parameters to remove from the stack, like printf in C or write in Pascal, which
are called with a variable number of parameters. Even here, the 32000 has the
answer. There is an instruction

ADJSPi src

which can be used following the call to remove src bytes from the stack; and it
is at the call that the number of bytes occupied by parameters is known. The
operand is taken to be a signed integer and is sign extended to 32 bits before
being used. The stack pointer is adjusted by subtracting this operand from it;
if the integer is positive, the stack is lengthened and if negative, the stack is
shortened. For the purpose of ridding the stack of surplus parameters, the
integer must be negative.

The size of this integer is given, as usual, by i. If the procedure used above
did not take exactly three parameters, the procedure top and tail and the
calling sequence could be modified to:

movd int, TOS iint to stack
addr struct, T0S jaddr to stack
movf x, T0S ireal to stack
bsr proc inow call routine
adJispb =-12 iremove 12 bytes
proc enter [R2, R4}, @
exit [R2, R4]
ret '] i leave stack unchanged

The NatSemi assembler has a nifty set of procedure directives which
makes it much easier to write parameter passing procedures, as the careful
calculation of parameter addresses is not needed. In outline, a procedure is
written in the format:

iStart procedure block.
<label> .proc
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iParameter block.
{ label } .blki

{label}  .blki
iReturned values block.

.returns ireturned values block
{ label } .blki

.blki
iLocal variable block.

.var [reglist]
{label} .blki

{label} .blki
iProcedure body.
.begin

. instructions ...

.endproc

The procedure s'tarts with the .proc directive labelled with the procedure
game' gnd .ends w:t'h ‘e'ndproc; immediately following .proc comes a
I ehsc;iu:iuqn (1}:1 allocation directives) of each parameter, each of which may be
abelled, in the order of th i ;

"5 ¢ statements pushing them on the stack before the

;f thf: procedure returns one or more values, or a multi-word value these
ia{ret escribed by another §et of directives following the .returns directive.

edm.';led val_ues are overlaid on the stack space taken up by the parameters
:n » If there is more returned value space than parameter space, the parameter
brl)ac;: must. be ex.tended appr_opnately. The local variables are described in a
1-e;)icstestatrtmbg with d.uar which has an optional reglist operand giving the
Is to be saved o i
i n entry. All the variables can be labelled or not as
i Finally, ‘the instructions forming the procedure body are bracketed
= l\;veleln .begin anc! -endproc; this last directive generates an exit instruction
ith the same reglist as that on the .var (thus avoiding unfortunate clerical

errors), followed b
i ey y a ret (for local procedures) or rxp (for exported
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As an example of the use of these directives, here is an exp.orted proce'dure
box which calculates the volume of a box given the length, width and height.

box: : .proc
lenath: .blkd ilocal name for 1st parameter
width: .blku isecond parameter

depth: .blku ithird parameter

ireturn value block-takes up exactly the same
ispace as the parameter block
.returns
volume: .blkd ireturn the volume
howbox : .blkd isuccess/fail indicator
.var [RO]

ilocal variable block

templ: .blkd

temp2: .blkd

istart the procedure code
.begin

isign extend width and depth to double word
movxud width, templ
movxud depth, temp2

iuse R@ as an accumulator

movd lenath, R@
muld tenpl, RO
muld temp2, RO
iset the return value
movd R@, volume
iinitialize the condition to s,uccess
movd ‘Good’, howbox

iset the indicator to ‘fail’ if the volume
iis zero or negative

capqd B, R2

blt fin i® < R@, ok
fail: .equ ’Bad!

movd fail, howbox
fin:

.endproc

Note how easy it is to think that the b1t should jump to an instr.uction setting
fail into howbox, until careful analysis shows that the branch is taken when

volume is greater than 0!
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8.3 MODULES

In its support of modules, the 32000 series has made another giant leap
forward. Modules embody the modern concept of information hiding,
allowing data structures to be manipulated solely by procedures bred to the
purpose with no other access permitted. This means that as a list can only be
written to or read from by carefully tested procedures, the list can be kept
uncorrupted and not only can other external code be prevented from making
unexpected changes to it but also any use of the list can be guaranteed to have
no unexplained side-effects.

The ideal, in this type of programming, is to have a program split into
several modules which affect one another only in clearly defined and
documented ways, this being enforced by allowing strictly controlled modes of
access which are easier to test and have their correct action verified. The key
words, together with module, are import and export: using the directive export,
a module allows knowledge of only those objects (procedure entry points or
data) it sees fit to go to the outside world. Any other procedures or data are
unreachable from the outside and only the code within the module can use
them. The import directive operates to bring knowledge of objects exported by
other modules into a module, again preventing indiscriminate access,
channelling it through a group of directives at the beginning of the module and
clearly visible.

A module will usually be a collection of like-minded procedures which
will need some shared variables and some variables which keep their value
between calls, either condition making it impossible for them to be on the
stack. As the constant addresses on entry to any procedure in the module are
the offsets to the program counter and the static base register, these variables
may be allocated relative to either register; however, only constants or shared
code should be relative to PC so that the module is ‘ROMabie’ (tethered to a
fixed physical address as when in ROM) and to allow protection by memory
management from overwriting by wild code. True variables should be
allocated relative to the static base register.

This setting up of registers on entry to a module is all done by hardware
support. It can be done by software, but software must be tested, can contain
bugs, takes up code space and is slower and, finally, can differ from one
operating system to another. Here, with the aid of a simple table constructed
by the linker, is full module support —the same for all seasons.

To be accessible, every module in the system must have an entry in this
table (Fig. 8.6), each entry containing four 32-bit pointers.

The MOD register always points to the first byte of the entry for the
module at present being executed. This entry is one of the 4096 entries the
module table can contain: as MOD is a 16-bit register, the table must be
complete in the first 64 Kbytes of memory and, as each entry is 16 bytes long,
there can only be 4096 entries. With memory mapping (see Chapter 10) this
becomes 4096 entries for each user; it should suffice.

The first pointer in the entry is the address of the start of an area of

— --.—d>—
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+3 +2 +1 +0

] 1 ]
(reserved) (MOD +12)

b—t— istatic data definitions
program base (MOD +8)

| 1 1

] T 1]
link base (MOD +4)

] I i

I | !

. area .

static base — -—MOD icode area by default
Fig. 8.6 Module table entry format. icode for internal and external procedures

procl

memory which the procedures in the module use for shared and static
variables; on entry to any of the procedures of the module, the static base end
register is given this value. This static data area is similar to a FORTRAN
common area in that, although all the procedures have access to it, it doesn’t
have to be an area within the module — it can be anywhere in memory. The
linker will usually collect static areas together (as it would common areas) and

For the NatSemi assembler it is:

allocate them after all the modules. .module <name>

The next pointer is called the link base and points to the start of a table .import < variable list>
containing the addresses of all the names imported or exported by the module. .importp < procedure list>
There is a difference in the entries for data and for procedures; a data item is .export <variable list>
represented by an address but a procedure is represented by two 16-bit items, .exportp < procedure list >

the address of the entry in the module table for the module which contains it
and an offset giving its entry point relative to the module’s program base. Like
the module’s static area, the link table may be anywhere in memory.

The third pointer is the procedure base. It contains the address of the first .static |
byte of code in the module. All the procedures in the module will have positive istart of static data area |
offsets to this address and there is an obvious, minor, restriction that the entry istatic data definitions

point of the last procedure exported be within 64 Kbytes of the first.
The last pointer position is reserved.
The source format of a module for the Acorn assembler is:

.endseg iend of static data
module <name> -Program istart of code
impart <variable list > . .
importc I e ;:gz: for internal and external procedures
export <variable list >
expartc < procedure list >
P .endseq iend of code segment
.end anen
The di shigs
e static, lurite, data), <align> thléesc:;g:rsr;:;:s;g:g:I;n"l(;htehNatScml directives are all prefaced bya ‘.’ and
: ; , € program segment start di
make the area a static base a.r‘ea end with .endseg rather than being implicitl ded EHrenennlypod ot
defsb static segment. plicitly ended by the start of the next
istart of static data area
i . folloThg bAcorn segments are delimited by area directives which may be
wed by a symbol. This symbol must haye been defined by an areadef

——Af—




122 Programming the NS32000

directive which also allocates attributes to the symbol and (the last parameter)
an alignment for the area. To define a static base segment, the symbol must
appear as the operand of a defsb directive. If area is not followed by a symbol,
it refers to the default area which is for code and is byte aligned.

A procedure which is to be called from another module differs in two
ways from an internal procedure. It must be called by a cxp instruction and
must end with an rxp rather than ret and, as well as the return address, has the
contents of the MOD register pushed on to the stack. The destination is no
longer an address (as for jsr) or an offset to the PC (as for bsr) but a
descriptor in the local link table. The exp instruction is

cxp  index

where index is the number of the entry in the table.

The cxp instruction has to do two things; find the address of the procedure
called and set up the registers to suit the called module while saving enough
information to get back to the calling one again. First, it saves the information
needed to return to the calling module. The MOD register and the address of
the next instruction after the cxp are saved on the stack; although the MOD
register needs only 2 bytes of the stack, an extra (but reserved) 2 bytes is taken
up to make a double word entry. Next, once the old MOD register has been
saved, the module table address is copied from the link table entry to the MOD
register and the first double word in the entry addresses used to set the SB
register. Finally, the sum of the offset (in the link table entry) and the second
double word of the module table entry (the procedure base) is copied into the
program counter and execution of the called procedure begins.

It is important to note the presence of the MOD register on the stack as it
changes the offsets of the parameters from FP. If the previous procedure
example were refurbished to become an external call, it would become:

importc extp

movd int, TOS iint to stack

addr struct, TOS iaddr to stack

movf x, T0S ireal to stack

cXp extp inow call external proc

< somewhere in another module ...>

extp enter [R2, R4]1, @

rxp 12 iremove parameters from stack
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and the stack layout after the enter instruction would be as shown in Fig. 8.7

As can be seen, the parameter offsets are increased by 4.

13 +2 +1 +0
=
| ??2? | :1d090 {old SP)
L
1 T 1
int :1d08¢ (FP+:14)
1 |
1] L T
addr :1d088 (FP+:10)
1 L 1
T ¥
real :1d084 (FP+ :0c)
—t+—
MOD :1d080
———] .
return :1d07c (SP on entry)
1 1 |
T T
:1d100 :1d078 ~-—Fp
L |
T Ll
R2 :1d074
—t—t
| RJ4 ! :1d070 -—Gp

Fig. 8.7 The stack with procedure arguments after an external call and enter.

The rXp instruction clearly has more to do than its cousin ret: as well as
fetching .the return address from the stack and putting it into the program
counger, 1t must also reset the registers to the calling module values. The first
Part 1s easy: it takes the MOD table entry address from the stack and puts it
into the MOD register. Now it has the old entry, all that is needed is to get the
old contents of the SB register from the module entry and it’s done. There is of
course the little matter of adjusting the stack to remove the space taken up by
any parameters there may have been, and this is done in the same way as for
ret. If desi.rable, ADJSPi can be used instead, as noted earlier.

There is one more external item which may be accessed, external data. A
module may allow certain of its variables to be public—a random numi:er
generator'may plake its seed public, allowing other modules to reset it ora
heap manipulation module might have a public variable containing the cdrrent
address of the bottom of the heap.

This type of item is accessed by an addressing mode, external mode,

export afar

areadef far, [write, datal, byte

area far
afar alloch 8 ioffset+@
bfar docw 9 ioffset+s
cfar dcl 3.14 ioffset+id

‘d>—
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and you want to get the present value of bfar. You must write

import afar
novy afart8, R4

If the imported variable afar is the second external variable to be declared, at
run-time, its address will be in the second entry of the module’s link table and
the operand will be translated into

movw ext(1)+8, R4

with ext(1) referring to the second link entry and & being the offset between
the address in the link table (that of afar) and the first byte of bfar. Like the
memory relative modes, you not only get a pointer to an item but you have an
offset to add to it by which gny item in the referenced block — no matter how
big the offset (is —23° to 2°° enough?) — can be accessed in one instruction.

EXERCISES

8.1 Change the code for the desk calculator of Exercise 6.3 to use the CASEi
instruction when deciding on the bit to be executed given the instruction
number. Note that as the instruction codes run from 1 to 6, a CHECKi
instruction will be needed as well.

8.2 How could the desk calculator code in Exercise 8.1 above be changed to
make it an internal procedure called by bsr?

8.3 Write a module to return a random integer in register 0. It should have
two entry points: one, RandomSeed, takes a double word integer parameter
passed on the stack to set up the double word seed in the module’s static
base area; and the other, RandomHarvest, returns the random integer. If
you don’t have your own favourite formula, you can find a wide selection
of good (and bad) ones on page 102 of Knuth’s Art of Computer
Programming, Volume 2.

8.4 Change the code to delete files in Exercise 7.2 to make it an internal
procedure with one parameter, the address of the first extent, passed on
the stack. Save and restore all registers used by the routine.

8.5 Write and test a module containing a procedure called frexp which is
passed two parameters on the stack, a 64-bit floating point number and
the address of a double word. The routine is to put the exponent of the
floating point number into the double word as an integer in the range
—1022 to 1023 — which requires the conversion of the raw exponent — and
returns the floating point number with an exponent bringing its value into
the range 1.0 to 0.5 in floating point register 0.

9 Panos — the Acorn 32016
operating system

9.1 INTRODUCTION

To the assembler programmer an operating system appears first as a library
and a convention on procedure calling sequences and then as a command
language _and a set of utilities. In this chapter the first view of an operating
syster.n will be taken, with the next chapter taking a behind the scenes view
showu?g how a special set of 32000 instructions makes the task of writing ar:
operating system lighter.

As each operating system will have its own ideas on libraries and calling
sequences, a particular system, Panos, Acorn’s operating system for the
Cambndge second processor for the BBC micro and the Cambridge
workstation, has been chosen as an example. Both machines use an NS32016
the second processor running at 6 MHz and the workstation at 8 MHz. ’

9.2 THE PANOS LIBRARY

Tl:ne purl?ose of an operating system is to do all the detailed work of dealing
with Penpherals, handling exceptions, allocating memory and managing a
real-.ume clock while allowing its user to access the hardware without the
s.pecml exp.ertise of the operating system writer. This is done by means of a
llbrary‘ which may, in fact, consist of a number of entry points into the
operating system itself. The library imposes the concept of files and directories
on t:? the hardware disk storage and offers procedures for creating files

opem.ng them, reading or writing them and deleting them. It also allows the:
real-time cl_ock to be set or read, and provides the user with ways to field errors
and deal with them or, by default, print appropriate messages. It would allow
a user program to allocate and dispose of blocks of memory; in particular to
allocate the necessary space for a program to run, releasing it when the
program notified the system that it had finished.

This then is the operating system library: i i
. y; In the particular case of P
the library has 13 sections: d e

1. error handling
2. argument decoding
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3. data conversion

4. memory allocation
5. input/output

6. file support

7. loader

8.

random numbers
9. time and date

10. condition handling
11. event handling

12. global variables
13. program control

The condition handler is very important and Section 9.3 deals exclusively with
it.

9.2.1 Error handling

Many of the routines in the library make provision fpr an error number to bs
returned. Several have two entry points, one returning an error number_ar;2
the other using the condition handler to notify errors. The error n-umber is
bits long and has four fields: an ‘info’ field shovsflng .whether error 1n-forrfnaﬁi.cin
is available; an ‘interface’ and a ‘detecting’ faciht.y field showing which facility
was called by the user (interface) and which faciht).r actually detected t.he e;ror
(the facilities are the sections of the library giver} in the table abgve), an in
error code field. There are three procedures which are used to 1nterpret't e
error code. The most usual one is GetErrorMessage, which returps thre.e_strmgg
with the name of the interface facility, the name of the detecting facility any
the text of the appropriate error message. Of the other two procedures, one hlS
used to save the error information so that a later Pr.ocedu're can c}}ange the
interface facility name, and the other returns additional information when
thereBlys' g?())’\./iding these procedures, ACOI‘I.I hope.that software writers w111tbe
encouraged to use them rather than write thel.r own, so that users get a
standard response from the system when something goes wrong.

9.2.2 Argument decoding

The systems software for the second processor, compilers and ujuhtles, will
need to access parameters from the command line. Many operatlpg syste;n:
provide a means of passing command lines to the programs they 1nvo!<e uf
often this, though simple to use, is primitive and' result§ in a confusion o

different parameter conventions. Here, Acorn provide a discipline en%or(r;;:)ass-
ing both compilers and utilities. The paramc?ters' expected are descr1d e ybz.
prototype string in which each parameter is given a keywo_rd an canF ‘
further specified as having one or more argument.s of prescribed types. Fo

instance, a compiler command line might be described as
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SourcesA/E-asm List S Help/S

The A after the Source keyword means that it must have at least one argument
and the E-asm allows a filename to have the -asm appended to it if it does not
already have an extension. The $ after List and Help shows that they are state
keywords. If they are present the compiler can take action but they don’t have
parameters. If the List keyword is given, the compiler would write its output
to a file with the name source-lis and if the Help keyword was present some
brief information about the expected command line could be displayed on the
screen.

A copy utility could have the key string

File/As? TosKlvdu:]

which requires the keyword File (which need not be present if the arguments
are presented in order) to have at least one argument, the ? allowing it to have
an indefinite number, The K after To shows that the keyword must be present if

there is an argument and [vdu: ] is to be taken as the default if no keyword and
argument is given. This would allow

copy Roff4.c Roffdl ¢ Roff4 . h

to be used to display the three files on the screen one after the other.

There is a procedure to initiate the decoding of the command string and
further procedures to read string, state, boolean or integer arguments. For key-
words with variable numbers of arguments, the procedure GetNumber0fValues
will return the number of arguments actually present.

9.2.3 Data conversion

The Panos system has a convention for number representations and, to go
with argument decoding, it provides a number of procedures to convert from a
string representation to binary integer and the other way around. To give the
widest range of numbers, the base (unless decimal) must precede the number
and be separated from the first digit by an underscore (_): for instance, the
hexadecimal number represented in the assembler convention as :9a is written
in the Panos convention 16_9a. These numbers can have a sign; ~15 in octal
would be represented by -8_17. In these procedures, the string representation
is always as shown above, with the base (in the range 2 to 36 inclusive) always
in decimal and the number using the digits 0 to 9 up to decimal base and A to Z
(or a to z, case is not significant) for the ‘digits’ 10 to 35, There is a Panos
entity called a ‘Cardinal’ catering for unsigned numbers which range from 0 to
4294 967 295, A signed number (an integer) must be in the range —2 147 483
648 to 2 147 483 647.

It is also possible to convert booleans (0 or 1) to and from strings (FALSE
and TRUE).

_ﬂf—
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9.2.4 Memory allocation

There are several procedures in this section which a program may call to be
allocated a block of memory from the heap. It is possible to ‘tag’ allocated
blocks of memory so that all blocks with the same tag can be deallocated at
once. Otherwise, single allocated blocks are deallocated singly: the allocator
joins adjacent deallocated blocks so as to make it more likely that new
allocations can be satisfied without extending the boundaries of the heap.

Allocated blocks may also be split and the heap boundary can be set to
another value to enable memory to be used differently. As the stack grows
downwards towards the top of the heap there is a possibility that they may
meet; a procedure to read the present end of heap address allows the
programmer to check for this.

The first 64 Kbytes of memory are reserved for use by the hardware
supported module table and this area is also handled as a heap by Panos so
that the loader can make requests for space in it before loading another
module. For the curious, a procedure called Get5tareInfarmation returns the
start of the heap, its size and the amount of free space for both the heap and

the module heap.

9.2.5 Input/output

The basic unit for files is the byte and all files connected to a program have
their contents moved in or out as a stream of bytes. Several files may be open
at one time, the actual number depends on the version of Panos.

As Panos uses a BBC board to perform all its input/output it uses the
BBC filing systems, the DFS, the NFS (Econet) and the new ADFS which can
either work with double density floppy disks or a Winchester. The particular
filing system in use is set by a global variable and the format of the file names
must then comply with the conventions of the system in use.

Input from the keyboard and output to the screen is also provided for in
two modes; raw mode and filtered mode. In raw mode all characters are sent
to the screen or returned from the keyboard. In filtered mode (on output) only
printing characters together with clear screen, newline and carriage return are
passed to the screen, all others being removed, and on input from the
keyboard characters are buffered until a newline or carriage return is found
and erase (backspace) and kill (ctrl-U) are honoured. The RS423 input and
output lines from the BBC board can be used for input or output and output to
the Centronics printer port is supported as well.

There are four special devices which can be attached to any of the actual
input/output facilities — Input:, Output:, Control: and Error:. These devices
are set by default to the BBC keyboard and screen but procedures are available
to connect them to files, the printer or the RS423 lines instead.

The actual procedures for transferring bytes come in two forms; one set
which inputs from or outputs to the appropriate special device and the other
which has the stream as a parameter and can thus be used to read from or write
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.to an}f open stream. The input/output procedures are at a fairly low e |
!mposing no structure on the stream of bytes read or written. There .
procedures to read or write a single byte and to read or write a block of b iy
There are two procedures which allow random accessing of files; one ret{;tes-
the value of the file pointer and the other sets it to a given value. There are allrns
procedures to show how many bytes are left on a stream, whether it is acty lsio
connected to a file or to the keyboard or RS423. =

9.2.6 File support

This is a miscellaneous bunch which, while essential, doesn’t belong anywhere
else. Par}os files are date stamped (using the real-time clock) and procedures
are provided to read a file’s date and to set it to a given value. There is also a
tT'OUCh procedure which simply alters a file’s date stamp to the current date and
ime.

. There is a procedure to delete a file by name and two procedures handling
file names, one to rename a file and the other to convert the Panos file name
(base with extension) to that appropriate to the filing system in use: the Panos
fEI_e name Dump-asm would be changed to a.Dump if the DFS was the underlying
m‘“f. sys(;s_am. Finaiﬁly there is a procedure to set a global string called the
working directory; file names wi i ix wi i i
= pathyname. es without a directory prefix will use this string to

Thgre are also procedures to handle directories, load and save files and
deal with file names containing wild characters: ? matching any single
charact.er, * matching zero or more characters and . . . matching zero or more
names in a path name.

9.2.7 Dynamic loading

Panos supports dynamic loading of procedures. When a user program calls a
procedure .which is not present in memory, Panos fields the call and sets the
loader to finding and loading the missing module. Procedure and external data
names may be ‘declared’ to the loader and will thereafter be available to any
program.

9.2.8 Random numbers

Many programming languages provide for a random number function and, to
cen_trallze this function rather than have each language implementation inv’ent
a different function for its own library, Panos includes it in among the other
more traditional operating system routines. The random number is a 32-bit

unsigned integer and the section includes a procedure to initialize the
generator’s seed.
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9.2.9 Time and date

Panos supports a real-time clock held as a 64-bit integer representing the
number of centiseconds since midnight on 1 January 1900 — just a few years
after Hermann Hollerith introduced the US Census to punched cards. A quick
calculation with the trusty fx-570 shows that this clock should be good for
another 5 or 6 million centuries. There are procedures to set the clock and read
it and to convert from the 64-bit format into a textual format or a standard

format. The textual format is
31 Mar 86 12:53:08
and the standard format is

1986-03-31 12:53:903.98

which adds the centiseconds to the time as a two-place decimal. There are also
procedures to return just the time or just the date or both time and date
together in either of the string formats. It should not be necessary for anybody
to have to write their own time and date routine unless they want the day of the

week as well.

9.2.10 Event handling

The events handled are those occurring on the BBC board, such as buffer full
or empty, keyboard interrupt, interval timer interrupt and so on. The event
handler is a routine with prescribed parameters, written by the user and called
by Panos when the event occurs.

The library contains procedures to declare an event handler (as you can
have different event handlers for different events) and remove it from
consideration, to enable and disable events and to return the status of an
event.

Events are only signalled when the system is outside event handlers; there
is no nesting of event interrupts. This forces events to be queued as Panos has
no control over the amount of time the user spends in a handler. There is
therefore no guarantee that more events of the same type have not already
occurred by the time an event is dealt with; in particular, the interval timer and
TV sync pulse events may be subject to a variable delay before the handler sees

them.

9.2.11 Global variables

Panos supports a number of string variables, some of which it relies on for its
correct operation (the current filing system, for instance) and others mainly
for the user, like the result code of the last program run. These are all kept in a
central table and are made available to all programs run under Panos by means
of the GetGlobalString procedure in this section of the library. Programs and

Ieﬂtat;r tgi 1vah:)es of existing 9ne§—though a group of globals beginning svyss
may ThyD 1e read as .1t 1s the system’s responsibility to change
- 10€ DeleteGlobalString procedure removes strings from the table and

GetGlobalStringName, given an i i i
R ndex, returns the indexed name in the global

zzse If;rorill ; p:el?:x> —<tsuffix>. When a file is passéd to Panos with an
atching ext it is transformed (by Physi i i
' . ' YsicalFileName from fi]
support) into < prefix> file< suffix> i e
: <1 » painlessly pre i i
to fit the prejudices of the filing system. Y preprocessing the file names

9.2.12 Program control

commands.

9.3 CONDITION HANDLING

not allow it to be used directl 5

. Each module can l:lave its own condition handler which must be made

hao;a!rn to.Panos by using the ‘handler’ directive provided by ZASM. The
ndler will be called when a hardware exception occurs while the module is

I
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AdditionalParameter : Integer .
CurrentEnvironment : Enuironnen: § f] I::lle) glgmter
i ironment: Environmen .
Exosptionkny 4 Module Register
) i 5 RO
and it returns an integer result. Cardinal is an unsigned 32-b1‘t integer and
Integer is a signed 32-bit integer; Environment is a structure with the layout Bein
shown in Fig. 9.1. The record consists of 22 double words and the offset of glle 13 Fo
first byte of each double word is given. The user program status rc?gnster oy
8 bits long and will be in the byte :1@ offset, and the module register which is 20
16 bits long will be in bytes :14 and :15. 21 FSR
The parameter CallType takes the following values:
.00 validity o ol
0 Initialize module
04 program counter 1 Stop-—program finishing
2 Exception
:08 stack pointer 3 Exception passed on
:Oc frame pointer i D}agnose
g 5 Diagnose passed on
- FSR PSR 6 Describe frame
: 7 Describe module data
14 MOD 8 Unwind
118 RO The remaining values are reserved, at present unused,
i The descriptions of the various calls is the reverse of the other library
: | descriptions as here it gives the parameters with which the user’s handler
: ’ routine is called from Panos and describes the result that the handler must
return. So while the heart leaps when it sees calls such as Diagnose (produce a
:34 R7 description of the fault on the output stream), DescribeFrame (produce textual
- information on the current output stream describing the current procedural
138 frame) or DescribeModuleData (describe the static data of the current
I environment on the output stream), these are all f unctions the user has to write
]' } to help in discovering how the current module can have gone wrong!
| The calls with CallType @ and 1 are to allow the module to initialize itself
(CallType 0) and, before the program using the module halts, to clean up as
:54 F7 necessary (CallType 1). With these two calls no environment is necessary and
none is passed; the fdditionalParameter is zero for initialize and contains the
Fig. 9.1 Panos environment record format. return code passed to Stop for the termination call,
The calls for Exception and ExceptionPassedOn have the full set of
parameters. For both these calls AdditionalParameter contains the error code;
. : i this is negative if the exception arises from an error trapped by Panos and is
: show which of the following double IS negative ' [ by ]

The first d.OUble v‘vorcti’ lss;sgg t(t))its 0 to 20, the remaining bits being positive if it arises from a signal. Except ionPassedon 1s used to indicate that the
i val'ld entnetst );how tlfat the entry is valid, unset if it is not; the first module handler called couldn’t deal with the exception for some reason.
reserved. "li“he blFS ESIECHED It could be used by a module deep in the program’s run-time system to pass the
correspondence is:

S S
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fact of an exception back up the hierarchy until it comes to a module the user
might recognize.

These two calls have a counterpart in Diagnose and DiagnosePassedOn
except that for these two a description of the fault must be written on the
current output stream.

The calls DescribeFrame and DescribeModuleData are intended for com-
pilers with source level debugging systems. They would be called when the user
requested a trace back from the point of exception or when moving from
module to module checking the values of the variables to find the cause of the
error. In both these calls there is no additional parameter or exception
environment record but a record for the current environment is given.

The Unwind call is made when a handler returns a zero result when called
for an exception. The handler has to set the current environment to the state it
would have when the procedure exited normally. When this has been done, the
system can call the next handler in line with a passed on exception.

Of these nine calls only five (initialize, stop, exception, exception passed
on and unwind) are used by Panos. The others (diagnose, diagnose passed on,
describe frame and describe module data) are calls provided for the system
running under Panos to make. The procedure CallHandler has to be provided
with the parameters given in the description. Generally speaking, using these
calls in assembler modules would require a mound of code writing and they are
much more suited for compilers which can crank out code to describe data and
print traceback info without difficulty.

The last procedure in this section is Signal, which forces a call to the
handler of the current module. It has two parameters. One shows the cause of
the signal which may be either one of the Panos errors or a special code which
the handlers have been trained to respond to. The second parameter is the
address of a buffer which can be used to pass further information to the
handler if needed.

9.4 CALLING SEQUENCES

In the last chapter on procedures, a method of passing parameters to a
procedure was shown but nothing was said about procedures (all right then,
functions) returning results. The usual way to do this is to leave the result in a
register which restricts the result type to integer, pointer (address) or real. This
restriction is common in most high-level languages where the way to describe a
procedure returning more than one result or a result longer than an integer or a
real doesn’t seem to have been invented yet.

This argument doesn’t apply to assembler as it has not yet vanished into
the academic grasp, and ingenuity and a feel for programming still has a place.
Acorn have defined a set of standards for passing parameters and returning
results which allow any kind of object to be passed to or returned from a
procedure, and as these calling sequences are used in the Panos library
procedures they should be described for that reason if not only for their
elegance.
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It should be noted that the calling conventions do not ask the calledq
procedure to save any registers it may use, this being left to the calling
procedure, and any general registers you want to use again after the call shoulqd
be saved before the calling sequence starts and restored afterwards; if you are

returning a result in R@ or R1, of course, the results should be moved elsewhere
before these registers are restored.

9.4.1 Parameters

P-arameters are passed on the stack as shown in the previous chapter but the
different kinds of argument are described in different ways. There are four
categories of arguments: integers, reals, strings and arrays. Of these, integers
anfl reals may be passed as values while the other two types must be passed as
pomter.& Values are passed as 32-bit and 64-bit quantities only. If a byte is
pa§sed 1t must be zero extended (if unsigned) or sign extended to 32 bits before
belng put on to the stack. The 64-bit size is used to pass long reals and items
nee.dmg more than 32 bits. References or addresses can be used for arguments
which are passed as values though addresses must be used if the argument is to
be changed.

o A.m integer passed as a value is pushed on to the stack as a 32-bit quantity
if it f1t§; otherwise it must be put there as two contiguous double words, the
more significant double word first followed by the less significant onc.’For
example, the Panos library procedure XCloseStream takes one Cardinal
parameter, the number of the stream to be closed:

impartc XCloseStream

InStrm alloed 1 ;stream number

movd InStrm, TOS
cxp  KCloseStream

. Poi.nters are passed as 32-bit unsigned values using the addr or movd
Instruction with the top of stack addressing mode. As an example, the
procedure XDeallocate (which doesn’t return an error code — Deallocate does)

talfes one parameter which is the pointer to the block of memory to deallocate.
It is called by

importc  XDeallocate

R
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block alloed 1 iblock pointer

movd  block, TOS
cxp KDeallocate

Real values are passed by a MOVF for short reals and MOVL for long ones,
again with the TOS addressing mode.

Strings are more interesting as they have two items pushed on the stack
for each string: a length and a pointer. The length is passed as a 32-bit
unsigned number and the pointer is the address of the first byte of the string.
The procedure Touch takes a single string parameter, the name of the file to be
stamped with the current time. It can be called by:

importc  Touch

NowFile dcb “"dfs::@.a.DateChg"

movzbd NowFile, TOS ilength
addr NowFileti, TOS ipointer
CXp Touch

The counted string form using quotes is chosen to make the first byte of the
string the length. It would be troublesome to calculate; this length is a byte
integer so it must be zero extended to double word before being pushed on to
the stack. The first character of the string is the first byte after NowFile which is
NowFiletl,

Structures and arrays are represented by the address of the first byte and
there must be a prior agreement between the calling procedure and the called
procedure on the size of the structure. This will normally be part of the called
procedure’s description. .

The order in which parameters are pushed on to the stack is the reverse of
that expected. In the Acorn convention, the first parameter after the procedure
name is the last to be pushed on to the stack and thus has a fixed offset (12)
from the frame pointer. The procedure ¥Blocklrite writes a group of bytes to
the current output stream and takes two parameters, the number of bytes to
write and the address of the first of them. Its description is

¥BlockWrite(CARDINAL: Blength; ADDRESS: Buffer);

and its calling sequence is
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importc  XBlockWrite
Message dcb "Sorting and Searching"

addr  Messagetl, TOS ;first byte
movzbd Message, TOS  inumber to write
cxp  KBlocklrite

9.4.2 Results

If only‘one result is returned and it is an integer, real or pointer, then it is
pass‘ed in the appropriate register; R0 for a 32-bit integer or address’ R@ and R1
for integers larger than 32 bits with R@ having the less significant h’alf and R1
the more significant, F@ for a short real and F@ and F1 for a long real. As an
example, the procedure XBlockRead reads a number of bytes from the current

input stream. It takes two parameters like XBlockWrite and
: returns the numb
of bytes read. Its description is ”

#BlockRead( CARDINAL: Blenath; ADDRESS: Buffer );

and its calling sequence is

importc  KBlockWrite

BufLen allocd 1
Buffer alloch 256

addr  Buffer, TOS ;address
movd =256, TOS

cXp XBlockRead

movd RO, BuflLen inumber read

If there is more than one result or the result is a string, information on
yvhere the result is to be put is pushed on to the stack after the parameter
fnfo,rmation. If more than one result is Areturned, the order of the result
lnformation. on the stack is last to first like the parameters.

For_ a single string result, two items must be pushed on to the stack; first
Ehe maximum length of the string (the amount of storage in bytes allocated to
it) and second the address of the first byte of the string. On return from the
procedure, R® will contain the actual number of characters in the returned

——-——d'\‘_—* N— —

—*



——

138 Programming the NS32000

string. This will never exceed the maximum length of the string and, if the
string to be returned is too large, the procedure may signal an error. The
procedure IntegerTaString has the description

IntegerToString(INTEGER: Number; CARDINAL: TheBase)i
STRING: ResultString:

and it can be called by

importc  IntegerToString

Number dcd 12345
Result allocb 1@ ;result string
RLath allocd 1 jactual result lenath

moud =16, TOS ithe base

movd  Number, TOS

movd  =1@, TOS imax string length
addr Result, TO0S

cxp IntegerToString

movd R@, RLath iresult length

Procedures returning two or more scalar results (integers, reals or
pointers) return the first result as for a single result. The other scalar results
must have a pointer to their resting place pushed on to the stack. The
procedure Allocate which allocates a block of memory to the requesting
program has the description:

Allocate (INTEGER: Size):
INTEGER: ResultCode; ADDRESS: BlockPointer;

A

If the size is negative then up to | size| bytes will be allocated. The result code,
if positive, gives the number of bytes actually allocated. It can be called by the
sequence:

importc  Allocate

Block alloed 1 ipointer to block

movd =-1024, TOS isize

addr  Block, TOS ireturned pointer
CXP Allocate

moud RO, BlkLagth isize allocated

*
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If_the first result (when there is more than one) is a string, it is returned ag
for a single string result. Any other string results must have three items pushed
on to the stack for each string. The first must be the address of a 32-bit integer
in which the actual length of the string will be returned, the second a 32-bit
integer containing the maximum size of the string, and the third the address of
the first byte of the string. The Date procedure has no parameters and returns a
result code which, if positive, shows the operation has succeeded and a string
containing the date in the format ‘1 Apr 86’. The string will have eight or nine
characters depending on the number of digits in the day. It is described as

Date(); INTEGER: ResultCode; STRING: TheDate;

and is called by the sequence

importc Date

TheDate allocb 18 ;even numbers are beautiful
Datelen allocd 1 iTheDate lenath

addr  Datelen, TOS istring actual length
movd =10, TO0S imax string lenath
addr  TheDate, TOS ;string address
cxp Date

ithe result code is in RO,

iand TheDate and DatelLen have been set

«—+—7.




10 Operating systems
support

10.1 INTRODUCTION

Most users of the 32000 CPUs will have an operating system in residence,
provided by the supplier of the system. This chapter is for those who want to
work up a system from scratch, or are porting a system from another CPU to
the 32000.

The purpose of an operating system (or, more strictly, the operating
system kernel) is to schedule processes, to deal with input and output, handle
errors and allocate memory between user programs, utilities and its own
routines.

Input/output is usually done by means of interrupts, where a peripheral
(or rather, the chip the actual peripheral is connected to) attracts the CPU’s
attention by signalling a CPU pin. The CPU is designed so that an automatic
sequence of events takes place whenever a signal on this pin is sensed: stopping
the program being executed, saving enough information to restart it and then
passing control to another routine (part of the operating system) to service the
interrupt, moving a byte from the peripheral to memory or from memory to
the peripheral, or even just acknowledging that the interrupt has been sensed.
In a well designed architecture much the same sequence of events will take
place when an instruction turns up an error condition; information will be
saved showing not only what error was found but the address of the
instruction in which it occurred. This makes it possible to acquaint the user
with an exact error message and enough information about its position to
work out how it occurred (in a high-level language program) and so correct it.

Proper architectures will also distinguish between a user program and the
operating system, both in the instructions the user program may execute and in
the areas of memory it may read or write.

In the 32000 series this distinction is made by one bit in the PSR: the U
bit. When this is set, the CPU is said to be in user mode and certain
instructions, and some forms of other instructions, cannot be used. This
effectively reserves these instructions for the supervisor program preventing
any user program changing sensitive system registers or, by mistake,
overwriting the supervisor or its private memory. The stack plays a large part
in 32000 programming and, consequently, there is a private stack for the
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INTBASE —» 0 NVI Non-vectored interrupt

1 NMI Non-maskable interrupt

2 ABT Abort

3 FPU , FPU trap
Ll
1 L)
4 ILL lllegal operation
[
] 1 1
5 SvC Supervisor call

6 DvZz Divide by zero

7 FLG Flag trap
IR |
I ] !
8 BPT Breakpoint trap
L1
T 1 T
9 TRC Trace trap

10 UND Undefined instruction

|
| reserved |
| |

15

1 |-

Fig. 10.1 Interrupt dispatch table.

supervis?r and its interrupt routines to use. This is managed by having two
st'af.?k pointers, SP0 and SP1, chosen by the state of the S bit in the PSR, If this
bit is on, SP1 is used in any stack operation: if it is off, SP0 is used. It i-s usual
for the supervisor to have SPO, leaving SP1 for the user. When cha:‘lging from
user to supervisor state, as the U bit is changed from 1 to 0 so is the S bit.

10.2 EXCEPTIONS

In the 32(?09 vernacular, both interrupts and errors are called exceptions, and
may bfa divided into two parts —external and internal. Interrupts are ext::rnal
exceptions as they are caused by external events —a peripheral signalling that it
has a character ready for the CPU or that it is ready to receive another
chgract;r or that it has completed a transfer into memory. Internal exceptions
Whlcl.l. include errors, are known as traps, and arise either from faul£
conc!mons sensed during the execution of an instruction or from the use of
special instructions to voluntarily relinquish control to the supervisor
f.&ll except_ions are dealt with in much the same way by the 32000. CPUs

Th-e first step is an adjustment of the program counter, the PSR or the stacl;
pointer depending on the type of the exception and whether a string instruction

N .
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(the only type of instruction which can be interrupted) is in progress. Next the
PSR is saved on the stack and then a vector number is read and used to extract
an external procedure descriptor (the same as in the link taple). from the
interrupt dispatch table and an external procedure call mad.e with it.

The address of the interrupt dispatch table is kfapt in the INTBA_SE
register which allows the supervisor to change to a different set of service
routines with no more than a single instruction to alter the address in
INTBASE, and the reservation of a block of addresses in low memory whether
they are used or not is no longer necessary. The dispatch table may therefore

nywhere in memory. '
> a'IE“Fhe dispatch table has the form shown in Fig. 10.1. Each. slot is 32 bits
wide and at an increasing offset from INTBASE. All the exceptions except for
the first two, the non-vectored interrupt and the non-maskable interrupt, are
traps. These occur for the following reasons.

ABT: instruction abort trap. An exception has been found by the MMU; the
MMU’s status register must be looked at to find the cause of the abort (see the
later section on the MMU).

FPU: FPU exception. The FPU status register must be looked at to fi'nd the
cause. The FPU status register is laid out as shown in Fig. 10.2, with TT
showing the reason for the trap:

reserved SWF RM|i{T|ufu] TT

31 15 98765432 0

Fig. 10.2 FPU status register.

1. underflow (causes a trap only if bit 3 is set) — this trap is takeq if a floating
point result falls between the smallest (magnitude) normalized number
and zero;

2. overflow —the result is too large to be represented as a floating point
number of the precision requested;

3. divide by zero — this trap occurs when a non-zero value is to be divided by
Zero;

4. illegal instruction—an instruction, in the right format .to be a floating
point one, is not recognized; a possible opcode but not implemented;

5. invalid operation — there are two reasons for this trap, a reserved operand
(positive or negative infinity, a denormalized number or Not-:‘:l-Numt{er)
has been used in a floating point operation (note that a MOVf instruction
with a reserved operand does not cause a trap) or both operands of a DIVf
instruction are zero;

RS S S—————
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6. inexact result (causes a trap only if bit 5 is set) —this occurs when the
result of an operation, which may be either a floating point or an integer,
must be rounded to fit the result format. This trap is taken only if no
other error has occurred.

Bit 3 (U) enables the underflow trap (TT = 1) and bit 5 (I) enables the
inexact result trap (TT =6). Bit 4 (u) is set whenever an underflow occurs
whether bit 3 is set or not and remains set until the user resets it; similarly, bit 6

is set by the first inexact result, independently of the state of the trap enable
bit, and must also be reset by the user.

The FSR register can be set or copied by

LFSR sre iload FSR from src
SFSR dest istore FSR into dest

where the FSR is loaded or stored as a 32-bit object. To set or clear single bits,
it can be brought into a general register and the bit operations used on it before
it is returned. Multiple bits can be set or cleared with the logical instructions.
The EXTSi instruction can be used to extract the TT field from the copy.

ILL: illegal operation. An instruction has attempted to access a privileged
register or one of the privileged instructions has been encountered when in user
mode. The privileged registers are the PSR (but only if the top byte is
accessed), the INTBASE register, the CFG register and all the MMU registers;
these registers are accessed by:

LPRi src icopies src to the register
SPRi dest icopies the register to dest

The i in these instructions determines how much of the register is
affected; in user mode, both 1prb and sprb may be used with PSR as only the
lower byte of the PSR, the user PSR, is affected — it is the 1pruw and spru forms
which are privileged. Either of these instructions applied to the INTBASE or
the CFG register is privileged. The next section on the supervisor has a fuller
description of the use of these instructions.

The MMU registers are accessed by a similar pair of instructions:

LMR  mmureg, src icopy src to MMU reg
SMR  mmureg, dest jcopy MMU reg to dest

These are both privileged; the MMU and its registers are discussed in a later
section.

The privileged instructions are:

LPRi  procrea, src iif procreg is ...
SPRi  procreg, dest ;... INTBASE or PSR

- —*—
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bicpsru src iW form, ...
bispsru  src i... B not privileged
setcfg cfglist

RETT  constant

RETI

Inr  mmureg, src

smr  mmureg, dest

MovsUi  src, dest

MOVUSi  sec, dest

rdval lac

wrval loc

All these instructions are discussed in this chapter.

SVC: a supervisor call instruction was executed; this is used as a way into the
kernel, to use a kernel routine. It will usually have one or more parameters
which are either passed in registers or follow the svc code byte in memory to be
picked up by the kernel using the return address passed to it as part of the trap

sequence.

DVZ: a divide by zero trap caused by the src operand of one of the
instructions DEIi, DIVi, MODi, QUOi or REMi being zero.

FLG: a flag instruction found the F bit set to 1; this is used deliberately as a
way of causing a trap on integer overflow.

BPT: a bpt instruction was executed; the program is under the control of a
debugger and a breakpoint was requested by the user on the instruction just
about to be executed. Note that this doesn’t imply the presence of a debugging
system, just that, if there was one, this is the way it would set breakpoints.

TRC: an instruction was executed while the trace bit (bit 1) in the PSR was set.
This can also be used by a debugging system to step through instructions
singly, displaying the results of each instruction after it is completed. To do
this requires a trace trap service routine and code to print the registers, decode
the PSR and so on. In the old days, each instruction had to be examined to see
if it was a branch instruction and, if it was, to change the branch target to
somewhere in the monitor so as not to lose control. The trace bit and trap
make this obsolete overnight; whatever the instruction, control passes to the
trace trap when it has finished.

UND: an undefined instruction has been found. This instruction code has
either not been implemented or it is an instruction which must be executed by
the FPU or MMU and the appropriate bit in the CFG register has not been set.

The non-maskable interrupt (NMI) is taken when the CPU’s NMI pin is
signalled. This interrupt is used for very high priority signals such as might be
caused by a power failure. There can be a few milliseconds before the CPU’s
supply voltage falls to the point where it fails to work properly and, if the
system is so designed, vital information can be sent to non-volatile memory.

. A
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The _32000 series supports up to 256 levels of interrupt, so that interrupts
can b_e given priorities and those outside influences which require speedier
han_d!mg can be given a higher priority interrupt than the others. These
adc!ltlonal levels of interrupt require one or more NS32202 Interrupt Control
Units (ICUs) to be connected between the interrupt signals from the outside
and. the CPU. If the system has no ICU then one maskable interrupt is
available reacting to signals on the CPU’s INT pin. The legend ‘maskable’
refers to the control exercised by the I bit (bit 11) in the PSR: if this bit is 1
then the CPU will recognize signals on the INT pin; if it is O these will be,
ignored.

. The different types of exception are acted on by the CPU in the following
priority order:

® traps, except the trace trap
® non-maskable interrupt

® maskable interrupt

@ trace trap

SincF: tltaps other than the trace trap do not occur together there is no need for
a prlquty within the traps other than that shown above by giving the lowest
priority to the trace trap.

. The actions performed by the CPU on recognizing an exception differ
thhtly_between interrupts and traps. Interrupts take place either when an
}nstruct}on has completed (note, instructions are not interrupted) or, for string
fnstructfons only, when a cycle of the instruction is complete, As string
1nstr1,}cuons can take almost any desired length of time (they may be any
practical desi-red length), it was thought unfair to keep everybody waiting and
they were given fixed points in their cycle where interrupts could be
recogllnzed. In each of the three string instruction types, the last act in the cycle
of actions on a particular element s to decrement R, the count of the number
of eler_nents remaining. It is just after this point that interrupts may be
recognized. If an interrupt is pending, the P bit in the PSR is cleared (stopping
a trace trap taking place immediately on returning from the interrupt) and the
return address (the address at which the interrupted code will restart) is set to
the first byte of the string instruction.

After the little point of string/non-string instruction has been dealt with
fmd bits U and S cleared in the PSR thus changing to supervisor mode an(i
mter.rupt stack, interrupts are masked (bit I cleared) so that the interrupt
rputme will not itself be interrupted and a copy of the PSR is put on to the
(interrupt) stack as a 16-bit value. The MOD register is pushed after the PSR
also as a 16-bit value, the return address (the address of the next instrucziori
unless a string instruction was interrupted) put on the stack and the external
procedure descriptor read from the dispatch table. The correct entry in the
dispatch table to look at is given by a ‘vector’ byte, which has the value 0 for a
non-vectored interrupt and 1 for a non-maskable interrupt. If an ICU is
present, the vector to use is read from :fffedd (just 512 bytes from the magic

S
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16 Mbyte end of memory), some provision being made by the hardware to
have an appropriate byte available there. The correct entry in the dispatch
table is given by:

INTBASE + vector¥*4

The action after this is that of a cxp instruction setting up the registers for a
new module: the module part of the descriptor is copied into the MOD
register, the SB register is set from the entry in the module table and the PC is
set from the sum of the descriptor offset and the module entry program base.

The action for traps is similar but some details differ. Traps other than
the trace trap set the return address to the beginning of the instruction just
completed, so an earnest enquirer can find the instruction in which the
exception occurred: the trace trap must not do this, of course, otherwise it
would never get anywhere. The vectors used to find the entry in the dispatch
table are those marked against the entries in the diagram above.

Again, since they are errors, traps other than the trace trap restore the
user stack pointer to its value before the trapped instruction started. The
CPU’s design goes to some trouble to make sure that the trace trap (which is
handled after interrupts and all the other traps) is correctly dealt with. As the
trace bit can be set from a user program (not much use unless there is provision
for the dispatch table descriptor to be made to point to the user’s procedure),
the user would be a bit confused if all the other exceptions appeared too.

The stack, on entry to an exception routine looks like Fig. 10.3. The PSR
is unchanged from the value before the exception and the return address, for
traps, will be that of the instruction causing the trap, with the exception of the
trace trap when it is the next instruction.

+3 +2 +1 +0
I T 1
?7? :1fd00 {old SP)
| |
PSR 11fcfe
|
T
MOD :1fefe
! r
return addr | :1fcf8 --—SpP
L1 1

Fig. 10.3 Stack layout on entry to an exception routine.

Exception routines must end with a RETT instruction, the RETI instruction
being used only for maskable interrupts when the system includes an ICU.
RETI sends a special acknowledgement to the ICU which it needs to keep its
house in order. The format of the RETT instruction is

RETT  constant
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;:"llth cons;ant being '0 for in_terrupt routines. If constant is non~zér0, it will
crease the stack pointer by its value allowing traps to pass parameters to the

;he intesrrupt stack has been restored. This facility would really only be useful
(;r an SVC trap where, to be of any use at all, some indication of the purpose
of the call must be made available to the kernel,

10.3 SUPERVISOR

'(I‘hl; section will not go ilnto the implementation of a kernel or supervisor
un qrtunately space forbids), but will be content to describe the tools for
building one provided by the 32000 CPUs.
32003:11}3 fl.rst. task of a §upervisor is to initialize the system — in the case of the
; mm:allze the dedicated registers, start the clock (no supervisor can work
properly without a clock) and start the command interpreter. It is then ina
state where the user can start work.
. Initialization starts on receipt of a reset signal on the CPU’s RST pin
Is can be arranged to occur automatically when power is switched on anci

The ?2201 Timer Control Unit, which no self-respecting 32000 system would
ble without, has got the necessary circuitry in it to provide satisfactor
signals to the CPU and other components. sk
‘ When tl?e CPU recognizes a reset signal, it clears the PC PSR and FSR
registers which (PC) causes the first instruction to be sou’ght at address
:aaaas_sa, puts' the CPU (PSR) into supervisor mode, selects the interrupt stack
and disables Interrupts; it also clears all the user flags including the trar::e fla
Th.us the start-up code must be found at address zero after a reset. This can bge
resident there, in an EPROM, or an EPROM can be arranged to 'switch in on

dedicated registers.
The processor registers are set up (or examined) by

LPR;’ cpPureg, src icopy src into CPU pegq
SPRi CPureg, dest ;copy CPU reg into dest

where cpureg can be

UPSR user PSR, just the low byte of the PSR

FP frame pointer

SP stack pointer

SB static base register

PSR both user and supervisor bytes of the PSR

&
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INTBASE interrupt base register
MOD module register

If LPRi is used with UPSR, whatever operand length is demanded by i,
only the low byte of the PSR will be affected and the operation is not
privileged. Only the symbol SP is used for both SP0 and SP1; the choice of the
register is made according to the state of the S bit in the PSR at the time. If
either PSR or INTBASE is used as an operand, the instruction is privileged
whatever the operand length is according to i. ‘

Setting the initial values for both the interrupt stack and the user stack can
be done by manipulating the S bit in the PSR (in supervisor mode, of course),
There are two instructions, both in two lengths, which can be used to do this,
as well as alter any other bits required. They are:

BISPSRi src  iset bits in PSR
BICPSRI  src  iclear bits in PSR

In the form bispsrb and bicpsrb, they act on the user byte of the PSR alone
and are not privileged; to change the S bit, they must be used in the forms
bispsrw and bicpsru, both of which are privileged. The operand, which has
access class ‘read’ and may therefore be a constant, is a string of 16 (or 8) bits,
the 1 bits determining which of the PSR bits are to be set or cleared. To set the
S bit, bit 9 or the second bit in the upper byte you could use

bispsrw  =:20  iset § bit for SP1

and to clear it

bicpsrw 20 iclear S bit for SP2

The last register that needs to be set is the configuration register which
shows whether an FPU or an MMU is available —if the appropriate bits are
not set, and floating point or memory management instructions are used, an
undefined trap will be caused. This register also has a bit showing whether an
ICU is in use; if this bit is set, the maskable interrupts are vectored and their
service routines must end with RETI instead of RETT. The instruction used,

which is privileged, is
setcfg cfalist

with cfglist being one or more of the letters i, £, m or ¢ in brackets (c stands

for Custom Slave Processor—a chip specially designed for the system with
special instructions). To show that the system contains an FPU and an MMU

but no ICU or custom slave, the instruction is

setcfg [f, m]

}I:L?-;eatnh;; ht:teﬂf:latiemi ass;rgbler does require brackets around the operands
¢ absence of FPU, MMU, | i
e CU and slave processor is shown by
] Sl:llgfnr;usors, at :Ihe level invited by the 32000 series which is that of minis
rames, allow several different pieces of cod

_ _ ' 1 € to be execute

;?:ngly 's:multaneously while not Interfering with one another Thes::

i ere!rll.t pieces of code are called processes and in executing them a means of

contrq g access to data or code is needed so that while one process is

:ggesss;ﬁ ‘1t-antothe17 can be made to wait. This means is provided by the CBITi

1 Instructions described in Chapter 3. Assumi

_ ; ming that an area of

memory _ha-s a lock on it controlled by the state of bit of the byte variable
lock, claiming the resource can be done by:

lock dcb 1

sbitb =0, 1ock icheck lock
bfs  lacked ialready in use

_durmg the instruc.tion' and prevent other CPUs accessing memory until the
rnterj:cked operation is complete — if the hardware is so designed
supervisor has a number of tasks which it in

. : : : performs in an order

d:]tlegmmed by fts schec{u!mg algorithm. When all its tasks are done, there must

IS: i be something f'or 1t to do (the so-called backstop); doing nothing except

3eepmg tht? superwsor’ busy until another task is ready to be activated. The

2000 prqwdes: something for this, an instruction called simply wait: execution

isrtlct):s unttll an interrupt starts one of the service routines. On return from the

Trupt, execution starts at the instruction followi it;
be a branch back to wait, RSl ek conid

There are nQ input/output instructions as such in the 32000 series as

Special-purpose chips with control and input/output registers which can be
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read from or written to via system determined addresses. With the enormous
memory space of the 32000 this sidesteps the question of how many
input/output ports are needed and seems a simpler way to do it.

10.4 MEMORY MANAGEMENT

The NS32082 Memory Management Unit (MMU) is a 32000 co-processor
working as closely with the CPU as the floating point unit. Its purpose,
however, is to implement demand paged virtual memory — once the exclusive
preserve of the mainframes and minis, now available on micros.

10.4.1 Virtual memory

In a 32000 system there may only be a few hundred kilobytes of memory
physically present. Under normal circumstances this would limit the size of
programs to be run on the system or the amount of data they could deal with
unless a complicated overlay system was written for it. The MMU changes all
this. No longer must the programmer struggle with overlays and their
attendant bugs; it is all done by hardware.

The means used is similar to overlays; blocks of memory are exchanged
with other blocks stored on disk, but, from the program’s point of view, it is
all in memory, loaded into the 16 Mbyte made available by a kindly
manufacturer.

In virtual memory systems the blocks of memory are called pages and the
32000 defines pages as 512 bytes in length. The pages in memory are no longer
addressed by the physical page they may be currently occupying but by a
virtual address which bears no relation to the physical address. To get from the
virtual to the physical, the CPU constructs a set of tables which the MMU uses
to translate the virtual addresses sent to it by the CPU.

Of course, if a program uses more pages of virtual memory than there are
physical pages available, there will be times when the MMU gets an address
which it can see, from the tables, does not correspond to a physical page. This
situation is called, somewhat pejoratively, a page fault.

At this point the MMU interrupts (ABT trap) the CPU which returns the
registers to the state they were in when the interrupted instruction started and
then calls the trap service routine. This routine will arrange to bring the page
required into physical memory from disk, if necessary displacing a page
already there; the CPU will now restart the instruction.

It might seem that the use of disk storage as an extension to memory
would slow programs down to an intolerable degree, but experience has shown
that, for comparatively long periods of time, programs use only a small set of
pages and, while slightly slower than a program contained entirely in physical
memory, the advantages of a large but virtual memory considerably outweigh
the disadvantages.

This balance does rely on the size of the working set of pages being a

e . g
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zzzseogahllt: proportion of the _physical pages available. Once the working set
¢ds the number of physical pages to such an extent that the CPU is

spending most of its time waitin
' g for pages to be swapped, pr i
is reduced to the speed of rocks weathering. S i e

10.4.2 Address translation

E:se aI;iSSBOZI(:SZ :uppc:irlts a[ }1{6 Mbyte virtual address space; the NS32382 which
of goodies like support for an off-chj i :
p cache, will
Gby‘t/i ::lidress space offered by the NS32332 and its successors SRt the d
ress translation takes place in two sta i
: ; ges or levels: the first level
tatfle contains up to ‘%56 entries of 32 bits, each entry pointing to a ser:o:ed lliirge?
pointer table;‘thf: pointer table has at most 128 entries, again of 32 bits, with
each entry pointing to a physical page. -
A Theh24-b1t virtual ad.dress is divided into three fields (Fig. 10.4). Index1 is
tabl:}:;:d::;;i tl}:e en\:r)lrJ in tlf}e page table containing the address of a pointer
z € number of an entry in the pointer table addressed by i
r ( index1
E;n(t)?lg:ggl ;hl:i tn;:xnbf:r of I:;t physical page. The final physical address);s ma;e
- ge number in bits 9 to 23 and the 9-bit offset in bi
The only fields translated are index1 i o s -
. . . and index2; offset remains the
denoting the same byte in the physical page as it did in the virtual one.same’

index 1 index2 offset

23 15 8 Q
Fig. 10.4 Virtual address format.

= ;;ee\(/)e;é (\)uggzl]l( agfg::; il;:etded tlwto mc}:lmory accesses (which may take an
ransla

crawl' w.ith the overhead. To reduce fiwt geg;grtir: I\V;IIK:IJ{(J1 EZSSI: V;;d t(: ,
associative translation cache on the chip which can maich a virtual addr_en e
one cloc.k cycle. (The 32332 does away with even this delay by overlappi o llln
translation cycle with the following data bus cycle.) S
does:’l;eifiil:et contﬁms the right entry around 98% of the time; when it
doesr ”rhe ! nstrge: t s entry from.memory, replacing one of the entries in the
o t-l y to be r.eplaced is chosen to be that which has been least

ently used. ..an algorithm which has been used to decide which page in

The format of a page table entr
tables as well) is shown in Fig. 10.5.
L] The M (‘m.odified") bit is set when the page is in physical memory and is

ritten to: if this page is chosen to be replaced by a page on disk needed by the

CPU, it must be written ba i
i ck on to the disk to make sure that. if it j i
. -« -« ’ lt
again, the program isn’t given an out-of-date copy. s reauired

y (the same format is used for pointer
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reserved page number res. M\R PLM

31 23 98 543 10
Fig. 10.5 Page table entry format.

The R bit is set whenever the page is referenced, either read or written.t’By
periodically clearing this bit in both pointer and page tabl‘es, the oper: llzﬁ
system can work out which pages are frequently used so that it can swap 0
infrequently used one instead. . o
mﬁ: '?"he \r};vit, when set, shows that the page corre‘spondmg to the erlntry 1: 1.:1
memory. If the V bit is clear in an entry the MMU tries to use for transl,\I at:otl; 1t
will abort the attempt, alerting the CPU to the xlleednfor a page S\;\;:a;pt;ll blc;eto ;e

inter tables) have a V bit, allowing poin .
B el s g This makes for a very flexible

t on disk as well as program and data pages. o
];:rpangemcnt with a section of program or even a compl_ete utility permane:;ltly
‘loaded’ in r;lemory and being swapped in with its pointer tables only when

uired. . '
i The two PL bits implement protection on a p.age.-by-pagt.e basis. To all(ci)w
the supervisor overall access, the effect of the bits is different in the two modes

(see Table 10.1).

Table 10.1 Effect of PL bits.

Protection User Suf:;;lsor
level mode
Q@ no access read only
a1 no access full access
1@ read only full access
11 full access full access

10.4.3 Debugging with the MMU

The MMU provides two debugging operations: breakpointing and flow
g |

tl’amIrgnpl»‘:menting breakpoints in a virtual memory system can cause ahlot_ c:;

problems. In testing supervisor code the breakpomt§ must.b-fe set at_ b'i 33)12 .

addresses which, as all addresses from the CPU are virtual, is n:::notsii ;esmd

i i i trap to occur

by conventional means. Again, getting a iraj :

i:struction by overlaying it with code, while fine for non-virtual systems,
ils a lot of overhead for a memory manager. . ‘

emal}:o? these and other reasons, the designers of the MMU flec1ded to bttl:g

debugging support into the hardware. The implementation 18 based o:;d i

registers, BPR® and BPR1; an MMU breakpoint will be caused when tge a rare

in either,of these registers matches that on the address bus. Two addresses

S
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provided so that both destinations of a conditional branch can be break-
pointed.

Several different types of match can be chosen: the addresses can be
matched against either virtual addresses or translated physical addresses; the
source of the address can be on an instruction fetch, on being written to or
read from or any combination of these. It is also possible, by setting the
Breakpoint Count register, to select how many times the address match with
BPR@ occurs before the trap is taken — useful in stopping halfway through a
loop. As this is all done in hardware, the effect on program execution times is
negligible, running times will be much the same whether debugging or not — an
important point when a bug bites after several minutes of execution.

Flow tracing provides a history of the last few instructions executed.
Looking at the values of variables at the time the error makes itself felt is fine
and dandy but not always sufficient. There are four registers in the MMU
which take care of flow tracing: two program flow registers, PFO and PF1, and
two 16-bit sequential count registers, 5@ and SC1.

The MMU keeps a count of the number of instructions executed since the
last non-sequential instruction and the address of the instruction in these
registers. When a non-sequential instruction (branch, jump, call, return or
interrupt) is met, PF@ is copied into PF1 and the address of the current
instruction is put into PF@. $C® is now copied into 5C1 and SC0 is cleared. SCB is
incremented for every sequential instruction performed. At any time,
therefore, the addresses of the last two non-sequential instructions are in PF@
and PF1 with the counts of sequential instructions in between held in $¢@ and
SC1.

Up to now, to get this level of debugging, you would have to get a logic
analyser —now it is all part of the system.

10.4.4 The MMU registers

The main MMU register is the status register, MSR; this, like all the other
registers, can be copied into a double word in memory by

smr  mmureg, dest
and set from a double word in memory by
Imr  mmureg, src

The set of acceptable symbols for mmureg is given in Appendix A under the
instruction 1mr.

The MSR has the format shown in Fig. 10.6 and the bits are set as follows.

® ERC, the error class field (bits 2 to 0), is set on an MMU exception to
show the cause. Bit 0 is set on an address translation error. Bit 2 is set on

an MMU breakpoint and cleared on a non-sequential trace interrupt (cf.
bit 25, NT). Bit 1 is unused.

———



154 Programming the N§32000

B| TET | ERC
Flaju|slalo]T|T] B8ST | EST |BIE

o N ofpy N

3 24 16 87 5 2 0

Fig. 10.6 MMU status register format.

LI e i Sy pai A
. i

1;1]; ? 1;31];Inpiiiltiilbll:vi?tzugointer table entry (cf. V bit in page table entry).

BN is set to show whether the breakpoint address in BPRO (clear) was

matched or that in BPR1 (set). .

ED is the error data direction bit: if it is 1 the address transl?.tlolrll err-c;r

was caused by an attempt to read thfa contfents of the address; otherwise

the instruction was attempting to write to it.

BD, the breakpoint direction, is similar to ED but shows hc:i“;‘ r:)l:;

bre;kpoint occurred. If BD is set, ?t occurrec'i on an attempt to rea

the address; otherwise it was a write operation.

Table 10.2 Bus status settings for EST and BST.

Bus Operation
status

000 The CPU is reading the next sequential word from
the instruction stream.

an1 Non-sequential instruction fetch:. the CI?U is
performing the first fetch of an ms-tructlon
after a branch, jump, call, return, interrupt, etc.

31 Data transfer: the CPU is reading or writing
an operand.

211 Read ruw operand: the CPU is reading an operand
which will be modified and rewritten.

108 Read for effective address calculation: the .CPU
is reading an address from memory to use in
memory relative or external address mode.

101 Transfer slave processor operand: the CPU is U
transferring an operand to or from tl}e FPU,. MM J or
custom slave processor or issuing an instruction to it.

110 Read slave processor status: an FPU, MMU or custom slave
processor instruction is complete.

111 Broadcast slave ID: the CPU is initiatin.g an
FPU, MMU or custom slave processor instruction.
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EST is the error status flag and BST is the breakpoint status flag. EST is
set to the three lower bits of the bus status on an address translation error
and BST is set similarly on an MMU breakpoint. The values of intérest
are shown in Table 10.2. and this information, combined with the
knowledge that a breakpoint or address translation error has occurred,
will give the reason for the trap and the operand which caused it.

TU is the translate user bit: when it is set, all addresses in user mode will
be taken to be virtual addresses.

TS is the translate supervisor bit: when set, all addresses in supervisor
mode will be taken as virtual addresses. The operating system kernel will
run in supervisor mode but must use physical addresses — on entry to the
kernel this bit must be cleared. There are layers above the kernel which
may well be allotted fixed addresses, permanently ‘loaded’ and kept, with
their pointer table, on disk. Before calling one of these, the kernel would
re-enable supervisor virtual addressing.

DS is the dual space bit: if this bit is clear, the page table pointed to by
PTB@ will be used for both supervisor and user virtual addresses; otherwise
PTB® will be used for supervisor addresses and PTB1 for user addresses.
This makes handling multiple processes very easy as the kernel simply
needs to change PTB1 before returning to user mode and also gives it a bit
more flexibility in laying out supervisor and user address spaces.
VAX/VMS allocates the upper 2 Gbytes of its address Space to the
supervisor and the lower 2 Gbytes to the user; that is, they share the same
address space but partition it. With the dual space bit the supervisor and
user can have the same addresses but achieve separation by having two
different page tables. Designer’s choice.

AO is the access override bit: when set, a program in user mode may
access all addresses, even those normally only accessible by the
supervisor.

BEN is the breakpoint enable bit: when set, it enables the MMU'’s
breakpoint mechanism using BPR@ and BPR1.

UB is the user break bit: when set, breakpoints are enabled in user mode
only. It is ignored when BEN is clear.

Al is the abort or interrupt bit.
FT if the flow trace bit: when set, flow tracing is enabled.

UT is the user trace bit: when set, flow tracing takes place in user mode
only. It is ignored if FT is clear.

S
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@ NT is the non-sequential trace bit: when set, the MMU interrupts the CPU

(via NMI) on a branch, jump, call or return instruction. This can be used
to implement an entry and exit trace for procedures.

EIA, the error/invalidate address register, has two purposes. The CPU
can put a virtual address into it to remove the corresponding entry in the
MMU cache. It would need to do this when it had swapped out a page and
had changed the page table, to make sure the MMU copy is changed as
well. It is also used to hold the virtual address which caused an address
translation error. Bit 31 of the EIA is set if PTB1 has the level 1 page table
address which was used and is cleared if PTB® was used. The cause of the
error is given in the ERC and TET fields of the MSR.

The breakpoint registers, BPR® and BPR1, have the layout shown in Fig.

10.7. Bits 26 to 31 _determine which addresses will be compared to the
breakpoint address (bits 0 to 32) and under what conditions the MMU will
signal a break. The bits are as follows:

AS| VP |BE|BR|BW|CE address

31 26 24 23 0

Fig. 10.7 MMU breakpoint register format.

AS is the address space bit: if 0, the address will be compared against
virtual addresses from the page table pointed at by PTB®; otherwise
addresses from the PTB1 page table will be used.

VP is the virtual/physical bit: if 0, the MMU will make the comparison
with virtual addresses; otherwise the translation will be made with
translated virtual addresses.

BE is breakpoint execution: if set, the breakpoint is taken when the
instruction at the address is executed. The first byte of the instruction
must have the address for the breakpoint to occur.

BR is breakpoint read: if set, the breakpoint will be taken if data is read
from the breakpoint address. :

BW is breakpoint write: if set, the breakpoint will be taken on a write to
the breakpoint address or when it is read as the first part of a
read — modify — write operation.

CE is the counter enable: this bit only has any effect in BPR®; when set, the
breakpoint count register (BCNT) is decremented when the address and
condition bits in BPR® cause a break. If the result after decrementing is
zero, the breakpoint will be taken; otherwise it will be ignored.
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10.4.5 Finally

The MMU is a very complex chip and it has only been possible to sketch some

of its uses here. A full discussion of i i
. ts program i
book rather than half a chapter. REOEEERIING WG (el hall &

The description of the MMU instructions

Inr mmureg, src
smr mnureq, dest
rdval loc

wrval  loc

MOVSUi src, dest
MOVUSE src, dest

will be found in Appendix A.




APPENDIX A

32000 instruction reference

A.1 ADDRESSING MODES

There are 31 distinct addressing modes in nine groups:

® Register The operand is either a general register or a floating point
register depending on the instruction and the operand. The register
contains the operand and the length is given by the option letter on the
mnemonic. Note that if this mode is used with access class address, the
register is held to contain the address of the operand, not the operand
itself. Access classes are discussed in Section A.3.

@ Register relative The operand is written disp(Rn) where nis 0 to 7 and
disp is a signed displacement (at present) in the range —16777215 to
+16777215. The disp field is usually an expression involving a symbol.
The register is taken to contain an address and the operand location is the
sum of this address and disp. It can be thought of as an indirect address
plus an offset.

® Memory relative This has three forms represented by (disp2(dispil
(br))) where br may be the frame pointer (FP), the stack pointer (SP)
or the static base register (SB). In action, the double word at br+disp is
taken to be an address and disp2 is added to it to get the location of the
operand. An extremely useful mode, it allows access to an array of
pointers which may then have an offset added to them to get the operand
address.

@ Immediate The operand is the integer or floating point constant given.
This constant is stored in the instruction itself and, as it is a constant, it
can only be combined with the ‘read’ access class. It may not be used as
the base mode for scaled indexing.

® Absolute This is represented as @disp with disp a displacement
representing an absolute address.

® External This mode is usually hidden under a reference to an imported
or exported symbol reference. It accesses an entry in the link table and
adds an offset to it.

® Top of stack This is represented by the reserved symbol TOS.
Depending on the access class, the operand may be pushed on to the stack
(write), popped from the stack (read) or neither (rmw).
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® Memory space There are four modes in this group. One is $+disp
(*+disp for the NatSemi assembler) addressing disp bytes from the current
address in the program counter where disp is signed. The other three are
of the form disp(br) where br is the frame pointer (FP), the stack pointer
(SP) or the static base register (SB). The signed integer disp is added to the
address in the register to get the location of the operand.

® Scaled indexing The general form is basemode[Rn:i] where Rn is one of
R@ to R7 and i is b for scaling by 1, u to scale by 2, d to scale by 4 or q to
_sca:le by 8. The address given by the addressing mode expression basemode
Is indexed by the contents of Rn scaled byl,2, 40r8 depending on the
element length qualifier. The addressing mode used for basemode may be
an?r of the modes except immediate or scaled index mode. Note that in
being applied with scaled indexing, the access class of basenode is changed
to address with the changes to register and top of stack modes this entails,

A.2 MNEMONIC OPTIONS

The instruction mnemonics are presented in a general form in which the
constant' Qart of the mnemonic may be followed by an operand length option
or condition code. There are two types of length option, one for integer
Pperanc?s and one for floating point operands. Some of the floating point
structions have one integer and one floating point operand and in their
general form they will have both an integer and a floating point length option
"T‘he:' letter used for the integer length option is i and may be replaced by b t(;
indicate a byte operand, v to indicate a word operand or d for a double word:
the f‘lf)atmg point length option is £ and may be replaced by F for singlé
premsno.n floating point operand or L for double precision. The MEIi and DEIi
Instructions have a length option 2i indicating that the operand is fwice the
length chosen.

.O_nly two instructions have a condition code option; Beond (branch on
condition) and Scondi (save condition). In each case the letters which may be
substituted for cand are given in the description of the instruction.

A.3 OPERAND TYPES

Most operands are general, coded gen, and may be given in any one of the
:clllov?'able addressing modes. These operands also have an access class and an
implied length.

The access classes used in the descriptions are

® read The operand is read only; an immediate mode operand can be used
f)nly wi.th this access class. If top-of-stack mode is used, the stack pointer
18 post-incremented by the length of the operand, thus popping it.

® vurite The operand is written only; immediate mode may not be used. If
top-of-stack mode is used, the stack pointer is pre-decremented by the
length of the operand, thus pushing it.

= __*—
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@ rmw The operand is read, modified and rewritten back in the original
location; immediate mode may not be used with this access class. If
top-of-stack mode is used the stack pointer is not changed; the operand is
not popped and then pushed back again.

® addr The operand is treated as an address; if register mode is used, the
register is assumed to hold the address of the operand not the operand
itself. For this access class, the only difference between register mode and
register relative is that register relative can add a displacement to the
address in the register before it is used. Immediate mode may not be used
with this access class. If top-of-stack mode is used the operand at the
stack pointer is taken to be an address; the stack pointer is not changed.
The operand addressed may be read, written or both read and written
depending on the instruction being executed. ’

® regaddr Register/address: this class is only used to describe the base
operand in the bit and bit field instructions. If base is the name of a
general register, the bit or bit field is in the register; otherwise base
denotes a byte from which, using offset, the bit or start of the bit field is
found. Immediate mode may not be used with this access class. Like addr,
the operand eventually accessed may be read, written or both read or
written depending on the instruction.

The access class and implied length are usually combined in the
description line as rmw.i or read.f.

Other operands do not have an addressing mode and are described by the
following names.

® reg The operand is one of the general registers R® to R7 and any one of
these may be specified. The whole register is always read or read and
written by the instruction.

@® quick The operand is a signed value in the range ~8 to 7; before use it is
sign extended to the implied operand length given by the length option
chosen for the mnemonic.

® short The operand is 4 bits long and its use will be given in the
instruction description.

@® imm The operand is a single byte immediate value; its use is given in the
description of the instruction.

® disp The operand is an immediate integer value which is stored as part
of the instruction: it comes in three sizes, 1, 2 and 4 bytes holding signed
values rather less than the full range for the integer, 1 or 2 bits being set
aside as a size code. The 1 byte disp can hold a value in the range —64 to
+ 63, the word has a range of —8192 to 8191 and the double word goes
from —16777215 to +16777215 (assembler limited). Note that this is only
a 24-bit value; values outside this range are undefined at present.
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A.4 DESCRIPTIONS

The general t"orm of the instruction mnemonic appears against the left-hand
margin and, if there are any, the expanded mnemonics are shown a ain tarl-ln

'rlgl_lt-hand I_nargin. The operands follow the general mnemonic usin gnamf o
mdlcate. their purpose. The second line gives the operand types shO\Sin wis' t}c;
address.m.g modes can be used or whether the operand is a’ constaﬁt 'I}li

abl?revtatlons used are: disp, displacement; gen, general; imm imme.diate.' :
register, Th.e third line shows the operand’s access class }f it i,s not a congt "9?,
and following this there is a description of the action performed, th ﬂan ;
affected and the traps that may be caused i

ABSf src, dest absf

gen gen
read.f write.f ek

Action Absolute value Sloating: itive si
g: forces a positive sign on the floati i
src operand and puts this into dest. e pomnt

Flags No PSR flags: if srcis a reserved o i
: perand, the TT fiel i
be set; otherwise it will be zeroed. e of the SR will

Traps FPU trap if src is a reserved o s
perand; the TT f .
set appropriately. ield in the FSR will be

ABSi sre, dest
gen aen :E:ﬁ
read.i write.i absd

Action Absolute value: puts the absolute value of the sr¢ operand into dest

Flags F is set if src is the largest negative number for the size of integer;
—128 for bytes, 32768 for words or —2147483648 for double words. ’

Traps None.

ACBi inp, index, dest acbb
quick aen disp acbw
rmw. i achd

Actio.n Add, compc{re and branch: the sign extended inc value is added to the
index operand with the sum being left in index. If the sum is not zero, the

instruction branches to dest; otherwise i i
. ’ ’ €xecution contin
Instruction following ACBi, ues at the

__—-—.ﬁ_g
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Flags None.

Traps None.

ADDf sSPrC, dest a:g{
gen gen a

read.f rmw.f
Action Add floating: the floating point src operand is added to dest and the
result placed in dest.

Flags No PSR flags. UF in the FSR is set if an underflow occurs; IF is set on
an inexact result and TT will be set to reflect any exception.

Traps UND trap if the F bit in the CFG is not set. FPU trap set on a floating
point exception.

ADDi src, dest aggb
gen aen addw
read.i rmw.i addd

Action Add: the src operand and dest are added and the result placed in
dest.

Flags C is set if there is a carry; F is set if there is an overflow.

Traps None.

ADDCi sSrc, dest ad:cb
gen gen addcuw
read.i rmw.i added

Action Add with carry: the sum of src, dest and the carry flag is put into
dest.

Flags C is set on a carry; F is set on overflow.

Traps None.

ADDPi SPC dest ad:pb
aen gen addpuw
read.i rmw.i addpd
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Action Add packed decimal: the sum of src, dest and the carry flag is put

into dest. Each decimal digit is represented as the values 0 to 9 in a 4-bit
nybble.

Flags C is set on a carry; F is cleared.

Traps None.
ADDQi Src, dest addqb
quick aen addqu

rmw. i addqd

Action Add quick integer: the sum of src (sign extended to the length of
dest) and dest is placed into dest.

Flags Cis set on a carry; F is set on overflow.

Traps None.

ADDR src, dest
gen gen
addr write.D

Action Compute effective address: the address of src is put in dest as a
double word. If src is an imported or exported procedure name, its
descriptor from the link table is put into dest rather than its address.

Flags - None.

Traps None.

ADJSPi src adispb
9én adispw
read.i adispd

Action Adjust stack pointer: src is subtracted from the stack pointer,
increasing the length of the stack if src is positive and decreasing it if src
is negative. The src operand is sign extended to 32 bits before being used;

the entire stack pointer is modified whatever the implied length of the
operand.

Flags None.

Traps None.

4
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ANDi src, dest andb
aen aen anduw
read.i rmw.i andd

Action And: the bitwise AND of the src and dest operands is put into dest.
Flags None.

Traps None.

ASHi count, dest ashb
gen aen ashu
read. B rmw.i ashd

Action Arithmetic shift: dest is shifted by count bits with the sign bit being
copied into vacated positions for a right shift and zeros being copied in
for a left shift. The count operand is taken to be signed and the shift will
be to the left if it is positive and to the right if negative; count must be in
the range —7 to +7 for ashb, —15 to +15 for ashw and —31 to +31 for
ashd.

Flags None.

Traps None.

BCOND dest
disp
Action Conditional branch: the instruction branches to PC+disp (PC is the
address of the first byte of the instruction) if the condition is true;
otherwise execution continues with the next sequential instruction. The
conditions are:

EQ Equal Z flag set
NE Not equal Z flag clear
cs Carry set C flag set
cC Carry clear C flag clear
HI Higher L flag set
LS Lower or same L flag clear
6T Greater than N flag set
LE Less than or equal N flag clear
FS Flag set F flag set
FC Flag clear F flag clear
Lo Lower Z and L flags clear

HS Higher or same Z or L flag set

.—___—.T,*
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LT Less than

Z and N flags clear
GE Greater than or equal

Z or N flag set

The conditions corresponding to the flag settings may seem a little
perverse but they have been chosen so that in the code

cmpb a b
bagt exceeds

the branch will be taken when a>b.

Flags None.

Traps None.

BICi src, dest bich
gen gen bicw
read.i  rmw.i bicd

Action Bit clear: the bits in dest corresponding to 1 bits in src are cleared.

Flags None.

Traps None.

BICPSRRB src
gen
read.B

Action Bit clear in PSR: the bits in the user PSR (the low byte)

fzorresponding to 1 bits in src are cleared. This is not a privileged
instruction,

Flags Any flags corresponding to 1 bits in src are cleared.

Traps None.

BICPSRUW src
gen
read. Nl

Action Bit clear in PSR: the bits in the whole PSR corresponding to 1 bits in
src are cleared. -

Flags Any flags corresponding to 1 bits in src are cleared.
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Traps The illegal operation trap (ILL) is activated if the PSR U bit is set (user
mode).

BISPSRB src
aen
read.B

Action Bit set in PSR: the bits in the user PSR (the low byte) corresponding
to 1 bits in src are set. This instruction is not privileged.

Flags Any flags corresponding to 1 bits in src are set.

Traps None.

BISPSRHW src
gen
read. W

Action Bit set in PSR: the bits in the whole PSR corresponding to 1 bits in
src are set. '

Flags Any flags corresponding to 1 bits in src are set.

Traps The illegal operation trap (ILL) is activated if the PSR U bit is set (user
mode).

BPT

Action Breakpoint trap: this instruction activates the breakpoint tra..p (].3PT);
the return address on the stack is the address of the bpt instruction itself.

Flags None.

Traps The breakpoint trap is activated.

BR dest
disp
Action Branch: this instruction transfers control to PC+dest where PC is the
address of the instruction itself.

Flags None.

Traps None.

Y
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BSR dest
disp

Action Branch to subroutine: this instruction transfers control to PC+dest
where PC is the address of the instruction itself. It also pushes the address
of the next sequential instruction on to the stack. The subroutine should
return control with a RET instruction.

Flags None.

Traps None.

CASEi shc caonh
gen caseuy
read.i cased

Action Case branch: this instruction transfers control to PC+src where PC is
the address of the instruction itself - The src operand is sign extended to 32
bits before use.

Flags None.

Traps None.

CBITi offset, base chith
gen gen chitw
read.i regaddr cbitd

Action Clear bit: the bit designated by base and offset is set to 0 after
copying it to the F flag.

Flags F is set to the original value of the designated bit.

Traps None.

CBITIi offset, base chitib
gen gen cbitiw
read.i regaddr cbitid

Action Clear bit interlocked: the bit designated by base and affset is set to 0
after copying it to the F flag. The Interlocked Operation pin on the CPU
is activated during this instruction and can be used to prevent another
CPU modifying the bit while the instruction is in progress.

Flags F is set to the original value of the bit.

R
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Traps None.
CHECKi dest, bounds, src cnec:b
reg aen aen checku
addr read.i checkd

Action Bounds check: this instruction checks th.e src gperand against Tt:lle
values in the bounds operand, setting F if sre is outside t!le bounds. The
instruction then subtracts the lower bound frqm src, putting the result as
a zero extended 32-bit value into the dest register.

Flags F is set if src is out of bounds.

Traps None.
cmpf
CHPf srcl,  src2
9En gen cmpl

read.f read.f

Action Compare floating: src1 is compared with s-r-_cz and the PS.R Z and N
flags are set to show the result (src2-src1). Positive and negative zero are

taken to be equal.

Flags Z is set if src1 and src2 are equal; N is set if src1>. scm;_ L is alw?ys
cleared. The TT field of FSR is set to denote any floating point exception

conditions.

Traps The undefined instruction trap is activated if‘ the F bit.in the CFG is
clear. The FPU trap is activated if a floating point exception occurs.

CMPi srci, srce gmzz
gen aen o
read.i read.i cmp

Action Compare: srcl is compared with src2 and the PSR Z, N and L bits
set according to the result (src2-srct).

Flags Z is set if srel is equal to src2; N is set if ?rcl>srcz (signed
comparison); L is set if src1>src2 (unsigned comparison).

Traps None.

‘7"
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CMPMi blockl, block2, length

; cmpemb
gen gen disp cnpmy
addr addr cnpmd

Action Compare multiple: the contents of block1 and block2 are compared
and the Z, Nand L flags set according to the result,

Flags Z is set if every integer in block1 is equal to the corresponding integer in
block2; N is set if, for the first pair of unequal integers, the integer from
blocki is greater than the integer from block2 (signed comparison); L is
set under the same circumstances as N but the comparison is unsigned.

Traps None.
CMPQi srcl, src2 cmpqb
quick gen cmpqu

read. i cmpad

Action Compare quick integer: the spcl operand (sign extended to the length

of src2) is compared with src2and the Z, N and L flags set according to
the result (src2-srci),

Flags Z is set if sre1 is equal to src2; N is set if srcl>sre2 (signed
comparison); L is set if src1> src2 (unsigned comparison).

Traps None.

CMPSi options cmpsb

cmpsw

CMPST options chpsd

Action Compare strings: the operands are in registers R@ to R4:

R@ number of elements

R1 address of stringl element

R2 address of string2 element

R3 address of the translation table (cmpst only)
R4 match value (Until or While option)

The options are b (backward) — the addresses will be decremented; u— the
comparison will continue until an element of stringt matching the
contents of R4 is encountered; w— the comparison will continue while the
elements from stringt match the value in R4. The cmpst instruction will
assume that the string elements are bytes and, before comparison, the
stringl element (as an unsigned byte value) will be added to the

- i _'-'-------______________-..‘..._________4,
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translation table address and the byte at that address used for the
comparison: the string2 element is not translated.

Flags The Z, N and L flags are changed; the F flag is set if the instruction
ended as a result of a while or until match. To check the result of the
comparison, the flags should be looked at in the following order:

1. If the until or while option has been selected, check the F flag. If it is
set, the instruction has ended because of an until or while match and the
other flags are set to Z=1, N=0 and L=0. R1 contains the address of
the stringl element causing termination, R2 is the address of the
corresponding string2 element and RO is the number of elements not yet
compared including the one causing termination.

2. If F=0, check the Z flag. If this is set, the instruction has exhausted the
strings and they are identical. R1 and R2 hold the address of the element
following the last element in stringl and string2, RO is 0 and the N and
L flags are both clear.

3. After the two tests above, this point is reached if the strings are unequal.
R has the number of remaining elements, including the element which
compared unequal, and k1 and R2 hold the addresses of the two unequal
elements. If N is set, the element in string1 is greater than the element in
string2 (signed comparison); if L is set, the element in strinal is greater
than that in string2 (unsigned comparison).

Traps None.

COMi Src, dest comb
gen gen comw
read.i write.i comd

Action Complement: the one’s complement of src is put into dest.
Flags None.

Traps None.

CVTP offset, base, dest
reg gen aen
addr write.D

Action Convert to bit pointer: the absolute offset (offset from bit 0 of byte O
in memory) of the bit designated by base and of fset is put into dest as a
32-bit value.

—————*—————
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Flags None.

Traps None.

CHP index
disp

Action Qall exfernal procedure: a procedure in another module is called via a
descriptor in the current module’s link table. The operand must be an

imported procedure name and will be represented by the i
: nd
in the link table. P R i

Flags None.

Traps None.

CKPD desc
aen
addr

Action Cal{ external procedure with descriptor: a procedure in another
module is called via a descriptor in the current module’s memory space.

Flags None.

Traps None.

DEIi src, dest deib
aen gen i
read.i rmw.2i 32;3

Action Pivide extended integer: the double length dest operand is divided by
the s1-ngle length src operand and the (single length) quotient is put into
the high-order integer of dest with the remainder going into the low-order
one. If the dest operand is a register, it must be given as the even register
f’f an even — odd register pair with the even register holding the low-order
integer of dest and the odd register the high-order integer. The remainder

will_ go into the even register and the quotient into the following odd
register.

Flags None.

Traps The divide by zero (DVZ) trap will be activated if src is zero.
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DIVF sPrc, dest divf
aen gaen divl
read.f rmnw.f

Action Divide floating: dest is divided by src with the quotient going into

dest.

Flags No PSR flags; in the FSR, UF is set if an underflow occurs, IF is set if
the result is inexact and the TT field is set to show any floating point

exception.

Traps The undefined instruction trap (UND) is activated if the F bit in the
CFG is clear; the floating point trap (FPU) will be activated if there is a
floating point exception. If src is zero there will be a floating point divide
by zero exception and if both src and dest are zero there will be an invalid

operation exception.

DIVi src, dest divb
gen gen divw
read.i rmw.i divd

Action Divide: dest is divided by src and the result, rounded to the next
lower or more negative integer, is put into dest.

Flags None.

Traps A divide by zero exception will occur if sre is zero.

ENTER reglist, constant
imm disp

Action Enter new procedure context: this instruction creates a frame on the
stack which can hold local variables for the procedure. The constant
operand gives the number of bytes of local storage to allocate; the reglist
operand gives the names of the general registers to be saved. The contents
of the frame pointer on entry are saved in the frame and the pointer is set
to point to the old value, thus linking the stack frames together and giving
a reference point to access parameters and local variables.

Flags None.

Traps None.

EXIT reglist
imm
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Action EXxit procedure context: this instruction is the converse of enter, It
rc.:mov.es the frame constructed by enter, restoring the general registers
given in the reglist operand and the old value of the frame pointer
Flags None.

Traps None.

EXTi offset, base, dest, length extb
reg gen gen disp extw
regaddr write.i extd

Action _Extracr Jield: the bit field designated by base, offset and length is
chred to the dest operand. The field is right justified in dest which has its
high-order bits zero filled if the field is too short. If the field is longer than
dest, the field’s high-order bits are discarded. The offset operand is
.taken to be a 32-bit signed integer; the length operand must have a valye
in the range 1 to 32 and the bit field must lie within 4 bytes.

Flags None.

Traps None.

EXTSi base, dest, offset, length extsb
aen gen imm......... .. extsuw
regaddr write.j extsd

its high-order bits zero filled if the field is too short. If the field is longer

operands are coded together as a single byte. This limits the offset to the

Flags None.

Traps None.

FFSi base, offset ffsb
gen aen ffsw
read.i rmw.B ffsd

Action  Find first set bit: the instruction searches the base operand for a 1 bijt

I
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starting at the bit given by offset. The search ends at the first 1 bit or th’e
end of the integer. If a 1 bit is found, of fset is set to the numb_er-qf the bit
and F is cleared; otherwise F is set and offset is zeroed. The initial value
of offset must be in the range 0 to 7 for ffsb, 0to 15 for ffsw and 0 to 31
for ffsd.

Flags F is set if no 1 bit is found and cleared otherwise.

Traps None.

FLAG

Action Trap on flag: the flag trap (FLG) is activated if the F bit is set.
Flags None.

Traps The flag trap is activated if F is set.

FLOORfi sre, dest floorfb floorlb
gen aen floorfw floorlw
read.f write.i floorfd floorld

Action Floor floating to integer: the src operand is rounded towards the
integer less than or equal to it (towards negative infinity) and the result
put into dest as a signed integer.

Flags No PSR flags. The FSR flag IF is set on an inexact result and the TT
field will be set on an exception.

Traps The undefined trap (UND) will be activated if the F bit in the (}FG .is
not set and the FPU trap will be activated on a floating pomt. exceptlf)n; in
particular, the overflow exception; if the resulting integer is too big for

dest.
IBITi offset, base @b@tb
aen aen §b}tw
read.i regaddr ibitd

Action Invert bit: the bit designated by base and offset is copied into the
PSR F bit and then it is inverted.

Flags F is set to the original value of the designated bit.
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Traps None.
INDEXi accum, lenath, index indexb
reg aen aen indexw

read.i read.i indexd
Action Calculate index: this instruction performs the calculation
accun*(length+1)+index

one step in the iterative calculation of the index for a multidimensional
array. The result of the calculation is put into the accum operand; the
length operand is the difference of the upper and lower bounds for the
current dimension (one less than the dimension’s length) and index is the
zero adjusted index for the current dimension. The length and index
operands are unsigned integers and are zero extended to 32 bits before
use; accum is taken to be an unsigned 32-bit integer.

Flags None.

Traps None.

INSi offset, src, base, length insb
req aen gen disp insw

read.i regaddr insd

Action Insert field: the sro operand is inserted into the bit field designated by
base, offset and length. The operand is right justified in the field which,
if the operand is shorter than the field, is zero extended to the right, and,
if longer, is truncated on the right. offset is taken as a 32-bit signed

integer; length must be in the range 1 to 32 and the bit field must lie within
4 bytes.

Flags None.

Traps None.

INSSi sre, base, offset, length inssb
gen gen imm. ... ... .. inssw
read.i regaddr inssd

Action Insert field short: the src operand is inserted into the bit field
“designated by base, offset and length. The operand is right justified in
the field which, if the operand is shorter than the field, is zero extended to
the right, and, if longer, is truncated on the right. offset and length are
coded in a byte, limiting offset to the range 0 to 7; length must be in the
range 1 to 32 and the bit field must lie within 4 bytes,
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Flags None.

Traps None.

JSR dest
aen
addr

Action Jump to subroutine: this instruction transfers control to the location
in the current module’s memory space designated by the general operand
dest which allows the jump to be indirect via a pointer. It also pushes Fhe
address of the following instruction on to the stack. The subroutine
should return control with the ret instruction.

Flags None.

Traps None.

Jump dest
gen
addr

Action Jump: this instruction transfers control to the location in the curr(.ant
module’s memory space designated by the general operand dest which
allows the jump to be indirect via a pointer.

Flags None.

Traps None.

LFSR src
gaen
read.D

Action Load floating point status register (FSR): the double word src
operand is put into the FSR,

Flags No PSR flags. All FSR flags are affected.

Traps The undefined instruction trap (UND) occurs if the F bit in the CFG is

clear.
LMR mmureg, src
short aen
read.D

r

LPRi

e —
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Action Load memory management register: the double word src operand s
copied into the MMU register given by mmureg. This may be:

BPRO breakpoint register 0
BPR1 breakpoint register 1
PF@ program flow register 0
PF1 program flow register 1
sC sequential count register

MSR MMU status register

BCNT breakpoint count register
FTB@ page table base register 0
PTB1 page table base register 1
EIA error/invalidate address register

Flags None.

Traps The undefined instruction trap (UND) occurs if the M bit in the CFG

register is clear. The illegal instruction trap (ILL) occurs if the U flag in
the PSR is set (user mode).

procregq, spc lprb
shart gen lprw
read. i lprd

Action Load processor register: the src operand is copied to the given CPU

register. procreg may be given as:

UPSR user PSR (low byte)

FP frame pointer

spP stack pointer

SB static base pointer

PSR processor status register
INTBASE interrupt base register
MOD module register

In registers other than PSR, the high-order bits are zero filled if src is
shorter than the register. SP is interpreted as SP0 or SP1 according to the
state of the S bit in the PSR; if UPSR is given as the register, only the low
byte of the PSR is affected whatever the length of sre.

Flags All PSR flags are affected if the register.is PSR; only the N, Z, L, T

- and C flags are affected if the register is UPSR or PSR is used with 1prb.
- Flags are not affected otherwise.

Traps The illegal operation trap occurs if the PSR U flag is set and PSR or

INTBASE is the register.
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LSHi count, dest 1shb
gen gaen l1shuw
read.B  rmw.i 1shd

Action Logical shift: dest is shifted by count bits, vacated bits being filled by
zeros. If count is positive the shift is to the left, if it is negative the shift is
to the right. count must lie in the range —7 to +7 for 1shb, —15 to +15 for
Ishw and -31 to +31 for 1shd.

Flags None.

Traps None.

LXPD sre, dest
gen gen
addr write.D

Action Load external procedure descriptor: this is not an instruction in its
own right but a synonym for addr. The src operand must refer to an entry

in the link table,

Flags None.

Traps None.

MEIi src, dest meib
aen gen meiw
read.i rmw.2i meid

Action Multiply extended integer: this instruction multiplies src and the
lower half of dest, putting the (double length) result into dest. The dest
operand may be a pair of general-purpose registers in which case the
integer in the even numbered register of the pair will be multiplied by src
and the result will go into the even numbered register and the next
consecutive (odd numbered) register. Note that two registers are always
used even if the integer length is byte or word; the two parts of the result
are placed in the low end of each register, the high-order half of the
double length result in the odd register and the low-order half in the even
register. If the top of stack addressing mode is used for dest, space must
already have been allocated in the stack to hold the entire resulit.

Flags None.

Traps None.

7“
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MODi src, dest db
gaen gen - mod
read.i rmw.j zgd:

result always takes the sign of the src operand,

Flags None.

Traps A divide by zero trap (DVZ) occurs if sre is zero.

Mov¢ src, dest
aen gen ﬁgg{
read.f write. ¢

Action Move Sfloating point: the src operand is copied to dest.
Flags No PSR flags. The FSR TT field is set to zero.

(

—————— e

Movi 5rc, dest movb
aen gen novy
read.i write.j novd

Action Move: the Src operand is copied to dest.
Flags None.

Traps None.

—_—

MOVi$ src, dest movbf movbl

gen gen m
read.i write. f mggg;;ggg}

Action Move con verting integer to Sloating point: the sre (integer) operand is
converted to a single or double precision floating point number and put
into de.st. If the integer is too large for the signi ficand, it will be rounded
according to the setting of the rounding mode bits in the FSR.

Flags No PSR flags. In the FSR, IF is set i i
- In FSR, On an nexact result (integer t
large) and the TT field will be set to show any exception. sk

- _—#g
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Traps An undefined instruction trap occurs if the F bit in the CFG is clear; a
floating point trap will occur on a floating point exception, if an IF trap is
enabled, for example. This can occur in the movdf form as the significand
is shorter than a double word; integers greater than +16777215 or smaller
than —16777216 will give an inexact result.

MOVFL SIc, dest
aen aen
read.F write.L

Action Move Sfloating to long floating: src is converted to long floating and
put into dest.

Flags No PSR flags; the TT field of FSR is set to show any floating point
exception conditions.

Traps An undefined instruction trap occurs if the F bit in the CFG is clear. A
floating point trap will occur on a floating point exception.

MOVLF SPC) dest
gen gen
read.L write.F

Action Move long floating to floating: the long floating operand (src) is
converted to short and put into dest. src is rounded, if necessary,
according to the setting of the rounding bits in the FSR.

Flags No PSR flags; UF is set in the FSR if an underflow occurs, IF is set on
an inexact result and the TT field is set to show any exception condition.

Traps An undefined instruction trap occurs if the F bit in the CFG is clear; a
floating point trap occurs on a floating point exception. This may be
overflow, if the long value is outside the range of short floating point, or
underflow, if enabled and src is closer to zero than short floating point
can go, or inexact result if enabled and src’s significand must be

shortened.
Mavii blockl, block2, lenath mavmb
agen gen disp novmw
addr addr movmd

Action Move multiple: the contents of blockl are copied to block2; length is
the number of integers in the block and must be in the range 1 to 16 for
byte integers, 1 to 8 for words and 1 to 4 for double words.

g*
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Flags None.

Traps None.

MovQi src, dest

quick gen movqb
write.i i
) movqgd

Action Move quick integer: the src o is si
; perand is sign extended t
dest and put in dest. : R of

Flags None.

Traps None.

MOVS i options movsb
MoVsy

MOVST  options movsd

Action Move strings: the operands are in registers R® to R4:

RQ number of elements

R1 address of stringl element

R2 address of string2 element

R3 address of the translation table (moust only)
R4 match value (until or while option)

The options are b (backward)—the addresses will be decremented;
u—stringl will be moved element by element to string2 until an elemen;
of stringl matching the contents of R4 is encountered; w-— stringl will be
moved element by element to string2 while the elements from stringl
match the value in R4. The moust instruction will assume that the string
elements are bytes and, before being moved, the stringl element (as an

unsigned byte value) is added to the translation table address and the byte
at that address moved to strina2 instead.

Flags ;l“lllle F flag is set if the instruction ended as a result of a while or until
match.

Traps None.

HOVSUi Src, deét

movsub
9en aen movsuw
addr addr movsud

A—




Y’—<*

182 Appendix A
Instruction reference 183
Action Move value from supervisor to user space: the src operand in the Action Move byte with sign extension to word: the b i i
supervisor space isvmoved to dest in the user space. low byte of dest and then sign extende drtc; tf il? ityu? at srcis copied to the
Flags None. Flags None.
Traps An undefined instruction trap occurs if the M bit in the CFG is clear;
7 Traps None.

an illegal operation trap occurs if the PSR U flag is set.

MOVZBD  src, dest

MOVLSi SPCs dest movusb
gen gen MoVUSw gen gen
addr addr movusd read.B write.D

Action Move byte with zero extension to double word: the byte at sre is

Action Move value from user to supervisor space: the src operand in user )
copied to the low byte of dest and then zero extended to fill it.

space is copied to dest in the supervisor space.

Flags None. Flags None.

Traps An undefined instruction trap occurs if the M bit in the CFG is clear; Traps None.
an illegal operation trap occurs if the PSR U flag is set.

MOVZWD  spre, dest

MOVXBD 5rc, dest aen gen
gen aen read. N write.D

read.B  write.D Action M, d with
. n ove word wi 1
Action Move byte with sign extension to double word: the byte at src is copied to the low gor;e;? :xt:nsu;n fo double word: the word at src is
copied to the low byte of dest and then sign extended to fill it. est and then zero extended to fill it.

Fla
Flags None. gs  None.
Traps None. Traps  None.
MOVKWD  src,  dest MOVZBW  src,  dest
gen gen gen gen
read.N write.D read.B  write.l
Action Move word with sign extension to double word: the word at src is Action Move byte with zero extension to word: the byte at src is copied to
copied to the low word of dest and then sign extended to fill it. the low byte of dest and then zero extended to fill it. P
Flags None. Flags None.
Traps None. Traps None.
MOVKBW  src, dest MUL$ src, dest s
aen QEI:I aen gen
read. B write.l read. f ruw. f mull

af—
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Action Multiply floating: the product of src and dest is put into dest.

Flags No PSR flags: UF in FSR is set on an underflow, IF is set on an inexact
result and TT is set to show an exception.

Traps An undefined instruction trap occurs if the F bit in the CFG is clear; a
floating point trap occurs on a floating point exception.

ML SPC, dest mulb
gen gen mulw
read.i  rmw.i muld

Action Multiply: the product of src and dest is put into dest; if the product
is too long, the high-order bits are truncated.

Flags None.

Traps None.

NEGf SPrC, dest negf
gen aen nhegl
read.f write.f

Action Negate floating: the sign bit of src is complemented and the result
put into dest.

Flags No PSR flags: TT in FSR is set to show any exception.

Traps An undefined instruction trap occurs if the F bit in the CFG is clear. A
floating point trap occurs on a floating point exception.

NEGi Src, dest negb
gen aen negw
read.i write.i hegd

Action Negate: the two’s complement of src is formed by subtracting it from
zero and is put into dest.

Flags C is set on a borrow from the subtraction which always occurs except
when src is zero. F is set on overflow which occurs when the largest
negative integer of the given size is negated. The result on overflow is the
original value of src.

Traps None.
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NoP

Action No operation: control is passed to the

. following i i i
operation performed. 1ng nstruction with no

Flags None.

Traps None.

NOTi src, dest

aen gen o
read.i write.j :2:3

Actlo.n .C"omple{m_ent boolean: src (considered as a boolean) has its least
significant bit inverted. The value 1 becomes 0 and vice versa

Flags None.

Traps None.

ORi src, dest
gen gen arb
read.i rmw.i 3:3

Action OR: a bitwise logical OR i
: 1s performed on th
and the result put in dest. © 5ro and dest operands

Flags None.

Traps None.

QuOi src, dest b
gen gen quo
read.i rmw.i gﬂgg

Actu?n Quotient: the dest operand is divided by src returning the nearest
Integer whose absolute value is less than or equal to the absolute value of
the exact result. This result is placed in dest.

Flags None.

Traps A divide by zero (DVZ) trap occurs if src is zero.

4
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RDVAL  loc Flags None. '
gen
addr Traps None.
Action Validate address for reading: the F bit in the PSR is set if the user
mode location loc is protected against reading. r RETI
Flags F is set if the location cannot be read. Action Return from interrupt: this instruction returns control fro
. m an
. Interrupt service routine for a vectored interrupt; it may only be used
Traps An undefined instruction trap occurs if the M bit in the CFG is clear; when the hardware includes an Interrupt Control Unit as it causes an End
an illegal instruction trap occurs if the U bit in the PSR is set. of Interrupt bus cycle j i . .
Hieg p ending p ycle informing the ICU that the Service routine is
REMi Src, dest remb Flags All flags are restored from the stack.
gen qgen remw
read.i rmw.i remd Traps An illegal instruction trap occurs if the U bit in the PSR is set
Action Remainder: dest is divided (using QU0i) by src and the remainder put
into dest. .T.he result always has the sign of dest unless zero which is RETT constant
always positive. disp

Flags None.

Traps A divide by zero trap (DVZ) occurs if src is zero.
to the ICU. The constant operand is us

which may have been passed to the tr
. : . ap on the stack. The svc instructi
1s a likely candidate for this treatment, eton

RESTORE reglist
imm
. o Flags All flags are restored from the stack.,
Action Restore general-purpose registers: the registers given in realist are
restored from the stack. No check can be made that the registers in Traps An illegal j : .
5 ] : gal instruction trap oc it i -
reglist are on the stack or that the stack pointer points to saved registers, P occurs if the U bit in the PSR is set.

so it had better be right.

ROTi count, dest
Sags Nome. gen gen :z:b
read.B  rmw.i rotg
Traps None. :
Action Rotate: dest is rotated by count bits with the bits shifted off one end

b;:.mg.moved to the \.rac.ated positions at the other. If count is positive the
shift is to the left; if it is negative the shift is to the right. The count

RET c?nstant operand must be in th
disp 3 6,991 for roril;d. erange —7to +7 for rotb, —15to +15 for rotw and
Action Return from subroutine: a return address is taken from the stack and
the stack also reduced by constant bytes, removing parameters put there Flags None.
before the procedure was called. Execution continues at the return
address. This instruction should only be used to return from procedures Traps None.

called by either bsr or isr.
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roundfb roundlb
roundfw roundlw
roundfd roundld

ROUNDFi  src, dest
gen gen
read.f write.i

Action Round floating to integer: src is rounded to an integer and the result
put into dest. The rounding used is round to even and, if src is exactly
halfway between two integers, ROUNDfi returns the even integer as the

result.

Flags No PSR flags: IF in the FSR is set on an inexact result and the TT field
shows any exception.

Traps An undefined instruction trap occurs if the F bit in the CFG is clear; a
floating point trap occurs on a floating point exception. An overflow
exception can occur if the integral part of src is too large for dest.

RYF constant
disp
Action Return from external procedure: this instruction returns control from

a procedure called by cxp; constant is used to remove any parameters
from the stack by adding the value to the stack pointer.

Flags None.

Traps None.

SCONDI dest Scondb
gen Sconduw
write.i Scondd

Action Save condition as boolean: dest is set to 1 if the condition is true and
0 if it is false. The conditions are the same as for Bcond and have the same
interpretation.

Flags None.

Traps None.

SAVE reglist
imm
Action Save general-purpose registers: the registers given in reglist are
pushed on to the stack.

- ——————
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Flags None.

Traps None.

SBITi offset, base

gen aen gg;:z
read.i regaddr shitd

Action Set bit: the bit desi i
: : gnated by base and offset is copied j i
m the PSR and is then set to 1. piecinto the F'bit

Flags F is set to the original value of the designated bit.

Traps None.

SBITIi offset, base shitib
gen gen shitiw
read.i regaddr shitid

Action Set bit interlocked: the bit designated by base and offset is copied

into the F bit in th.e PSR and then set to 1. During this instruction, the
Interlocked Operation pin on the CPU is activated to allow other CPUs in

a multiprocessor configuration to be sto i
. pped from accessin i
and changing it. e

Flags F is set to the original value of the designated bit.

Traps None.

SETCFG  cfalist

short

Action Set configuration: this instruction is used to set or clear bits in the

configuration register so that the CPU kno
! r ws whether to acce
MMU instructions or not. priFUand

Flags None.

Traps An illegal instruction trap occurs if the U bit in the PSR is set.

SFSR ‘dest

gen
write.D
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Action Store floating point status register (FSR): the contents of the FSR are
copied to the double word dest.

Flags None.

Traps An undefined instruction trap occurs if the F bit in the CFG is clear.

skpsb
skpsuw
skpsd

SKPSi  options

SKPST options
Action Skip string: the operands are in registers R@ to R4.

RO number of elements

R1 address of stringl element

R2 not used

R3 address of the translation table (skpst only)
R4 match value (until or while option)

The options are: b (backward)—the addresses will be decremented;
u—strinal will be examined element by element until an element
matching the contents of R4 is encountered; w—stringl will be examined
element by element while the elements match the value in R4. The skpst
instruction will assume that the string elements are bytes and, before
being examined, the string byte is added (as an unsigned integer) to the
translation table address and the byte at that address examined instead.

Flags The F flag is set if the instruction ended as a result of a while or until

match.
Traps None.
SMR mmureg, dest
short  gen
write.D

Action Store memory management register: the contents of the MMU
register specified by mmureg are put in the double word dest. The coding

of mmureg is the same as for lmr.

Flags None.

Traps An undefined instruction trap occurs if the M bit in the CFG register is
clear; an illegal instruction trap occurs if the U bit in the PSR is set.

T
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SPRi Procreg, dest

short gen serb
write.i :s:z

Actu::o Store processor register: the contents of the dedicated CPU register
creg are stored in dest; high-order bits of the regi
; . register are truncated i
dest is shorter than the register and the high-order bits of dest are filti‘e;f

. .f . . o

Flags None.

Traps An illegal instruction trap occurs if U in PSR is set

SUBf SPC, dest subf

gen gen
read.f rmw.f .

Action Subtract floating: src i
o 8: src s subtracted from dest and the result put into

Flags No PSR flags: in the FSR, UF j ‘
_ : . A 1s set on an underflow i
Inexact result and TT is set to show an exception. el

Trap;l A.n undtj:fined instruction trap occurs if the F bit in the CFG is clear; a
oating point trap occurs on a floating point exception. ,

SUBi src, dest
g - subb
read.i  rmw.i §3§3

Action Subtract: src is subtracted from dest and the result put into dest

Flags Cis set on a borrow; F is set on overflow.

Traps None.

SUBCi src, dest
gen aen §:ng
read.i rmw.i subgg

Action Subtract with carry:
y: the sum of sre and the C flag is
dest, and the result is put into dest. B s subtracted from

Flags Cisset ona borrow; F is cleared.
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Traps None.

SUBFPi src, dest subpb
aen aen subpuw
read.i rmw.i subpd

Action Subtract packed decimal: the sum of src and the C flag is subtracted
from dest and the result put into dest.

Flags C is set on a borrow; F is set on overflow.

Traps None.

sve

Action Supervisor call: this instruction causes the supervisor call trap; the
return address pushed on to the stack is that of the svc itself.

Flags None.

Traps The supervisor call trap (SVC) occurs.

TBITi offset, base thitb
gen gen thitw
read.i regaddr thitd

Action Test bit: the bit designated by base and offset is copied to the F bit in

the PSR.

Flags F is set to the value of the bit.

Traps None.

TRUNCfi src, dest truncfb trunclb
gen aen truncfw trunclu

read.f write.i truncfd truncld

Action Truncate floating to integer: src is truncated to the nearest integer
less than or equal to its absolute value (towards zero), the integer is put

into dest.

Flags No PSR flags: IF in the FSR is set on an inexact result and TT is set to
show any exception.
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Traps Ap unde.fined instruction trap occurs if the F bit in the CFG is clear- a
floating point t.rap occurs if there is a floating point exception A
overflow exception will occur if the integer is too large for dest e

WAIT

Action Wait: program exc?cution is suspended until an interrupt occurs; the
return address for the Interrupt is the instruction following wait,

Flags None.

Traps None.

WRVAL loc
gen
addr

Action Vah’d?re addrle&s for writing: the F flag is cleared if the address loc
can be written to in user mode; otherwise the flag is set.

Flags F is set if loc is write protected.

Traps _An unf:lcfined .instruction trap occurs if the M bit in the CFG is clear:
an illegal instruction trap occurs if the U bit in the PSR is set. ’

RORi src, dest xorb
gen gen xérw
read.i  rnw.i xard

n XC .

Flags None.

Traps None.
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32000 instructions listed

by function

B.1 INTEGER

Arithmetic

ADDi src, dest
ADDQi  quick, dest
ADDCi  src, dest
SUBi src, dest
SUBCi src, dest
NEGi src, dest
ABS1 src, dest
MULi src, dest
MEILi src, dest
DIVi src, dest
MODi src, dest
Quoi src, dest
REMi src, dest
DEIi src, dest

Movement and conversion

MOVi src, dest
MOVQi  quick, dest
MOVXBD src, dest
MOVKWD src, dest
MOVXBW src, dest
MOVZBD src. dest
MOVZWD src, dest
MOVZBW src, dest
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add

add quick integer

add with carry

subtract

subtract with carry
negate

absolute value
multiply

multiply extended integer
divide

modulus

quotient

remainder

divide extended integer

move
move quick integer

sign extend byte to double
sign extend word to double
sign extend byte to word
zero extend byte to double
zero extend word to double
zero extend byte to word

Comparison
CMPi srcl, src2
CHPQi  quick, src2

B.2 PACKED DECIMAL

ADDPi
SUBPi

src, dest
src, dest

B.3 FLOATING POINT

ADDF src, dest
SUBf src, dest
MUL$ src, dest
DIVf src, dest
NEGf src, dest
ABSE src, dest
CHPf srcl, src2
MOVE src, dest
MOVLF  src, dest
MOVFL  src, dest
MOVif src, dest
ROUNDfi src, dest
TRUNCfi src, dest
FLOORfi src, dest
LFSR src
SFSR dest
B.4 LOGICAL
Arithmetic
ANDi src, dest
ORi src, dest
BICi src, dest
XORi src, dest
COMi src, dest
Shift
ASHi count, dest
LSHi count, dest
ROTi count, dest
Boolean
NOTi src, dest
SCONDi dest

Instructions listed by function

compare
compare quick integer

add
subtract

add

subtract

multiply

divide

negate

absolute value

compare

move

move long floating to floating
move floating to long floating
move converting integer to floating
point

round floating to integer
truncate floating to integer

floor floating to integer

load floating point status register
store floating point status register

AND

OR

bit clear
Exclusive OR
complement

arithmetic shift
logical shift
rotate

complement boolean
save condition as boolean

R
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B.5 BIT

TBITi offset, base
SBITi offset, base
SBITIi offset. base
CBITi offset, base
CBITIi offset, base
IBITi offset, base
FFSi base, offset
CVTP offset, base, dest

B.6 BIT FIELD

test bit

set bit

set bit interlocked
clear bit

clear bit interlocked
invert bit

find first set bit
convert to bit pointer

EXTi offset, base, dest, lenath  extract field
EXTSi  base, dest, offset, length  extract field short

INSi nffset, src, base, lenath
INSSi  src, base, offset, length

B.7 STRING

MOVSi  options
MOVST  aptions
CMPSi  aptions
CMPST  woptions
SKPSi  wptions
SKPST  options

B.8 BLOCK

MOVMi  blockl, block?, length
CHPMi  blockl, block2, lenath

B.9 ARRAY

CHECKi dest, bounds, src
INDEXi accum, length, index

B.10 PROCESSOR CONTROL

Branches
Junp dest
BCOND  dest
BR dest
CASEL  src

ACBi quick, index, dest

insert field
insert field short

move string

move byte string, translating
compare strings

compare byte string, translating
skip string

skip byte string, translating

move multiple
compare multiple

bounds check
calculate index

jump

conditional branch
unconditional branch
case branch

add, compare and branch

Local procedure call/return

JSR dest
BSR dest
RET const

External procedure call/return

CKF index
CKPD desc
RXP const

Explicit traps

BPT
FLAG
sve

Trap/interrupt returns

RETT const
RETI

B.11 PROCESSOR SERVICE
Effective address

ADDR src, dest
LKXPD src, dest

Context instructions

SAVE reglist
RESTORE reglist
ENTER  reglist, const
ERIT reglist

Register/stack manipulation

ADJSPi src

BICPSRR src

BICPSRN src

BISPSRE src

BISPSRW src

LPRi Pracreg, src
SPRi procreq, dest
SETCFG cfalist

Miscellaneous

NOP
WAIT
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jump to procedure
branch to procedure
return from procedure

call external procedure
call external procedure with descriptor
return from external procedure

breakpoint trap
trap on flag bit set
supervisor call

return from trap
return from interrupt

compute effective address
load external procedure descriptor

save registers

restore registers

enter new procedure context
exit procedure context

adjust stack pointer
bit clear in user PSR
bit clear in PSR

bit set in user PSR

bit set in PSR

load processor register
store processor register
set configuration

no operation ‘
wait on interrupt !
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B.12 MEMORY MANAGEMENT
LMR mmureg, src load memory management register A P P E N D l X C

SHR mmureg, dest store memory managemept register
RDVAL  lac validate address for reading

WRVAL  loc validate address for writing Exa m p les

MOVSUi src, dest move value from supervisor to user
space .
move value from user to supervisor

space

MOVUSi src, dest

C.1 INTRODUCTION

These example programs have been chosen to display the versatility of the
NS32000 instruction set and the ease with which code can be constructed to
perform a particular function.

The first example is a small string function taken from the C library, As
well as showing how the string instructions can be used to perform quite
complicated searching functions with minimal but clear code, it also serves asa
real-life example of the layout of the stack for a procedure with parameters
and local storage.

The second example is a utility and is mainly concerned with the use of
Panos service routines for command line argument decoding, input and output
(both to files and hardware devices) and copyable code using the Panos error
handling routine.

A more elaborate procedure gives an example of a case jump and
miscellaneous sections of usef ul code; the routine itself can be used as it is or
extended quite easily. It is helpful in debugging assembler modules.

The last example is an interesting diversion.

The code has not just been copied from the source files into this text but
has been interspersed with extended comments for which there was no
convenient place in the source. These extended comments give background
information on the choice of instructions, pitfalls avoided and the application
of the program logic.

The routines are intended for ‘owner use’; if they were to be used by the
naive, they would require more parameter checking. What checking has been
included is there for the absent-minded knowledgeable user rather than as a
safety net for incompetents.

C.2 MACROS

A number of macros have been written to automate the calls to the system
routines used to display messages, strings and numbers and are extensively
used in these examples. The details are not of any consequence as the routines
called would be different running under other systems but some discussion of

. S
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the purpose of the macros will help in converting the programs or in
understanding them better.

The macro wrnsa displays a constant string of characters on the screen. It
expects the first byte of the string to be the count of bytes in the string. This is
easily arranged by using the counted string form made available by the Acorn
assembler.

The macro wrstr displays a string which has been returned by one of the
Panos routines; this ‘returned string’ format has been standardized for
convenience in writing the macros which return the string as well as the other
macros which call routines taking the returned string as a parameter. The

format is:

ded 2
string dcb maxlen
alloch maxlen

The address used as the string address is that of a byte containing the allocated
length of the string (maximum length parameter when describing a string
result). This is followed by the bytes of the string. The double word preceding
the maximum length byte is for the actual string length returned by the
routine.

The macros wrcard and wrint both call the string-to-integer routines and
follow this with a call to XBlockWrite to print the resulting string. wrcard uses
CardinalToString to do the conversion and wrint uses IntegerToString. The
result string used for the string-to-integer calls is allocated within the macro (if
so far undefined) in the static area.

The macro newl sends a CR-LF to the screen, again using XBlockWrite to
do it. The CR—LF string is allocated by the macro if undefined so far.

The stop macro calls the system routine Stop: if no parameter is given, it
returns a zero code to the system.

C.3 STRING SEARCH

This example is a function which is provided in the run-time libraries of some
C compilers. The definition of the function is taken from C: A Reference
Manual by Samuel P. Harbison and Guy L. Steele (Samuel P, Harbison and
Guy L. Steele, Jr., C: A Reference Manual, © 1984, pp. 261-262. Adapted by
permission of Prentice-Hall, Inc., Englewood Cliffs, NJ.).

The function takes two string parameters, s and set, and searches the
string s for the first occurrence of any character in the string set. If a matching
character is found, it returns a pointer to that character in s; otherwise it
returns the null pointer.

All strings in C end with a zero byte as a terminator and the null pointer
has the value zero; the pointer is assumed to be passed back to the calling
program in R@.

-

T T,
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The definition of the function is:

char *strpbrk ( 5, set )

char *g, #get;

) Assumi-ng that. the calling module uses s and set to label the first bytes of
the appropriate strings, the function can be called by the following sequence:

addr set, TOS
addr s, TOS
importc strpbrk
cxp strpbrk

The importc directive can be m innj i

fos oved to the beginning of the calling module if
dTlhe routine is prese‘ntcd as a module. Under normal circumstances, a

n::ollu e woul.d not contain only one function but would include a group’of

similar functions to reduce the overhead of many separate modules and in the

g

module
exportc

CString
strebrk

The function name is called strpbrk (as suggested in the book) and the name
must be exported to be able to satisfy linker requests. A static area for the
module can be defined in which its personal tables and common variables can
be kept without other modules being able to access them. This function d

not need any as the table it uses is on the stack. o

strpbrk

enter [R1,R2,R3,R4], 256

The ful?ction is kind to its callers; it saves the registers it uses. The enter
mstruct}on sets up a stack frame, allocates 256 bytes for the'skip strin

translan.on Fable and saves the registers. The stack after enter is shown in Fi 3
C.1. This gives all the important addresses. Note that table seems to extengci
backwards; this is only because the stack lengthens into lower memory so that
the la‘st byte of table is ‘lower’ down the stack than the first byte. The table is
used in the trgnslation form of the skip string instruction. Each byte from s is
trarfslated using table before being compared against the value in k4. By
settn.lg all the bytes corresponding to the characters contained in set to l.and
zeroing all the others, the skip instruction will stop at the first character from
set it dlsqovers in s as only these characters can match the value in R4. To make
sure that it will stop at the end of s when there are no matching characters, the
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first byte in table (corresponding to the terminating zero byte) is also set to 1 —

a simple test of the byte pointed at after the skip shows whether it is the end of
5 or not.

+3 +2 +1 +0

N |
(stack pointer before call)

| L L
| I }

set second parameter (FP + 16)
[ T
1 i !

5 first parameter (FP + 12)
f——+
MOD saved module register
——
return function return address
[ |
] | 1
old FP saved FP <—FP
——
table last byte of table (FP—1)
I
] 1 1 h
' ! 256 bytes of table
—
first byte of table (FP—256)

——

R1
I | !
1 1 i

R2
L | ]
I | 1

R3
) |
T i ]

R4 ~—SP
"R, |

Fig. C.1 The stack on entry to strpbrk after enter,

The table is zeroed by an overlapping move: the first double word in t;pli
is set to zero and then 63 double words are moved frqm table to table+4, l11rs
the double word at table (which has been set to zero) is moYed to tablfe+4, t eg
the double word at table+4 (which was set to zero by the first move) is move
to table+8, and so on.

ithe table is set up in the current stack.frame= the address
jof its first byte is -256(FP). Zera it first.

movad @, -256CFP) iset the first double word
mavzbd =236-4-1, RQ inumber of words to clear
addr -256(FP), R1 isource (table)

addr -252CFP), R2 idestination (tablet4)
mavsd
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After the table has been zero
starting with the zero byte. Each b
is not the zero byte ending set, is

ed, the required bytes are changed to 1,
yte from set is brought into R1 and then, if it

Note that the byte from set
word as it is used in a scaled ind
are used.

must be expanded (with movzbd) into a double
ex addressing mode. All 32 bits of the register

movgb
movqd
SetTable

iaddress of set is in 16(FP)
movzbd BC16CFPI)IRA:b], R1

1, -236¢FP)

iset zero byte to terminate
2, R

ibyte index into set

iget byte from set

cmpab @, R1 iend of set?
beq Scan iYe5, now scan s
novgb 1, -256(FP)[R1:b]

imark char from set

achd 1, RQ, SetTable i rall on inexorably

g s is scanned, the maximum length of
the scan is set to 65536 bytes. If this function is used in an editor, or similar

tool, which has a buffer length greater than this, the maximum will have to be

increased,

Scan
moud =:10000, Ro iincrease if too little

iaddress of 5 is in 12(FP)
movd 12(FP), R1 iaddress of first byte to scan
addr -236(FP), R3 itranslation table address
movqd 1, R4 istop when translated to 1
skpst [ul

iscan until match

If the byte pointed at by R1is zero, the string s has been searched without

finding a character from set and zero is put into R1. Just before the end, R1 is
transferred to R@ to be returned

¥ exit! On the other hand, values can be

passed back in registers by altering the saved values on the stack.

cmpgb 0, ACR1) istopped on zero byte?
bne Found ina, return pointer in R1
novqd 2, R1 ino match, zera pointer
Found

movd k1, RO

ireturned pointer

exit restores the registers saved by enter. If the lists are not the same the
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stack pointer will still be correct after leaving the procedure as the stack frame
is cleared down to the frame pointer. If, however, there are more registers in
the exit list than the enter list, they will all have the wrong values.

Finally, the call put two 4-byte parameters on the stack and the rxp is set
up to remove them again. The stack pointer should have exactly the same
address in it after the call as it did before the parameters were pushed on to it.

exit [Rl:R21R35R4]
rxp ] iremave 8 bytes of parameter
end

C.4 DETAB

This is an example program which replaces tabs with the equivalent number of
spaces so the output is visually the same as the input but contains no tab
characters.

The algorithm used comes from that excellent book Software Tools in
Pascal by Brian W. Kernighan and P. J. Plauger (Addison-Wesley, 1981). The
actual code embodying the algorithm is quite a small part of the program as it
uses operating system facilities to get arguments from the command line, to
open files for input and output and to interpret OS error codes.

The utility is called with the command line

detab Source Dest Tab n Tabs t1,t2,t3, ...

with Source being the input file name, Dest being the output file name or
printer (1p:) or VDU (vdu:). The two tab arguments are alternatives, Tab is for
equispaced tabs (every n columns) and Tabs is for the other kind. There are also
two arguments special to Panos: Help, which displays a reminder of the
command line arguments and Identify, which causes the utility’s version and
date to be printed.

The code starts:

module Detab

options -mexp

get 'Write-mac’
get 'ArgDcd-mac!
get 'I0Lib-mac'

The options directive stops macros being expanded and the three get directives
bring in the macros in three libraries which are used to automate the calling of

system routines.
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areadef static, [write, datal, double
defsh static
area static
i dcd ]
J dcd ']
n dcd a
InStrm dcd '}
OutStrm dcd a
Eof dcd 2
InChars dcd a
OutChars dcd 2
InLines dcd ')
Column ded )
Byte dcb "}

defined:

TAB equ 109
NL equ H'F
CR equ od
BLANK equ '

MaxLine equ 255
tabstops
alloch (MaxLine+7) i1 bi e
tabarray >>3 i1 bit/position
alloch 31

The Panos command line argument decoding routines require a template
provided here by the string Key. The attributes of each argument are given by
pne Or more code characters separated by / after the argument keyword /a
implies tha.t the keyword must have at least one argument, /c shows that 'the
argument is expected to be a cardinal (unsigned integer) and /s that the
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argument is a state—if it is present the argument has the value TRUE
otherwise it has the value FALSE. /? shows that the keyword can have any
number of values. The keywords are only necessary if the arguments are not
given on the command line in the order they are in the key string: Tab or Tabs,
however, must be given as they are alternatives and the state keywords must be
present to enter the value TRUE.

Key dcb "sourcesa destsa tabsc tabssc/? Identifyss Helpss''

When the decoding routines are called to return the value for a particular
argument, the keyword must be passed as one of the parameters. The list of
keywords follows next.

srcarg dcb "source"
destara  dcb “dest"
tabarg dcb "tab"
tabsarg  dcb "tabs"

The static area is closed by the ‘area’ directive which starts the code area,
entry causes the current code address to be used as the entry point after the
program is loaded.

area
entry

The first action is to bring the command line into the program for the
decoding routines to work on. The macro argstr calls the system routine
fArguments which passes it back as a string Araguments; the macro declares this
string if it has not yet been defined.

detab
arastr Arguments

Next DecodelInit is called to initialize the decoding routines, showing them
where the command line is and returning a Handle to use in the subsequent
system calls.

iDecodeInit Key, Arguments, Handle

dedinit Key, Arguments, Handlg. ErrorCode
cmpad 2, R@
bat GetError

A return code is passed back in R@. If this is negative, an error has occurred
and another system routine is called to interpret it so that useful messages can
be displayed.

The specification for Help says that the routine should exit immediately
after displaying helpful information so it is tested for first. If it succeeds, the
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message is displayed and the decoding process brought to a tidy end before

terminating.

Help

iHelpRequired Handle, ErrorCode, Result
hlpreq Handle, ErrorCode
cmpad 2, Ro
beq identify
area static

HelpMsg  dcb "Detab Source Dest Tab n/Tabs t1, t2, ;
area o
wrmsg HelpMsg
newl
dcdend Handle
br stop

) negi :c(l) 13;‘::];) ir'lfc;;mation is required, a check is made to see if identification
- 1118 1s the normal state of the system and th
: e result returned for
tIlclieem; t1 ::;edzlzeliﬁs not only on whether the Identify keyword is present but on
¢ system variable Program$Verbose: if Pr i
] ' ; - ogram$Verbos
non-zero the Identify result will be true whether the keyword is present or ;o;s

i IdentifyRequired Handle, ErrorCode, Result

identify
idreq Handle, Error Code
cmpqd 2, R2
beq getarags
' area static
identmsg dcb "Detab v1.9@ 4.jun 85 15:pg"
area
wrmsqg identmsg
newl

Next the source file name and th inati i
| ( e destination file name or devi
collected and put into the strings Source and Dest: atcents

getargs
getstr srcarg, =1, Handle, Source

getstr destarg, =1, Handle, Dest

The =1 is entered as the index of the
hav.e more than one value associate
designated.

Now_the ogtional arguments are collected. First, the number of values
provided is obtained; If this is zero, the argument is missing:

value to be returned. As arguments may
d with them, the one required must be

D ——
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getnum tabarg, Handle, ntab
cmpad @, ntab
bge GetTabs

If it is present (there is only one value to Tab, the tab spacing), get the value and
ignore any Tabs argument:

getcard tabarg, =1, Handle, Tab

If there is no Tab argument, try for a Tabs; get the number of values and, if it is
1 or more, get the values and put them into Tabarray:

GetTabs
aetnum tabsarg, Handle, ntabs
cmpqd D, ntabs
bae DecidelnTabs
movad 1,1
movd ntabs, n
NextTab
getcard tabsarg, i, Handle, Tab
movd i, R1
mavb Tab, tabarray-1I[R1:bl
addad 1,1
achd -1, n, NextTab
newl

This part of the program looks to see whether a tab argument has been
provided and, if it has, sets up the bit array TabStops depending on which
argument has been given. If neither argument is present (both ntab and ntabs
zero), an argument of tab 8 is assumed. In the Software Tools description,
much stress was laid on having the procedure setting up the tab stops and the
procedure checking them separated from the main program on the principle
that the main program need not know about the TabStops data structure. Here,
the code setting up TabStops and the code checking it is so small that the
overhead of putting it into a procedure would be unnecessary. Thus, it has
been inserted in-line. The section of code starting with ZeraTabs simply zeros
the array. Due to the way the array has been declared, it can not be assumed
that it is an even number of words or double words, so it is zeroed a byte at a

time.

DecidelnTabs
dcdend Handle

cmpad @, ntab

bne ZeroTabs

cmpqd @, ntabs

bne ZeroTabs

movqd 1, ntab

movzbd =8, Tab
ZeroTabs

movzbd =(MaxLine+?)>>3, R1
zero movqgb @, tabstops-1[R1:p]

achd -1, K1, zern

;1:3::::,{ ;;a;ting $t t?f; setting bits at each increment. ArrayTabs takes the values
fray 1abfirray, using them as indices to set th bits i
: : ! ts in TabStops. Th
use of the instructions sbitd and sbitb i at Tl
‘ may be a trifle confusing; sbitd take
double word offset (here in RO) while sbitb contents itself with a byte fr(;\sr;1

TabArray. If TabStops were to in in si i
e crease in size this byte would have to change to

SetTabs
cmpqad 2, ntab
beq ArrayTabs
movd Tab, Ra
set sbitd k@, tabstops
addd Tab, R@
cmpd =MaxLine, RO
bat set
br OpenFile
ArrayTabs
movd ntabs, Rp
seta movb tabarray-1[R2:b], R1
shith k1, tabstops
achd ~1, R, seta

. Cll-iavmg set up T'ahStops, the input and output files must be opened. Here a
pecial twist comes in as the Panos file name must be converted into a name

Name'* wlhlch, from glpbal variable information, converts it into the filing system
tr:;llxlwa ent. Sourcg is here assumed to be a real file and, if PhysicalFileName
IDs an error, it is assumed to be a real error and control is passed to the
error handler. The output file, however, may be the printer or VDU which
PhysicalFileName fejects as errors. For Dest then, an error is assumed to be due
to a hardware device being called on and it is opened as its unconverted name
fﬁny error cc_)mes then from the system call Find(utput, which may not ivé
Immense satisfaction and may need to be changed with’experience. :

4
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OpenFile
realfn Source, FS, PSource, GetError
findin PSource, InStrm, GetError
ithe error code from realfn is left in R® when no error
ilabel is given.

realfn Dest, FS, PDest
cmpad 2, Ro
ble CheckOpen
jon an error, assume that a real device is to be used
findout Dest, OutStrm, GetError
br repeat
Check(Open
findout PDest, OutStrm, GetError

After all this, the code given in Software Tools comes into play. The code
following is an exact representation of the code on pages 24 and 25 of Software
Tools, with the proviso that the code for tabpas is in-line rather than in a
procedure.

movad 1, Column

repeat
srdbyte InStrm, Byte, CheckEOF
addqd 1, InChars
cmpb =TAB, RO iis it a TAB
bne CheckEOL

TabExpand
swrbyte OutStrm., =BLANK, GetError
addqad 1, OutChars
addqd 1, Column
cmpb =MaxLine, Column ;past end of line?
bls repeat iyes !lunsigned!!
thitb Column, tabstops iat tabstop yet?
bfc TabExpand iuntil next tab
br repeat

Note the anguished ‘unsigned’ comment to the comparison between MaxLine
and Column, MaxLine is represented as a byte and with value 255 is —1 as a
signed byte; to work correctly an unsigned comparison must be made.

Finally, an extension to the original code. I found that some files of
interest to me used BBC (80D) or CP/M (&2A&0D) as their end-of-line markers.
As I was interested in transferring these files to the 32016 second processor, I
added the following code which converts CR—LF, LF—CR and CR alone to
LF as an end-of-line. The system routine SCurrentByte (embodied in the
macro snxtbyte) returns the next byte from the input stream without
advancing the pointer, thus giving a measure of lookahead.

CheckEQL
cmpb =CR, Ra
bne CheckNL,
snxtibyte InStrm ibyte left in Ra
cmpb =NL, R@
bne CRONnl1y
iEnd of line is CR-LF
CRLF z:dbgte égftrm. Byte iremove second byte of pair
CROnly br EOL
CheckNL
cmpb =NL, R@
bne Ordinary inot unusual
i;z;byte fgg:cr;na ibyte left in RO
beq CRLF

et tThel 1branc};:as to EOL at CRLF and CROnly are not both necessary; they are
0 allow other actions to be taken when ifi ine 1 i

ity a specific end-of-line marker is
When the kind of end-of-line marker has been ascertained (and the second

byte of a pair read away), the st i
i andard end-of-line mark i
to the destination file: A beCniten ot

NLOnly
EOL swrbyte QutStrm, =NL, GetEpprop
addqd 1, DutChars
addqd 1, InlLines
movqd 1, Column
br repeat

Not all bytes are interesting; ordinary ones just get copied to the output.

Ordinary
swrbyte OutStrm, Byte, GetError
addqd 1, OutChars
addqd 1, Column
br repeat

Thfa rt?ad at the beginning of the ‘repeat” loop checks R® for an error code
and, if it finds _it, comes here to decide whether it is an end-of-file or a proper
errf)r; 'end-of-fnle is tested for by the system routine End0fFile, the callpto
which is manufactured by the eof macro. The second read, at th; label CRLF
doesn’t need to check for an error as SCurrentByte has a]reaély done that for it.’

CheckEOF

iif the error is EOF, finish neatly; otherwise issue message
movd RD, ErrarCode

I
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eof InStrm, Eof, GetError
cmead 1, RD

beq EOQF

movd ErrarCode, R@

br GetError

At the end of the routine, when it has reached the end of the input file, it
prints a count of the characters and lines read and the characters written; the
same number of lines will be written as read, but any expanded tabs will
increase the number of characters going out.

area static
endmsg dcb "Copy complete . ¥da*ad"
incmsg dch "characters,"
inlmsg dcb "lines read:"

outcmsg  dcb "characters written.*pa*@d"

area
EQF

urmsg endmsg

wrcard InChars

wrmsg incmsg

wrcard InLines

wrmsg inlmsg

wrcard OutChars

wrmsg outcmsg

close InStrm, GetError

close OutStrm, GetError
stop

stop

Finally the routine exits to the system by the Stop call. This sets a return code;
the macro stop sets this to 0 by default.

The final section of Detab is concerned with issuing a message for any
error code returned from any of the system calls which check for it. The system
routine KGetErrorMessage is passed an error code and returns three strings. The
first is the name of the library module in which the error was detected
(Detecting Facility), the second is the name of the library module actually
called (in case this passed the call on to a lower level routine) and the third is
the message with any names and values filled in. The name of the interfacing
facility is introduced by "Called by:" and the detecting facility by "Found in:",
The stack parameters for the returned strings are explained earlier in Section

9.4.2,

GetError

novd R@a, TOS ithe error code

area static
dcd ]
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ErrorMss  deb 40
alloch 40
dcd a
Inter dch 4@
alloch 4
dcd 2
Detect dch 40
alloch 42
CalledBy
dcb "Called by:"
FoundIn dcb "Found in :"
Errorls  decb "Erropr i :"
area
addp ErrorMsg-4, Tos
movzbd ErrorMsga, TOS
addr ErrorMsg+1, TOS
addr Inter-4, TOS
movzbd Inter, TOS
addr Intert1, TOS
addr Detect-4, TOS
movzbd Detect, ToS
addr Detect+1, TO§
ifndef #GetErrorMessage
:mportc #GetErrarMessage
i
cXp KGetErrorMessage
wrmsg CalledBy
wrstp Inter
newl
wrmsg FoundIn
wrstr Detect
newl
wrmsg Errorls
wrste ErrorMsg
newl
stop -10
end

C.5 SIMPLE printf

.Thns 1s a procedure designed to be used while debugging modules. To this end
it preser_ves all the registers on entry and restores them all on exi-t

_As in the real printf, a much used part of the C language r;ystem the
routine ha-s a \_rariable number of parameters, the first of which must ’be a
string. .Thls string contains ordinary characters interspersed with formatting
codes introduced by a Z. Ordinary characters are output until a is
encountered. If this is followed by one of the special codes, the next parameter
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is converted according to the code and the 7 and following code replaced by the
formatted result. The codes accepted by printf allow 16- and 32-bit integers to
be output in decimal, octal or hexadecimal and provide for single and double
precision floating point as well. In addition, several non-printing characters
are represented by ‘escaped’ lower-case letters, newline being written as \n, for
instance,

This utility only provides for 32-bit integer output in decimal or
hexadecimal, strings in a particular format or registers. The parameters are put
on the stack in reverse order, with the address of the integer or string
corresponding to the /asf format code being sent first followed by that for the
next to last, with the address of the format string being put on the stack
immediately before the count of parameters. The value of the registers is taken
from the procedure’s stack frame and is the only format code for which there
is no corresponding parameter passed.

In this rather primitive version, no provision is made for a newline
character or any other non-printing characters; the macro written to set up the
call simply adds :@a, :0d, @ to the end of the format string presented to it.

To print a format string containing no format codes the call would be:

fmt1 dcb 'A string without formatting codes.', :@a, :0d, 0
addr fmtl, TOS ithe format string
movad @, T0S ina. of parameters
cxp printf

The end of the format string is marked by a zero byte, in the C tradition.
To print a string with a single integer format code (71, print in decimal)

the call would be

int dcd 12345
fmt2 dcb 'The integer is 7i.', :0a, :0d, 2

addr int, TOS
addr fmt2, TOS
movad 1, T0S
CXp printf

and so on.
The formatting codes recognized by this printf are:

i signed integer
unsigned integer
unsigned integer in hexadecimal
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5 string
Rn register with 0 <£ng7

g

dcd ) iactual strij
’ i ring length
string dcb strlen imax string lengthg
alloch strlen ithe string bytes

addr string-4, Tos
mavzhd string, TOS
addr string+1, ToS

. The codf: exports the entry point and uses the write macros to output
mntegers, unsigned integers (Cardinals) and strings to the default output

module PrintFormatted

exportc printf

options -mexp

get ‘Write-mac’

areadef static, [write, datal, double

area static
MAXFMT equ g0 imaximum numbep of bytes in Fmt
nparams dcd '} inumber of parameteprs

:;'::Rem g;‘,g g iaddress of next byte of format string
ibutes remaining in Fmt
g;gam dcd a iaddress of next parametep
5 gt dcb 5,1 ibounds of legal format codes
digi dcb 78" jlegal register numbers
;trﬁdr gcd ? thhlds integer parameters
cd '} ifirst byte of string to print
StrLen dcd ] ino. of bytes of string to print
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The stack picture is similar to that for strpbrk. With the calling sequence
given, the number of parameters is lowest on the stack at 12(FP), the address
of the format string is at 16(FP) with the first parameter (if there is one) at

20(FP), the second at 24(FP) and so on.

area
iCall is: printf(nparams, fmt, paraml,..., paramn )

inparams is in 12(FP)

ifmt addr is in 16(FP)

iparams from 20(FP> up

area
printf
isave all registers for possible print out.

enter [R@, R1, R2, R3, R4, R3, R6, R71, @

movd 12C¢FP}, nparams

movd 16(FP), Fmt

addr 20-4(FP), param ;allowing for initial incr

After the two fixed parameters and the first variable one have been
transferred to local storage, the actual length of the format string is found
avoiding the need to check for the terminator byte while scanning for the next
#. The maximum acceptable length has been set to 80 bytes as the format string
is entered in-line and would spoil the listing format if it was too long;

iscan far format string lenath, up to MAKFMT bytes

movzbd =MARFMT, R@

maovd Fmt, R1

movad 8, R4 istring terminator
skpsb [ul

movzbd =MAKFMT, R2

subd Ra, R2 ifmt string lenath
movd R2, FmtRem

cmpad B, R2 iempty fmt strina?
beq Finish iyes

The length is calculated as the initial setting of the number of bytes to search
for the zero byte terminator less the number remaining when it is eventually
found; the count is kept in FmtRem and decremented as bytes from the string are
used. It even checks for an empty string!

The main work is done by the routine PrtFmt, which, theoretically,
outputs each character from the string until it encounters a /. In fact, it scans
the string from the current byte, for the number of bytes remaining (in FntRen),
up to the next 7 or end of string, prints this and then goes on to examine the
putative format code. This code, if legal, is then returned as a number from 1
to 5 in R2. On return, the parameter address is incremented and the count
decremented. Before a parameter is printed, the count is checked and if it

_v‘
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::;)ws dthat no co_rresponding parameter has been passed the

pped. If a register code is found, for which there is n
parameter, then the loop is re-entered at SeekParam to lea
address and count unchanged.

n the print is
O corresponding
ve the parameter

iprint all ordinary characters i
' : n the fnt strin
ithe next 7 or end of string: return a3 code in Rﬁg [

FmtLoop
addqd 4, paran il
. R S ilncrement parametep address
aram ientry after i i
| - porer register, no param increment
iR@ returned ... fop
f "} end of fmt string
f 1 /i found
: 2 Zu found
f 3 Zx found
f 4 /s found
i 3 ZRn found, B < n < 7 returned in R1

At this point a code h
: as been returned from p
- . . riFmt and, fo
nvenience of the various routines handling the resulting output, th ren:
parameter address is put into R7: Pil The current

imove parameter address into R7
movd param, R?

;tingjztenclw in the cours.e of development when a new code is introduced in
ut the corresponding routine to handle it forgotten.

icheck and adjust coge value in R

checkb R6, Code, Ra
bfs Finish iend of Fnt string
‘(Iiase casew Jumps[R6:y]
umps dcw WrInt-Case icade 1
dcw WrCard-Case icade 2
dcuw WrHex-Case icode 3
dcw WrStr-Case icode 4
dcw WrReg-Case icode 5

The case jump winds up a nice bj ;
D a nice bit of illustrative code. N wi
g . Note that
the scaled index must be and the table entries must be dg ith caseuw,

I '
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Each handler checks for the presence of its parameter by checking the

value of nparam. As this is initially decremented, its original 1range 1
becomes 0...n —1 and, to be valid, it must be greater than or equal to zero.

iprint an integer

WrInt
idoes parameter exist (nparans > 2)?
d @, nparams
E:;:q FmtLoop ino more parameters
movd B(R?7), R1 iget addr‘gss
movd BCR1), i iget the integer
wrint i
br FntLoop

As the parameters are represented by their addre§ses, a ((;oubli/1 .irllld:irgc(ti ;‘leli)cll;
There are addressing modes whic
must be done to get the value. addr : Ry
i i d in this connection is
indirection. The one which comes to min . . :
gglltive' to get the value of the first parameter in one instruction you could

write

moud RC2BCFPY), i

but here both displacements are fixed in the instruction.and canlr;lotd be used if
the distance from FP is not known when the program is assembled.

iprint an unsianed integer (Cardinal)

WrCard
idoes parameter exist (nparams > 9)?
2, nparamns
g::qd FmtLoop ino more parameters
movd RACR7), R1
movd QCR1Y, i
wrcard i
br FntLoop

iprint an unsigned integer in hex

WrHex
idoes parameter exist (nparams > @)?
S g;tnparamS FmtLoop ino more parameters
movd QCR7), R1
movd BCR1Y, i
wrcard i, 16
br FmtLoop

ipri i in 'returned string' format:
TPV‘IM ) Stzlzg i ) ;actual lenath
fstr' dgb n imaximum lenath

for a Z character stopping at the e
will check to see if it is one of the legal codes i, u,
it is none of these, it will simply print whatever character it finds after the 7

printed. Before the scan is started though, the
the string is checked and, if it is zero, a specia
byte count in R@ to serve as the end-of-string code, zero.

ﬂY"
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i allochb n istring bytes
ithe parameter Passed to printf is the address of
ithe maximum length byte

WrStr .
idoes parametep exist (nparams > @)7
cmpqd Q) nparams
bat FmtLoop ino more parameters
movd B(R7), R1
wrstri R1
br FmtLoop

Printing registers is slightly different. The va

lues here are held on this side
of the frame pointer with R@ in the double word i

mmediately below it, its least

¢ word; that is, at
=4(FP). R?, 7 double words further down, is at -32(Fp). The regis

» must be negated for the scaled indexing to work as Re
corresponds to 8-4(FP) and R7 to ~7*4-4(FP),

iprint a register: it is held as a double word on the stack
iwith RO at -4(Fp) g0ing down to R7 at =32(FP). The number of

ithe register required is in R1. No parameter corresponds
ito this code

ithe register number in R1 ¢9..7) needs to be con

verted into g, -7
WrReg negd R1, R1
movd ~4(FP)IR1:d], i iget the reg
wrcard i, 16
br SeekParam

As mentioned before, the loo
parameter adjustment.

The termination code is much as one would €xpect except that the
parameters on the stack must be removed by an ADJSPi instruction. rxp can
only remove a constant number of bytes from the stack:

P entry after printing a register skips the

iend of Fmt string - resiore the registers and return;
ithe calling Program will adiust the stack

Finiﬁh exit [RO, R1, R2, R3, R4, RS, R6, R71]
rxp 0

FrtFmt does most of the work in print{. It scans the format string looking
nd of the string. If it finds the character it
X, s or the combination Rn; if

number of bytes remaining in
I exit is taken leaving the zero

ok
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iscan the Fmt string fora /

PrtFmt
movd FmtRem, R@ ino of bytes remaining
cmpad B, RO
beq Quit
movd Fmt, R1 ibute address
ScanPC movzbd ='/', R4 ibyte to match
skpsb [ul
movd FmtRem, StrlLen
subd R@, StrLen ino of bytes to print
movd Fmt, StrAdr i1st byte to print
movd R@, FmtRem jupdate bytes remaining
movd R1, Fmt icurrent Fmt bute address

When the scan is complete, the number in R@ can be subtracted from FmtlLen,
the number of bytes to the end of the string, to find the number of bytes to
print. The address of the first byte to print is the byte at which the scan started,
Fmt. Having set up the printing parameters, StrAdr and StrLen, the format
string parameters, Fmnt and FmtRem can be up-dated to point to the first
unscanned byte and the number of bytes remaining to be scanned.

The ‘ordinary’ bytes are printed using the Panos routine to output a block
of bytes, checking first that there is something to print:

iprint ordinary string bytes

cmpad B, StrLen
beq NoBytes
movd StrAdr, TOS
movd StrLen, TOS
cxXp KBlockWrite

NoBytes

The number of bytes remaining in the format string is then checked. If it is
zero, the special exit is taken to show that printf is finished.

idid it stop at the end of the format string?

movd FmtRem. R@

cmpad @, Ra ino more?
bne CheckPC

Quit iend routine
ret ')

In the next section, the next format byte address and the count of bytes
remaining is updated and, if there prove to be no more bytes in the string, the
Quit exit is taken. Note that a # immediately followed by the end of the string
might be considered an error but, as we want printout not errors, it is simply
ignored.

T
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icheck the / code

CheckPC
addqd P
cmp:d Bi’Rga imove ovep ¥
beq IJ:u't iend of fmt string?
i iyes,
now update Fmt and FtRem to point to the byte ::tr:‘r f:?urther
movd RO, FmtRem
addqd 1, Fmt
movd Fmt, R1

It is now established that a byte follows
to be scanned and the remaining byte count

to do it at ;

investigated.thli' ?tn?u:: ot it sequence, and the character ollowing 7 i

Panos’ Kiiri teByte theSnOl;tbto be another 7 the second # is displayed usinlgS
) ex

re-entered. yte and byte count are updated and the scan loop

the /: the address of the next byte
are updated here, to avoid having

iRl points to the byte following /

inow move Fmt and FmtRen to Paint to the bute following

ithe code byte after 7, ¢ i
el b OF a register code they noy point

addqd -1, FmtRen
addqd 1, Fmt
movzh g
cmp; d f.(ﬁl)r:. R@ iget code byte aftep 7
h /'y Ra iis it an escaped 77
ne PCCode B
i% character represent e ite ;
A iy ede;_:J T/.U/S-wnte Z and mave on,
importe KWriteByte
cxp KWriteByte
moud FmtRem, R@
mz:d Fmt, R1
addqd -1, i
b 1‘1 RlRB iPass over 2nd /
br ScanPC

At this point in the code
follow the 7 format marker; a
legal characters or not. On di
corresponding to it is left in Rp

a (fharacter which is not 7 has been found to
series gf tests finds out whether is is one of the
Scovering a legal format character the integer
and control is returned to the main p,arintf‘ logp

iget 7 code and return the appropriate integer in RQ

PCCode cmpb =i', Ra
bne Tryli
movqd 1, Ro
ret ]
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represent 32-bit integer quantities. A further Improvement could be made by

Trgl Gl ='y', RO making the wrxxx macros take a stream parameter so that, if a stream variable
bne Tryx Was set non-zero, output could be to a stream rather than the default output
movad 2, R® stream as at present. This would allow the code to be used by an fprintf entry
ret 2 which would increase jts utility considerably. It would also be a good idea to

I . introduce the abbreviation \n for newline, which would make it more flexible.
Tryd cupb -
bne Trys
» R@
uoua ; C.6 AND FINALLY ...
re
i In June 1964 the learned journal Mathematics of Computation previously
Trys cnpb . Sé R : Mathematical Tables and Aids to Computation, published a short note by E.
bne T4MR0 and U, Karst announcing that, on | January 1964, they discovered the first
mD:qd n’ string of 8 zeros in a power of two. The power was 14007 and “a fast program’
re running on an IBM 1620 took 1 hour 18 minutes to find it
If the code is a register format marker, the digit followigg ml;st b:dpil;kReld The following example sets out to better that discovery by finding the first
e g m .
alling code, retu Ower containing a string of 9 zeros. The program was developed by way of
up and, according to the arrangemen't made by the ¢ thga ¢ the digit is in the gndin successif . b gf W e l; 485 i p ”h}’ y
The ch’eckb instruction is used again to make s(ur; b s 1%9 g e};l, 68% 11) C:ICC r finces :’ f', d, than t .zeroi‘ (;1 GPQWZFSS
+ if it is not, the digit character (which re . . , 1 an and went on to find the s ring of 8 zeros in
acceptable i ang(ej. 1;;:;;; is left in R1) is printed by the same pece of COdi seconds. This development program was a more general one than that given
L adJUSte' ; doubled 7 format markers and unrecognized forma here, in that it counted the number of zeros it found and only printed the count
which deals with dou ' and power if it was one better than the previous count. The program was then
characters. left to run for 13 hours 40 minutes to complete the search for consecutive zeros
<R', RO up to the power 217706 (65536 digits) discovering the 9 zeros on the way; it
TryR gmpb NrByte jerror: print bute appears that ten consecutive zeros lies further up,
ne

| This program has besn optimized to search for exactly 9 zZeros, ignoring
all others, and completed its task in just over 2 hours 42 minutes on a
Cambridge second processor (6 MHz 32016).

| Since the power had to be in decimal and it would have been extremely

;get register number

movd Fmt, R1 jalready points at digit |

imove Fnt and FmtRem over the register digit

addqd -1, FmtRem ‘ add instruction and extending the precision (from the maximum 8 digits in a
addqd 1, Fnt double word) by adding in the carry after adding a component pair of double

k2 ipick up reg digit words. In fact, this is done automatically by the ADDP instruction and it is only
moub W(R1d)j v B r fiecessary to stop the addition after it has passed the most significant digit. In
S?:okb Ei:cntlo?? ‘ jout of bounds the development stage, the code given at the end of Chapter 6 was used to print

l/ / e 5 1

movad 3, RY N o .
) ifind first power of two containing nipe consecutive zeras
ret
module Powers0f Two
tions -mexp
iIRx - xnot @..7 P
‘léfst-ﬂx movh R2, Ra . . . '
br WrByte | The write and time and date macros are used to print the starting and
ending time and the elapsed time:
end
. . -case i, u and x ( get ‘Write-mac!
A number of improvements spring to mind. The lower-c get "TinDat-nac’

rought in to
could represent byte values while upper-case I, U and ¥ could be broug
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areadef static, [write,datal, double
area static
Power0fTuo
dcd Q
digits  eau 65536 ito 2217706
two allocd digits>>3 )
twoms equ $-1 imost significant digit
ded 2 ' ibarrier
psr dcb [} jusr PSR

Power0fTwo is the count of the number of times the addition has been
performed so far, and the packed digits of the power calculated are kept in
4uo. twoms is used to stop the calculation when the power is just about to
overflow; the most significant digit is 5 or more. The barrier is a bit of a
bodge, the progression of the most significant non-zero digit is calculated and
the addition done up to and including the double word above the double word
containing it. To avoid overwriting useful things, an empty double word was
put above the last word actually used. psr keeps the user byte of the PSR after
the addition of two double words, the instructions following it in the loop
cleared the carry which was needed for the next addition.

On entry, the time (provided by Panos) is taken using the BinaryTime ser-
vice routine; this is converted into ‘standard time’ by StandardTimeOfBinary

Time and displayed:

area
entry
pawers
btim start
stimb start, STine
wrstr STime+1l, STime-4

Now the power of two is initialized to 1 by setting the least significant
double word to 1 and all the others to 0; there is no sign to worry about.

movad 1, two
movd =-(digits>>3)+1, RO
movad 2, Power0fTuwo
addr two+4, R1
init movad B, B(R1)
addad 4, R1
achd 1, R@, init

The position of the most significant non-zero digit is initialized. As the
addition is by double words (for efficiency) the position of the most significant

t—‘
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di_git is taken as the double word
W:lll be a carry out of this doub
higher double word.

containing it and, bec
and, ause eventually t
le word, the addition is continued to tlile 22{?

addr twotl, R2 ims zero byte

- This is the additi

incremented, the value illc:l::sfril: ok
the ca:rry bit in the user PSR an
goes Into R1. Note that the do
replacing its original contents.

oop: the value of Powerp i

. fT

;et to zero which, later in the loop, \a.'illh::cllvea:S
btl]'xe addre:ss of the first double word to ad;

uble word is added to itself with the result

celrC ;ddq: 1, Power0fTuwo
ovg
. B, psr iclear Carry
r two, R1
ino. of double words to add = (s byte+1+3) DIV 4
movd R2, RO itwotn
subd R1, R@ i-tuo
ad:qd 4, RO it143
add :zr: GF:él; o .
» PSP ires
addpd Q(R1), B(R1) oAty
asz;:d EPSRI.%I. psr isave carry
s e logn = ill clears Carpy !

Carry must be saved, in the for
clears it.

ad The address of the most significant di
address of the double word above that w
should therefore be zero; if it is no longe

m of the user byte of the PSR, because addqd

git of the power of two is kept as the
hich a.lct.ually contains it. This word
T SO, 1t is time to move up.

iif the i
present ms byte is noy non-zera, increase the

jaddress
set_ms cmpgb 0, B(R2)
beq search
addad 1, R2
Now the search i
. s mad 5
instruction, © for a zero byte using the string ‘skip until
search save [R2]

isave ms bute address

addr
- ;go.Rgl istart scan here
e el ino, of bytes to scan

iconti
tinue the search after a zera bute has been investigated
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;jand there are more than 4 bytes remaining irestart after 1 zero byt
yie

continue_search rechecki
movad 2, R4 iscan for zero byte addqd e
skpsb [ul -1, R
addqd 1, R
;if no (further) zerno bute is found (F cleard, il check4
jcontinue with the next power of two irestart aft
bfc contin : recheck? er Z zero bytes
addqd -2, RD
Nine consecutive zero digits must consist of four consecutive zero bytes gddqd 2, Rl
with either a zero nybble before the first one or after the last; note that the " check4
skpsb above could have been changed to skpsu, speeding up the search a bit as irestart after 3 zero byt
the 32016 can deal with a word at a time. recheck3 gees
addqd -3, RR
add
iquick search: after finding the zera bute, check foruards br v 3, k1
;for 3 nore zero bytes. If they are all found (8 contiguous check4
izeros), check far a zero nybble just before the first zero irestart aft
ibyte ar just after the last recheckd er 4 zero bytes
cmpab 2, 1(k1) ad
bne recheckl ad::g -4, R0
cnpab ¥, 2(R1) 4 R
bne recheck2 icontinue the sear )
cnpab 8, 3(R1) ithan 4 bytes lef?tr ch of the string if there are more
bne recheck3 check4 cnpad 4R
extsh 4(R1), R2, @, 4 ;upstrean nubble blt + RO
cmpdb @, R2 continue_search
beq print_nine The scan ;
g ) an 1s complete (and :
extsb -1¢R1), R2, 4, 4 idounstream nybble p and presumably fa T
bne recheck4 top double word of two and stop if the nex); dl(l;?d'). Ch'e ck the top digit in the
allotted length: addition will overflow beyond the
;Nine zeras faund: take the time, print the message and
jclose contin restore [R2]
print_nine icontinue until the leading digit
btin finish extsh 85, ) Tk,
wrstr ninez cmpgb 5, RO + 4 ins digit
wrcard Powerdf Tun bat clrC
newl istopped by leading digit
br ends btim finish |
wrstr leadmsg
area static X wrecard Power0$Tuwo
ninez dch "Nine zeros found at 27" newl
area

The time, in binary centiseconds,

et : is i .
most significant in the higher address returned in two double words with the

This is the recovery section after the search, depending on how many
consecutive zero bytes have been found, advance the scan pointer in R1,

decrement the byte count and then, if there are more than 4 bytes left to scan, diff nga SELLS
continue the loop. . e, a iBTim record

| | S
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C L oea s . ds
;calculate the elapsed time and print it in centisecon

;and as a standard time

ends movd
subd

mavd
subcd

urcard
urstr
newl

stimb
wrstr
newl
stop

area
leadnsg  dcb
csecmsg  dcb

end

finish+4, diff+4
star‘t+4: dl""{\+4
finish. diff
start, diff

diff
csecmsg

finish, STime
STime+1l, STime-4

static . .
“Leading digit 5 or more: stopping at 2

"csecs."

INDEX

& operator in C: 32000 code 94
-begin: procedure directives 117
-blkb: NatSemi directives 91
-blku: NatSemi directives 91
-bute: NatSemi directive 15
-double: NatSemi directive 15
-dsect: NatSemi directives 91
-endproc: procedure directives 117
-endseg: NatSemi directives 91
-export: NatSemi directives 27
-exportp: NatSemi directives 27
-float: NatSemi directives 19
-import: NatSemi directives 27
-impartp: NatSemi directives 27
-long: NatSemi directives 19
-Prac: procedure directives 116
-returns: procedure directives 117
-sbyte: NatSemi directive 15
-sdouble: NatSemi directive 15
-sword: NatSemi directives 15
-var: procedure directives 117
-word: NatSemi directives 15

32-bit internal data path 2
32000 code
& operator in C 94
index calculation 90
index function 100
pointers 93
record access 92
stremp function 100
struct access 92
32081 1; see also Floating Point Unit
32082 1; see also Memory Management
Unit
32202 1; see also Interrupt Control
Unit

I

323321

32381 2

32382
Memory Management Unit 2
off-chip cache 51

32C016 1

32C532 1

68000 2

ABSE: absolute value floating 64
ABSi

integer absolute value 37

integer value to fajl on 37

use with unsigned division 44
absolute symbols 19, 21, 27
ABT: instruction abort trap 142, 150
ACBi

add, compare and branch 43, 81, 104

loop control 11, 43

operands 104
access classes of operands 10, 96
Acorn 32000 assembler ZASM 12
Acorn arithmetic operators 22
Acorn constant format

binary 16, 20

counted strings 16, 21

decimal 16, 20

hexadecimal 16, 20

octal 16, 20

strings 16
Acorn directives

alloch 14

dch 14, 35

ded 15, 35

dcf 18

dcl 18

dew 15, 35
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equ 21
equr 22
export 22
exportc 22
import 22
importe 22
set 21 '
Acorn representation of immediate
operand 33
Acorn reserved symbols 20
Acorn string constants
carriage return 16
line feed 16
non-printing characters 16
ADDCi: add with carry 34
ADDf: add floating 64
ADDi: integer addition 32
addition multiple precision 30, 34
ADDRi: add quick integer 34
addr
load address 93
use with register 93
address space
24-bit 1, 4
32-bit 1, 4
4 Gbytes 2
address translation registers 6
addresses: increase from right to left 5
addressing mode
base and displacement 10
immediate 32, 33, 35
memory space 32, 33
register 32
scaled index 10, 80
top of stack 10
ADJSPi
adjust stack pointer 116 '
use with variable parameter lists 116
adjusted indices 88 S
algorithm for the multiplication of
non-negative integers 41 .
aligning binary points: floating point 58
allocb: Acorn directives 14
ANDi
logical AND 46
select one or more bits 47
to calculate modulus of power of
two 46
area 121
areadef directives 121

arithmetic operators
Acorn 22
NatSemi 27
array calculation: formula 88
array index check 10
array indexing 85
array indexing step 10
array reference 85
arrays 9
arrays memory layout 88
ASCII code: uppercase and lowercase
letters 48
ASCII codes: use of XOR to swap 49
ASCII to packed decimal: code 83
ASHi: arithmetic shift 52
ASM16: NatSemi 32000
assembler 12, 15
associative translation cache 151
automatic scaling 85

backstop routine 149 .
base and displacement: addressing
mode 10
bee: branch if carry clear 39
bes: branch if carry set 39
beq: branch if equal 38
bfc: branch if flag clear 39
bfs: branch if flag set 39
bge: branch if greater than or equal 38
bat: branch if greater 38
bhi: branch if higher 38
bhs: branch if higher or equal 38
bias: floating point exponent 57
BICi: bit clear 50
BICPSRi: bit clear in PSR 148
binary addition: no carry 29
binary addition: with carry 30
binary to decimal conversion:
1IEEE standard 63
binary to hexadecimal conversion 33
binary to hexadecimal: code 7'9 .
binary to string: reverse ordering in 80
nar
" Achn constant format 16, 20
NatSemi constant format 26
BISPSRi: bit set in PSR 148 '
bit addressing: bit to byte calculation 72 {
bit array 71 |
bit change 74

—<*

bit counting: code 78
bit field in register 73
bit field instruction
offset and length encoding 79
restrictions on base 79
bit field length 73
register restriction 73
bit field operands 7
bit field
negative offset 74
positive offset 74
bit fields 71
addressed by base and offset 71
bit instruction
interlocking 75
semaphores 75
src and dest the same 75
use of Flag bit in 75
bit numbers: increase from right to
left 5
bit offset
register as base 72
restrictions register as base 71
with base in memory 72
positive and negative 72
bit test 74
bit to boolean conversion 75
ble: branch if less than or equal 38
blo: branch if lower 38
block instruction: operand length
restriction 97
bls: branch if lower or equal 38
blt: branch if less than 38
bne: branch if not equal 38
boolean values for TRUE and
FALSE 50
bpi: breakpoint instruction 144
br: branch unconditionally 39
branch: relative to current address 106
branches 11
breakpoint registers: MMU 152
bsr: branch to subroutine 11, 108
Byte magazine 60
byte: in register 32
Byte: sieve as benchmark 76
byte: signed 14

C bit: processor status
register 34, 36, 37, 38
calculating = 66

|
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Cambridge second processor 125
Cambridge workstation 125
carriage return: 16
carry flag: processor status
register 30, 31, 34, 36, 37, 38
case jump 11
CASE]
as computed GOTO 107
example 107
indexed branch 106
indexed jump 11
use with scaled index mode 107
CBITi: clear bit 74
CBITIi: clear bit interlocked 74
CFG 4; see also configuration register
change: bit 74
CHECKi
bounds check 10
bounds order 89
range check on array index 89
range check on case jump 11
clear bit 75
CMPf: compare floating 64
CMFi: compare integer 38, 39
CHPMi
block compare 98
using conditional branches 98
CMPAD: comparisons with zero 39
CMPQi: compare quick integer 39
CMPSi: compare string 98
code
ASCII to packed decimal 83
binary to hexadecimal 79
bit counting 78
hexadecimal to binary 81
packed decimal to decimal 82
prime sieve 76
COMi: invert all bits 49
comments 13
comparing signed numbers 3§
comparing unsigned numbers 38
comparison: altering processor status
register flags only by 34, 38
conditional branches 11
configuration register 4, 148
constants: string and number
equivalence 21
conversion from integer to floating:
IEEE standard 63
conversion of floating to integer:



232 Programming the NS32000

IEEE standard 63
conversion: binary to hexadecimal 33
Coonen, Jerome T. 56
counted strings: Acorn constant

format 16, 21
CPU

action on interrupt 145

action on reset 147

action on trap 145
CPU registers: faster access 2
CPU/slave processor protocol 7
Custom Slave Processor 4
cvtp

convert to bit pointer 78

use for bit pointers 78
cxp: call external procedure 122

dcb: Acorn directives 14, 35
ded: Acorn directives 15, 35
dcf: Acorn directives 18
dcl: Acorn directives 18
dow: Acorn directives 15, 35
debugging: MMU facilities 152
decimal
Acorn constant format 16, 20
NatSemi constant format 26
decrementing loops 87, 104
dedicated registers 2
defsb directive 122
DEILi
double length division 42
even-odd register pair used 42
denormalised numbers:
IEEE standard 61
dimension lengths 88
directive
export 13
import 13
directives
for integer constants 14
to allocate space 14
DIVf: divide floating 64
DIVi
rounded integer division 42
with negative integers 42
division
double length 8

double length division 8
double length multiplication 8
double precision real
range 18
format of 17
double word
address boundaries 5
signed 14
DVZ: divide by zero 144

ENTER{
procedure entry 112
step by step description 114
use to allocate local variables 114
equ: Acorn directives 21
equivalence: string and number
constants 21
equr: Acorn directives 22
Eratosthenes 76
error traps 140
exception despatch table 4
exception priorities 145
exception
interrupt or trap 4
sequence of events 141
exit
procedure exit 112
step by step description 114
exponent: reals 17
export directive 13
export: Acorn directives 22
exporte: Acorn directives 22
expressions: NatSemi 28
EXT operand 124
extenged formats: IEEE standard 63
external addressing mode 123
external label 13
external symbols 20
EXTi
extract a bit field 10, 79
order of operands 82
use in compilers 82
use with packed decimal 82
zero fill 83
extract instruction
field truncation 81
zero fill 81

F bit: processor status
register 34, 36, 37, 38
FFSi
different meaning of base 77
find first set bit 77
use of Flag bit in 77

field truncation in extract instruction 81

Flag bit
use in bit instruction 75
use in FFSi 77

flag: processor status register 36, 37, 38

FLG: flag set 144

floating point
aligning binary points 58
exponent bias 57
fraction 57
normalization 57
sign and magnitude format 57
significand 57
standard: Intel 56
status register 142
inexact result flag 69
rounding mode field 69
SWF field 69
to examine the flags 69
underflow flag 69

subtracting nearly equal numbers 58
subtracting small number from a large

one 59
Floating Point Unit 1,23 4,7, 8,
10

divide by zero 142
FPU exception 142
illegal instruction 142
inexact result 143
invalid operation 142
interval arithmetic 68
overflow 142
reserved operand exception 62
round to even mode 68
round to negative infinity 68
round to positive infinity 68
underflow 62, 142

floating point
NatSemi constant format 26
registers 63

floating REM 63

floating square root 63

Index 233

flow tracing; MMU 153

for loop 11

format of double precision real 17
format of single precision real 17
FP 3; see also frame pointer register
FPU see Floating Point Unit
fraction: floating point 57

frame pointer 93

frame pointer register 3, 4

general operand 32
general registers 3
guard bit: IEEE standard 60

hexadecimal to binary: code 81

hexadecimal: Acorn constant
format 16, 20

hexadecimal; NatSemi constant
format 26

IBITi: invert bit 74
ICU 1; see also Interrupt Control Unit
IEEE floating point standard 2
binary to decimal conversion 63
conversion from integer to floating 63
conversion of floating to integer 63
denormalized numbers 61
extended formats 63
guard bit 60
inexact result flag 60
infinity 61
non-signalling NaNs 62
Not-A-Number 61
round to even 60
round to infinity 61
round to zero 61
rounding bit 60
signalling NaNs 62
special operands 61
sticky bit 60, 69
zero 61

ILL: illegal operation 143
illegal real numbers 8
immediate operand

Acorn representation of 33
NatSemi representation of 33
size of 33

immediate: addressing mode 32, 33, 35
import directive 13
import: Acorn directives 22

. EXTSi FLOORFi: floating to j =
rounded 8 extract a bit field, short 10, 79 | 1: floating to integer — round to
single length 8

tr ted 8 use b) pro rammers 82 negatl»e l“hnlty 6;
¢ |
unca
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importc: Acorn directives 22
incrementing loops 87, 105
index calculation
3 dimensions 89
32000 code 90
4 dimensions 89
index: C function in 32000 code 100
index: size of 32
indexed jump 11
INDERi
array indexing step 10, 89
operands 90
indexing: use of register 32
indirect addressing 93
inexact result flag
floating point status register 69
IEEE standard 60
infinity
IEEE standard 61
special floating point values 18
use in divide by zero 62
insert a bit field 10
insert instruction
field truncation 82
zero fill 82
INSi
field truncation 83
insert a bit field 10
insert bit field 79
order of operands 82
use in compilers 82
use with packed decimal 83
INSSi
insert a bit field 10
insert bit field, short 79, 81
use by programmers 82
instruction data sizes 6
instruction restart 5
INTBASE see interrupt base register
integer addition: unsigned 31
integer size: abbreviation of 32
integer value to fail on
ABSi 37
NEGi 37
integers: unsigned 14
Intel floating point standard 56
interlocked bit instructions 7
interrupt 142
interrupt base register 3, 4, 142
Interrupt Control Unit 1, 4, 142

vector read address 145

interrupt despatch table 2, 141, 142

interrupt priorities 145

interrupting string instructions 145

interrupts: external 140

interval arithmetic: Floating Point
Unit 68

invert bit 75

isr

jump to subroutine 108

jump to subroutine 11

use to call procedure indirectly 108
Jump: continue execution at address 106
jump, indexed 11
jump: use as FORTRAN alternative

return 106

jump: uses general operand 106

Kahan, Professor W. 56
Karpinski, Richard 60
Knuth, Donald 41
The Art of Computer
Programming 76 ’

L bit
processor status register 34, 38
unsigned numbers 38
label 13
as operand of branch instruction 39
external 13
public 13
lexical scanning and string
translation 97
1fsr: set floating point status register 68
line feed: Acorn string constants 16
Inr: load MMU register 143, 153
local variables: memory space addressing
mode 33
location counter symbols 22
low flag
processor status register 34
processor status register 38
unsigned numbers 38
LPRi
load processor register 95, 143
operands 147
privileged forms 143
privileged forms 144

LSHi: logical shift 52

MEIi
care in using with TOS addressing
mode 97
double length multiplication 40
even-odd register pair used 40
operands are unsigned 40
memory cache 2
memory layout
record 91
structure 91
Memory Management Unit 4, 5
memory relative addressing
mode 93, 110
memory space addressing
mode 32, 33, 39, 109
local variables 33
program counter relative 33
stack 33
static data 33
addressing parameters 113
fetching parameters 108
memory space: displacement from
program counter 39
memory-mapped I/0 149
MMU 1; see also Memory Management
Unit
mnemonic 13
MOD see module register
MODi: remainder corresponding
to DIVi 42
module register 3, 4, 119
effect on parameter offsets 122
module table
entry format 120
number of entries 119
module
Acorn assembler source format
for 120
NatSemi assembler source format
for 121
modules
convention for allocating
variables 119
information hiding 119
Motorola 68000 2
move with sign extension §
move with zero extension §
move

index 235

conversion from integer to real 8
conversion from long to short real 8§
floored conversion from real to
integer 9
rounded conversion from real to
integer 9
truncated conversion from real to
integer 9
MOVE: move floating 65
MOVFL: convert short to long floating 65
MOVi: move integer 35
MOVif: convert integer to floating 65
MOVLF: convert long to short floating 65
MOVMi: block move 97
MGVQi: move quick integer 35
MOVSi: move string 98
MOVKBD: sign extend byte to double
word 36
MOVZBD: zero extend byte to double
word 35
MOVZBM: zero extend byte to word 35
MOVZUD: zero extend word to double
word 35
MSR: see status register, MMU
MULF: multiply floating 64
MULi
random numbers 40
truncation of product 40
multiply integers 40
signed multiplication 40
multiple precision multiplication 41
multiple precision addition 30, 34
multiplication: double length 8
multiplication: multiple precision 41
multiplication: single length 8

N bit: processor status register 34, 38
names 19
NaN see Not-A-Number
NatSemi 32000 assembler ASM16 12
NatSemi arithmetic operators 27
NatSemi constant format

binary 26

decimal 26

floating point 26

hexadecimal 26

octal 26

strings 26
NatSemi directives

.blkb 91
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.blkw 91
.byte 15
.double 15
.dsect 91
.endseq 91
.export 27
.exportp 27
.float 19
import 27
.importe 27
.long 19
.sbyte 15
.sdouble 15
.sward 15
Jword 15
repetition factor in 15
NatSemi expressions 28
NatSemi operator precedence 27
NatSemi representation of immediate
operand 33
NatSemi symbols
reserved 26
significant length 26
negate: borrow condition 37
negative flag: processor status
register 34, 38
negative infinity: special floating point
values 18
negative integer: representation of 31
NEG: negate floating 64
NEGi
integer value to fail on 37
negate integer 37
negate integer 37
NMI interrupt 144
non-printing characters: Acorn string
constants 16
non-signalling NaNs: IEEE standard 62
normalization: floating point 57
normalized form of reals 17
NOT instruction 9
Not-A-Number
IEEE standard 8, 61
special floating point values 18
NOTi: logical NOT 50

octal
Acorn constant format 16, 20
NatSemi constant format 26
one’s complement 49

operand lengths 97
operands 13
access classes 96
operator precedence: NatSemi 27
ORi: logical OR 47
use in binary to decimal
conversion 47
use in lowercasing letters 47
use in uppercasing letters 48
overflow flag: processor status
register 31, 38

packed decimal instructions 7
packed decimal to decimal: code 82
packed items 10
page length 150
page modified bit 151
page number 6
page offset 6
page present bit 152
page protection bits 6, 152
page referenced bit 152
page size 6
page tables 151
entry format 151
pages 150
Palmer, John 56
parameter passing 10
PC see program counter
physical addresses 5
pointer tables 151
pointers: 32000 code 93
pop: stack operation 96
positive infinity: special floating point
values 18
positive integer: representation of 31
prime sieve: code 76
privileged forms
LPRi 143, 144
SPRi 143, 144
procedure directives: example 118
procedure entry 10
copying parameters 114
parameters on stack 113
setting up a stack frame 112
use of frame pointer 112
procedure exit 10
procedures 107
calling sequence code 108
parameter passing 108

register saving conventions 110
use of the stack 108
processes 149
processor status register 3
instructions altering flags 34
P bit 145
S bit 145
S bit selects stack pointer 141
supervisor byte 4
U bit 140, 145
user byte 4
program counter 3, 4
program counter relative: memory space
addressing mode 33
PSR see processor status register 3
public label 13
push: stack operation 95

quadword scaling 86

quick operand 34

Quoi
truncated integer division 42
with negative integers 42

random numbers: MULi 40
range check 10
range

double precision real 18

signed integer 14

single precision real 18

unsigned integer 14
reals:

exponent 17

normalised form of 17
record access: 32000 code 92
record: memory layout 91
record: Pascal 9
register as base

bit offset 72

bit offset restrictions 71
register as index and loop

counter 86, 104

register relative addressing mode 93
register symbols 22, 27
register synonyms: symbols 20
register: addressing mode 32
registers:

floating point 63

use for faster execution 53
relative symbols 20, 22, 27

Index 237

remainder 8

REMi: remainder corresponding to
Quai 42

repetition factor in Natsemi
directives 15

representation of negative integer 31

representation of positive integer 31

reserved operand exception: Floating
Point Unit 62

RESTORE: restore registers 111

RET: return from internal procedure 108

RET: return from procedure 114

RETI: return from interrupt 146

RETT: return from trap 146

reverse ordering in binary to string 80

Rice, John 66

ROTi

counting bits in an integer 53
rotate bits 53

round to even mode: Floating Point
Unit 68

round to even: IEEE standard 60

round to infinity: IEEE standard 61

round to negative infinity: Floating
Point Unit 68

round to positive infinity: Floating Point
Unit 68

round to zero: IEEE standard 61

rounded division 8

ROUNDFi: floating to integer — round to
even 65

rounding bit: IEEE standard 60

rounding mode field: floating point
status register 69

rounding mode: to set the 69

roundoff in computation 66

rxp: return from external procedure 122

save: save registers 111

SB: see static base register 3

SBITi: set bit 74
example 149

SBITIi: set bit interlocked 74

scaled index addressing mode 85, 86
use of full register 81, 86, 105
use with CASEL 107
used in example 43
double word indexing 105

Scondi
convert condition code to boolean 50

*
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use in evaluating logical
expressions 51
segmented architecture 2
set bit 75
set condition instruction 9
set: Acorn directives 21

setcfg: set configuration register 4, 148

sfsr: copy floating point status
register 68
shift count
permitted ranges 52
signed 51
Sieve of Eratosthenes 76
sign and magnitude format: floating
point 57
signalling NaNs: IEEE standard 62
signed byte 14
signed double word 14
signed integer range 14
signed word 14
significand: floating point 57
single bit operands 7
single length division 8
single length multiplication 8
single precision real range 18
single precision real: format of 17
size of immediate operand 33
size of index 32
SKPSi: scan string 98
smr: store MMU register 143, 153
source line 13
SPQ see supervisor stack pointer
8P1 see user stack pointer
special floating point values
infinity 18
NaNs 18
negative infinity 18
Not-A-Number 18
positive infinity 18
zero 18
special operands: IEEE standard 61
special registers 2, 3
SPRi
operands 147
privileged forms 143, 144
store processor register 95, 143
stack 9
stack frame link 10
stack

on entry to exception procedure 146

direction of growth 9, 95
entry instruction 95
memory space addressing mode 33
popping 9
procedure calling 10
procedure jump 95
pushing 9
use with arithmetic instruction 96
static base register 3, 4
static data: memory space addressing
mode 33
status register, MMU 153
format 153
sticky bit: IEEE standard 60, 69
stremp: C function in 32000 code 100
string instructions
backwards option 99
compare 11
forward and backward option 11
move 11
search 11
translation option 11
use of PSR flag bit 99
use of registers 98
until option 99
while option 99
until/while option 11
string translation and lexical
scanning 97
strings
Acorn constant format 16
bytes 11
double words 11
escape character 16
NatSemi constant format 26
words 11
struct access: 32000 code 92
struct: C 9
structure: memory layout 91
SUBCi: subtract integer with carry 37
SUBf: subtract floating 64
SUBi: subtract integer 37
subtracting nearly equal numbers:
floating point 58
subtracting small number from a large
one: floating point 59
subtraction
borrow condition 36
multiple precision 37
supervisor mode 3, 140

supervisor stack pointer 3, 4, 93, 95
supervisor: private stack 140
SVC: supervisor call 144
SWEF field: floating point status
register 69
symbols 19
absolute 19, 21, 27
Acorn case significance 21
Acorn length 21
Acorn reserved 20
external 20
for stack addresses 109
location counter 22
NatSemi reserved symbols 26
NatSemi significant length 26
register 22
register 27
register synonyms 20
relative 20, 22, 27

TBITi: test bit 74
top of stack addressing
mode 10, 95, 96
passing parameters 108
use with MEIi 97
TOS see top of stack addressing
mode 10
TRC: instruction trace 144
truncated division 8
truncation of product: MULi 40
TRUNCFi: floating to integer - round to
zero 65
two’s complement 31
two-address instructions 7

UND: undefined instruction 144
underflow flag: floating point status

it

S

Index 239

register 69
underflow trap 69
underflow: Floating Point Unit 62
unsigned integer addition 31
unsigned integer range 14
unsigned integers 14
until option: string instructions 99
use of Flag in bit instruction 75
use of Flag in FFSi 77
user mode 2, 3, 140
user stack pointer 4, 93, 95

vector number 142
vectored interrupts 1
virtual address format 151
virtual addresses 5

virtual memory 2

wait: wait on interrupt 149

while option : string instructions 99
word address boundaries 5

word in register 32

word signed 14

working set 150

XORi logical exclusive OR function 49
invert selected bits 49

Z bit: processor status register 34, 38
ZASM: Acorn 32000 assembler 12
zero adjusted index 88
zero flag: processor status
register 34, 38

Zero

IEEE standard 61

special floating point values 18

two floating point forms 18












