
32000/ASSEMBLER

32000 ASSEMBLER

PART NO 11411 005
ISSUE NO 1

JULY 1985

© Copyright Acorn Computers Limited 1985

Neither the whole or any part of the information contained in, or the
product described in, this manual may be reproduced in any material form
except with the prior written approval of Acorn Computers Limited (Acorn
Computers).

The product described in this manual and products for use with it, are
subject to continuous developments and improvement. All information of a
technical nature and particulars of the product and its use (including the
information in this manual) are given by Acorn Computers in good faith.

In case of difficulty please contact your supplier. Deficiencies in software
and documentation should be notified in writing, using the Acorn Scientific
Fault Report Form to the following address:

Sales Department
Scientific Division
Acorn Computers Ltd
Fulbourn Road
Cherry Hinton
Cambridge
CB1 4JN

All maintenance and service on the product must be carried out by Acorn
Computers' authorised agents. Acorn Computers can accept no liability
whatsoever for any loss or damage caused by service or maintenance by
unauthorised personnel. This manual is intended only to assist the reader in
the use of the product, and therefore Acorn Computers shall not be liable
for any loss or damage whatsoever arising from the use of any information
or particulars in, or any error or omission in, this manual, or any incorrect
use of the product.

Published by Acorn Computers Limited,
Fulbourn Road, Cherry Hinton, Cambridge CB1 4JN.

Within this publication the term BBC is used as an abbreviation for the
British Broadcasting Corporation.

NOTE: A User Registration Card is supplied with the hardware. It is in
your interest to complete and return the card. Please notify Acorn Scientific
at the above address if this card is missing.

ISBN 0 907876 36 6 Acorn Scientific

ii

Contents

1 	Introducing the Acorn 32000 assembler 	 1
1.1 	Installation 	 2
1.2 	Assembler commands 	 2
1.3 	Assembler options 	 3
1.4 	Assembler listing format 	 4
2 	32000 assembler source format 	 7
2.1 	Format of source lines 	 7
2.2 	Character set 	 8
2.3 	Symbols 	 8
2.4 	Constants 	 9
2.5 	Expressions 	 10
2.6 	Mnemonic conventions 	 11
3 	Assembler directives 	 13
3.1 	Absolute and relocatable modes 	 13
3.2 	Standard directives 	 13
3.2.1 	GET 	 14
3.2.2 CHAIN 	 14
3.2.3 	EQU 	 14
3.2.4 EQUR 	 15
3.2.5 	SET 	 15
3.2.6 NLSYM 	 15
3.2.7 	IF 	 16
3.2.8 IFDEF and IFNDEF 	 16
3.2.9 MACRO...MEND 	 17
3.2.10 DCB 	 21
3.2.11 DCS 	 21
3.2.12 DCW 	 21
3.2.13 DCD 	 21
3.2.14 DCF 	 22
3.2.15 DCL 	 22
3.2.16 ALLOCB 	 22
3.2.17 ALLOCW 	 22
3.2.18 ALLOCD 	 22
3.2.19 ALIGN 	 23
3.2.20 ENTRY 	 23
3.2.21 END 	 23

iii

3.2.22 TITLE 	 24
3.2.23 OPTIONS 	 24

 3.3 	Object module directives 	 25
3.3.1 MODULE 	 25
3.3.2 AREADEF 	 25
3.3.3 AREA 	 27
3.3.4 AREALEN 	 27
3.3.5 AREAEND 	 28
3.3.6 EXPORT and EXPORTC 	 28
3.3.7 IMPORTC 	 28
3.3.8 IMPORT 	 29
3.3.9 HANDLER 	 29
3.3.10 SPECSB and DEFSB 	 29
3.3.11 ADDRESS 	 30
3.3.12 CDESC 	 30
3.3.13 LINKNO 	 31
3.4 	Treatment of labels 	 31

iv

1 Introducing the Acorn 32000 assembler

This document is a reference guide to the Acorn 32000 macro assembler. It
is not a tutorial guide, and therefore the reader is assumed to be familiar
with:

32000 Assembly language.
This is described in the Instruction Set Reference Manual which is
available from dealers. Although the mnemonics used by the assembler
are to the National standard, pseudo-operations (assembler directives)
are specific to the Acorn Assembler.

The Panos operating system.
The use of the operating system environment under which the
assembler runs is described in a document supplied with the system,
the Panos Guide to Operations and the Panos Programmer's Reference
Manual. The user is also assumed to know how to use the command to
call the assembler.

Acorn Object Format (AOF)
is mentioned frequently in this guide; the output produced by the
assembler will usually be in this form, although knowledge of the
details is unlikely to be required. A full description of AOF is given in
the Panos Technical Reference Manual. See also the various User
Guides for introductory material.

Features of the assembler include:

- 	complete support of the NS32000 instruction set including
Memory Management and Floating Point extensions.

- 	support of all nine categories of the general addressing modes of
the NS32000.

- 	two types of object file:
1. an image in Acorn Object Format suitable for linking into
a Panos relocatable image using the system linker.

2. a simple binary image suitable for immediate execution
from the Pandora * prompt.

- 	powerful macro defining capability. The user may define macro
instructions in the source which may be called to insert common

ASM Issue 1

Chapter 1

sequences of 32000 mnemonics or assembler directives. Macros
may call other macros, and recursion is possible.

- 	conditional assembly. The ability to assemble parts of the source
conditionally is made even more useful by the ability to set 'flag'
symbols on the command line so that different versions may be
assembled from the same source file.

1.1 Installation

The assembler is supplied on a 5 1/4 inch floppy disc in Acorn DFS format.
This needs to be installed even if it is intended for use in conjunction with
the DFS. Refer to the appropriate User Guide supplied with the hardware
for details about installing the assembler.

1.2 Assembler commands

This section summarises the arguments of the assembler command. See the
beginning of chapter 2 for a breakdown of the metasyntax used here.

{-source} filename (-asm)
This names the source file to be assembled. The extension `-asm' will
be appended if no other extension is given. Multiple files may be
assembled using the CHAIN directive.

-list (name)
An assembly listing may be sent to a file called source-lis, or to another
named file or device. The format of the listing is described in section
1.4. See figure 1 for a demonstration of this option.

-error (name)
Assembly errors are reported to the initial error stream by default (i.e.
the messages usually go to the screen). The 'error' argument names an
alternative destination for errors.

-aof (filename)
The output from the assembler is put into a file source-aof by default.
The `aof argument allows an alternative file to be named. Note that
the file may not in fact be an AOF file, if the assembly was carried out
in absolute or relative binary mode.

2 	 ASM Issue 1

Introducing the Acorn 32000 assembler

-opt options
Several options are provided to change the behaviour of the assembler.
These are described in section 1.3 below.

-get "mapping I, mapping}*"
This argument is used to specify a mapping between filenames
specified in GET and CHAIN directives, and the actual filename to be
used. The word 'get' is followed by a string in double quotes which is a
comma-separated list of mappings from GET (or CHAIN) names to
filenames. For example:

-> asm32 -source fred -get "fpStuff=fp-asm,debug=db-asm"

With this mapping, a "GET fpStuff" directive would access file
fp-asm.

-identify
Specifying this argument causes the assembler to print its version
number.

-help-
Specifying this argument causes the assembler to produce a summary
of the arguments which may appear on the command line.

1.3 Assembler options

The -opt argument is followed by a list of letters which are used to flag
various options. A flag letter preceded by a + ' enables the option; a `-' sign
disables. The exception is 	which is followed by the name of the symbol
to be set or reset. Note that if the first option letter is preceded by a `-', then
the whole option string must be enclosed in double quotes e.g. -opt "-l-m".

c 	Usually upper and lower case are treated as distinct characters in
identifiers. Quoting opt + c causes cases to be equated upon reading
each source line, so that fred and FRED are the same symbol.

1 	Usually source files are loaded into store during the first pass (if there
is enough space) to minimise disc accesses on subsequent passes. This
occasionally causes the assembler to run out of room. Quoting opt -1
will disable loading and thus prevent the no room error (unless there
genuinely isn't enough memory for the assembly).

ASM Issue 1 	 3

Chapter 1

m By default the assembler will try to optimise the size of the output file
by taking many passes over the source. Giving the opt -m option
causes the assembler to make only enough passes to resolve symbol
references, at the expense of producing non-optimally sized output
code. This option only applies when absolute binary rather than AOF
is generated.

p 	Usually the assembler produces 'packed' style AOF files. Quoting opt
-p causes general format AOF files to be produced.

$ This option is followed by a name to be set to TRUE. This name may
be accessed in a conditional assembly (IF) directive in the source. For
example, -opt $debug sets the symbol 'debug' to TRUE (-1). Following
the name by a single quote, e.g. -opt $debug' sets the symbol to
FALSE (0).

As implied by the descriptions above, the default state of the options is:
+ LMP-C.

1.4 Assembler listing format

An assembly listing is produced if required by giving the -list argument on
the command line. It has the following format:

111111 b 1 b2 b3 b4 b5 b6 nnnn text

where:

111111
is the value of the location counter at the start of the code for the line,
printed as a 6-digit hex number.

nnnn
is the source line number.

bl..b6
are the byte values (in hex) of the generated codes. b 1 is at the lowest
address. Spaces are printed if less than 6 bytes were generated;

Extra bytes are displayed on following lines in the form:

111111 b7 b8 b9 etc.

4 	 ASM Issue 1

Introducing the Acorn 32000 assembler

with at most 6 bytes per line, and 111111 being the address of the first byte on
each extra line. Lines which came from a macro expansion in the source are
marked with a + character at the start of the line.

At the end of the assembly, the assembler sends the following statistics to
the output stream, which is the vdu by default (only if the global string
Program$Verbosity is set to greater than 1 - see the Panos Guide to
Operations):

- The number of errors detected.
- The total size (in bytes) of the area(s).
- The number of passes required
Incorrect lines are echoed to both the listing file and the error file. Errors

are reported using textual messages printed out before the failing line.
Figure 1 gives an example of an error message from an assembly within the
Panos editor. The source can be seen in the background, the assembly
command appearing in the top window, with the error message contained in
the lower window.

Figure 1 Assembler error message

ASM Issue 1 	 5

2 32000 assembler source format

The Acorn 32000 assembler accepts standard National Semiconductor
instruction mnemonics, and in addition provides a full set of
pseudo-mnemonics (assembler directives) and the ability to define macro
instructions.

A source program is a sequence of lines which may contain 32000 assembly
language mnemonics, assembler directives, comments, or nothing at all.

Within this document a meta-syntax is used to describe the syntax of
assembler source lines. In this meta-syntax, the characters (, 1, 1, * and '
have special meanings:

(x} 	means 0 or 1 occurrences of x
(x)* 	means 0 or more occurrences of x
(xly) 	means 1 occurrence of x or 1 occurrence of y
'c' 	where c is a single reserved character, means the

literal character c, i.e. any special meaning is disabled.
If c is not a single character or not a reserved character
then ' stands for itself.

name 	is a syntax class-name (i.e. lower case text. Upper case
text is used for literal items, e.g. MOVQD, END).

All other symbols stand for themselves.

2.1 Format of source lines

The format of a source line is:

(label) [mnemonic (operand (,operand)*() (;comment)

If a label is present, it must start at the beginning of a source line. Any
mnemonic must be preceded by at least one space. A comment may start at
any position on the line; it is marked by a semi-colon and continues up to
the end of the line. There must be at least one space between a mnemonic
and any following operands, but no space need precede a comment.

Operands are separated by commas and may contain spaces. These are
ignored, except within string constants. Expressions are therefore allowed to

ASM Issue 1 	 7

Chapter 2

contain blanks, which are ignored. However, spaces are not allowed in tags
(see later), numeric constants, and compound symbols such as > = .

A source line may contain up to 255 characters. The assembler will stop
with an error if more than this number of characters occur without a
line-break, since this would suggest an erroneous source file, e.g. a file
which is not a text file.

2.2 Character set

The character set consists of letters (upper and lower case), digits, the
underscore character (_) and other special characters. Upper and lower case
are distinct, except in instruction mnemonics, directives, and macro names.
The use of option c will cause the assembler to equate upper and lower case
in identifiers.

2.3 Symbols

Symbols consist of letters, digits and underscores, starting with a letter or
underscore. Symbols are significant to 63 characters.

A relocatable symbol is one which is defined as a label in a relocatable area.
All other symbols are either absolute or external.
Some symbols are reserved and so cannot be redefined. These are:

R0, R1, .. R7, F0, F1, .. F7

TOS, EXTERNAL, FP, SP, SB, PC

The MMU registers

Mnemonics, e.g. END and MOVQB, are allowed as label names however,
so lines such as:

END END

are allowed but not advisable.

Note that the letters used in the option field of the string instructions
(MOVS i , C MP S i etc.) and the SETCFG instruction are not reserved; they are
marked by the fact that they appear in this specific context (inside square
brackets).

8 	 ASM Issue 1

32000 assembler source format

2.4 Constants

Integers may be given as unsigned decimal numbers or in the forms
Xhhhh, #Bbbbb, #Odddd, for hexadecimal, binary and octal
representations respectively. Note that the letters A through F used in hex
numbers may occur in either upper or lower case. An alternative
representation of hexadecimal numbers is the form :hhhh .

All integers are interpreted as 32-bit quantities.

Floating point constants are optionally signed and have an optional
exponent. Examples are:

1.1

-.1

-1e4

1.234E-1

Floating point constants are allowed only in the DCF and DCL directives,
and as floating point immediate operands.

String constants are delimited by single quotes in the simple case, and
double quotes to generate a counted-string form, i.e. the bytes in the text
preceded by a byte containing the length of the text. The DCB directive
(described later) accepts either form, creating the appropriate stream of
bytes.

Character constants are also valid in integer expressions, where their length
is limited to 4 characters in the simple form, and 3 characters in the
counted-string form, the length byte forming part of the value in the latter
case.

The value of a multi-character constant as an integer is calculated using the
same store interpretation adopted by the 32000 architecture, i.e. the least
significant byte is the byte at the lowest address, which is the leftmost
character of a string, or the length byte in counted strings.
Hence:
'A' = #X41, "A" = #X4101, 'AB' = #X4241, "AB" = #X424102 etc.
Within string constants, the asterisk * is used as an escape character. If the
character that follows is an N or n, then the actual byte value stored at the

ASM Issue 1 	 9

Chapter 2

current position is determined by the value of the N LS YM option (see
directive descriptions later); the default value is 10 (ASCII LF = NL).

If the following one or two characters are valid hex digits, then the number
they represent is planted as a byte value. This enables the simple insertion of
control characters within strings. For example A*N generates the bytes
#X41,#X0A; *03*FEA generates #X03,#XFE,#X41. If neither of these
cases holds, the following character is planted without interpretation; hence
a single asterisk is represented in a string as **. Because this mechanism
allows the representation of the newline character in strings, it is forbidden
for strings to cross line boundaries.

The special symbol '$' is used to stand for the program counter. For
example:

BR $;infinite loop

2.5 Expressions

All expressions are calculated to 32 bits and overflow is ignored. Evaluation
is ordered according to the priority below, and left-to-right for operators of
the same precedence. Bracketed sub-expressions are evaluated first. The
arithmetic and comparison operators treat their operands as signed
quantities; the 6 operators in the latter group return TRUE (-1) or FALSE
(0).

Operator Priority Functions

8 	Unary minus
- 8 	Bitwise complement (unary)
< < 	7 	Logical left shift (Os shifted in from right)
> > 	7 	Logical right shift (Os shifted in from left)

6 	Bitwise AND
6 	Bitwise OR

- 6 	Bitwise exclusive OR
5 	Multiply
5 	Divide (as defined by QUOD instruction)

• 5

	

	Remainder (Modulus - as defined by REMD
instruction)

4 	Subtract
• 4 	Add

10 	 ASM Issue 1

32000 assembler source format

3 	Equal-to
< > 	3 	Not-equal-to
• 3 	Less-than *
• 3 	Greater-than *
< = 	3 	Less-than-or-equal-to *
> = 	3 	Greater-than-or-equal-to *

2 	Conditional NOT
&& 	1 	Conditional AND

1 	Conditional OR
The comparison operators marked * perform signed comparison.

Note: the only operators which may have one or both operands relative (or
external) are + and - (unary and binary). Relative + relative-relative
evaluates to relative. In object module (AOF) mode, two relative operands
must have the same relocation base (i.e. they must be defined as labels in the
same area).

2.6 Mnemonic conventions

The assembler accepts all standard National Semiconductor instruction
mnemonics (as described in the Cambridge Series Instruction Set Reference

Manual), including flaoating point unit (FPU) and memory management
unit (MMU) instructions.

The normal 32000 operand forms are accepted for all 'general' type
operands, with the following conventions:

- An expression on its own is normally treated as a code-area address
and is assembled as a PC-relative operand (or (SB) or EXTERNAL
when the assembler is in AOF mode). The type of the expression must
match the current code-area type, i.e. an absolute expression will be
faulted in a relocatable area. This rule also applies to branch-type
operands, i.e. of `disp' class.

- Immediate mode operands are specified by preceding an absolute
expression with the equals-sign = . In the case of floating point
immediates, only a constant may follow the =, not an expression.

- Absolute operands are specified by prefixing an absolute expression
with the at-sign @.

ASM Issue 1 	 11

Chapter 2

- Operands for a 'quick' type argument must be absolute expressions,
optionally prefixed by an equals-sign.

In addition, the following special cases are accepted, as shown by these
examples:

MOVSW 	EU,B]

ENTER 	[R0, R1, R3], 24

RESTORE 	[R0-R4] ; (all registers between R0 and R4 inclusive)

SETCFG 	[I]

CMPSD 	[7

12 	 ASM Issue I

3 Assembler directives

This chapter describes the directives acted upon by the assembler. Most of
these are general purpose and may occur anywhere in the source. Others are
specific to the production of Acorn Object Format files and should only be
used after a MODULE directive.

3.1 Absolute and relocatable modes

At any time the assembler is in one of three modes - absolute, relocatable or
AOF. The default mode is absolute. In any assembly, one (and only one) of
the directives ABSORG, RELORG or MODULE may occur, at most once.
If one does occur, it must be before any code or data has been generated, or
any label defined, otherwise it is treated as an error.
The form of these directives is:

ABSORG 	expression

RELORG 	expression

MODULE 	name

The value of the expression must be absolute, and defined by the time the
directive is first encountered. It may not change between passes. The effect
of the directive is to set the assembler into the specified mode, and the
location counter to the value of the expression.

The MODULE directive sets AOF mode, and the optional name is planted in
the output file as the module name. Once in AOF mode the assembler will
allow the special directives described in section 3.3.

3.2 Standard directives

The following directives are handled by the assembler. As noted in the
section on symbols, they may occur in either, or any combination of, upper
or lower case, as may the names of user-defined macros and instruction
mnemonics.

ASM Issue 1 	 13

Chapter 3

ABSORG 	RELORG 	GET 	CHAIN 	EQU 	EQUR 	SET 	NLSYM

IF 	 ELSE 	ELIF 	Fl 	I F DEF 	I FNDEF 	MACRO 	MEND

DCB 	 DCW 	DCD 	DCS 	DC F 	DC L 	ALLOCB 	ALLOCW

ALLOCD 	ALIGN 	END 	ENTRY 	TITLE 	OPTIONS

plus MODULE directives described in section 3.3

The directives listed in the table are now described in turn, apart from
ABSORG and RELORG detailed above.

3.2.1 GET

Syntax: 	GET f i lename

On encountering this, the assembler suspends processing of the current file
and starts to read input from file 'filename' (or the file to which this name is
mapped via the -get command line option. See section 1.2). The name
should be enclosed in single quotes as above. On reaching the end of the file
specified, processing resumes at the point in the first file where it had been
suspended. GET may be used in a MACRO definition, but note that the GET
operation happens when the macro is expanded, not when the body is read
in. A file read in by this means may itself contain a GET directive, but the
level to which this process may recurse is dependent upon the state of the
Panos I/O environment, the limitations of the filing system involved, and
the assembler itself which has a restriction of five levels.

3.2.2 CHAIN

Syntax: 	CHAIN filename

This is similar in effect to GET, except that the current file is closed and
processing continues with the named file. This directive will commonly
occur at the end of a source file, if the text of the program is too large to fit
conveniently in a single file. CHAIN may not occur in a MACRO definition.

3.2.3 EQU

Syntax: 	i dent EQU expression

Defines symbol 'ident' to have the value of the expression, which may be
absolute or relocatable, but not external.

14 	 ASM Issue 1

Assembler directives

3.2.4 EQUR

Syntax: 	ident EQUR register_name

Defines symbol 'ident' to be a synonym for the named integer or floating
point register (which may itself have been defined by EQUR).

3.2.5 SET

Syntax: 	ident SET expression

This directive has the same effect as EQU, except that a symbol defined using
SET may be redefined using SET, i.e. the identifier is an assembler
`variable'.

3.2.6 NLSYM

Syntax: 	NLSYM expression

This sets the value (in the range 0 to 255) to be planted on encountering the
character pair *N in a string constant. The initial value is 10 (ASCII
LF=NL).

ASM Issue 1 	 15

Chapter 3

3.2.7 IF

Syntax:

IF expression_l

section_1
ELIF expression_2

section_2

ELIF expression_3

section_3

ELSE

section_n

FI

The IF..ELIF..ELSE..FI construct is directly analogous to the same
construct in high-level programming languages, but here is used to control
the conditional assembly of different sections of code according to whether
the expressions evaluate to TRUE (not 0) or FALSE (0). Note that these
constructs may be nested, with the obvious interpretation, and that any or
all of the ELIF and ELSE clauses may be omitted. The section which is
assembled (if any) must be the same on all passes of the assembler. To
ensure this, the expressions must be absolute, must not contain any forward
references, and must not use any symbols set as labels or derived from
labels. Note that if the compact code option has been disabled (using opt -m
on the command line), the label restriction does not apply. IF constructions
must not be split over source files or macros.

3.2.8 IFDEF and IFNDEF

Syntax: 	I FDEF symbol_name
IFNDEF symbol_name

The IFDEF and IFNDEF directives are alternatives to I F in the general
conditional assembly constructs. If the named symbol has been defined on
the current assembly pass by the time that an I F D E F directive is
encountered, the effect is the same as that with "IF true-expression".
IFNDEF provides the converse effect - i.e. for when the symbol has NOT
been defined on the current pass.

16 	 ASM Issue 1

Assembler directives

3.2.9 MACRO...MEND

Syntax:

MACRO

macro_call_template

macro_body

MEND

The directive MACRO introduces the definition of a textual macro. It appears
by itself on a (possibly commented) source line. The
macro_ca [_template looks like:

Mabel) macro_name Iparam_def 1, param_def)*)

The macro_name may be the same as an existing instruction, directive or
macro. To access the old instruction from within the macro definition, it
should be preceded by a @. For example, within a macro called MODULE, the
MODULE directive must be written @MODULE .

A pa ram_def looks like:
%param_tag =default_va We)

A pa ram_t a g is defined as one of the following items:

(a) an ordinary symbol name
(b) a 1- or 2-digit decimal number
(c) a single asterisk *

The label field is optional, and if present must start at the beginning of the
line. It has the same syntax as an ordinary symbol, preceded by a percent
sign.

The ma c ro_name must be supplied - its syntax is that of ordinary symbols,
with the exception that it will be recognised in any combination of upper
and lower case.

The parameter list, if present, follows after at least one space. There may be
0 or more parameter definitions. The parameter tags may be any
combination of types (a) and (b) above, or 0 or more of type (a) followed by
a single parameter of type (c). A parameter of type (c) is used for passing
arbitrary lists of items.

ASM Issue 1 	 17

Chapter 3

The default value of a parameter, if supplied, is a piece of text which will be
treated as having been supplied in the actual call if that parameter was
omitted. It has the same syntax as actual parameters (see below). Note that
a parameter of type (c) may not take a default value. If, for a given
parameter, no value is supplied at the call, and there is no default value, the
parameter is treated as a null string " .

When a macro using a type (c) parameter is called, it is as if the macro had
a parameter list ending with the sequence % 1, %2, %3, ... where the
number of such parameters in the formal list matches the number of such
parameters in the call.

When a macro name is enountered during assembly, its call template is
matched against the current line in the source file, and the parameters
assigned, with appropriate defaults. The label field is treated specially, in
that if there is a label on the line containing the macro call, but there is no
label in the macro call template, then the label is treated in the normal way
and defined as a symbol whose value is that of the location counter at the
start of the line. If however there is a label field in the macro template, then
the text of the actual label is assigned to the label parameter and is not
entered as a symbol at this point.

Actual parameters are treated as uninterpreted textual information. All
spaces in parameters are removed, except for those occurring within quotes.
The text of the parameter is preserved in respect of the case of letters and
the occurrence of special characters. To get a space into a parameter the
whole parameter must be placed in quotes. Note that quote characters
surrounding a parameter are stripped during processing - when the
parameter is substituted during expansion the quotes will not appear. To get
a quote character into a parameter, the parameter is enclosed in quotes and
two quotes are used (as in string constants). Note that the contents of a
quoted parameter are NOT treated as if it was a string - e.g. ' *N' is not
translated into a newline character.

Assembly then continues with the source text being read out of the body of
the macro, rather than from the source file. On encountering a `To'
character during reading of a macro, the assembler reads the next item
which should be a pa r a m_t a g as described above. It is an error for the item
not to be a tag defined in the call of the current macro, unless the assembler
is currently treating its input as a comment, in which case this error is
ignored.

18 	 ASM Issue 1

Assembler directives

In order to increase the usefulness of macros, it is possible to concatenate a
parameter with a following piece of text which would otherwise be taken as
part of the parameter name. If a parameter is followed by a full-stop (.)
character, the assembler will ignore it but terminate its parsing of the
parameter name. Hence if %T1='B', %dest='R0', %source='STEP(SB) '
then:

MOVZ%T1.D %source, %dest

would expand to

MOVZBD R0, STEP(SB)

There is a special case of parameter instantiation which is related to type (c)
parameters. If the parameter %* occurs within the macro body, it expands
to the parameters %1, %2, %3.. separated by commas. In addition if %* is
immediately followed by a 1- or 2-digit number (N say), it expands to
parameter %N, %N + 1 etc. These forms are only valid in macros which
have a %* type parameter in the call template.

The item %#pa ram expands to the number of characters in param as a
textual string, which is useful for testing for null string parameters:

IF %#string = 0

Also %(absexpr) converts absexpr into a decimal string representation of
the value of the expression. The expression may not include forward
references or macro parameters. However such an expression could be SET
to a label before using %(l a be l) .

In addition to normal parameters created on macro call, the assembler
maintains two psuedo-parameters connected with macros. These are:

%MCOUNT - Macro count.

This parameter when substituted returns an integer (as text) which is
the number of macro calls made so far on this pass, up to and
including the point at which the macro currently being expanded was
called. On each macro call, a global variable is incremented, and
assigned to a (local) psuedo parameter which is entered into the
symbol table with the other parameters for this macro. Hence within a
given macro expansion, the value of %MCOUNT may be used to
create local labels, if some simple naming convention is adopted.

ASM Issue 1 	 19

Chapter 3

%PCOUNT - Parameter count.

This expands to the number of numeric parameters which were created
using a type (c) parameter in the current macro. Its main use (as for
%*) is in the writing of recursive list-processing macros, which may
handle an arbitrary number of parameters. Note that %PCOUNT
does NOT include any normal type (a) parameters preceding the %*. It
is an error to instantiate %PCOUNT unless a macro with a type (c)
parameter is currently being expanded.

Here are a few examples of the use of macros to demonstrate these points:

MACRO

MOVC 	%N, %dest 	; move constant to double-word

IF ((%N)>=-8) && ((%N)<=7) ; in range -8..7

MOVQD 	%N, %dest

ELIF ((%N)>=-#XC0000000) && ((%N)<=#X3FFFFFFF) ; OK in up to 30-bit

; disp field

ADDR 	\%N, %dest

ELSE

MOVD 	=N, %dest

FI

MEND

MACRO

Case_Table %Type, %Base, %*

IF %PCOUNT = 0

; end of table

ELSE

DC%Type %1-%Base 	; dump 1 element

Case_Table %Type, %Base, %*2 	; and do the rest of the list

FI

MEND

MACRO

Name 	ENUM %Base, %* 	; enumerate list of names as constants.

IF %PCOUNT > 0

Name.%1 EQU %Base 	; define this one

Name

	

	ENUM %Base+1, %*2 ; enumerate rest

FI

MEND

20 	 ASM Issue 1

Assembler directives

Example of use:

Colour_ 	ENUM 	0, black, red, green, blue, white

defines Colour_black as 0, Colour_red as 1, etc.

3.2.10 DCB

Syntax: 	DCB expression [, expression)*

This directive causes the planting of bytes of data into store. Each
expression is either an absolute integer expression, or a string expression.
The null string ' ' is permitted, for which no bytes are planted. It is an error
to plant an integer expression not in the range -128 to 255. The
counted-string form may also be used by enclosing the characters to be
planted in double quotes. This puts a length byte followed by the actual
text.

3.2.11 DCS

Syntax: 	DCS expression I, expression)*

This directive is identical in effect to DCB.

3.2.12 DCW

Syntax: 	DCW expression (, expression)*

This directive causes the planting of words of data into store. Each
expression must be absolute, and evaluate to an integer in the range
-32768..65535.

3.2.13 DCD

Syntax: 	DCD expression {, expression)*

This directive causes the planting of double-words into store. Each
expression must be an absolute integer expression.

ASM Issue 1 	 21

Chapter 3

3.2.14 DCF

Syntax: 	DCF fpconst (,fpconst]*

This causes the planting of list of single precision (four-byte) floating point
constants in memory.

3.2.15 DCL

Syntax: 	DCL fpconst {,fpconst}

This acts as DCF but plants double precision (eight-byte) constants.

3.2.16 ALLOCB

Syntax: 	ALLOCB expression , expression 1

This directive reserves a number of bytes of store as determined by the value
of the first expression (which must be > = 0). The essential effect is to add
the value of the expression (which must be absolute) to the location counter.
The optional second parameter is the value which will be deposited in each
byte of the reserved area. If it is omitted, the value of the allocated bytes
will be undefined.

3.2.17 ALLOCW

Syntax: 	ALLOCW expression { expression 1

This is as for ALLOCB, but reserves store in units of words, i.e. it adds twice
the value of the expression to the location counter. The optional second
parameter is the value which will be deposited in each word of the reserved
area.

3.2.18 ALLOCD

Syntax: 	ALLOCD expression {, expression 1

This is as for ALLOCB, but reserves store in units of double-words, i.e. it adds
four times the value of the expression to the location counter. The optional

22 	 ASM Issue 1

Assembler directives

second parameter is the value which will be deposited in each double word
of the reserved area.

3.2.19 ALIGN

Syntax: 	ALIGN expression 	expression)

This directive is used to set the location counter on an address boundary.
The first expression given must evaluate to an absolute, positive quantity,
N, which is a power of 2 (i.e. 2,4,8,16 etc). The effect of the directive is to
ensure that the location counter is positioned at the next address which is 0
mod N. This is achieved by planting between 0 and N-1 bytes, as padding.

In place of the first expression, the words BYTE, WORD, DOUBLE, or QUAD
may be used. These stand for 1, 2, 4, and 8 bytes respectively.

The default value used for padding is 0, but if the second expression is
supplied, then its value will be used - it must evaluate to an absolute integer
in the range -128 to 255. For example in a code area the value #XA2 might
be used - this is the one-byte machine instruction NOP.

3.2.20 ENTRY

Syntax: 	ENTRY

In AOF mode, this defines the entry point (at the current location) which is
looked for by the linker to determine the 'root' module of an image. In
absolute or relative mode, this sets the current location as the execution
address of the binary output file produced.

3.2.21 END

Syntax: 	END {expression)

This directive serves two purposes:

- 	When it is encountered during the processing of an included file
(through the use of GET), the assembler closes that file and resumes
processing the one it was reading from when the GET occurred. No
expression may be present in this case.

ASM Issue 1 	 23

Chapter 3

- 	If no GET was in progress then it causes the current pass of the
assembler to complete. If the expression is present then it defines the
entry point. This is an alternative to the use of ENTRY; only one of
these mechanisms may be used in an assembly.

It is a fatal error in the latter case for END to occur as a directive within the
body of a macro. It is also incorrect for a final END to occur while there are
open conditional assembly blocks (this implies that a F I has been missed
out).

3.2.22 TITLE

Syntax: 	TITLE text

This directive is followed by a string which is subsequently printed at the
top of each page of assembly listing. In addition the directive causes the
listing to move to the top of the next page (a form-feed is sent to the listing
file). An example is:

TITLE Low-level graphics support routines.

3.2.23 OPTIONS

Syntax: 	(label) OPTIONS ((=I+1-)value}*

where label is an optional label, and value is one of:

IFS 	Conditional assembly directives
LIST 	Global listing (outside of MACRO and IF)
MDEF Macro definitions
MEXP Macro expansion
SKIP Code skipped by IF

If the value is preceded by +, the class of item controlled by that word is
enabled in the listing. If it is preceded by -, that part of the listing is
disabled. If = (or nothing) precedes the value, the listing will contain only
items of that class. Examples are:

OPTIONS LIST ; Only the global listing

OPTIONS -MDEF ; Turn off macro definition listings

OPTIONS +SKIP ; List code skipped in IFs

24 	 ASIA Issue I

Assembler directives

If the label is present, it is assigned (as with SET) the previous value of the
OPTIONS, for use in a later directive, e.g.:

oldopt OPTIONS -LIST ; force listing off

OPTIONS oldopt ; restore previous state

If OPTIONS - LIST is used at the first line of a GET macro library file, and
OPT IONS +LIST used on the last line, then no part of the library file will
appear in the listing.

3.3 Object module directives

As mentioned at the start of this chapter, the MODULE directive is used to
put the assembler in AOF mode. This section describes the directives which
are used in this mode.

3.3.1 MODULE

Syntax: 	MODULE (('name' | name})

This directive defines the external name to be given to the module. It must
occur at most once in the assembly, obeying the same positioning rules as
ABSORG and RE LORG. It overrides the -m option since compact code is
a wa ys produced.

The name is optional and only has to be enclosed in quotes if it contains a
semi-colon, or multiple, or leading spaces.

3.3.2 AREADEF

Syntax:

AREADEF namedef [(attribute {, attribute)*)], alignment

This allows the user to create and specify the attributes of an area of store
into which code and/or data may be planted using the assembler's normal
mechanisms. The n a medef parameter has the syntax:

ASM Issue 1 	 25

Chapter 3

(name 1 name = 'external_name')

where the second form is used to permit an arbitrary, externally visible
name, but is restricted to use with areas marked as COMMON or COMDEF (see
below).

The alignment parameter is either an absolute expression which must be a
power of 2, or one of the keywords BYTE, WORD, DOUBLE, or QUAD
(standing for 1, 2, 4, and 8 respectively). These keywords are recognised
only in this context and in the ALIGN directive.

Note that in AOF mode, the ALIGN directive will only accept alignment
values smaller than or equal to that specified in the AREADEF directive for
the area in which it is used.

The attribute keywords which may be present are defined below. They fall
into five groups; at most one keyword from each group may occur in the list
(in any order). If no keyword from a given group occurs, the first keyword
in that group is the default and will be assumed present. Keywords are
recognised in any combination of upper and lower case letters.

DATA / CODE

Defines the use to which information in this area will be put. At most
one area may be defined as being a code area.

WRITE / READ

READ specifies that the area should be protected against write access (if
possible - this depends on the presence of the MMU). WRITE indicates
that the area must be made writeable.

NOPIC / PIC

PIC stands for Position Independent Code. When applied to a code
area it indicates that this area contains such code (i.e. re-entrant, pure,
and containing no relocation). When applied to a data area it causes
the assembler to fault any attempt to generate a relocated object in the
area.

PRIVATE / SHARED

Specifying SHARED allows the linker to arrange run-time sharing of the
area across different processes using this module. Otherwise the area
will only be accessible within a single process space.

26 	 ASM Issue 1

Assembler directives

CONTIG / COMMON / COMDEF

Defines whether this area will be contiguous with other areas of the
same type (CONTIG), or overlap them (COMMON and COMDEF). COMDEF
indicates that this module defines the common area named, rather
than simply referencing it. For COMMON and COMDEF, the area name
may have a different external name, as mentioned above.

Use of this directive also defines a relocatable symbol of the same
name as the area at the start of the area (offset 0).

Associated with each area is a location pointer. The only way in which this
is changed is by dumping items (including instructions) or allocating space
(using A LLOC 1, ALIGN etc.) while the area is currently selected.

There is one predefined area. The attributes of this area are as if it had been
declared by:

AREADEF , [code], byte 	; null name special to this area

This area is special in that although it is marked as the code area, this may
be overridden by the user declaring another area to be the code area. This
area is the one which is selected at the start of each assembly pass.

3.3.3 AREA

Syntax: 	AREA (name)

This directive selects the area into which items will be dumped in the
normal way (i.e. by creating instructions or data). The parameter, if present,
must be the name of an already declared area. The effect of the command is
to set the location counter to the last-reached point within the named area
(which is 0 if the area has not been previously selected). If no name is given
then the default area is selected.

3.3.4 AREALEN

Syntax: 	label AREALEN name { , offset)

This assigns the length of the named area to the label. If the offset
parameter is present, this is added to the length before the label is assigned.
The label may be used only in a general operand or ADDRESS directive, as
EXTERNAL mode is used to refer to it.

ASM Issue 1 	 27

Chapter 3

3.3.5 AREAEND

Syntax: 	Label AREAEND name , offset)

This acts as AREALEN except that the end (plus optional offset) address of
the area is assigned to label.

3.3.6 EXPORT and EXPORTC

Syntax: 	EXPORT namedef , namedef I*
EXPORTC namedef , namedef }*

These two directives are used to make symbols external. The syntax of
namedef is that given in the description of AREADEF . EXPORT defines a
symbol as being data or absolute, according to whether it was defined by the
use of EQU (absolute) or as a label (data). EXPORTC defines each given
parameter as an external code item - it must have been defined as a label in
the code area. At most one EXPORTC or EXPORT command may be applied
to any particular name. The namedef syntax allows external names to be
completely general. These directives must not be labelled.

3.3.7 IMPORTC

Syntax: 	IMPORTC namedef {, namedef)*

IMPORTC defines a symbol as being an external code item descriptor, i.e. one
which may be used as the operand in a CXP instruction. It takes a list of
namedef parameters, i.e. identifiers with an optional equivalence string.
Each name given is defined here, and must not be defined in any other way.
A name so defined will normally be used as a CXP operand, but may be used
in the context of a general operand, in which case external addressing mode
will be generated (this would generally be meaningful only as the first
operand in an ADDR instruction). There must be no label on a line
containing this directive.

An extended form of namedef is permitted in this context:

int_name={'mod'}'ext_name'

where i nt_name is the internal name of the imported item, i.e. the one to be
used in this assembly, mod is the (optional) name of the module from which

28 	 ASM Issue I

Assembler directives

the symbol is to be imported, and ex t_name is the external name of the
item to be imported.

3.3.8 IMPORT

Syntax: 	IMPORT namedef [, namedef }*

This directive is similar to IMPORTC, but each external symbol so referenced
will be set up in the link table by address (or by value, if the symbol is
defined as a constant) rather than as a code descriptor. Names so defined
may be used only as general operands, and will generate external addressing
mode. (Note that it is possible to specify an offset from such a symbol, as
part of this mode). The assembler does not create a link entry for these
symbols immediately, but on the first time a symbol is used as an operand;
hence external symbols which are not used, or are used only in an ADDRESS
directive (or in CD ESC after an IMPORTC) will not needlessly take up a link
table entry. This directive must not have a label.

The extended form of namedef is also allowed here (see IMPORTC).

3.3.9 HANDLER

Syntax: 	HANDLER

This directive must be unlabelled and marks the entry point of the Panos
condition handler code for the module being assembled at the current
location. It must be in the code area. See the Panos Programmer's Reference
Manual for further details on Condition Handler.

3.3.10 SPECSB and DEFSB

Syntax: 	DEFSB position
SPECSB position

One of these directives is used to define the location of the static base for
this module. The parameter may be one of three types:

1. an absolute expression

2. an expression evaluating to an address in some area

3. the name of an IMPORT ed symbol { + offset)

ASM Issue 1 	 29

Chapter 3

Case 1 is used if the static base (SB) should point at some absolute store
address. Case 2 is used to set the SB within any declared area. Case 3 is used
to set the SB to be relative to the global symbol named. DEFSB may occur at
most once in an assembly. If SB-relative addressing is used at all, the SB
will normally be defined in this way. If case (b) is used, the assembler will
optimise code references to labels in the area in which the SB is defined, so
that they use SB-relative addressing, rather than external mode. If the
statement:

MOVD 6(ABC),R0

is encountered, and if ABC is in the SB area, the assembler will generate
X(Y(SB)) addressing. This optimisation is disabled, if necessary, by the use
of SPECSB instead of DEFSB. These directives may not be labelled.

3.3.11 ADDRESS

Syntax: 	ADDRESS expression (, expression)*

This directive is similar in format to DCD, but causes the assembler to
generate (link-time) relocatable objects, rather than constant ones. An
expression is one of:

A relocatable address
A symbol defined using IMPORT, i.e. an external name 1+ offset).
An absolute expression

The assembler generates commands in the output file which instruct the
linker to relocate each doubleword when the address of the item is known.
The last type of item needs no relocation, but may occur here for
convenience - the effect is as for DCD.

3.3.12 CDESC

Syntax: 	CDESC expression 	expression)*

CDESC creates a code descriptor for a local or external code item. If the
parameter is a label in the code area, then a local code descriptor will be
created; otherwise it must be the name of a symbol appearing in a preceding
IMPORTC directive. In either case, the assembler generates commands in the
output file to relocate the item at link time.

30 	 ASM Issue 1

Assembler directives

3.3.13 LINKNO

Syntax: 	label LINKNO symbol.

This assigns the link table number allocated to symbol to label. symbo
must be an external, and must have been defined in an IMPORT or IMPORTC
directive prior to the use of LINKNO .

3.4 Treatment of labels

The following points should be borne in mind regarding the assembler's
treatment of labels when producing AOF output:

1. The occurrence of a label reference to an area other than the code area
generates external-mode addressing, unless the area contains the static
base, when SB-relative addressing is generated. This of course applies
only in the context of general operands within the code area - it is
illegal to reference such labels as PC-relative operands, e.g. BSR or BR
targets.

2. CXP may take three types of operand:

The name of a symbol defined using I MPORTC. This generates a
standard external entry.

A label in the code area. This causes the assembler to set up a
local code descriptor entry in the link table for the label
concerned.

EXTERNAL (absexpr). A reference to the external object identified
by the given link table number. This should have been determined
by the LINKNO directive.

	

ASM Issue 1 	 31

Index

A 	 Instruction mnemonics 8
Absolute mode 2 	 Instructions
Acorn Object Format 13 	 floating point unit / /
AOF / 	 memory management unit / /

Integers 9
B
Binary 9

Line-break 8
C 	 Listing 2, 4
Case 3, 8, 9 	 Loading 3
CHAIN 2, 3
Character constants 9
Character limits 8 	 Macro names 8
Character set 8 	 Mapping 3
Comment 7 	 Memory management unit / /
Compound symbols 8 	 Mnemonics //
Conditional assembly 4
Constants 9
Counted-string 9 	 National Semiconductor 11
Counter /0 	 NLSYM 10

D 0
DCB 9 	 Octal 9
DFS 2 	 Operand forms 11
Directives 8, 13 	 Operands 7, 11

Optimising 4
E Options 3
Error file 5
Expressions 7, 10

Panos /
F 	 Pseudo-mnemonics 7
Floating point 9
Floating point unit 11

Relative binary mode 2
G
GET 3

Source file 2
H String 9
Hexadecimal 9 	 String constants 7

Symbol
I 	 relocatable 8
IF 4 	 reserved 8

32

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40

