
Programmer's
Reference Manual

Programmer's
Reference Manual

PART NO 0410, 012
ISSUE NO 1

JULY 1985

© Copyright Acorn Computers Limited 1985

Neither the whole or any part of the information contained in, or the
product described in, this manual may be reproduced in any material form
except with the prior written approval of Acorn Computers Limited (Acorn
Computers).

The product described in this manual and products for use with it, are
subject to continuous developments and improvement. All information of a
technical nature and particulars of the product and its use (including the
information in this manual) are given by Acorn Computers in good faith.

In case of difficulty please contact your supplier. Deficiencies in software
and documentation should be notified in writing, using the Acorn Scientific
Fault Report Form to the following address:

Sales Department
Scientific Division
Acorn Computers Ltd
Fulbourn Road
Cherry Hinton
Cambridge
CB1 4JN

All maintenance and service on the product must be carried out by Acorn
Computers' authorised agents. Acorn Computers can accept no liability
whatsoever for any loss or damage caused by service or maintenance by
unauthorised personnel. This manual is intended only to assist the reader in
the use of the product, and therefore Acorn Computers shall not be liable
for any loss or damage whatsoever arising from the use of any information
or particulars in, or any error or omission in, this manual, or any incorrect
use of the product.

Published by Acorn Computers Limited, Fulbourn Road, Cherry Hinton,
Cambridge CB1 4JN.

Within this publication the term BBC is used as an abbreviation for the
British Broadcasting Corporation.

NOTE: A User Registration Card is supplied with the hardware. It is in
your interest to complete and return the card. Please notify Acorn Scientific
at the above address if this card is missing.

ISBN 0 907876 39 0 Acorn Scientific

PRM Issue I

Contents

Introduction 	 1
1 	The user library 	 3
2 	Errors 	 5
2.1 	GetErrorMessage 	 9
2.2 	SetErrorInformation 	 10
2.3 	GetErrorInformation 	 11
3 	Argument decoding 	 13
3.1 	ArgumentInit 	 20
3.2 	DecodeInit 	 23
3.3 	GetStringArg 	 24
3.4 	GetStateArg 	 25
3.5 	GetBooleanArg 	 26
3.6 	GetIntegerArg 	 27
3.7 	GetCardinalArg 	 28
3.8 	GetNumberOfValues 	 29
3.9 	GetPresence 	 30
3.10 	Substitute 	 31
3.11 	DecodeEnd 	 32
4 	Data conversion 	 33
4.1 	StringToInteger 	 34
4.2 	StringToCardinal 	 35
4.3 	IntegerToString 	 36
4.4 	CardinalToString 	 37
4.5 	BooleanToString 	 38
4.6 	StringToBoolean 	 39
5 	Store allocation 	 41
5.1 	Allocate 	 42
5.2 	AllocateWithTag 	 43
5.3 	SetStoretag 	 44
5.4 	Deallocate 	 45
5.5 	DeallocateGroup 	 46
5.6 	GetNewTag 	 47
5.7 	ReturnTag 	 48
5. 8 	DeallocateTop 	 49
5.9 	DeallocateBottom 	 50
5.10 	SetHeapEnd 	 51

PRM Issue 1

5.11 	ResetHeapEnd 	 52

5.12 	CurrentHeapEnd 	 53

5.13 	GetStoreInformation 	 54

6 	I/0 Library 	 55

6.1 	FindInput 	 58

6.2 	FindOutput 	 59

6.3 	FindUpdate 	 60

6.4 	CloseStream 	 61

6.5 	SelectInput 	 62

6.6 	SelectOutput 	 63

6.7 	SelectUpdate 	 64

6.8 	SetErrorStream 	 65

6.9 	SetControlStream 	 66

6.10 	InputStream 	 67

6.11 	OutputStream 	 68

6.12 	ErrorStream 	 69

6.13 	ControlStream 	 70

6.14 	WriteByte 	 71

6.15 	ReadByte 	 72

6.16 	CurrentByte 	 73

6.17 	BlockRead 	 74

6.18 	BlockWrite 	 75

6.19 	SWriteByte 	 76

6.20 	SReadByte 	 77

6.21 	SCurrentByte 	 78

6.22 	SBlockRead 	 79

6.23 	SBlockWrite 	 80

6.24 	GetFileOffset 	 81

6.25 	SetFileOffset 	 82

6.26 	BytesOutstanding 	 83

6.27 	EndOfFile 	 84

6.28 	FlushOutput 	 85

6.29 	SFlushOutput 	 86

6.30 	DeviceType 	 87

6.31 	StreamType 	 89

6.32 	SetTabs 	 90

6.33 	GetTabs 	 91

7 	File Support 	 93

7.1 	GetDateStamp 	 94

7.2 	SetDateStamp 	 95

iv 	 PRM Issue I

7.3 	Touch 	 96
7.4 	RenameFile 	 97
7.5 	DeleteFile 	 98
7.6 	PhysicalFileName 	 99
7.7 	SetWorkingDirectory 	 100
7.8 	GetWorkingDirectory 	 101
7.9 	LoadFile 	 102
7.10 	SaveFile 	 103
7.11 	PhysicalDirRead 	 104
7.12 	InitDirRead 	 105
7.13 	GetDirEntry 	 /106
7.14 	EndDirRead 	 107
7.15 	IsWild 	 108
7.16 	FileReplace 	 109
7.17 	Expand 	 110
7.18 	GetFileInformation 	 112
7.19 	SetFileInformation 	 7-'114
7.20 	CreateFile 	 115
7.21 	CreateDirectory 	 116
8 	Loader 	 7
8.1 	DeclareProc 	 118
8.2 	DeclareData 	 119
9 	Random numbers 	 121
9.1 	Random 	 122
9.2 	SetRandomSeed 	 123
10. Time and date 	 125
10.1 	BinaryTime 	 126
10.2 	SetBinaryTime 	 127
10.3 	BinaryTimeOfStandardTime 	 128
10.4 	BinaryTimeOfTextualTime 	 129
10.5 	StandardTime0fBinaryTime 	 130
10.6 	TextualTimeOfBinaryTime 	 131
10.7 	Time 	 132
10.8 	StandardTime 	 133
10.9 	Date 	 134
10.10 TimeAndDate 	 135
11. Condition Handlers 	 137
11.1 	Initialise 	 148
11.2 	Stop 	 149
11.3 	Exception 	 150

PRM Issue 1

11.4 	Diagnose 	 152
11.5 	DescribeFrame 	 153
11.6 	DescribeModuleData 	 154
11.7 	Unwind 	 155
11.8 	Reserved 	 156
11.9 	Signal 	 157
11.10 CallHandler 	 158
11.11 DeclareConditionHandler 	 159
12. Asynchronous events 	 161
12.1 	DeclareEventHandler 	 163
12.2 	RemoveEventHandler 	 164
12.3 	EventStatus 	 165
12.4 	SetEventStatus 	 166
13. Global String Variables 	 167
13.1 	SetGlobalString 	 169
13.2 	GetGlobalString 	 170
13.3 	DeleteGlobalString 	 171
13.4 	GetGlobalStringName 	 172
14. Program Control 	 173
14.1 	Call 	 174
14.2 	Run 	 175
14.3 	Obey 	 176
14.4 	Invoke 	 177
14.5 	CallRunOrObey 	 178
14.6 	Name 	 179
14.7 	FileName 	 180
14.8 	Stop 	 181
14.9 	SetKnownCommandsPath 	 182
14.10 Arguments 	 183
14.11 	Verbosity 	 184
14.12 IdentifyRequired 	 185
14.13 HelpRequired 	 186
14.14 SwitchRequired 	 187
14.15 VerbosityRequired 	 189
15. Command line interpreter 	 191
15.1 	InterpretString 	 192
15.2 	InterpretCommands 	 193
16. Wild symbol expansion 	 195
16.1 	Match 	 196
16.2 	Replace 	 197

vi 	 PRM Issue I

	

17. 	BBC Library 	 199

	

17.1 	OSByte 	 200

	

17.2 	OSWord 	 201

	

17.3 	OSFile 	 202
Appendix A Panos-generated Errors 	 203
Appendix B 	 209

PRM Issue 1 	 vi

Introduction

This document describes the programmer's interface to Panos, the operating
system for Acorn Cambridge Series computers. Panos rests on the low level
machine support presented by Pandora, and provides a runtime system to
support a range of high level languages.

The user gains access to the functionality provided by Panos via:

- A command line interpreter (CLI)

- A collection of utility programs

- The runtime library

The Panos command line interpreter, utility programs, and other
user-interface related matters are described in the Panos Guide to
Operations.

The majority of this document is taken up by a description of the Panos
library. Each chapter deals with a particular module which contains one or
more procedures of a given class, e.g. random numbers, command handling.

Appendix A of this manual lists the error codes associated with the user
library procedures.

All procedures are described using a pseudo-language notation which lists
the number and type of the parameters and results. Parameters and results
are passed according to the rules described in the document Panos
Technical Reference Manual. An informal introduction to this
pseudo-language is given in chapter 1.

The following convention is observed:

Numbers not in decimal are prefixed by their base, for example 16_1A is
decimal 26; -2_1010 is -10 in decimal.

PRM Issue 1

1 The user library

All explicit communication with Panos from a user program is via the user
library procedures. There are two ways by which Panos informs the user of
errors; either the library procedure returns an error status (which should be
checked explicitly by the caller) or an error exception is signalled. All
library routines are provided in two versions, with the variant that generates
an exception on error having its name prefixed by 'X'.

The library of Panos is divided up into several modules (see 'Acorn 32000
object format specification' in the Panos Technical Reference Manual for a
description of the term 'module). Each group of procedures described in
the following chapters resides in a separate module. The module name is
given at the bottom of each page for procedure descriptions.

Procedures are described in terms of a pseudo-programming language. The
method of interfacing with real languages such as FORTRAN 77 and
Pascal depends on the procedure calling system of each language. Most
languages under Panos conform to the Acorn inter-language calling
standard. In Acorn 32000 ISO Pascal, for example, a Panos library
procedure can be accessed by the IMPORT directive.

For example, the method for importing the procedure
SetKnownCommandsPath is:

type

string=packed array[1..15] of char; (bound specified as required 1

import function SetKnownCommandsPath(path:string;len:integer):integer

status := SetKnowncommandsPath('$.Panoslib, @ ',13)

Full details of the inter-language calling standard and the Acorn Object
Format produced by Acorn compilers are given in the Panos Technical
Reference Manual. Explanation of how this maps into a particular
language's calling system is given in that language's Reference Manual.

PRM Issue 1 	 3

chapter

The procedures in this manual are described by the following syntax:

< procedure description > = < procedure name > (< parameter list >);
< result list >

< parameter list > 	= I < parameter > < parameter list >
< result list > 	 = < result > < result list >
< parameter > 	 = < parameter type > : < parameter name >
< result > 	 = < result type > : < result name >
< parameter type > 	= STRING I < base type > < base type > REF
< result type > 	 = STRING I < base type >
< base type > 	 = INTEGER I CARDINAL

I RECORD(< format name >)
I ADDRESS
I HIDDEN

These types are described in the inter-language calling standard section of
the Panos Technical Reference Manual with HIDDEN being 32-bit raw
binary.

4 	 PRM Issue I

2 Errors

This chapter describes the facilities provided for error handling; all of the
procedures reside in moduleError . Many of the procedures in the Panos
library return a 32-bit status code. On error the top bit of the status code is
set, so the number is always negative. The other 31 bits are divided into
fields which provide information about the error type, in which module it
occurred and so on.

When an error occurs in a system module, it will call the procedure
SetErrorInformation. This takes an error code and assigns an 'information
string' to this error. The error number is then returned to the caller.

The calling program uses GetErrorMessage to convert the returned error
number into three information strings: the message, the name of the system
facility which detected the error and the name of the system facility which
was initially called by the user.

Here is a typical sequence of events which might result in the error-handling
procedures being called:

A program calls the procedure GetDateStamp to find the date at which a
named file was created. The name is supplied as the string parameter
`DFS::0.$.prog F. However, the named file does not exist on the filing
system, so an error is generated. Suppose the basic error message is:

File % not found

The system will set the information for the error to the filename, i.e.
`DFS::0.$.prog1'. Thus when the user calls GetErrorMessage using the
returned error code, the three strings returned will be:

BBC

File

File DFS::0.$.prog1 not found

where BBC is the detecting facility (i.e. the module which discovered that
the file did not exist), File is the interface facility (i.e. the module that the
user called in the first place) and Tile DFS::0.$.prog1 not found' is the
error message with the error information substituted.

All error codes generated by the Panos system and associated software are
32-bit values with the most significant bit set. They are divided into a
number of fields:

PRM Issue 1 	 5

Chapter 2

The structure of this error code has been designed such that a simple user
program can return a small negative number (range -1 to -512) to denote an
error condition.

Info

This field describes whether any additional information is available for this
error (see GetErrorInformation). The values in the field have the following
meanings:

0 	None; the error has already been reported.

1-5 	Information available: use the value of the 32-bit errorcode as a
handle to GetErrorInformation to obtain it.

6 	Used when error is being signalled (see module 'Handler') to
denote the passing of an associated error buffer.

7 	None.

InterfaceFacility

This gives the code of the facility called by the user. This may be converted
to a string using GetErrorMessage. The table given below lists the facility
names also.

DetectingFacility

Gives the code of the facility which detected the error. This is also decoded
by GetErrorMessage.

For both facility fields the code is structured as below:

6 	 PRM Issue I

Errors

The type field's two bits are:

Type 00 means that Number is a Panos facility as follows:

0 	32000 Hardware exception
1 	Data conversion
2 	Store
3 	IO
4 	Loader
5 	Random number generation
6 	Time and date
7 	Condition handling.
8 	Event handling
9 	Environment variables
10 	Program control
11 	Pandora
12 	BBC
13 	Argument decoding (error in keystring format)
14 	Argument decoding (error in user parameter string)
15 	File
16 	Reserved
17 	Command interpreter
18 	Error handling
19 	Pattern matching
20-63 Reserved

For Number 0 the ErrorCode (bits 0-8) is the 32000 Hardware Exception
code (see the Instruction Set Reference Manual for details).

Type 2_01 is reserved.

Type 2_10 implies that Number is a Language Code (see 'Acorn 32000
Object Format specification' in the Patios Technical Reference Manual). The
ErrorCode is a compiler error.

Type 2_11 implies that Number is a Language Code. The ErrorCode is a
run-time error.

PRM Issue 1 	 7

Chapter 2

ErrorCode

See above.

Note: Facility 16_FF is reserved for user programs.

The system procedure GetErrorMessage is provided to convert an error
code into a textual message. The mapping between an error code and its
corresponding text message is controlled by the system error file.

The error file is made up of a sequence of records separated by newline
(LF) characters. Each record has the format

< ff> < ee > < skeleton error message >

where < ff> is a two digit facility number (base 16), e.g. OF for File, and
< ee > is the facility error code.

The < skeleton error message > is a printable message containing %
characters where substitution of error information is required. The error
information set for an error is made up of % separated fields.

When GetErrorMessage is building the message string it will substitute
fields in the message skeleton from those in the corresponding position in
the error information. If insufficient fields are provided in the error
information then the value < unknown > will be used.

For example:

Skeleton 	Error % on stream %
Information 	87%12
Produces 	Error 87 on stream 12

Skeleton 	File % not found on FS %
Information 	$.filel
Produces 	File $.file 1 not found on FS < unknown >

8 	 PRM Issue I

Errors

2.1 GetErrorMessage

GetErrorMessage(INTEGER:error);
INTEGER:Result
STRING:DetectingFacility
STRING:InterfaceFacility
STRING:Error message

XGetErrorMessage(INTEGER:error);
STRING:DetectingFacility
STRING:InterfaceFacility
STRING:Error message

Action

Decodes the supplied error number and returns three strings describing:

The System Facility which detected the Error,
The System Facility which was called by the user and
A text string describing the error.

Any additional information about the error is merged into the error
message.

Call

Error 	The error number.

Return

Result 	> = 0, operation succeeded.
< 0, operation failed (result = Error Code).

Error 	 9

Chapter 2

2.2 SetErrorInformation

SetErrorInformation(INTEGER:Error
STRING:Information);
INTEGER:Result

XSetErrorInformation(INTEGER:Error
STRING:Information);
INTEGER:Result

Action

This caches the information string and sets the 'Info' field of the given
error. The modified error can be used at a later stage as a parameter to
GetErrorInformation which will endeavour to return the information string.
For this to be successful only the Interface Facility in the resultant Error
Code may be changed.

Call

Error 	An Error Code complete except for Interfacing Facility,
which may be modified at a later stage.

Information 	The information string to be associated with the error, e.g.
`DFS::0..fred% 13'.

Return

Result 	Can be used both as an error code and as a handle to get
back the information.

10 	 Error

Errors

2.3 GetErrorInformation

GetErrorInformation(INTEGER:Error);
INTEGER: Result
STRING: Information

XGetErrorInformation(INTEGER:Error);
STRING Information

Action

Endeavours to return any additional information associated with a system
Error Code.

Call

Error 	The Error Code.

Return

Result 	> = 0, Operation successful, information contains the
additional information.
<0, Operation failed (= Error Code).

Error 	 11

3 Argument decoding

When a program is called, its name may be followed by a list of arguments
for use as parameters, e.g. source and object filenames for compilers, file
specifications for filing system utilities etc.

This section describes the Panos procedures which can perform decoding of
command line arguments. By utilising these procedures, all applications
running under Panos can provide a uniform command interface to the user.
The procedures all reside in moduleDecodeArg.

Decoding is performed by passing Panos a keystring which describes the
format of arguments which the program expects. The procedure DecodeInit
takes the keystring and processes the argument string accordingly. Decoded
parameters may then be accessed by calling various other procedures, e.g.
GetStringArg. This process is illustrated in figure 1.

Figure I Argument Decoding

A keystring is a sequence of keywords, which are qualified by control
characters called option specifiers (e.g. /a and /e in the example above).
These determine the type of keyword, and the number and type of
arguments which may be associated with it.

When all of the arguments have been obtained by calls to the Get...Arg
procedures, the application program should terminate the decoding process
cleanly by calling DecodeEnd.

PRM Issue 1 	 13

Chapter 3

The keystring

This section describes the format of the keystring in detail. As stated above,
it is a list of keywords (separated by spaces or commas) which may be
qualified by option specifiers.

Associated with each keyword may be a default argument list. This is used
if the user does not supply any arguments on the command line for that
keyword.

Keyword name

A keyword name must begin with a letter and can contain letters or digits
(Underscore, is treated as a lower case letter in keywords). The case of
the keyword in the keystring is used to permit controlled abbreviation of the
use of the keyword in the supplied argument string. (The actual case of the
keyword in the supplied argument string is irrelevant.)

Abbreviation of a keyword when given in the argument string is possible
if the keyword in the keystring ends in a sequence of lower case letters.
Only lower case letters in the keystring keyword name may be truncated
from the argument string keyword name. An abbreviation is not permitted
if it is an otherwise legal truncation of more than one keyword.

An example is

`NAme' in the keystring may be matched from the argument string by
`-NAME' (or `-NAM', and `-NA' provided this is unambiguous). `-N', will
not match. A '-NAME' will match in preference to abbreviations of any
longer keyword names (i.e. is not ambiguous with keystring
`NAme NAMEList').

Keyword names may be aliased by separating each alias with an equals
sign, e.g. 'FROM = INput' will match `-FROM', `-INPUT', `-INPU',
`-INP', and `-IN'.

14 	 PRM Issue 1

Argument decoding

Option specifiers

There are three classes of option specifier:

I. Quantity option

This is used to indicate the number of arguments which may be associated
with the keyword. There are three formats:

/< num > This specifies that at most <num > arguments may be
associated with the keyword e.g. /2, or /12.

/ = < num > This specifies that exactly <num > arguments must be
supplied for the keyword. e.g. / = 1, or / = 4.

/? 	This specifies that any number of arguments can be supplied.
A procedure (GetNumberOfValues) is supplied to discover
how many arguments a user actually provided.

If no quantity option is supplied then /1 is assumed, i.e. keywords are
expected to have at most one argument by default. Suppose a keystring
contains the keyword INPUT/?. This means that a command line could
contain the word -INPUT followed by any number of arguments to be
associated with that keyword. The arguments should be separated by
commas, so an example might be -INPUT fred,jim, sheila.

Having called DecodeInit with the appropriate keystring, the application
program could discover how many arguments are associated with INPUT
by calling GetNumberOfValues, and then read each one by calling
GetStringArg.

2. Type option

This option indicates what type of arguments are expected to be associated
with a given keyword. The possible options are:

/I 	This indicates that integer arguments will be used with the
keyword. Examples are 128, 16_1A, -3024, + 8_1764. Integer
arguments may be read with GetIntegerArg.

PRM Issue 1 	 15

Chapter 3

/C 	This indicates that cardinal (positive integer) arguments will be
used with the keyword. Examples are 128, 16_1A, 3024, 8_1764.
Cardinal arguments may be read with GetCardinalArg.

/B 	This indicates that boolean arguments (True, False) will be used
with the keyword. See also the keyword presence options. Boolean
arguments may be read with GetBooleanArg.

/E[-ext] This means that the keyword's arguments are expected to be files
residing on some filing system. /E arguments may be read with
GetStringArg. GetStringArg checks that the name provided exists
before returning and gives an error if it does not. In addition, an
extension may be given which is automatically appended to
filenames which don't have an extension already.

/R 	This indicates that the keyword's argument consist of the rest of
the argument string. This keyword must be specified last in the
keystring since once it is selected (even by default) other keywords
have no effect. It is supplied to allow partial decoding of argument
lines. /R arguments may be read with GetStringArg.

/L 	This indicates that the keyword's arguments consists of the long
string from this keyword position to the next valid keyword. It does
not include the leading or trailing white space. A quoted string will
have the outermost quotes stripped. /L arguments may be read
with GetStringArg.

If no type option is supplied then the key word has arguments of type
STRING.

3 Keyword presence options

There are two options to control the necessity of giving the keyword name
in the argument string, and three to control the detection of keyword names
in the argument string.

/A This implies the keyword must have at least one argument (though the
keyword itself need not occur in the argument string). The keyword
cannot be used with a default argument list.

/K This means that the keyword can have arguments only if the keyword
itself is also given.

16 	 PRM Issue 1

Argument decoding

/P This allows a keyword to have no arguments and implies /K. The
function GetPresence returns TRUE if the keyword name was given in
the argument string.

As an example consider the keystring list/P[vdu:]' supplied with
different argument strings.

Argument 	Presence Number 	Value

Empty 	FALSE 	1 	no listing is wanted
`-list' 	TRUE 	1 	vdu: list to the vdu:

`-list printer:' 	TRUE 	1 	printer: list to printer:

Hence, GetPresence would be used to determine whether listing is
wanted. Note that /P can cause ambiguity since it only sometimes
takes an argument.

/N This implies /P and allows a `-NO' prefix to the keyword name. The
function GetStateArg can be used to find the state of the rightmost use
of the name. If the -NO prefix is given then no argument can be
supplied and any arguments given to previous unprefixed uses of this
name are ignored.

As an example consider the keystring list/N[vdu:]' supplied with
different argument strings.

Argument 	Presence Number 	State

Empty 	 FALSE 	1 	FALSE no listing is wanted
gist' 	 TRUE 	1 	TRUE list to the vdu:
`-list printer:' 	TRUE 	1 	TRUE list to printer:
`-nolist' 	 TRUE 	0 	FALSE no listing is wanted
`-nolist -list' 	TRUE 	1 	TRUE list to the vdu:
`-list -nolist' 	TRUE 	0 	FALSE no listing is wanted
`-list xx -nolist' 	TRUE 	0 	FALSE no listing is wanted

Hence, GetStateArg would be used to determine whether listing is
wanted. Note that `-nolist xx' is illegal since the -nolist cannot take an
argument.

/S This is equivalent to /K/P/N/ = 0 and specifies a keyword which can
have no arguments but can be detected in the arguments string.
Examples are 'Identify', and 'HELP'.

PRM Issue 1 	 17

Chapter 3

Defaults

A keyword which can take arguments can have defaults supplied as a
comma separated list in square brackets.

Assignment of arguments to keywords

This section describes how the user-supplied arguments are decoded using
the programmer-supplied keystring.

Terms used are:

Argument group: An argument group is a list of comma-separated
arguments associated with a keyword.

Argument string: An argument string comprises one or more argument
groups.

Argument: An argument is a single string, filename, integer, cardinal, or
boolean.

The rules for decoding are:

a The default order of assigning argument groups to their corresponding
keywords is from left to right. Note that /K keywords are not eligible
for default assignment and so the keyword is skipped.

b Argument groups qualified by the keyword name can be supplied in
any order.

c A non-/K keyword, when specified, just changes the default keyword
for assignment. It need not have an argument following the keyword.

d An item in the argument string beginning with a `-' must be
immediately followed by a keyword name (possibly abbreviated) or a
digit. The /L and /R keywords are treated specially and cause
exceptions to this rule.

e An item that is enclosed in quotes (") cannot be a keyword, it is always
treated as an argument. A /L keyword causes an exception to this rule.

f If no keyword name is supplied and there is no default keyword then
the argument group cannot be assigned. An error is generated.

18 	 PRM Issue 1

Argument decoding

g If the keyword has already received an argument group then the
current argument group is assigned to this keyword after the existing
arguments.

h The keyword names HELP and IDENTIFY are special, in that if all
rules are not satisfied but HELP or IDENTIFY are supplied within
both the keystring and the argument string then a special error number
is returned. This allows users to type e.g. T77 -Help' and receive some
help information.

PRM Issue 1 	 19

Chapter 3

3.1 ArgumentInit

ArgumentInit(STRING:KeyString
BOOLEAN:InputWanted
BOOLEAN:OutputWanted
STRING:Identification
PROCEDURE:HelpProcedure);
INTEGER:Result
HIDDEN:Handle

XArgumentInit(STRING:KeyString
BOOLEAN:InputWanted
BOOLEAN:OutputWanted
STRING:Identification
PROCEDURE:HelpProcedure);
HIDDEN:Handle

Action

This procedure is provided to allow a simple program to behave in the
standard manner for programs. A standard string is prefixed to the
keystring, DecodeInit is called with the value of Program.Argumentso and
then some standard operations are performed. The decoded information
handle is then returned, and can be used with GetStringArg etc.

The prefix string contains the following keywords in the order given below.

ERRor/K[Error:]
supplies the value for IO.SetErrorStream(IO.FindInput(value))

CONTrol/K[Control:]
supplies the value for IO.SetControlStream(IO.FindInput(value))

IDentify/S
If this argument is present on the command line then the value of
Program.ProgramPatho, a colon, a space, and then the value of the
Identification parameter, followed by a newline are output to
ErrorStream.

20 	 DecodeArg

Argument decoding

HELP/S
If this argument is present on the command line then the
HelpProcedure parameter is called, it should output help to the
current ErrorStream. When it returns a Program.Stop(0) is
performed.

Abandon/S
The required value can be obtained from

Program.SwitchRequired("Abandon", Handle, Default)
A value of True should cause the program to stop after the first
error, if False then the program should keep going for as long as
possible.

e.g. 'Copy a,b,c -to d -Abandon'
will not copy file 'c' if file `b' is not found.

Confirm/S
The required value can be obtained from

Program.SwitchRequired("Confirm", Handle, Default)
A value of True should cause the program to ask the user for

confirmation of the operation if this is reasonable. e.g. delete
-confirm will ask for confirmation, but f77 -confirm will have no
effect.

Force/S
The required value can be obtained from

Program.SwitchRequired("Force", Handle, Default)
A value of True should cause the program to take as much action as

is reasonable to ensure that the requested task can be accomplished.
e.g. delete -force will override the locked attribute on files.

The following two keywords are optionally included depending upon the
values of the corresponding 'wanted' boolean arguments.

INput = FROM[Inputj
supplies the value for IO.SelectInput(IO.FindInput(value))

OUTput = TO[Output]
supplies the value for IO.SelectOutput(IO.FindOutput(value))

DecodeArg 	 21

Chapter 3

Call

KeyString
the keys to decode the arguments.

InputWanted
If true then add `INput = FROM[Input:]' to the keystring.

OutputWanted
If true then add `OUTput = TO[Output:]' to the keystring.

Identification
the string to be output as identification.

HelpProcedure
a procedure without parameters to produce help.

Return

Result
> = 0, decode successful and Handle refers to the decoded
arguments and the standard operations have been performed.
< 0, operation failed (= error code). See Appendix A.

Example

A very simple program which takes no arguments could call ArgumentInit
and give it parameters:

KeyString = ""

Identification = "Sound bell version 1.00"

HelpProcedure = HelpProc { A simple procedure to say that this program
just sounds the bell }

InputWanted = false

OutputWanted = false

This program would then behave in the accepted manner.

22 	 DecodeArg

Argument decoding

3.2 DecodeInit

DecodeInit(STRING:KeyString
STRING:ArgString);
INTEGER:Result
HIDDEN:Handle

XDecodeInit(STRING:KeyString
STRING:ArgString);
HIDDEN:Handle

Action

Decode the supplied argument string using the keystring and set up the
results so that the values of arguments can be obtained by the variants of
GetArg. The keystring is a proforma for the arguments expected.

Call

KeyString 	the keys to decode the arguments.

ArgString 	the argument string.

Return

Result 	> = 0, decode successful and Handle refers to the decoded
arguments.
< 0, operation failed (= error code). See Appendix A.

DecodeArg 	 23

Chapter 3

3.3 GetStringArg

GetStringArg(STRING:ArgumentName
CARDINAL:Index
HIDDEN:Handle);
INTEGER:Result
STRING:Arg

XGetStringArg(STRING:ArgumentName
CARDINAL:Index
HIDDEN:Handle);
STRING:Arg

Action

Obtain the value of the named STRING argument from the decoded
argument list. 'Index' identifies which of the possible N values is required.
For example Index = 1 corresponds to the first value associated with the
ArgumentName.

Call

ArgumentName 	key name for the argument.

Index 	 identifies which of the possible N values is required.

Handle 	 As obtained from DecodeInit.

Return

Result 	> = 0, operation successful (arg contains the value).
< 0, operation failed (= error code).

24 	 DecodeArg

Argument decoding

3.4 GetStateArg

GetStateArg(STRING:ArgumentName
HIDDEN:Handle);
INTEGER:Result
BOOLEAN:Arg

XGetStateArg(STRING:ArgumentName
HIDDEN:Handle);
BOOLEAN:Arg

Action

This can only be used on /N or /S arguments and returns TRUE if the
rightmost use of the keyword was without the -NO prefix. It returns
FALSE if the keyword was not specified in the argument string or the
rightmost use was with a -NO prefix.

Call

ArgumentName 	key name for the argument.

Handle 	 As obtained from DecodeInit.

Return

Result 	> =0, operation successful (arg contains the value).
<0, operation failed (= error code).

DecodeArg 	 25

Chapter 3

3.5 GetBooleanArg

GetBooleanArg(STRING:ArgumentName
CARDINAL:Index
HIDDEN:Handle);
INTEGER:Result
BOOLEAN:Arg

XGetBooleanArg(STRING:ArgumentName
CARDINAL:Index
HIDDEN:Handle);
BOOLEAN:Arg

Action

Obtain the value of the named boolean argument from the decoded
argument list.

Call

ArgumentName 	Key name for the argument.

Index 	 Identifies which of the possible N values is required.

Handle 	 As obtained from DecodeInit.

Return

Result 	> = 0, operation successful (arg contains the value).
< 0, operation failed (= error code).

26 	 DecodeArg

Argument decoding

3.6 GetIntegerArg

GetIntegerArg(STRING:ArgumentName
CARDINAL:Index
HIDDEN:Handle);
INTEGER: Result
INTEGER: IntegerArg

XGetIntegerArg(STRING:ArgumentName
CARDINAL:Index
HIDDEN:Handle);
INTEGER: IntegerArg

Action

Obtain the value of the named integer argument from the decoded argument
list.

Call

ArgumentName 	Key name for the argument.

Index 	 Identifies which of the possible N values is required.

Handle 	 As obtained from DecodeInit.

Return

Result 	> = 0, operation successful (IntegerArg contains the value).
< 0, operation failed (= error code).

DecodeArg 	 27

Chapter 3

3.7 GetCardinalArg

GetCardinalArg(STRING:ArgumentName
CARDINAL:Index
HIDDEN:Handle);
INTEGER:Result
CARDINAL:CardinalArg

XGetCardinalArg(STRING:ArgumentName
CARDINAL:Index
HIDDEN:Handle);
CARDINAL:CardinalArg

Action

Obtain the value of the named Cardinal argument from the decoded
argument list.

Call

ArgumentName 	Key name for the argument.

Index 	 Identifies which of the possible N values is required.

Handle 	 As obtained from DecodeInit.

Return

Result 	> = 0, operation successful (CardinalArg contains the value).
< 0, operation failed(= error code).

28 	 DecodeArg

Argument decoding

3.8 GetNumberOfValues

GetNumberOfValues(STRING:ArgName
HIDDEN:Handle);
INTEGER:Result
CARDINAL:Number

XGetNumberOfValues(STRING:ArgName
HIDDEN:Handle);
CARDINAL:Number

Action

Returns the number of values supplied for the keyword ArgName.

Call

ArgName Key name for the argument.

HAndle 	as obtained from DecodeInit.

Return

Result 	> =0, operation successful (Number contains the number of
values supplied).
<0, operation failed (= error code).

DecodeArg 	 29

Chapter 3

3.9 GetPresence

GetPresence(STRING:ArgName
HIDDEN:Handle);
INTEGER:Result
BOOLEAN:Present

XGetPresence(STRING:ArgName
HIDDEN:Handle);
BOOLEAN:Present

Action

Returns True if the ArgName was specified in the argument string.

Call

ArgName Key name for the argument.

Handle 	As obtained from DecodeInit.

Return

Result 	> = 0, operation successful.
< 0, operation failed (= error code).

Present 	True if the ArgName was present.

30 	 DecodeArg

Argument decoding

3.10 Substitute

Substitute(STRING:String
HIDDEN:Handle);
INTEGER:Result
STRING:SubstitutedString

XSubstitute(STRING:String
HIDDEN:Handle);
STRING:SubstitutedString

Action

Scans the 'String' searching for words bracketed between < and > and
substituting each < Word > for either:

a the string equivalent value of the keyword name < Word > associated
with the given Handle. The special case < -Word > is treated
differently. Word must be a keyword of type /E. The value substituted
is the argument with any extension removed.

b the value of global string Word.

Note: This is the procedure used by the Panos command interpreter to
substitute parameters in input lines.

Call
•

String 	The string containing < word >'s to be substituted.

Handle 	As obtained from DecodeInit.

Return

Result 	> = 0, operation successful (= number of substitutions).
<0, operation failed (= error code).

SubstitutedString

the Resulting string after substitution.

DecodeArg 	 31

Chapter 3

3.11 DecodeEnd

DecodeEnd(HIDDEN:Handle);
INTEGER:Result

XDecodeEnd(HIDDEN:Handle)

Action

Indicate end of argument decoding. All Heap memory used by Panos for
decoding purposes is released.

Call

Handle 	As obtained from DecodeInit.

Return

Result 	> = 0, operation successful.
< 0, operation failed (= error code).

32 	 DecodeArg

4 Data conversion

In order to support the Acorn standard Panos makes available several
procedures for conversion between data representations. These procedures
reside in moduleConvert . For consistency between programs, it is highly
desirable that these procedures should be used to perform conversions.

The standard stipulates that numbers not in decimal are prefixed by their
base and an underscore character C_'). The base is a decimal value and is an
integer value in the range 2..36. For example:

16_1A 	is decimal 	26,
56 	is decimal 	56,
8_17 	is decimal 	15.

Numbers may optionally be preceeded by the + or - signs. For example:

-16_1a 	is decimal 	-26,
+ 8_17 is decimal 	15,
-2_111 	is decimal 	-7.

Any other string representation of numbers is rejected.

PRM Issue 1 	 33

Chapter 4

4.1 StringToInteger

StringToInteger(STRING:SourceString);
INTEGER:Result
INTEGER:IntegerResult

XStringToInteger(STRING:SourceString);
INTEGER:IntegerResult

Action

Converts a string into an integer.

Call

SourceString The string to be converted in standard format. For
example, 2_10101, -2_101011, +2_101011 24, 16_ABCD.
A leading - sign indicates a negative value. The range of
integers is -(2**31)..(2**31)-1. All other input is illegal.

Return

Result 	> = 0, operation successful and IntegerResult is the
integer result.
< 0, operation failed (= error code).

34 	 Convert

Data conversion

4.2 StringToCardinal

StringToCardinal(STRING:SourceString);
INTEGER: Result
CARDINAL:CardinalResult

XStringToCardinal(STRING:SourceString);
CARDINAL:CardinalResult

Action

Converts a string into a cardinal.

Call

SourceString The string to be converted in standard format. For
example, 2_10101, 24, 16_1ADD. Cardinals range from
0..(2**32)-1. All other input is illegal.

Return

Result 	> = 0, operation was successful and CardinalResult is the
result.
< 0, operation failed (= error code).

Convert 	 35

Chapter 4

4.3 IntegerToString

IntegerToString(INTEGER:Number
CARDINAL:TheBase);
INTEGER:Result
STRING:ResultString

XIntegerToString(INTEGER:Number
CARDINAL:TheBase);
STRING:ResultString

Action

Converts an integer into a string using given base.

Call

Number 	integer to be converted.

TheBase 	conversion base, in the range 2..36.

Return

Result 	> = 0, operation successful ResultString is the result.
< 0, operation failed (= error code).

36 	 Convert

Data conversion

4.4 CardinalToString

CardinalToString(CARDINAL:Number
CARDINAL:TheBase);
INTEGER:Result
STRING:ResultString

XCardinalToString(CARDINAL: Number
CARDINAL:TheBase);
STRING:ResultString

Action

Converts a cardinal into a string using given base.

Call

Number 	Cardinal to be converted.

TheBase 	Conversion base, in the range 2..36.

Return

Result 	> = 0, operation successful, ResultString is the result.
< 0, operation failed (= error code).

Convert 	 37

Chapter 4

4.5 BooleanToString

BooleanToString(BOOLEAN: bool);
INTEGER:Result
STRING:ResultString

XBooleanToString(BOOLEAN: bool);
STRING:ResultString

Action

Convert a boolean value into its string representation. The string
representations used are 'True' and 'False'.

Call

bool 	The boolean value to be converted.

Return

Result 	> = 0, Operation successful and ResultString is the result.
< 0, Operation failed (= error code).

38 	 Convert

Data conversion

4.6 StringToBoolean

StringToBoolean(STRING: sourcestring);
INTEGER: Result
BOOLEAN: BooleanResult

XStringToBoolean(STRING: sourcestring);
BOOLEAN: BooleanResult

Action

Converts a string repesentation into a boolean.

Call

sourcestring 	The string to be converted. (The representations accepted
are 'true' and 'false', in any mixture of upper and lower case
letters.)

Return

Result 	> = 0, Operation successful and BooleanResult is the value.
< 0, Operation failed (= error code).

Convert 	 39

5 Store allocation

The Store allocation part of Panos manages the memory available to the
user program. Storage allocation/deallocation is carried out by the use of
procedures in moduleStore .

The lowest part of memory (up to the first 64K bytes) contains the module
tables. An area of memory, the 'module heap' is maintained so that extra
module information may be added and deleted as required by the loader
part of Panos.

The main heap comprises all the rest of the free store. The upper limit to the
growth of the main heap is called HeapEnd. HeapEnd is normally
determined by the position of the stack pointer: it is usually just below the
stack pointer (a 'safety margin' is included), but it may be fixed at a user
specified address if required. The calculation of Heapend may be returned
to its default mechanism by a call to ResetHeapEnd.

When memory is returned to the allocator it is coalesced with any
neighbouring free memory. This increases the likelihood of meeting future
demands for large amounts of contiguous memory.

The allocator exports a variable, CurrentHeapEnd, which contains the
address of the first free byte above all claimed heap data. This exported data
item is for stack checking by user programs and should only be read.

For the convenience of the user, the allocator maintains a tag, the Store
Tag, which can be set and read using a supplied procedure. Each time a
block of memory is allocated it is tagged, the user may either deallocate
memory blocks individually or choose to deallocate all blocks with a
particular tag. Blocks tagged with tag = 0 cannot be deallocated in a group
(see DeallocateGroup library call below).

PRM Issue 1 	 41

Chapter 5

5.1 Allocate

Allocate(INTEGER:Size);
INTEGER:Result
ADDRESS:BlockPointer

XAllocate(INTEGER:Size);
ADDRESS:BlockPointer

Action

Allocate a block of store and tag with the current value of StoreTag (as set
by last call to SetStoreTag).

Call

Size 	The number of bytes required. If size is positive then at
least size bytes must be allocated. If size is negative then
'size' represents an upper bound on the amount required.
The argument value Size < 0 is not available for
XAllocate. Size may not take the value O.

Return

Result 	> = 0, operation successful (= number of bytes allocated)
and BlockPointer points to the start of the block which will
be four-byte aligned.
< 0, operation failed (= error code).

42 	 Store

Store allocation

5.2 AllocateWithTag

AllocateWithTag(INTEGER:Size
HIDDEN:Tag);
INTEGER:Result
ADDRESS:BlockPointer

XAllocateWithTag(INTEGER:Size
HIDDEN:Tag);
ADDRESS:Blockpointer

Action

As for Allocate but using given Tag.

Call

Size 	 As for Allocate.

Tag 	 Tag to be used.

Return

Result 	> = 0, Operation successful (= bytes allocated).
<0, Error (= error code).

Store 	 43

Chapter 5

5.3 SetStoretag

SetStoreTag(HIDDEN:Tag);
HIDDEN:Oldtag

XSetStoreTag(HIDDEN:Tag);
HIDDEN:Oldtag

Action

Supply a new value for the StoreTag. This value will be used as the tag for
all subsequent allocations where a tag is not specified explicitly (i.e. where
Allocate is used rather than AllocateWithTag). A library call is provided to
deallocate all blocks with the same value of tag.

Call

Tag 	 New value for the block tag.
(This must be obtained using GetNewTag).

Return

Oldtag 	The previous value of the tag.

44 	 Store

Store allocation

5.4 Deallocate

Deallocate(ADDRESS:BlockPointer);
INTEGER:Result

XDeallocate(ADDRESS:BlockPointer)

Action

Deallocate a previously allocated block of store.

Call

BlockPointer 	Pointer to the block to be freed.

Return

Result 	> = 0, Operation successful.
< 0, Operation failed (= error code).

Store 	 45

5.5 DeallocateGroup

DeallocateGroup(HIDDEN:Tag);
INTEGER:Result

XDeallocateGroup(HIDDEN:Tag)

Action

Deallocate all blocks allocated with the given tag.

Call

Tag 	 the Tag of the group to be removed.

Return

Result 	> =0, Operation successful.
<0, Operation failed (= error code, e.g. invalid Tag).

46 	 Store

Store allocation

5.6 GetNewTag

GetNewTagO;HIDDEN:Tag

XGetNewTag();HIDDEN:Tag

Action

Return an unused (unique) Store tag.

Call

No parameters.

Return

Tag 	 The new tag.

Store 	 47

Chapter 5

5.7 ReturnTag

ReturnTag(HIDDEN:Tag);
INTEGER:Result

XReturnTag(HIDDEN:Tag)

Action

Relinquish the Tag and free any memory allocated with that Tag.

Call

Tag 	 Tag to be freed.

Return

Result 	> = 0, Operation successful (= Number of memory blocks
freed).
< 0, Operation failed (= error code).

48 	 Store

Store allocation

5.8 DeallocateTop

DeallocateTop(BlockAddress: ADDRESS;
SplitAddress: ADDRESS); INTEGER: Result

XDeallocateTop(BlockAddress: ADDRESS
SplitAddress: ADDRESS);

Action

Split an allocated store block into two blocks at the given address and
deallocate the block with the higher address.

Call

BlockAddress Address of the block to be split.
SplitAddress 	Address of the section of the block to be deallocated.

Rehirn

Result 	> =0, Operation successful.
<0 , Operation failed (= error code).

Store 	 49

Chapter 5

5.9 DeallocateBottom

DeallocateBottom(BlockAddress: ADDRESS;
SplitAddress: ADDRESS); INTEGER: Result;

XDeallocateBottom(BlockAddress: ADDRESS;
SplitAddress: ADDRESS);

Action

Split an allocated store block into two blocks at the given address and
deallocate the block with the lower address.

Call

BlockAddress Address of the block to be split.
SplitAddress 	Address of the split point.

Return

Result 	> = 0, Operation successful.
< 0 , Operation failed (= error code).

50 	 Store

Store allocation

5.10 SetHeapEnd

SetHeapEnd(ADDRESS:HeapEnd);
INTEGER:Result

XSetHeapEnd(ADDRESS:HeapEnd)

Action

Instruct allocator to check future requests for heap against the supplied
HeapEnd.

Call

HeapEnd 	The new end of heap. Address of first byte not available to
be allocated. This address must be > = CurrentHeapEnd.

Return

Result 	> = 0, Operation successful.
< 0, Operation failed (= error code).

Store 	 51

Chapter 5

5.11 ResetHeapEnd

ResetHeapEndo;INTEGER:Result

XResetHeapEndo

Action

Instruct allocator to check that future requests for heap will not result in
overlap with the user stack.

Return

Result 	> = 0, Operation successful.
< 0, Operation failed (= error code).

52 	 Store

Store allocation

5.12 CurrentHeapEnd

CurrentHeapEnd:ADDRESS

CurrentHeapEnd contains the address of the first byte above all claimed
heap memory. This exported item is for user stack checking and must not
be written to.

Store 	 53

Chapter 5

5.13 GetStoreInformation

GetStoreInformation();Result:Integer
RECORD(Info):StoreInformation

XGetStoreInformation();RECORD(Info):StoreInformation

Action

Get data about current store usage.

Call

No parameters.

Return

Result 	> = 0, operation successful,
StoreInformation contains the data.
< 0, operation failed (= error code).

The record Info has the following format:

RECORD

ADDRESS (* base Address of heap 	*)

CARDINAL (* size of heap 	 *)

CARDINAL (* total free space 	 *)

CARDINAL (* largest free block 	*)

CARDINAL (* total free Module space 	*)

CARDINAL (* largest free Module block *)

END

54 	 Store

6 I/0 Library

Input/Output operations are carried out by calls to procedures residing in
moduleI0 . The I/0 system is based upon the concept of streams. When a
connection is established to an I/0 object the I/0 library will return a
stream number which is used to refer to the object in future transactions.
The maximum number of simultaneously open streams is system dependent.
The syntax of an I/0 object is one of:

(a) < devicename > :
(b) < filing system name > : < filespec >
(c) < filespec >

For case (c) the current filing system is used. The case of letters in all
contexts is not significant, other than that the case of the stored name of a
file is preserved as that specified in the call which created it. For example
FindOutput("Data_3") will create a file called "Data_3" which may be
referred to as "Data_3", "DATA_3", "data_3", "daTa_3" etc.

File System names

The various file systems are listed below:

DFS: disc filing system
ADFS: advanced disc filing system
NFS: network filing system

The valid characters which may occur as part of a basic filename (i.e. the
'leaf name without any directory/drive prefix) are limited to:

A..Z
a..z
0..9
_ and !

A leafname has two components: the base name and the extension,
separated by a hyphen "-" (e.g. plot-aof, bench-f77). It is possible (though
not recommended) to have files with a null extension. These can be referred

PRM Issue 1 	 55

Chapter 6

to as e.g. "file3-", though in some contexts the trailing hyphen can be
omitted.

The base name can be 1-10 characters.

The extension can be 0-3 characters.

(However in some cases the BBC machine filing systems will impose
stronger constraints, for example on DFS the base name is limited to 7
characters.)

Device names

vdu: 	Refers to the screen (i.e. output only) with filtering of control
characters. Only printing ASCII characters (32..126), clear-screen
(FF),newline (NL = LF) and carriage-return (CR) are sent to the
screen. All others are ignored.

rawvdu: Refers to the screen (for output only).The effect is exactly as
defined in the BBC Microcoinputer System User Guide or
equivalent manual.

kb: 	Refers to the machine's keyboard (input only) with both
carriage-return (CR) and line-feed (LF) being read as newline
(NL).

Notes: The I/0 system maintains an input buffer from which
characters are read for kb: requests. When this buffer is empty
further requests will cause it to be replenished from the keyboard
until a line terminator NL or CR is typed. The characters read are
echoed to the vdu: device. Line editing is enabled, i.e.

[DELETE) 	 delete character

[CTRL) - (U) 	 delete line

[CTRL) - (D) 	 end of file

rawkb: Refers to the keyboard (input only) with no translation or filtering
of characters.

Notes: Raw characters are read directly from the keyboard and
are not echoed. If when a request for a raw character is made
there are characters in the kb: buffer then they are discarded.

56 	 PRM Issue I

I/0 Library

bbc: 	A combination of rawvdu: for output and rawkb: for input.

tty: 	A combination of vdu: for output and kb: for input.

rs423: 	Refers to the serial line (input or output).

printer: (or lp:) Refers to the printer (output only).

null: 	Refers to a 'sink'. Output to this device is discarded. On input it
always returns EndOfFile.

Special Devices

Input: Refers to the Current Input Stream so FindInput("Input:") is
equivalent to InputStream°.

Output: Refers to the Current Output Stream so FindOutput("Output:") is
equivalent to OutputStream°.

Control: Refers to the Curent Control Stream so FindInput("Control:") is
equivalent to ControlStream°.

Error: Refers to the Current Error Stream so FindOutput("Error:")- is
equivalent to ErrorStream°.

PRM Issue 1 	 57

Chapter 6

6.1 FindInput

FindInput(STRING:Destination);
INTEGER:Result

XFindInput(STRING:Destination);
CARDINAL:StreamNumber

Action

Connect a stream to the named I/0 object for input.

Call

Destination a string specifying an I/0 object.

Return

Result 	> = 0, Operation successful (= stream number).
< 0, Operation failed (= error code).

58 	 TO

I/0 Library

6.2 FindOutput

FindOutput(STRING:Destination);
INTEGER:Result

XFindOutput(STRING:Destination);
CARDINAL:StreamNumber

Action

Connect a stream to the named I/0 object for output.

Call

Destination a string describing an I/0 object.

Return

Result 	> = 0, Operation successful (= stream number).
< 0, Operation failed (= error code).

IO 	 59

Chapter 6

6.3 FindUpdate

FindUpdate(STRING: Destination);
INTEGER:Result

XFindUpdate(STRING: Destination);
CARDINAL:StreamNumber

Action

Connect a stream to the named I/0 object for input/output.

Call

Destination a string describing an I/0 object.

Return

Result 	> = 0, Operation successful (= stream number).
< 0, Operation failed (= error code).

60 	 IO

I/0 Library

6.4 CloseStream

CloseStream(CARDINAL:Stream);
INTEGER:Result

XCloseStream(CARDINAL:Stream)

Action

Close a stream.

Call

Stream 	The number of the stream to be closed.

Return

Result 	> = 0, Operation successful.
< 0, Operation failed(= error code) e.g. stream not open.

To 	 61

Chapter 6

6.5 SelectInput

SelectInput(CARDINAL:Stream);
INTEGER:Result

XSelectInput(CARDINAL:Stream)

Action

Select the stream to be used for input using the I/0 procedure calls which
do not take a stream parameter (e.g. ReadByte). The selected input stream
is preserved over program invocation.

Call

Stream 	The number of the stream to be used.

Return

Result 	> = 0, Operation successful.
< 0, Operation failed (= error code).

62 	 IO

I/0 Library

6.6 SelectOutput

SelectOutput(CARDINAL:Stream);
INTEGER:Result

XSelectOutput(CARDINAL:Stream)

Action

Select the stream to be used for output using the I/0 procedure calls which
do not take a stream parameter (e.g. XBlockWrite). The selected output
stream is preserved over program invocation.

Call

Stream 	The number of the stream to be used.

Return

Result 	> = 0, Operation successful.
<0, Operation failed (= error code).

TO 	 63

Chapter 6

6.7 SelectUpdate

SelectUpdate(CARDINAL:Stream);
INTEGER:Result

XSelectUpdate(CARDINAL:Stream)

Action

Select the stream to be used for both input and output. Equivalent to
SelectOutput(Stream) then SelectInput(stream).

Call

Stream 	The number of the stream to be used (returned from
FindUpdate).

Return

Result 	> = 0, Operation successful.
<0, Operation failed (= error code).

64 	 IO

I/0 Library

6.8 SetErrorStream

SetErrorStream(CARDINAL:Stream);
INTEGER:Result

XSetErrorStream(CARDINAL:Stream)

Action

Set the stream to be used for error output (i.e. that returned by
ErrorStreamo). The error stream is preserved across program invocation.

Call

Stream 	the stream to be the new error stream.

Return

Result 	> = 0, Operation successful.
< 0, Operation failed = error code.

TO 	 65

Chapter 6

6.9 SetControlStream

SetControlStream(CARDINAL:Stream);
INTEGER:Result

XSetControlStream(CARDINAL:Stream)

Action

set the stream to be used for control input, i.e. that returned by
ControlStream°. The control stream is preserved across program
invocation.

Call

Stream 	The stream to be the control stream.

Return

Result 	> = 0, Operation successful.
<0, Operation failed (= error code).

66 	 IO

I/0 Library

6.10 InputStream

InputStream();INTEGER:Result

XInputStreamO;CARDINAL:Result

Action

Return the stream number of the currently selected input stream.

Call

No parameters.

Return

Result 	> =0, Stream number of current input stream.
< 0, Operation failed (= error code).

IO 	 67

Chapter 6

6.11 OutputStream

OutputStream();INTEGER:Result

XOutputStreamO;CARDINAL:Result

Action

Return the stream number of the currently selected output stream.

Call

No parameters.

Return

Result 	> = 0, Stream number of current output stream.
< 0, Operation failed (= error code).

68 	 10

I/0 Library

6.12 ErrorStream

ErrorStream();INTEGER:Result

XErrorStreamO;CARDINAL:Result

Action

Return the stream number of the currently selected error stream.

Call

No parameters

Return

Result 	> =0, Stream number of current error stream.
< 0, operation failed (= error code).

TO 	 69

Chapter 6

6.13 ControlStream

ControlStream();INTEGER:Result

XControlStream();CARDINAL:Result

Action

Return the stream number of the currently selected control stream.

Call

No parameters.

Return

Result 	> = 0, Stream number of current control stream.
< 0, Operation failed (= error code).

70 	 10

I/0 Library

6.14 WriteByte

WriteByte(CARDINAL:Byte);
INTEGER:Result

XWriteByte(CARDINAL:Byte)

Action

Write a byte to the currently selected output stream.

Call

Byte 	the byte to be written.

Return

Result 	> = 0, Operation successful.
<0, Operation failed (= error code).

TO 	 71

Chapter 6

6.15 ReadByte

ReadByte0;INTEGER: Result

XReadByte();CARDINAL:Byte

Action

Read a byte from the currently selected input stream.

Call

No parameters.

Return

Result 	> = 0, Operation successful (= zero extended byte read).
< 0, Operation failed (= error code).

72 	 IO

I/0 Library

6.16 CurrentByte

CurrentByte();INTEGER:Result

XCurrentByte();INTEGER:Result

Action

Return the byte which will be supplied by the next read on the currently
selected input stream.

Call

No parameters.

Return

Result 	> = 0, Operation successful (= byte read).
<0, Operation failed(= error code). IO

	 73

Chapter 6

6.17 BlockRead

BlockRead(CARDINAL:Blength
ADDRESS:Buffer);
INTEGER:Result
CARDINAL:BytesRead

XBlockRead(CARDINAL:Blength
ADDRESS:Buffer);
CARDINAL:BytesRead

Action

Read a block of bytes from the currently selected input stream. The number
of bytes supplied will be the minimum of Blength and the number of bytes
left before end of file.

Notes: This operation may be used on a stream connected to the keyboard,
in which case the number of bytes read will be determined by the number of
characters typed up to, and including, the terminating character (NL on kb:
and tt:, CR on rawkb: and bbc:).

Call

Blength 	Maximum length to read into buffer.

Buffer 	Address of buffer for the data.

Return

Result 	> = 0, Operation successful (= number of bytes placed in
the buffer).
<0, Operation failed (= error code).

BytesRead 	Number of bytes placed in buffer.

74 	 IO

I/0 Library

6.18 BlockWrite

BlockWrite(CARDINAL:Blength
ADDRESS:Buffer);
INTEGER:Result
CARDINAL:BytesWritten

XBIockWrite(CARDINAL:Blength
ADDRESS:Buffer);

Action

Write a block of bytes to the currently selected output stream.

Call

Blength Number of bytes to write.

Buffer 	Address of buffer containing the bytes.

Return

Result 	> = 0, Operation successful.
< 0, Operation failed (= error code).

BytesWritten Number of bytes written.

75

Chapter 6

6.19 SWriteByte

SWriteByte(CARDINAL:Stream
CARDINAL:Byte);
INTEGER:Result

XSWriteByte(CARDINAL:Stream
CARDINAL:Byte)

Action

As WriteByte, but use 'stream' rather than currently selected default output
stream.

76 	 IO

I/0 Library

6.20 SReadByte

SReadByte(CARDINAL:Stream);
INTEGER:Result

XSReadByte(CARDINAL:Stream);
CARDINAL:Byte

Action

As ReadByte, but use 'stream' rather than currently selected default input
stream.

TO 	 77

Chapter 6

6.21 SCurrentByte

SCurrentByte(CARDINAL:Stream);
INTEGER:Result

XSCurrentByte(CARDINAL:Stream);
INTEGER:Result

Action

As for CurrentByte, but use 'stream' rather than currently selected default
input stream.

78 	 IO

I/0 Library

6.22 SBlockRead

SBlockRead(CARDINAL:Stream
CARDINAL:Blength
ADDRESS:Buffer);
INTEGER:Result
CARDINAL: BytesRead

XSBlockRead(CARDINAL:Stream
CARDINAL:Blength
ADDRESS:Buffer);
CARDINAL: BytesRead

Action

As for BlockRead, but use 'stream' rather than currently selected default
input stream.

79

Chapter 6

6.23 SBlockWrite

SBlockWrite(CARDINAL:Stream
CARDINAL:Blength
ADDRESS:Buffer);
INTEGER:Result
CARDINAL:BytesWritten

XSBlockWrite(CARDINAL:Stream
CARDINAL:Blength
ADDRESS:Buffer);

Action

As for BlockWrite, but use 'stream' rather than currently selected default
output stream.

80 	 10

I/0 Library

6.24 GetFileOffset

GetFileOffset(CARDINAL:Stream);
INTEGER:Result
CARDINAL:Offset

XGetFileOffset(CARDINAL:Stream);
CARDINAL:Offset

Action

Return the position of the file pointer for the file associated with the given
stream. The returned value will be 0 if no bytes have been read or written
on the stream.

Call

Stream 	A stream.

Return

Result 	> = 0, Operation successful and second result is file pointer).
< 0, Operation failed(= error code). It will fail if stream is not
a file stream (e.g. kb:,vdu: etc).

fo 	 81

Chapter 6

6.25 SetFileOffset

SetFileOffset(CARDINAL:Stream
CARDINAL:Offset);
INTEGER:Result

XSetFileOffset(CARDINAL:Stream
CARDINAL:Offset)

Action

Set the file pointer for the file associated with the given stream.

Call

Stream 	A stream.

Offset 	New value of the file pointer.

Return

Result 	> = 0, Operation successful.
<0, Operation failed (= error code).

82 	 JO

I/0 Library

6.26 BytesOutstanding

BytesOutstanding(CARDINAL:Stream);
INTEGER:Result
CARDINAL:Available

XBytesOutstanding(CARDINAL:Stream);
CARDINAL:Available

Action

Return the number of bytes available immediately on the given stream. For
disc files this will be the number of bytes left in the file. For a terminal
stream it will be the number of characters in the input buffer.

Call

Stream 	Stream number

Return

Result 	> =0, Operation successful (Available = number of bytes
available).
< 0, Operation failed (= error code).

IO 	 83

Chapter 6

6.27 EndOfFile

EndOfFile(CARDINAL:Stream);
INTEGER:Result

XEndOfFile(CARDINAL:Stream);
BOOLEAN:Result

Action

Inform caller if specified input stream is at end of file.

Call

Stream 	The stream.

Return

(EndOfFile)

Result 	< 0 Error, stream is invalid.
= 0 False, not at end of file.
= 1 True, at end of file.

or (XEndOfFile)

Result 	= False, not end of file.
= True, is end of file.

84 	 IO

I/0 Library

6.28 FlushOutput

FlushOutput();INTEGER:Result

XFlushOutput();

Action

Flushes current output stream. A FlushOutput is done implicitly when
CloseStream is called on an output stream.

Call

No parameters.

Return

Result 	> = 0, Operation successful.
<0, Operation failed (= error code).

I° 	 85

Chapter 6

6.29 SFlushOutput

SFlushOutput(CARDINAL:Stream);
INTEGER:Result

XSFlushOutput(CARDINAL:Stream);

Action

Flushes The specified output stream. A FlushOutput is done implicitly
when CloseStream is called on an output stream.

Call

Stream 	The stream to be flushed.

Return

Result 	> = 0, Operation successful.
< 0, Operation failed (= error code).

86 	 10

I/0 Library

6.30 DeviceType

DeviceType(STRING:Name); Result: INTEGER
RECORD (I0Capabilities): Capabilities

XDeviceType(STRING:Name);RECORD 00Capabilities): IOCapabilities

Action

Return information about the device representated by the given name.

Call

Name 	IO device name and data (if applicable). Format as for
FindInput etc.

Return

Result 	> = 0, Operation successful. The Capabilities record
contains information as shown below.
<0 , Operation failed (= error code).

io 	 87

Chapter 6

The format of the capabilities record is:

RECORD

DOUBLE 	(* Set of operations *)

CARDINAL (* Device Width *)

CARDINAL (* Device height *)

END

The operations bits are:

Bit 	Meaning if bit is SET

0 	Device is media '
1 	Device is interactive
2 	Device will accept FindInput
3 	Device will accept FindOutput
4 Device will accept FindUpdate
5 	Device will accept Seek operations
6 	Device output is filtered

Device width and Device height are set to 0 if the device has no notion of
these concepts.

88 	 IO

I/0 Library

6.31 StreamType

StreamType(CARDINAL: Stream); Result: INTEGER
RECORD (I0Capabilities): Capabilities

XDeviceType(CARDINAL: Stream);RECORD (I0Capabilities):
IOCapabilities

Action

Return information about the device associated with the given stream.

Call

Stream 	Stream number of an open stream.

Return

Result 	> = 0, Operation successful. The Capabilities record contains
information about the capabilities of the device attached to the
stream. (Format as capability record in `DeviceType').
< 0 , Operation failed (= error code). IO

	 89

Chapter 6

6.32 SetTabs

SetTabs(STRING: TabStops); INTEGER: Result

XSetTabs(STRING: TabStops);

Action

Set the system tab string. This is the information used to control the
expansion of tabs on output devices.

Call

TabStops 	A string (maximum of 256 chars) having the character ""
in those column positions which are to be tab stops.

Return

Result 	> = 0, Operation successful.
< 0 , Operation failed (= error code).

90 	 IO

vo Library

6.33 GetTabs

GetTabs(); INTEGER: Result
STRING: TabStops;

XGetTabs(); STRING: TabStops;

Action

Get the system tab control string. (The maximum length of this string is 256
characters, the returned string will be truncated to the length of the callers
buffer.)

Call

No parameters.

Return

Result 	> =0, Operation successful. TabStops will be space filled
and have "" characters placed at the tab positions.
<0 , Operation failed (= error code).

TO 	 91

7 File Support

Procedures are provided in moduleFile to carry out filing system operations.
The PANOS filing system is built on top of the BBC machine filing system.
All file names presented to PANOS are translated to convert them into
their BBC machine form. The BBC file name is called the 'Physical file
name'. The translation is carried out in two parts. Firstly, if the file name is
a relative one (i.e. its path does not begin with '8E' or I') then the working
directory for its filing system is prepended. Secondly the leafname is
translated using the `File$' global variables for the substitution of filename
extensions. See the Panos Guide to Operations for full details.

PRM Issue 1 	 93

Chapter 7

7.1 GetDateStamp

GetDateStamp(STRING:FileName);
INTEGER:Result
RECORD(Btim):DateStamp

XGetDateStamp(STRING:FileName);
RECORD(Btim):DateStamp

Action

Returns the Binary time stamped on the named file, if present.

Call

Filename Name of file.

Return

Result 	> = 0, File has a valid datestamp, returned in DateStamp.
< 0, Error (= error code).

94 	 File

File Support

7.2 SetDateStamp

SetDateStamp(STRING:FileName
RECORD(BTim):DateStamp);
INTEGER:Result

XSetDateStamp(STRING:Filename
RECORD(BTim):DateStamp)

Action

Set the datestamp of the named file to the given value.

Call

Filename Name of the file.

DateStamp New value for files datestamp.

The BTim format is defined under the description of module TimeAndDate.

Return

Result 	> = 0, Operation successful.
< 0, Error (= error code).

File 	 95

Chapter 7

7.3 Touch

Touch(STRING:FileName);
INTEGER:Result

XTouch(STRING:FileName)

Action

If the given file has a valid datestamp then it will be updated to be stamped
with the current time.

Call

FileName 	Name of file.

Return

Result 	> = 0 File DateStamp has been updated.
<0 Error (= Error Code).

96 	 File

File Support

7.4 RenameFile

RenameFile(STRING:OldName
STRING:NewName);
INTEGER:Result

XRenameFile(STRING:OldName
STRING:NewName)

Action

Rename a file.

Note: It is not possible to rename a file across filing systems, or drives.

Call

OldName 	File to be renamed.

NewName 	New name for the file.

Return

Result 	> = 0, File renamed.

< 0, Error (= errorcode).

File 	 97

Chapter 7

7.5 DeleteFile

DeleteFile(STRING:Filename);
INTEGER:Result

XDeleteFile(STRING:Filename)

Action

Delete a file.

Call

Filename 	File to be deleted.

Return

Result 	> = 0, Operation succeeded.
< 0, Error (= error code).

98 	 File

File Support

7.6 PhysicalFileName

PhysicalFileName(STRING:Filename);
INTEGER:Result
STRING:FilingSystem
STRING:PhysicalFileName

XPhysicalFileName(STRING:Filename);
STRING:FilingSystem
STRING:PhysicalFileName

Action

Transform the Panos filename into its BBC filing system form according to
the current environment (i.e. the current working directory and any
file$-xxx variables).

Call

Filename 	A Panos filename.

Return

Result 	> = 0, Operation Successful.
< 0, Operation failed (= error code).

FilingSystem
Textual name of filing system in which the file resides.

PhysicalFileName

Expanded file name (derived from Panos file name
transformed by extensions and working directory).

File 	 99

Chapter 7

7.7 SetWorkingDirectory

SetWorkingDirectory(STRING:Path);
INTEGER:Result

XSetWorkingDirectory(STRING:Path)

Action

Informs the Panos file manager of the position of the working directory.
This call must be used instead of the BBC *DIR command. Its effect is
similar. If the path contains a filing system name then this becomes the
current filing system. If the new filing system is different from the previous
one then the working directory in the old filing system is not changed and
may be referred to by ' < filing system name > :', e.g. nfs:

Call

Path 	Panos file name (of a directory).

Return

Result 	> = 0, Operation succesful.
< 0, Error (= error code); working directory has not been
changed.

100 	 File

File Support

7.8 GetWorkingDirectory

GetWorkingDirectory();INTEGER: Result
STRING: Path

XGetWorkingDirectory(); STRING: Path

Action

Return the current working directory.

Call

No parameters.

Return

Result 	> = 0, Operation successful. Path contains the path
(including filing system name) to the current working
directory.
< 0 , Operation failed (= error code).

File 	 101

Chapter 7

7.9 LoadFile

LoadFile(STRING: FileName
CARDINAL: BufferSize
ADDRESS: Buffer); INTEGER: Result

XLoadFile(STRING: FileName
CARDINAL: BufferSize
ADDRESS: Buffer);

Action

Loads the whole of the given file into the callers buffer.

Call

FileName 	The name of the file to be loaded.
BufferSize 	The size of the callers buffer.
Buffer 	The address of the start of the buffer.

Return

Result 	> = 0, Operation successful.
< 0 , Operation failed (= error code).

•

102 	 File

File Support

7.10 SaveFile

SaveFile(STRING: FileName
CARDINAL: BufferSize
ADDRESS: Buffer); INTEGER:Result

XSaveFile(STRING: FileName
CARDINAL: BufferSize
ADDRESS: Buffer);

Action

Save a buffer to a file in one operation.

Call

FileName 	The name of the file to hold the data.
BufferSize 	The number of bytes to be saved.
Buffer 	The address of the first byte to be saved.

Return

Result 	> = 0, Operation successful.
<0 , Operation failed (= error code).

File 	 103

Chapter 7

7.11 PhysicalDirRead

PhysicalDirRead(STRING: DirName
PROCEDURE: UserProcedure
HIDDEN: Argument);
INTEGER: Result

XPhysicalDirRead(STRING: DirName
PROCEDURE: UserProcedure
HIDDEN: Argument); CARDINAL: Result

Action

For each entry in the given directory call the user procedure with the
supplied argument. The procedure must be of form

UserProcedure(STRING: FileName
HIDDEN: Argument);INTEGER: Result

If any of these calls to the user procedure returns a negative result then
PhysicalDirRead returns immediately with that result.

Call

Dirname 	the directory to be read.
UserProcedure 	Procedure to be called.
Argument 	Argument to be given to the user procedure.

Return

Result 	> = 0, Operation successful (= number of calls made).
< 0 , Operation failed (= error code).

104 	 File

File Support

7.12 InitDirRead

InitDirRead(STRING: DirName
BOOLEAN: ReadInfo
BOOLEAN: TargetIsDir
STRING: Target); INTEGER: Result

HIDDEN: Handle

XInitDirRead(STRING: DirName
BOOLEAN: ReadInfo
BOOLEAN: TargetIsDir
STRING: Target); HIDDEN: Handle

Action

Reads content of a PANOS directory, returning a handle to use to request
these names.

Call

If ReadInfo is FALSE, then only the name and length fields of returned
infoRec's are valid (and a slight gain in speed is achieved).

If TargetIsDir, then entries matching extension templates (other than the
'identity' template `-') are ignored, resulting in a gain of speed.

If Target is non-null and has a non-wild extension part, then (as an
optimization) only the directory into which that extension maps will be
read.

Return

Result > = 0, Operation successful. Handle is identifier for this directory.
Result is the number of entries in the directory.
< 0 , Operation failed (= error code).

File 	 105

Chapter 7

7.13 GetDirEntry

GetDirEntry (CARDINAL: Index
HIDDEN: Handle); INTEGER: Result

STRING: FileName
RECORD: (InfoRec) Information

XGetDirEntry (CARDINAL: Index
HIDDEN: Handle); STRING: FileName;

RECORD (InfoRec): Information

Action

Returns information about a directory entry (see InitDirRead).

Call

Index 	The index of the entry required.
Handle 	As returned by InitDirRead.

Return

Result 	> = 0, Operation successful. (Filename and information for
this instance are set up.)
< 0 , Operation failed (= error code).

The format of InfoRec is:
RECORD
BOOLEAN 	(* Is directory *)
RECORD (FileData) (* File Information *)
RECORD (BTim) (* TimeStamp *)

END

Note: see GetFileInformation for format of FileData record, and Module
TimeAndDate for the BTim record.

106 	 File

File Support

7.14 EndDirRead

EndDirRead (HIDDEN: Handle); INTEGER: Result

XEndDirRead (HIDDEN: Handle);

Action

Terminate processing for a given directory.

Call

Handle 	Identifier returned by InitDirRead.

Return

Result 	> = 0, Operation successful.
< 0 , Operation failed (= error code).

File 	 107

Chapter 7

7.15 IsWild

IsWild(STRING: FileName); BOOLEAN: Result;

XIsWild(STRING: FileName); BOOLEAN: Result;

Action

Determine whether a file name contains wild characters.

Call

Filename 	The filename to be tested.

Return

Result 	TRUE, the FileName is wild.
FALSE, the FileName is not wild.

108 	 File

File Support

7.16 FileReplace

FileReplace (STRING: wildA
STRING: instanceA
STRING: wildB);
INTEGER: Result
STRING: CorrInstanceB

XFileReplace (STRING: wildA
STRING: instanceA
STRING: wildB);
STRING: CorrInstanceB

Action

Creates CorrInstanceB as being WildB with the wild specifiers being
substituted for the instantiations of the corresponding wild specifiers in
WildA needed to match against InstanceA.

Call

WildA and WildB are wild filenames with the same sequence of wild
specifiers. InstanceA is a fully specified filename matching WildA.

Example:
FileReplace("*-mod", "Fred-mod", "*-mud") yields "Fred-mud".

Return

Result 	> = 0, Operation successful - CorrInstanceB set up as
specified.
< 0, Operation failed (= error code).

File 	 109

Chapter 7

7.17 Expand

Expand (STRING: WildName
PROCEDURE: ProcessProc
HIDDEN: ProcessArg
BOOLEAN: TargetIsDir);INTEGER: Result

XExpand (STRING: WildName
PROCEDURE: ProcessProc
HIDDEN: ProcessArg
BOOLEAN: TargetIsDir);

Action

For each match against WildName, Expand makes a call:

ProcessProc (Instance, ProcessArg),

where Instance is an instantiation of WildName.

If any ProcessProc call returns an error result (i.e. < 0), then expand
returns immediately with that as its result.

WildName is a wild PANOS pathname, with following wild specifiers:

? 	Matches any single character.
* 	Matches any zero or more characters, within a name.

Matches any zero or more names (i.e. a section of a pathname).

Return

Result 	> = 0, Success (= number of ProcessProc calls made).
< 0, Error (= error code).

110 	 File

File Support

Examples:

Expand ("*-mod", PProc, PArg) generates calls:
PProc ("Fred-mod", PArg)
PProc ("Jim-mod", PArg)
(.. etc ..)

Expand ("ADFS:...c??t", PProc, PArg) generates calls:
PProc ("ADFS:coot", PArg)
PProc ("ADFS:A.B.coat", PArg)
(.. etc ..)

Limitations:

i. Filing system and drive prefixes (if any) cannot be wild.
ii. At most one "..." specifier in a pathname.

File 	 111

Chapter 7

7.18 GetFileInformation

GetFileInformation(STRING: FileName);INTEGER: Result
RECORD(FileData) CatalogueInfo;
RECORD (BTim) DateStamp;

XGetFileInformation(STRING: FileName);
RECORD(FileData) CatalogueInfo;
RECORD (BTim) DateStamp;

Action

Return the catalogue information for a given file.

Call

FileName 	The file for which information is required.

Return

Result 	> = 0, Operation successful.
(= File type:
= 1 - > File
= 2 - > directory)

CatalogueInfo and DateStamp are set up.

< 0 , Operation failed (= error code).

112 	 File

File Support

The format of RECORD (BTim) is given in 'Time and Date' (q.v.)
Note that if the file does not have a valid datestamp the
record will have all its fields returned as zero.

The format of RECORD (FileData) is:

RECORD
CARDINAL (* File load address *)
CARDINAL (* File execution address *)
CARDINAL (* File length *)
CARDINAL (* BBC filing system attributes *)

END

File 	 113

Chapter 7

7.19 SetFileInformation

SetFileInformation(STRING: FileName
RECORD(FileData) CatalogueInfo;
RECORD (BTim) DateStamp);
INTEGER: Result

XSetFileInformation(STRING: FileName
RECORD(FileData) CatalogueInfo;
RECORD (BTim) DateStamp);

Action

Set the catalogue information for a given file.

Call

FileName 	The file for which information is required.
CatalogueInfo The files catalog information (see `GetFileInformation').
DateStamp 	The required datestamp.

Return

Result 	> = 0, Operation successful.
< 0 , Operation failed (= error code).

114 	 File

Chapter 7

7.21 CreateDirectory

CreateDirectory(STRING: Name); INTEGER: Result

XCreateDirectory(STRING: Name);

Action

Create a directory.

Call

Name 	The name of the directory to be created.

Return

Result 	> = 0, Operation successful.
< 0 , Operation failed (= error code) .

116

File Support

7.20 CreateFile

CreateFile(STRING: FileName
CARDINAL: Size); INTEGER: Result

XCreateFile(STRING: FileName
CARDINAL: Size);

Action

Create a file.

Call

FileName 	The name of the file to be created.
Size 	The size (in bytes) of the file to be created.

Return

Result 	> = 0, Operation successful.
<0 , Operation failed (= error code).

File 	 115

8 Loader

The Loader is the part of Panos responsible for the loading of user's
program images. When a program is loaded the loader resolves references
from it to Panos services. It is possible for user provided procedures and
data objects to be added dynamically to the Panos system. Two Panos
procedures are available to permit this they reside in the moduleLoader and
they are detailed in the following pages.

PRM Issue I 	 117

Chapter 8

8.1 DeclareProc

DeclareProc(STRING: ModuleName
STRING: ProcedureName
PROCEDURE: normalform
PROCEDURE: eventform);INTEGER:ReturnCode

XDeclareProc(STRING: ModuleName
STRING: ProcedureName
PROCEDURE: normalform
PROCEDURE: eventform);

Action

Declare a procedure to the Panos loader. This procedure will be visible to
all program environments loaded (e.g. by Program.Run) following this call,
until the program environment which made the call is itself terminated.

Call

ModuleName 	Name of the module in which this procedure resides.
ProcedureName Name of the procedure being declared (loader will

automatically generate the 'X' variant name.
normalform 	Descriptor for non event form of the procedure.
eventform 	Descriptor for the event form of the procedure

Return

ReturnCode 	> = 0,0peration successful.
< 0, Operation failed.

118 	 Loader

Loader

8.2 DeclareData

DeclareData(STRING: ModuleName
STRING: DataName
ADDRESS: item);INTEGER:ReturnCode

XDeclareData(STRING: ModuleName
STRING: DataName
ADDRESS: item);

Action

Declare the address of an external data item to the Panos loader. The same
rules apply to the data item as for a user-defined procedure (see
DeclareProc).

Call

ModuleName Name of the module in which the data item resides.
DataName 	Name of the item being declared.
item 	The address of the declared item.

Return

ReturnCode 	> = 0,0peration successful.
< 0, Operation failed.

Loader 	 119

9 Random numbers

Panos supports the generation of pseudo-random numbers. The user may
obtain a different series of pseudo-random numbers by re-defining the Seed.
The procedures, which reside in the moduleRandom , are described below.

PRM Issue 1 	 121

Chapter 9

9.1 Random

Random();CARDINAL:RandomNumber

XRandom();CARDINAL:RandomNumber

Action

Return a pseudo-random number.

Call

No parameters.

Return

RandomNumber Next number from the pseudo-random sequence.

122 	 Random ,

Random numbers

9.2 SetRandomSeed

SetRandomSeed(CARDINAL:Seed)

XSetRandomSeed(CARDINAL:Seed)

Action

Set the seed for the generation of the pseudo-random sequence.

Call

Seed The new seed.

Return

No value returned.

Random , 	 123

10. Time and date

Three representations for the date and time are available. The primitive
representation is Binary and two string formats are supported. These are
Textual format and Standard format. Examples of the two formats are:

Textual: "16 May 84 20:54:19"

Standard: "1985-02-17 09:57:15.21"

In the following definitions the record BTim is composed of two
CARDINAL values:

FORMAT BTim (CARDINAL:Low,CARDINAL:High)

The two fields together comprise a 64 bit representation of absolute time,
measured in centi-seconds from a base point of "1900-01-01 00:00:00.00".
The conversion procedures which reside in the moduleTimeAndDate are
described in the following sections.

PRM Issue 1 	 125

Chapter 10.

10.1 BinaryTime

BinaryTime();INTEGER:Result
RECORD(BTim):BinaryTime

XBinaryTimeO;RECORD(BTim):BinaryTime

Action

Read Binary Time.

Call

No parameters.

Return

Result 	> = 0, Operation successful and BinaryTime is the current
time in system binary format.
< 0, Operation failed (= error code).

126 	 TimeAndDate

Time and date

10.2 SetBinaryTime

SetBinaryTime(RECORD(BTim):BinaryTime);
INTEGER:Result

XSetBinaryTime(RECORD(BTim):BinaryTime)

Action

Set Binary Time.

Call

BinaryTime 	The time to be set, in system binary time forrnat.

Return

Result 	> = 0, Operation successful.
<0, Operation failed (= error code).

TimeAndDate 	 127

Chapter 10.

10.3 BinaryTimeOfStandardTime

BinaryTimeOfStandardTime(STRING:STime);
INTEGER:Result
RECORD(BTim):BinaryTime

XBinaryTimeOfStandardTime(STRING:STime);
RECORD(BTim):BinaryTime

Action

Calculates a BinaryTime record corresponding to the Standard format
string.

Call

STime A string in Standard time format.

Return

Result 	> = 0, Operation successful.
< 0, Operation failed(= error code).

BinaryTime 	The system binary time representation of the parameter.

128 	 TimeAndDate

Time and date

10.4 BinaryTimeOfTextualTime

BinaryTimeOfTextualTime(STRING:TTime);
INTEGER:Result
RECORD(BTim):BinaryTime

XBinaryTimeOfTextualTime(STRING:TTime);
RECORD(BTim):BinaryTime

Action

Calculates a BinaryTime corresponding to the string in Textual format.

Call

TTime A string in Textual time format.

Return

Result 	> = 0, Operation successful.
< 0, Operation failed (= error code).

BinaryTime 	The system binary time representation of the parameter.

TimeAndDate 	 129

Chapter 10.

10.5 StandardTime0f13inaryTime

StandardTimeOfBinaryTime(RECORD(BTim) BinaryTime);
INTEGER: Result
STRING: STime

XStandardTime0fBinaryTime(RECORD(BTim) BinaryTime);
STRING STime

Action

Returns a string in the Standard format corresponding to the binary time
parameter.

Call

BinaryTime 	A system binary time value.

Return

Result 	> = 0, Operation successful.
< 0, Operation failed (= error code).

STime 	Standard time string corresponding to the supplied binary
time.

130 	 TimeAndDate

Time and date

10.6 TextualTimeOfBinaryTime

TextualTimeOfBinaryTime(RECORD(BTim):BinaryTime);
INTEGER:Result
STRING:TTime

XTextualTimeOfBinaryTime(RECORD(BTim):BinaryTime);
STRING:TTime

Action

Returns a string in the Textual format corresponding to a binary time
record.

Call

BinaryTime 	A system binary time value.

Return

Result 	> = 0, Operation successful.
< 0, Operation failed (= error code).

TTime 	Textual time version of binary representation.

TimeAndDate 	 131

Chapter 10.

10.7 Time

Time();INTEGER:Result
STRING:TheTime

XTime();STRING:TheTime

Action

Returns a string giving the current time of day as the time portion of the
Textual time format, e.g. "18:07:20".

Call

No parameters.

Return

Result 	> = 0, Operation successful.
< 0, Operation failed (= error code).

TheTime 	A string containing the time of day.

132 	 TimeAndDate

Time and date

10.8 StandardTime

StandardTime();INTEGER:Result
STRING:TheTime

XStandardTime();STRING:TheTime

Action

Returns a string in the Standard format giving the current date and time.

Call

No parameters.

Return

Result 	> = 0, Operation successful.
< 0, Operation failed(= error code).

TheTime 	The current date and time in standard format.

TimeAndDate 	 133

Chapter 10.

10.9 Date

Date();INTEGER: Result
STRING: TheDate

XDate();STRING TheDate

Action

Returns the current date in the same style as is used in the Textual format,
e.g. '18 Mar 54'.

Call

No parameters.

Return

Result 	> = 0, Operation successful.
<0, Operation failed(= error code).

TheDate 	The date in (partial) Textual format.

134 	 TimeAndDate

Time and date

10.10 TimeAndDate

TimeAndDate();INTEGER:Result
STRING:TheTimeAndDate

XTimeAndDate();STRING:TheTimeAndDate

Action

Returns the current time and date as a string in the Textual format.

Call

No parameters.

Return

Result 	> =0, Operation successful.
<0, Operation failed (= error code).

TheTimeAndDate is the current date and time in (partial) Textual format.

	

TimeAndDate 	 135

11. Condition Handlers

This section is primarily of interest to language implementors. It describes
the condition handler procedure which may be included in a compiled
module at compile (or assembly) time. The handler is called at various times
by the operating system, principally when an exception occurs, but also
when the module is initialised and when it terminates.

The major part of this section is taken up with descriptions of when the
operating system calls the handler. In addition, the procedure Signal is
described. This allows users to call the condition handler, and may therefore
be used to provide a 'soft error' facility. The procedures provided to control
the condition handler reside in moduleHandler .

PRM Issue 1 	 137

Chapter 11.

Exceptions

Exceptions are synchronous to the flow of program execution. They are
caused directly by the execution of the code in a program. For example,
exceptions include:

(1) the 32016 Hardware exceptions, e.g. illegal instruction, breakpoint
trap etc.

(2) 'soft' exceptions generated by calls to the Signal procedure.

If an exception occurs in a module then its Condition handler is entered
with the parameter CallType = Exception. If the handler is unable to handle
the exception then Panos can pass on the exception to other handlers (with
CallType = ExceptionPassed0n) until a successful recovery has been made.

If any handler is able to recover from the exception condition then Panos
resumes execution of the program.

The behaviour of Panos on exceptions is described by the following
pseudo-code. Note that all exception processing is performed on a small
stack separate from the ordinary user stack. As a consequence user
exception handlers should be written so as to use minimal stack (no more
than 1 Kb), and be careful not to generate an exception while they execute
(since this is fatal to the program).

TYPE HandlerFn =
FUNCTION (INTEGER, INTEGER, RECORD(Environment)

REF * 2): INTEGER

FUNCTION ModuleHandler (RECORD(Environment):
Env): HandlerFn

BEGIN
RETURN ... ! Returns handler function for module indicated

! by MOD field of Environment parameter.
END FUNCTION

FUNCTION HasBeenDescribed (INTEGER: status): BOOLEAN

138 	 PRM Issue 1

Condition Handlers

BEGIN

! Check the Info field of an error status for
! 0, which implies that a message about this
! error has already been printed.

RETURN status < :28,3 > = 0
END FUNCTION

PROCEDURE MarkAsHavingBeenDescribed (VAR INTEGER: status)
BEGIN

! Clear the Info field of an error status

status < :28,3> : = 0
END PROCEDURE

PROCEDURE DiagnoseException (INTEGER: Code,
RECORD(Environment): ExceptionEnv)

PROCEDURE Diagnose (RECORD(Environment): Env)
BEGIN

! Prints error message corresponding to Code, in
! standard format on error stream. For hardware
! exceptions some details of the environment are
! also displayed.

END PROCEDURE

RECORD(Environment): CurrentEnv
HandlerFn: Handler
INTEGER: status

BEGIN
CurrentEnv : = ExceptionEnv ! start from the exception point
Handler : = ModuleHandler (CurrentEnv)
status : = Handler (Diagnose, Code, CurrentEnv, ExceptionEnv)
LOOP

EXIT IF status = 1 	! diagnosis of error produced

PRM Issue 1 	 139

Chapter 11.

status : = Handler (Unwind, 0, CurrentEnv, NIL)
EXIT IF status # 1
Handler : = ModuleHandler (CurrentEnv)
status : = Handler (DiagnosePassedOn, Code,

CurrentEnv, ExceptionEnv)
END LOOP
IF status = 1 THEN

! Diagnosis has been output - nothing to do.

ELSE
Diagnose (Code)

END IF
END PROCEDURE

PROCEDURE DescribeEnvironment (RECORD(Environment): Env)

PROCEDURE ClearModuleDataFlags
BEGIN

! Using information about the current loaded image,
! a private flag corresponding to each loaded module
! is cleared down, indicating that no diagnostics
! about that module's static data have been given.

END PROCEDURE

FUNCTION ModuleDataDescribed (RECORD(Environment): Env):
BOOLEAN REF

BEGIN
RETURN ... ! returns ref to private flag specific to active

! module in Env.
END FUNCTION

PROCEDURE GiveMinimalFrameDescription (INTEGER: Level,
RECORD(Environment): Env)

BEGIN

! Prints a single line showing PC and module (named if possible)
! of given environment. If level = 0 then this is prefixed

140 	 PRM Issue 1

Condition Handlers

! with "Executing at", otherwise with "called from".

END PROCEDURE

RECORD(Environment): CurrentEnv
HandlerFn: Handler
BOOLEAN REF: StaticDataDescribed
INTEGER: Status, Level

BEGIN ! DescribeEnvironment

! Scan through the handlers asking each to show the state of
! the frame at the respective level. All modules are initially
! marked as not having had description of their module (static)
! data given; at each level, if the current module is so marked,
! a DiagnoseModuleData call is also performed, and the mark is
! cleared.

CurrentEnv : = ExceptionEnv; Level : = 0
ClearModuleDataFlags
REPEAT

Handler : = ModuleHandler (CurrentEnv)
Status : = Handler (DescribeFrame, Level, CurrentEnv, NIL)
IF Status = 1 THEN

! Frame described by user's handler.

ELSE
GiveMinimalFrameDescription (CurrentEnv)

END IF
StaticDataDescribed : = ModuleDataDescribed (CurrentEnv)
IF StaticDataDescribed THEN

! Already done.

ELSE
Status : = Handler (DescribeModuleData, 0, CurrentEnv, NIL)

! Ignore result status - nothing can be done...

PRM Issue 1 	 141

Chapter 11.

StaticDataDescribed : = TRUE
END IF
Status : = Handler (Unwind, 0, CurrentEnv, NIL)
Level : = Level + 1

UNTIL Status # 1
END PROCEDURE

PROCEDURE Abandon (INTEGER: code)
BEGIN

Program.Stop (Code)
END PROCEDURE

STATIC BOOLEAN: ProcessingException : = FALSE

PROCEDURE ResumeEnvironment (RECORD(Environment): E)
BEGIN

! Terminates processing of an exception and reloads
! processor registers from the environment record E.

! The PC, MOD, SP and FP fields of E must all be valid
! (as indicated by the validity bits) otherwise the
! program is terminated.

IF E.Validity & 2_10111 # 2_10111 THEN
Abandon (CannotReloadEnvironment)

END IF
ProcessingException : = FALSE

END PROCEDURE

! What follows is the main procedure, called when a program exception
! occurs. This may be a hard exception i.e. 32000 cpu trap, or a soft
! exception produced by the user program calling Signal or an X- type
! Panos procedure which failed. This procedure executes using the
! small stack area reserved for exception processing.

PROCEDURE ProcessException (INTEGER: Code,
RECORD(Environment): FailureEnvironment)

142 	 PRM Issue 1

Condition Handlers

RECORD(Environment): ExceptionEnv, CurrentEnv
HandlerFn: Handler
INTEGER: Status

BEGIN

! First check for recursive exception

IF ProcessingException THEN

! Exception has occurred while another was being processed.
! This is fatal.

Abandon (ExceptionDuringExceptionProcessing)
ELSE

ProcessingException : = TRUE
END IF

! Take a copy of the environment (i.e. all user-accessible
! CPU registers) at the point of failure.

ExceptionEnv : = FailureEnvironment

! Call handlers for active procedures in reverse of
! procedure-invocation order; if any of them handles
! the exception then control is returned to the program
! in a state defined by the (possibly updated)
! ExceptionEnv record.

CurrentEnv : = ExceptionEnv
Handler : = ModuleHandler (CurrentEnv)
Status : = Handler (Exception, Code, CurrentEnv, ExceptionEnv)
LOOP

ResumeEnvironment (ExceptionEnv) IF Status = 1
Status : = Handler (Unwind, 0, CurrentEnv, NIL)
EXIT IF Status # 1
Handler : = ModuleHandler (CurrentEnv)
Status : = Handler (ExceptionPassedOn, Code,

CurrentEnv, ExceptionEnv)
END LOOP

PRM Issue 1 	 143

Chapter 11.

! If control reaches here then no handler was able to process
! the exception, so all that remains is to give some diagnostic
! information and stop the program.

IF HasBeenDescribed (Code) THEN

! Say nothing if the Info field in the code indicates that
! a message has already been output describing the problem.

ELSE
DiagnoseException (Code, FailureEnv)
MarkAsHavingBeenDescribed (Code)
DescribeEnvironment (FailureEnv)

END IF
Program.Stop (Code)

END PROCEDURE

144 	 PRM Issue 1

Condition Handlers

Module initialisation and termination

The handler may support facilities for module initialisation and/or
termination. When these functions have been requested the handler is
entered with CallType = Initialise or Stop.

Debugging Support

Call types Diagnose and DiagnosePassedon enable a handler to give a
(possibly application specific) description of the actual exception. Call types
DescribeFrame and DescribeModuleData are used to permit a language
specific display (backtrace) of the state of a user's program at the time of an
exception. This is intended to help the process of program development and
debugging.

Formal Definition of Condition Handler

The formal specification of the handler is:

ConditionHandler(CARDINAL:CallType
INTEGER:AdditionalParameter
RECORD(ENVIRONMENT) REF:CurrentEnvironment
RECORD(ENVIRONMENT) REF:ExceptionEnvironment);
INTEGER:Result

The significance of Result is dependant on the CallType (detailed
descriptions follow).

The reason for entry to the handler is indicated by the CallType code:

CallType 	 code 	CallType 	 code

Initialise 	 0 	 DiagnosePassedOn 	5
Stop 	 1 	 DescribeFrame 	6
Exception 	 2 	 DescribeModuleData 	7
ExceptionPassedOn 	3 	 Unwind 	 8
Diagnose 	 4 	 Reserved 	 > 8

PRM Issue 1 	 145

chapter

The RECORD called ENVIRONMENT which holds state information has
the format as shown in figure 2.

146 	 PRM Issue 1

Condition Handlers

The validity entry has bits set when later fields in the record are valid. The
bits are assigned as in the table below (a field is valid when the
corresponding bit is 1):

bit 	field

0 	 PC
1 	 SP
2 	 FP
3 	 UPSR
4 	 MOD
5 - 12 	RO - R7
13 - 20 	FO - F7
21 	 FSR
22 - 31 	Reserved

The various CallTypes are described in detail on the following pages. For
each of the possible reasons for entry to the handler (i.e. for each CallType)
an example of the actual call parameters is given together with the possible
return values.

PRM Issue 1 	 147

Chapter 11.

11.1 Initialise

Result: = ConditionHandler(Initialise,O, NIL, NIL)

Action

This call occurs once when the module is loaded. The handler should carry
out any initialisation the module needs.

The order of call for initialisation corresponds to the order in which the
modules are set up. For relocatable images this corresponds to the order of
modules in the image. The Acorn 32000 Linker will order the modules in
the same sequence as they are supplied, grouped into firstly modules from
non-library files followed by modules from library files. Within each group
modules are loaded in order of reading by the linker.

Call

No parameters other than CallType.

Return

Result 	> = 0, initialisation completed.
< 0, Error - initialisation not possible and Panos will stop the
program with that error as result.

148 	 Handler

Condition Handlers

11.2 Stop

Result: = ConditionHandler(Stop,Status,NIL,NIL)

Action

This action is called for when the handler's module is being terminated. The
handler should carry out any tidying up necessary.

This call will be made to any modules which have been called with type
Initialise (in the same order as they were called for initialisation). If a
module fails initialisation then only the modules up to and including the
failing one are called.

Call

Status 	The status which will be returned from the program.

Return

The value returned has no significance.

Handler 	 149

Chapter 11.

11.3 Exception

Result: = ConditionHandler(Exception
ErrorCode
CurrentEnvironment
ExceptionEnvironment)

Result: = ConditionHandler(ExceptionPassedOn
ErrorCode
CurrentEnvironment
ExceptionEnvironment)

Action

An Exception has been detected.

If CallType = Exception then this is the first handler to be entered since
occurrence of the exception, i.e. the exception occurred within this module.
The handler may attempt to recover from the error, if this is possible. If
CallType = ExceptionPassedOn then the exception has been passed on
from another handler which could not handle the exception.

Call

ErrorCode The cause of the original exception.
< 0, Standard Panos Error Code. (including a buffer if the
INFO field = 6).
> = 0, Application-Specific value (see description of Signal).

CurrentEnvironment

Pointer to an environment record describing the procedural
frame currently being handled, i.e. one of the procedural
frames in the active hierarchy stacked at the time the exception
occurred. When CallType = Exception then the contents of
the records referred to by CurrentEnvironment and
ExceptionEnvironment are identical.

150 	 Handler

Condition Handlers

ExceptionEnvironment

Pointer to a record describing the machine state corresponding
to the exception. For hardware exceptions the PC points at the
failing instruction. For exceptions signalled by the Signal
procedure PC points at the next instruction after the call to
Signal. For X-type procedures which fail the PC points at the
next instruction after the call to that procedure.

Return

Result 	= 1, error handled. Instructs Panos to resume processing from
state saved in ExceptionEnvironment record.
The state will be reloaded from the record according to the
validity bits field. Any field whose validity bit is 0 will have the
corresponding actual register loaded with O. The registers PC,
MOD, SP, FP must all be valid or the state cannot be reloaded
(and the program will be abandoned).
= 0, error could not be handled.

Handler 	 151

Chapter 11.

11.4 Diagnose

Result: = ConditionHandler(Diagnose
ErrorCode
CurrentEnvironment
ExceptionEnvironment)

Result: = ConditionHandler(DiagnosedPassedOn
ErrorCode
CurrentEnvironment
ExceptionEnvironment)

Action

The handler is given an opportunity to produce a decription of the
exception on the error stream. In particular this should be done for
language and application specific errors.

Call

All parameters as for type Exception.

Return

Result 	= 1, diagnostics reported OK.
= 0, no output produced - Informs Panos to pass the call on, if
possible, or produce diagnostics itself.

152 	 Handler

Condition Handlers

11.5 DescribeFrame

Result: = ConditionHandler(DescribeFrame
Level
CurrentEnvironment
NIL)

Action

The handler is given an opportunity to produce textual information on the
error stream describing the current procedural frame. Level is 0 when the
CurrentEnvironment record describes the point of the exception, otherwise
Level is a count of the number of DescribeFrame calls made so far.

Call

CurrentEnvironment

Pointer to an environment record.

Return

Result 	= 1, description given.
= 0, description not given. Panos will give a minimal
description of the frame (PC, MOD values).

Handler 	 153

Chapter 11.

11.6 DescribeModuleData

Result: = ConditionHandler(DescribeModuleData
0
CurrentEnvironment
NIL)

Action

The handler is given an oppurtunity to produce textual information on the
error stream describing the static data associated with the
CurrentEnvironment, i.e. in the module corresponding to its MOD field.

Call

CurrentEnvironment

Pointer to an environment record.

Return

Result 	= 1, description performed.
= 0, description not performed.

154 	 Handler

Condition Handlers

11.7 Unwind

Result: = ConditionHandler(Unwind
0
CurrentEnvironment
NIL)

Action

The handler should update the CurrentEnvironment record to reflect the
machine state that would be achieved after the procedure in the
CurrentEnvironment procedural frame returns. As much of the
environment as possible should be updated. The validity bits in the record
should be set to indicate which fields are valid for the unwound state.

Call

CurrentEnvironment

Pointer to an environment record.

Return

Result 	= 1, unwind has occurred, the CurrentEnvironment now (at
least partially) reflects the new state.
= 0, unwind has not been possible.

Handler 	 155 •

Chapter 11

11.8 Reserved

Result: = ConditionHandler(Reserved
0
NIL
NIL)

Action

Handlers should return 0 whenever the calltype is a reserved value.

Call

Return

Result 	= 0, Action could not be performed.

156 	 Handler

Condition Handlers

11.9 Signal

Signal(INTEGER:Cause
ADDRESS:Buffer)

XSignal(INTEGER:Cause
ADDRESS:Buffer)

-

Action

Causes an exception to be signalled. If Cause is negative then the Cause
value is interpreted as an error code (see Appendix A). If the value of the
info field in the error code is 6, the Buffer parameter is copied to the saved
image of R1, as seen in the environment record passed to the handler.

If Cause is positive then the buffer field is ignored.

Call

Cause 	Single parameter to describe the exception.

Buffer 	The address of a buffer to be passed to the exception handler
containing extra information describing the exception.

Return

Depends upon the event handling in force (see previous sections).

Handler 	 157

Chapter 11.

11.10 CallHandler

CallHandler(CARDINAL:CallType
INTEGER:AdditionalParameter
RECORD(ENVIRONMENT) REF:CurrentEnvironment
RECORD(ENVIRONMENT) REF:ExceptionEnviroment);
INTEGER:Result

XCallHAndler(CARDINAL:CallType
INTEGER:AdditionalParameter
RECORD(ENVIRONMENT) REF:CurrentEnvironment
RECORD(ENVIRONMENT) REF:ExceptionEnviroment);
INTEGER:Result

Action

Gives the command specified by CallType to the handler associated with
CurrentEnvironment.

Call

See formal definition of Condition Handler.

Return

Result 	As returned from the Handler.

Note XCallHandler is a synonym for CallHandler.

158 	 Handler

Condition Handlers

11.11 DeclareConditionHandler

DeclareConditionHandler(PROCEDURE: ConditionHandler);
INTEGER: Result;

XDeclareConditionHandler(PROCEDURE: ConditionHandler);

Action

Dynamically assign a module's condition handler.

Call

ConditionHandler
A 32000 external procedure descriptor referencing a procedure
suitable to accept Condition Handler calls. This procedure will
be installed as the condition handler of the calling module.

Return

Result 	> =0, Operation successful.
< 0 , Operation failed (= error code).

	

Handler 	 159

12. Asynchronous events

Asynchronous events are caused by interrupts occurring in the I/0
processor. Examples of causes are keys being pressed, ESCAPE pressed and
the user timer crossing zero. The procedures provided to control event
processing reside in moduleHandler . The user program may declare one or
more event handlers to deal with each type of asynchronous event. For each
type of event the handler is installed using the procedure

DeclareEventHandler

and the handler is removed by a call to

RemoveEventHandler

Events are only signalled to an installed handler if they have been enabled
by a call to the procedure

SetEventStatus,

which is also used to disable events.

The procedure EventStatus can be used to see whether an event is enabled
or disabled.

When an event is signalled the handler is entered in user mode with the
(user) stack pointer adjusted to point to a small private stack area.
Interrupts are enabled.

Five parameters are supplied, the first of which gives the type of the event,
the second and third being additional data (event specific), the fourth a
handle to be used for identification purposes, and finally an environment
record defining the machine state at the time of the event.

The formal specification of the handler is:

EventHandler(CARDINAL:EventCode
CARDINAL:EventData 1
CARDINAL:EventData2
CARDINAL:Handle
RECORD(ENVIRONMENT) REF:Env)

A handler may be defined for each of the following events:

PRM Issue 1 	 161

Chapter 12.

Event 	Description 	 Code

0 	Buffer empty 	 0
1 	Buffer full 	 1
2 	Keyboard interrupt 	 2
3 	ADC conversion complete 	3
4 	Start of TV field pulse 	4
5 	Interval timer crossing 0 	5
6 	Escape condition detected 	6
7 	RS423 error 	 7
8 	Network error 	 8
9 	User event 	 9
128 	Events lost 	 128
255 	All other possible reasons.

The host's (I/0 processor's) X and Y values are passed to the handler in
EventData 1 and EventData2.

The procedures available for the control of events are described in the
following pages. All these procedures reside in the module Handler.

For event 4 (TV vertical sync pulse) Event Datal is the number of pulses
since the event was last signalled.

Events are only signalled when the system is outside event handlers. Panos
queues events waiting to be signalled until such time as they can be
delivered. If the internal queues overflow then an event 128 is generated.

162 	 PRM Issue 1

12.1 DeclareEventHandler

DeclareEventHandler(PROCEDURE:NewHandler
CARDINAL:Event
CARDINAL:Action
CARDINAL:Handle);
INTEGER:Result

XDeclareEventHandler(PROCEDURE:NewHandler
CARDINAL:Event
CARDINAL:Action
CARDINAL:Handle)

Action

Aranges for the given procedurre to be called upon the occurrence of a
given asynchronous event.

NewHandler New event handler.

Event 	Determines which event.

Action 	= 0, arrange for this handler to be called after all other
existing handlers for this event have been called.

= 1, arrange for this handler to be called before all other
existing handlers for this event have been called.

= 2, arrange for this handler only to be called and remove
all other handlers from list.

Handle 	This is passed to the handler when the event occurs.

Return

Result 	=0, Operation successful.
<0, Operation failed (= error code).

Handler 	 163

Chapter 12.

12.2 RemoveEventHandler

RemoveEventHandler(PROCEDURE:Handler
CARDINAL:Event
CARDINAL:Handle);
INTEGER Result

XRemoveEventHandler(PROCEDURE:Handler
CARDINAL:Event
CARDINAL:Handle)

Action

Removes the handler.

Call

Event 	Determines which event.

Handler 	Together with Handle this defines which instance of the
handler is to be removed.

Handle 	The handle asociated with a particular instance of the handler.

Return

Result 	> = 0, Operation Successful.
< 0, Operation failed (= error code).

164 	 Handler

Asynchronous events

12.3 EventStatus

EventStatus(CARDINAL:Event);
INTEGER: Result

XEventStatus(CARDINAL:Event);
INTEGER: Result

Action

Return status about the event.

Call

Event 	Determines which event.

Return

Result 	> =0, Operation successful.
=0, then event disabled.
= 1, then event enabled.
<0, Operation failed (= error code).

Handler 	 165

Chapter 12.

12.4 SetEventStatus

SetEventStatus(CARDINAL:Event
BOOLEAN:Enable);
INTEGER:Result

XSetEventStatus(CARDINAL:Event
BOOLEAN:Enable);
INTEGER:Result

Action

Enable or disable the specified event and return status about the event.

Call

Event 	Determines which event.

ENable 	new status for the event.

Return

Result 	> =0, Operation successful.
= 0, then event was previously disabled.
= 1, then event was previously enabled.
< 0, Operation failed (= error code).

166 	 Handler

13. Global String Variables

Global string variables are provided to facilitate communication across
program boundaries.

Certain global strings are known by Panos and these provide a mechanism
for defining the environment in which programs will run. For example, the
string SYS$Version contains the Panos version identification.

All variables whose names begin with SYS$ are reserved and cannot be set.
Some of the various global strings used by Panos are listed below. (The case
of the variable name is not significant.)

SYS$Time 	a string containing the system time (in textual form).

SYS$Date 	a string containing the system date (in textual form).

SYS$Version the system version string.

File$- < ext > a string defining the transformation for file extension
<ext>.

CLI$Result 	result of last program to run. A string representation using
base 16, e.g. -16_4 .

CLI$Path 	defines command search order (see the Panos Guide to
Operations).

CLI$Prompt the string output by the CLI before reading commands.
This string will be substituted by DecodeArg before being
output.

CLI$Echo 	controls the echoing of lines in command files (see section
3, Panos Guide to Operations)

Program$Verbosity
Program$Identify
Program$Abandon
Program$Confirm
Program$Force

these allow the inbuilt defaults for the corresponding utility
switches to be overridden. For example if the user likes to

PRM Issue 1 	 167

Chapter 13.

have programs identify themselves when they start then
setting Program$Identify True will cause them all to output
identification unless overridden by a -NoIdentify on the
command line.

Program$Verbosity takes a cardinal value, the rest take a
boolean. See description of ProgramVerbosityRequired for
a description of the interpretation of the verbosity value.

Panos maintains a table in which are kept the global string names together
with their associated string values. The case used in the string name is not
significant. The interpretation of a global string value is not a function of
the GlobalString module, but of the Panos modules and/or user programs
which reference it.

Until it is deleted a Global String is visible by all software running under
Panos.

A program may define its own strings and read strings set by other
programs. This provides a simple method of communicating between user
programs.

The procedures for control of the global strings are defined in the following
pages. They reside in the moduleGlobalString .

168 	 PRM Issue 1

Global String Variables

13.1 SetGlobalString

SetGlobalString(STRING:GlobalStringName
STRING:GlobalStringValue);
INTEGER:Result

XSetGlobalStiing(STRING:GlobalStringName
STRING:GlobalStringValue)

Action

Adds the supplied name to the global string table and associates with it the
supplied value.

Call

GlobalStringName

The name of the global string.

GlobalStringValue

A string value to be associated with the named global string.

Return

Result 	> = 0, Operation successful.
< 0, Operation failed (= error code).

GlobalString 	 169

Chapter 13.

13.2 GetGlobalString

GetGlobalString(STRING:GlobalStringName);
INTEGER:Result
STRING:GlobalStringValue

XGetGlobalString(STRING:GlobalStringName);
STRING:GlobalStringValue

Action

Looks up GlobalStringName in the global string table and returns the
associated value. The search for GlobalStringName is case insensitive.

Call

GlobalStringName
The name of the GlobalString.

Return

Result 	> = 0, Operation OK and GlobalStringValue is the value
currently associated with the name.
< 0, Operation failed (= error code).

170 	 GlobalString

Global String Variables

13.3 DeleteGlobalString

DeleteGlobalString(STRING: StringName); INTEGER: Result

XDeleteGlobalString(STRING: StringName);

Action

Delete a global string variable from the Panos environment.

Call

StringName 	The string variable to be deleted.

Return

Result 	> = 0, Operation successful.
< 0 , Operation failed (= error code).

GlobalString 	 171

Chapter 13.

13.4 GetGlobalStringName

GetGlobalStringName (CARDINAL: Index);
INTEGER: Result
STRING: Name

XGetGlobalStringName (CARDINAL: Index);
STRING: Name

Action

Return the name of a Global string variable.

Call

Index 	The index of the variable required. This can range between 0
and an upper bound determined by the number of variables
defined. Thus to find all the names cycle index from 0 up in
steps of 1 until an error is returned.

Return

Result 	> = 0, Operation successful.
< 0 , Operation failed (= error code).

172 	 GlobalString

14. Program Control

The procedures in moduleProgram control program invocation and
execution.

When a program is invoked, the environment it has is:

IO: 	CurentInputStream
CurrentOutputStream
CurrentErrorStream
CurrentControlStream

all refer to the same streams as they did in the parent
environment. 'Close' on these streams will have no effect on
their state in the parent enviroment.

Store 	New enviroment, but obviously any memory in use before the
program was invoked will be unavailable for allocation.

Event 	As in the environment of the invoker.

Global String Variables

As in the environment of the parent (since these are a single
shared resource).

When the parent resumes after the program it invoked finishes, then the IO,
Store and Event Environments are restored to their states before the
invocation. Global Strings may have been changed.

PRM Issue 1 	 173

Chapter 14.

14.1 Call

Call(STRING:FileName
STRING:ProcedureName
STRING:Arguments);
INTEGER:Result

XCall(STRING:FileName
STRING:ProcedureName
STRING:Arguments);
CARDINAL:Result

Action

Invoke a procedure from a file, passing it an argument string.

Call

FileName
The file containing the procedure.

ProcedureName
The procedure to be called.

Arguments
The argument string to be passed to the procedure.

Return

Result 	As returned from procedure or error code from 'Call%

174 	 Program

Program Control

14.2 Run

Run(STRING:Name
STRING:Arguments);
INTEGER:Result

XRun(STRING:Name
STRING:Arguments);
CARDINAL:Result

Action

Invokes the relocatable program in the named file, passing it the given
argument string.

Call

Name 	The file containing the program in Relocatable Image
Format (RIF). If no extension is given on the name then
"-rif' is automatically supplied.

Arguments 	The argument string passed to the program.

Return

Result 	As returned from the program or error code from `Run'.

Program 	 175

Chapter 14.

14.3 Obey

Obey(STRING:CommandFileName
STRING:Arguments);
INTEGER:Result

X0bey(STRING:CommandFileName
STRING:Arguments);
CARDINAL:Result

Action

Cause the given command file to be executed by the Command Interpreter
of Panos.

Call

CommandFileName

The file to be executed. The extension "-cmd" is appended to
the name if no other extension is present.

Arguments The arguments for the command file.

Return

Result 	As returned from the command file or error code from
"Obey".

176 	 Program

Program Control

14.4 Invoke

Invoke(STRING:Name
STRING:Arguments);
INTEGER:Result

XInvoke(STRING:Name
STRING:Arguments);
CARDINAL:Result

Action

To invoke the named program, procedure, or command file from the set of
known commands.

Call

Name 	The name of a procedure, program or command file.

Arguments 	Passed to the program, procedure or command file.

Return

Result 	> =0, Result of program run.
<0, Error in invocation or result of program run.

Note Invoke calls `CallRunOrObey' with object name set to name.

Program 	 177

Chapter 14.

14.5 CallRunOrObey

CallRunOrObey(STRING: Name
STRING: ObjectName
STRING: ArgumentString);

INTEGER: Result

XCallRunOrObey(STRING: Name;
STRING: ObjectName
STRING: ArgumentString);
CARDINAL: Result

Action

Determine the type of an object and either Call it, Run it or Obey it as
appropriate.

Call

Name 	The name of the object before it has been transformed
(e.g. before any aliasing has been applied).

ObjectName 	The name of the object to be called.
ArgumentString The argument string to be supplied.

Return

Result 	> = 0, Operation successful.
< 0 , Operation failed (= error code).

Note the result may be that returned by the called object.

178 	 Program

Program Control

14.6 Name

Name(); INTEGER: Result
STRING: ProgramName

XName(); STRING: ProgramName

Action

Return the name by which a program was invoked.
(c.f. Name in CallRunOrObey.)

Call

No parameters.

Return

Result 	> = 0, Operation successful.
< 0 , Operation failed (= error code).

	

Program 	 179

Chapter 14.

14.7 FileName

FileNameo: INTEGER: Result
STRING: ProgramName

XFileNameo: STRING: ProgramName

Action

Return the name of the file from which the program was invoked.

Call

No parameters.

Return

Result 	> = 0, Operation successful.
<0 , Operation failed (= error code).

180 	 Program

Program Control

14.8 Stop

Stop(INTEGER:Result)

Action

Stops the current program and returns the given Result to the program
which invoked it.

Call

Result 	Result of the current program to be returned to the program
which invoked it.

Return

This call never returns to the caller.

Program 	 181

Chapter 14.

14.9 SetKnownCommandsPath

SetKnownCommandsPath(STRING:Path);
INTEGER:Result

XSetKnownCommandsPath(STRING:Path)

Action

Informs the program control module of the path to be used to determine
the set of known commands. (This procedure is used by the command
interpreter built in command ".newcommand".)

Call

Path 	A comma separated list of Panos filenames, each name in this
list can be either a directory or an aof library file (-lib
extension).

Return

Result 	> = 0, Success, the new set has been defined.
< 0, Error (= error code), no change has been made.

182 	 Program

Chapter 14.

14.11 Verbosity

Verbosity();INTEGER:Result

XVerbosity();INTEGER:Result

Action

Inform utilities of the verbosity level as indicated by the current value of
Program$Verbosity.

This call remains for compatibility with previous versions of Panos, new
programs should use the VerbosityRequired procedure.

Call

No parameters.

Return

Result 	See VerbosityRequired.

184 	 Program

Program Control

14.10 Arguments

Arguments();STRING:Arguments

XArguments();STRING:Arguments

Action

Informs the program of the arguments passed to it when it was invoked.

Call

No parameters.

Return

Arguments 	The argument string passed to the program when it was
invoked.

Program 	 183

Program Control

14.12 IdentifyRequired

IdentifyRequired(HIDDEN:Handle
INTEGER:ErrorCode);
BOOLEAN:Result

XIdentifyRequired(HIDDEN:Handle
INTEGER:ErrorCode);
BOOLEAN:Result

Action

Return TRUE if the program should identify itself with Name and Version
Number before performing its function.

Note that the global string 'Program$Identify' can be used to specify a
system wide default for this call. If it has a value 'True' then
IdentifyRequired() will return True unless -NoIdentify appeared in the
argument string corresponding to the given handle.

Call

Handle 	A handle returned from DecodeInit.

ErrorCode Result returned from DecodeInit.

Return

Result 	TRUE : Identification is required and should be written to
un-reselected error stream.
FALSE otherwise.

Program 	 185

Chapter 14.

14.13 HelpRequired

HelpRequired(HIDDEN:Handle
INTEGER:ErrorCode);
BOOLEAN:Result

XHelpRequired(HIDDEN:Handle
INTEGER:ErrorCode);
BOOLEAN:Result

Action

Return TRUE if the program should give Help information. The normal
program action should NOT occur if help is required.

Call

Handle 	A handle returned from DecodeInit.

ErrorCode Result returned from DecodeInit.

Return

Result 	TRUE : Help is required, and should be written to the
un-reselected ErrorStream. The program should then exit with
Result = 0 without performing its normal function.
FALSE otherwise.

186 	 Program

Program Control

14.14 SwitchRequired

SwitchRequired(STRING:Name
HIDDEN:Handle
BOOLEAN:Default);
BOOLEAN:Result

XSwitchRequired(STRING:Name
HIDDEN:Handle
BOOLEAN:Default);
BOOLEAN:Result

Action

Return the value required for the named switch argument. This is
controlled by
a) specifying the name as a keyword in the argument string supplied to

DecodeArg to produce the handle,
or

b) the value of the global string Program$ < Name > , e.g.
"Program$Force"
or

c) the value of the supplied default.

The table below gives the resulting value for all cases.

Argument String refers to the relevant portion only.

Argument String Program$ < Name > Result

Not present 	Not defined 	Supplied Default

Not present 	'True' or 'False' 	Program$ < Name > value

-No < Name > 	don't care 	False

- <Name > 	don't care 	True

Program 	 187

Chapter 14.

Call

Name 	The name of the keyword.
Handle 	A handle returned from DecodeInit This is checked for

validity and if invalid is ignored.

Default 	The value of the default if no name is specified and no global
string Program$ < Name > exists.

Return

Result 	The required value of the named switch.

188 	 Program

Program Control

14.15 VerbosityRequired

VerbosityRequired(HIDDEN:Handle);BOOLEAN:Result

XVerbosityRequired(HIDDEN:Handle);BOOLEAN:Result

Action

Return the value required of the verbosity level for the current program.
This is controlled by
a) 	the use of -Verbose, -NoVerbose, or -Verbosity n in the argument

string supplied to DecodeArg to produce the handle,
or b) the value of the global string Program$Verbosity,
or c) the value of the default i.e. 3.

The table below gives the resulting value for all cases. Argument String
refers to the relevant portion only.

Argument String 	Program$Verbosity 	Result

Not present 	Not defined 	 3
Not present 	n 	 n
-NoVerbose 	don't care 	 0
-Verbose 	don't care 	 3
-Verbosity n 	don't care 	 n

Call

Handle 	A handle returned from DecodeInit. This is checked for
validity and if invalid is ignored, 0 is a suitable invalid value if
required.

Return

Result 	The required verbosity.

Program 	 189

15. Command line interpreter

The procedures described in this chapter give access to the facilities of the
Panos command interpreter. They reside in moduleCommand . For details
of the user-interface behaviour of the command line interpreter, see the
Panos Guide to Operations.

PRM Issue 1 	 191

Chapter 15.

15.1 InterpretString

InterpretString(STRING:CommandLine);
INTEGER:Result

InterpretString(STRING:CommandLine);
CARDINAL:Result

Action

The CommandLine is passed to the Panos command interpreter and if it is
valid it is interpreted.

Call

CommandLine 	The command for the interpreter.

Return

Result 	 > = 0, then operation successful.
< 0, then operation failed (= error code).

192 	 Command

	Command line interpreter

15.2 InterpretCommands

InterpretCommands(); INTEGER: Result
XInterpretCommands(); CARDINAL: Result

Action

Call the command interpreter to interpret a stream of commands from the
current control stream.

Call

No parameters.

Return

Result 	As returned by the invoked CLI.

Command 	 193

16. Wild symbol expansion

These procedures are in moduleWild . Instead of typing in the whole of a
file or directory name, the user can substitute names, or parts of names,
with symbols representing groups of characters. These are shown below. See
also section 7.17.

? Matches any single character.
* Matches any zero or more characters, within a name

PRM Issue 1 	 195

Chapter 16.

16.1 Match

Match (STRING: wild
STRING: name);
INTEGER: Result
BOOLEAN: matched

XMatch (STRING: wild
STRING: name);
BOOLEAN: matched

Action

Perform a simple case-insensitive wildcard match of a string against a
template.

Call

wild 	(Case-insensitive) wildcarded template.

Permitted wildcards are:
- matches any 1 character

'*' - matches 0 or more characters.

name 	String to test for match against template.

Return

Result 	> = 0, Operation successful: matched = TRUE if wild matches
name.
< 0, Operation failed (= error code).

196 	 Wild

Wild symbol expansion

16.2 Replace

Replace (STRING: wild
STRING: match
STRING: template);
INTEGER: Result
STRING: Substituted

XReplace (STRING: wild
STRING: match
STRING: template);
STRING: Substituted

Action

Substitutes wildcard instantiations from a wild match into a second wild
template, to create a new string. Wildcard correspondences are made left to
right, separately for 1' and "".

Call

vild 	(Case insensitive) wildcarded template.
match 	String matching wild template.
template 	Template for result string, having same number of

wildcards as wild template.

Return

Result 	> = 0, Operation successful. substituted holds new string.
< 0, Operation failed (= error code).

Wild 	 197

17. BBC Library

These procedures are in moduleBBC . They provide access to the host's
operating system and should only be used as a last resort, i.e. when the
required operation is not provided by another procedure in the Panos
library. The integrity of Panos is not guaranteed following the use of these
procedures.

PRM Issue 1 	 199

Chapter 17.

17.1 OSByte

OSByte(CARDINAL:ByteNo
CARDINAL:Param 1
CARDINAL:Param2);
CARDINAL:Result 1
CARDINAL:Result2
BOOLEAN:CBit
INTEGER:Result

XOSByte(CARDINAL:ByteNo
CARDINAL:Param 1
CARDINAL:Param2);
CARDINAL:Result 1
CARDINAL:Result2
BOOLEAN:CBit

Action

Invokes the miscellaneous set of OSBYTE system calls on the Host.

Call

ByteNo 	The osbyte call type.

Param 1 	Least significant byte is X value.

Param2 	Least significant byte is Y value.

Return

Result 	> = 0, Operation successful.
Result 1 is BBC X value.
Result2 is BBC Y value.
CBit is BBC C flag.
< 0, Operation failed (= error code).

200 	 BBC

BBC Library

17.2 OSWord

OSWord(CARDINAL:OSWdno
ADDRESS:ParamBlock);
INTEGER:Result

XOSWord(CARDINAL:OSWdno
ADDRESS:ParamBlock)

Action

Invokes the miscellaneous set of OSWORD system calls on the Host.

Call

OSWdNo 	number of osword request

ParamBlock Pointer to osword control block

Return

Result 	> = 0 , Operation successful and ParamBlock holds
OSWord return values.
< 0 , Operation failed (= error code).

BBC 	 201

Chapter 17.

17.3 OSFile

OSFile(CARDINAL:OSFileNo
STRING:Name,
ADDRESS:ParamBlock);
INTEGER:Result

XOSFile(CARDINAL:OSFileNo
STRING:Name
ADDRESS:ParamBlock)

Action

The BBC operating system primitive OSFILE is called.

Call

OSFileNo 	Number of osfile request.

Name 	File name.

ParamBlock 	Record containing load address, execution address, data
start address and data end address.

Return

Result 	> = 0 , Operation successful and ParamBlock holds OSFILE
return values.
< 0 , Operation failed (= error code).

202 	 BBC

Appendix A Panos-generated Errors

The definitive set of Panos errors will be found in the !Perror file supplied as
part of the Panos release.

Hardware errors

02 	address translation trap
03 	floating point error trap
04 	illegal instruction trap
05 	supervisor call trap
06 	divide by zero trap
07 	flag trap
08 	breakpoint trap
09 	trace trap
Oa 	undefined instruction

Data conversion errors

00 	Bad base
0 1 	Bad number string
02 	Number not in specified base
03 	Overflow

Store management errors

00 	Environment overflow
01 	Too many pop environments
02 	Tag overflow
03 	Bad heap tag
04 	Stack and heap overlap
05 	Not enough free store
06 	Request for zero length block
07 	Not an allocated block
08 	Bad address for split block
09 	Failed to allocate module space
Oa 	Operation not available for module table block
Ob 	No space for new environment

PRM Issue 1 	 203

10 errors

00 	No saved environment
01 	No stream selected
02 	Bad stream number
03 	Bad device name `To'
04 	Bad device data "70'

05 	Illegal operation
06 	Not enough streams
07 	Bad open type
08 	Filing system not found
09 	End of file
0a 	Printer not available
0b 	No default filing system
0c 	No workspace
0d 	Invalid filing system
0e 	Not implemented
0f 	Implementation failure
10 	No buffer space
11 	Printer in use
12 	Tab string too big
13 	Device removed
14 	Duplicate devicename `%'

Loader errors

00 	Invalid image
01 	Module 'To' not found
02 	Code symbol `To' not found
03 	Data symbol `To' not found

Time and date errors

00 	Time not set
01 	Invalid binary time
02 	Bad time string

204 	 PRM Issue I

Appendix A Panos-generated Errors

Exception handling errors

00 	No handler installed

Event handling errors

00 	Illegal event
01 	Illegal action

Global string errors

00 	Buffer too small
01 	Environment variable `%' not found
02 	Can't set 'To' - reserved variable
03 	No room
04 	Can't delete `%' - reserved variable

Program control errors

00 	No current commands
01 	Unable to set new command path
02 	% not found
03 	No CLI path
04 	Escape
05 	Invalid result code
06 	Invalid stop code

Argument decoding errors (keystring)

00 	Bad information
01 	Type mismatch
02 	Index greater than number of arguments
03 	Bad index parameter
04 	Keyword 'To' not known
05 	Missing keyword delimiter
06 	Missing keyword name
07 	Word too large

PRM Issue 1 	 205

08 	Missing slash option
09 	Conflicting type specification
0a 	Bad number in quantity
0b 	Too large a quantity
0c 	Cannot have quantity zero
0d 	State can only have quantity one
0e 	-Help and -Identify wanted but bad arguments
0f 	Duplicated options
10 	Missing close square bracket
11 	Missing character after escape
12 	Too many defaults
13 	Missing trailing quote
14 	No defaults with state keywords

Argument decoding errors (user arguments)

16 	No defaults with exact quantity
17 	Too many arguments for 'To'
18 	Cannot attach `%' to a keyword
19 	Argument "70' expects a value
la 	Argument 'To' needs a parameter
lb 	Too few arguments for `%'
lc 	Bad integer argument %
ld 	Bad cardinal argument %
le 	̀%' is not a keyword
lf 	-Help wanted but bad arguments
20 	-Identify wanted but bad arguments
2I 	Substitution of < % > not possible
22 	Missing substitution bracket
23 	String result buffer too small
24 	Minus substitute only with existent
25 	Abbreviation `%' is ambiguous
27 	Rest can only have one argument
29 	File `%' not found
2a 	'To' does not match any files

206 	 PRM Issue I

Appendix A Panos-generated Errors

Filing errors

00 	% is not datestamped
01 	Bad filing system
02 	% is a directory
03 	File '%' not found
04 	Can't rename across filing systems
05 	Bad information handle
06 	Not enough workspace
07 	Bad directory index
08 	Bad filing system name : %
09 	Directory 'To' not found
0a 	Bad date stamp
0b 	File name 'To' is illegal
0c 	Null file name
0d 	Attempt to rename across drives
0e 	File '%' already exists
0f 	Too many wild paths
10 	Bad template
11 	No wild match
12 	File 'To' too large for buffer
13 	Bad file name '%'

Error module errors

00 	Not an error code
0I 	No error information available

Wild pattern matching errors

00 	Too many star fields : %
01 	Inconsistent template : %
02 	No match : %
03 	Buffer too small

PRM Issue 1 	 207

Appendix B

Bibliography

Panos Technical Reference Manual

BBC Microcomputer System User Guide

PRM Issue 1 	 209

I

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224

