
Panos Technical

A C O R N S C I E N T I F I C

TECHNICAL REFERENCE

MANUAL FOR PANOS

PROVISIONAL ISSUE (EXTRACTS)

Inter-language Calling Standard
Object File Format

Calling Panos Standard Procedures from C
Pandora Definition Issue B

Issue B
11 June 1986
Acorn Computers Limited, Scientific Division

Page 1

Panos Technical
Scanned, OCRed, proofread, corrected and reformatted

12-Oct-2007
J.G.Harston

Acorn 32000 Products

Inter-Language Calling Standard

Issue D Provisional

Page 2

Panos Technical

User Document

(c) Copyright Acorn Computers Limited 1985

10-Sep-85

Page 3

Panos Technical

Inter-Language Calling Standard

Contents

Introduction 	 1

Parameters 	 2
Integers 	 2
Floating point numbers 	 3
Strings 	 3
Vectors & Arrays 	 3

Results 	 5
Scalar 	 5
Non-scalar 	 5

Strings 	 5
Recor s and fixed-sized arrays 	 6

Multiple results 	 6
Scalars, records and fixed-sized arrays 	 6
Strings 	 6

Result or er 	 7

Call instruction 	 8

Page 4

Panos Technical

Return instruction 	 9

Register use 	 10

Examples 	 11

Issue D Provisional

	

	 Page i

Change record

26-Apr-84 	: First Roff version.
21-May-84 	: Amendments made according to MT's comments.
09-Oct-84 	: Revised by MT (changes to string result mechanism).
22-Oct-84 	: Becomes Issue B.
24-Jul-85 	: Slight mods by MT, becomes Issue C
10-Sep-85 	: Further slight mods by MT, becomes issue D

Page 5

Panos Technical

Page ii 	 Issue D Provisional

Introduction

A number of compiled languages have been or are being implemented on Acorn

products based on the National Semiconductor 32000-series microprocessors. These

include Algol 68, BCPL, C, FORTRAN-77, IMP, Modula-2 and Pascal. It is obviously

desirable for there to be as much compatibility between these languages as

possible, so that the programmer is not restricted to writing all of his program

in a single language. An example of the usefulness of this might be where a
large statistical analysis program, written in Pascal because of the
programmer's preference, might use a set of pre-written FORTRAN functions to do
the maths processing, and some C library code to produce graphical output. The
inter-language calling standard defined in this document is intended to
facilitate this sort of flexibility.

The first part of this standard is a language-independent mechanism for the
specification of the types of objects available, both as external data items,
and as parameters and/or results of external procedures. It is intended that all
conventional data and procedure types handled by languages conforming to the

standard may be represented using this mechanism. The mechanism is implemented:

(a) by the compilers which generate the object modules, in providing
this type information for each external item defined or referenced;

(b) by the system software controlling the inter-module linkage process,
in ensuring type consistency between the modules being linked together.

This first part is defined as an appendix to the document:
"Acorn 32000-series Software: Acorn Object Format"

The second part - - the actual cross-calling mechanism - - is a definition, of
the data structures and code sequences which must be generated by compilers so
that external procedures may be called in a compatible manner. The present

document describes this mechanism.

Note:

All inter-language calls under this standard will be mediated by a linker or
other system facility, using Acorn 32000 Object Format (AOF).

Page 6

Panos Technical

Issue D Provisional 	 Page 1

Parameters

In the following discussion, the term "argument" refers to the data item

actually pushed on the stack when a procedure is about to be called.

All arguments are passed on the SP stack (typically using the 32000's TOS
addressin mode). Arguments are pushed consecutively, as either 4-byte or 8-byte
items, before the procedure is called. The order of pushing is right-to-left,
i.e. the last argument in the list is pushed first. Thus when the complete

argument list is viewed as a sequence of store locations, the first argument is
at the lowest address. Note that this is a definition of the order in which
arguments are pushed, and not of that in which the parameters themselves are
evaluated - the latter may or may not be by the particular language in which the

call is written.

There are two basic categories of parameter; value and reference. In the

former case, the argument is either the actual parameter value (a "direct
parameter "), or a pointer to a store location containing it. In the latter, the

argument is always a pointer to the parameter proper. Arguments are always

either 4 or 8 bytes long. 4-byte arguments are used for passing pointers

(addresses), integers of up to 32 bits, and single precision (-F) floating point

numbers. 8-byte arguments are used to pass integers which require 33 to 64 bits,
and double precision (-L) floating point numbers. "Direct parameters" are
essentially intended for simple scalar items; structured items (e.g. arrays,

strings, records) must be passed by pointer, as must any non-scalar parameter or

one of more than 64 bits.

If a direct integer parameter occupies less than the full number of bits
allocated for it (e.g. a byte, passed as a 4-byte argument), it must be passed
at the least significant end of the argument. If such a parameter is to be

treated as a signed integer, the top bits of the argument must sign-extended

with a copy of the most significant (sign) bit of the parameter; otherwise they
must be cleared to 0. In this connection, a pointer must be treated as a 32-bit
unsigned quantity, and a boolean as a 1-bit unsigned quantity.

The treatment of specific types will now be dealt with.

Integers

When passed as a value parameter, an integer occupies 32 bits (standard
doubleword) or 64 bits (quadword). A 64-bit integer is comprised of two
contiguous doublewords, stored so that the less significant doubleword is at

the lower address. When passing a 64-bit integer value parameter using MOVD
instructions, the more significant doubleword must be pushed first to comply
with this ordering. When passed by reference, the argument is a pointer to a
store location laid out in the manner described above, i.e. less significant

doubleword at lower address.

Page 7

Panos Technical

Page 2 	 Issue D Provisional

Parameters

Floating point numbers

When passed by value, a 32-bit floating item is pushed onto the stack by the
instruction:

MOVF item, TOS

so that 32 bits are pushed and the SP is reduced by 4.

When a 64-bit floating item is passed, the MOVL instruction is used rather

than MOVF. Thus the item pushed is 64 bits long, and the SP is reduced by 8.

For a floating point parameter passed by reference, a 4-byte pointer is

pushed. This is the address of a standard machine-format floating item of 32

(-F) or 64 (-L) bits.

Strings

String parameters under this standard may only be passed by value. Hence a

called procedure must never modify a string parameter; however it is free to

copy the string into its local data space and modify the copy, if the languae
in which it is written requires this (e.g. Algol 68 does not, but IMP does3.
This restriction may seen severe, but it arises because of the wide variety of
ways in which strings are defined languages, and the consequent problem of
specifying a general scheme. Since it is frequently required to pass strings by
reference, chiefly between modules written in the same language, the type
specification mechanism permits modules to define private string types. A
parameter to a procedure may then be defined as being a reference to such a
type.

The mechanism of passing a standard string parameter is as follows:

Two items are pushed on the stack: the first item pushed is an unsigned
32-bit integer specifying the length of the string; the item is a pointer to the

first character in the string.

Vectors & Arrays

The passing of vectors and arrays is difficult to standardise, for reasons

relating to the specification of the various programming languages. As an
example, a two-dimensional array is implemented in Fortran 77 in the reverse
dimension order to that used in Pascal, as below:

a: ARRAY [1..5, 1..3] OF Integer 	 -- -- Pascal

INTEGER a (1:5,1:3) 	 -- -- Fortran 77

In Fortran, the element which follows a(2,2) in memory is a(3,2), whereas in

Pascal the element a[2,2] is followed by a[2,3].

Page 8

Panos Technical

Issue D Provisional 	 Page 3

Parameters

Another difficulty is that in some languages an array is defined by the
address of the 0th element (e.g. C) whereas in others the lowest bound of an

array may have any value. This leads to variations in the way in which an array
may be referenced (e.g. by the address of the 0th element or by the address of
the first actual element), to produce the most efficient code.

As a consequence of such problems, this standard does not define the
mechanism used to pass (or, where relevant, to return) arrays or vectors. The

details of these operations are left to the individual language implementation.

However it should be noted that such items may be passed using the standard
mechanism, if they form part of a record-type variable. It is permitted to

define a record structure in which a vector (i.e. a single-dimension array)
occurs as a field. To achieve the effect of multiple-dimensional arrays, the
elements of the vector may be defined as records, themselves containing ectors,

etc. However this method of workingis obviously restricted to fixed-size

arrays, since the (maximum size of a record must be known at link-time,
according to this standard.

Page 4 	 Issue D Provisional

Results

Page 9

Panos Technical
Languages vary in the type and number of results which it is possible to

return from a function. It is intended that this standard will cater for the

majority of cases in an efficient fashion. In general, results are returned
either in registers or via information passed on the stack. Such information is
always pushed after all information relating to parameters has been pushed. The
result mechanisms have been arranged in such a way that it will generally be

possible to call and define functions with multiple results in (suitable

systems-type) languages which only permit single results: this is achieved by

handling the result information as if it were extra parameter information.

Scalar

If the first or only result of a function is a simple scalar item, it must be

returned in:

R0 for a 1..32-bit integer result;
R0 (low) / R1 (high) for a 33..64-bit integer result;
F0 for a single-precision floating point result;
F0 / F1 for a double-precision floating-point result.

In the case of integer results of less than 32 bits, the result is returned
in the least significant end of R0. The unused bits of R0 must be zeroed by the
called function if the result is to be treated as an unsigned quantity, and made

equal to the most significant bit of the actual result if the result is signed.

The same rule applies to the unused bits of R1, for the case of results of
between 33 and 63 bits.

Non-scalar

If a function result is not a scalar item (e.g. a record or a string), the

calling procedure must itself allocate space for the result, and pass the
address of this to the called procedure. To return such a result, the called

procedure stores the value into this space using the pointer it was passed, then

returns. The detailed mechanism for this is as below:

Strings

Where a function returns a first or only result which is a string, the caller

must allocate a store buffer into which the function will place the characters
of the string immediately before it returns. The calling code must push two
items on the stack, after all the parameter information has been pushed. The

first item pushed is the size in bytes of the buffer. This is the maximum number

of actual characters which may be written into the buffer by the function. The
second item pushed is the address of the first byte of this buffer.

When the function is about to return, it must ensure that the number of
characters to be returned is less than or equal to the size of the buffer. It is

an error unless this condition holds, and this must be immediately indicated to
the calling code by signalling. Otherwise the function stores the result into

l the buffer, loads R0 with the ength of the result (i.e. the actual number of
characters that were written) as an unsigned doubleword, and returns.

Issue D Provisional 	 Page 5

Results

Records and fixed-size array

If a function is defined as returning a record result, the type information
for its external symbol must specify, in the result part, how many bytes of

information the record contains. This may be an upper bound if the language in
which the function is written permits variable-sized records. On the
corresponding reference to the function by the calling code, the record size

Page 10

Panos Technical
given must match that of the definition; this will be checked at link time.
Hence the size of the result must be known at the calling point. The sequence
for calling a record function is then:

The caller allocates a store area to receive the result; the address of this
area is pushed (after all parameter information has been pushed) as a single
32-bit pointer; the function is called, and stores its result value into the

buffer whose address was passed; the function returns.

Multiple results

Most high level lan uage ^rocedures return either no result or one result.
However this standard also de ines the mechanism to be used to return any number

of results from a function.

Where a function returns more than one result, the second and any further
results are returned via pointers as for non-scalar results, even if they are
scalar items; only the first result, if it is a is a scalar, is returned in a
register or register pair. The handling of extra results depends upon the type

of each, as described below.

Scalars, records, and fixed-size arrays

For any extra result whose size is known (including scalars), the caller
pushes a single 32-bit pointer which is the address of the (possibly temporary)
location to receive it . The function writes the result value to this location,

via the pointer, before it returns.

Strings

For extra string results (i.e. any non-first string result) a modified form
of the single string result mechanism is used.

Since there may be an arbitrary number of such results, but there are a
limited number of registers available, it is not possible in a general way to

return the actual length(s) of extra string results in registers. Instead, far

each extra which is a string, the calling procedure pushes three 32-bit items:

first, the address of a 32-bit unsigned integer to receive the actual length of

the result string; then the size of the buffer to receive the result characters;

finally, the address of the buffer. Thus the stacked information is as for a

first or only string result, with an extra pointer item, pushed first, via which
the actual length will be returned.

Page 6 	 Issue D Provisional

Results

When returning any string results, a called procedure must first check that
no result would overflow the buffer which was provided to contain it. This must

be done before any result information at all is written to memory, and if a
result would overflow then an appropriate error should immediately be signalled.

Otherwise the procedure should write the characters of each string result
into the appropriate buffer, and the length of the result into the corresponding

length field whose address was supplied.

Result order

The order in which result information is pushed is right-to-left as for
parameters, i.e. information about the last result is pushed first by the

Page 11

Panos Technical
calling code, and information about the first result (if it requires any, e.g. a

record result) is pushed last, immediately before the actual call. All result
information is pushed after any parameter information.

Issue D Provisional 	 Page 7

Call instruction

All procedure calls in this standard are performed by a CXP instruction. This

implies (as the definition of AOF states) that all conforming language systems
operate under the normal 32000 module mechanism.

Page 12

Panos Technical

Page 8 	 Issue D Provisional

Return instruction

Return from a procedure is achieved by the instruction:

RXP N

where N is the total number of bytes of parameter and result information which
was pushed onto the stack by the calling code before the CXP instruction.

Page 13

Panos Technical

Issue D Provisional 	 Page 9

Register use

None of the general registers (R0-R7) or floating-point registers (F0-F7) is

required to be preserved across a call. Hence the calling code must ensure that

all important information contained in the general and floating-point registers
is saved to store before the call is made, and must make no assumptions about

the contents of these registers on return (other than those used for results).

The contents of the FP register must be preserved by the called procedure;

this is conventionally done through use of the ENTER and EXIT instructions. The
PC, SB and MOD registers are automatically preserved through the use of the CXP

and RXP instructions. On return from a procedure the SP register must be

restored to the state it had before any parameter or result information was
pushed, this is achieved by the RXP instruction as described above. The PSR on
return is not defined, i.e. no assumptions may be made about its state.

Page 14

Panos Technical

Page 10 	 Issue D Provisional

Examples

(1) Called procedure:

PROCEDURE P1 (A, B : INTEGER; S : STRING)

Call:

P1 (1, X+4, "Hello")

Calling code:

MOVQD 	5, TOS
ADDR 	text, TOS

MOVD 	X, TOS
ADDQD 4, TOS

MOVQD 1, TOS
CXP 	P1

text 	DCS 	'Hello'

(2) Called procedure:

PROCEDURE P2 (VAR X: REAL; Y : LONGREAL; J : INTEGER)

Call:

P2 (A[k+3], 0.234567, k)

Calling code:

MOVD k, R1
MOVD R1, TOS

MOVL =0.234567, TOS

ADDR A+12 [R1:D] , TOS

CXP P2

Page 15

Panos Technical

Issue D Provisional 	 Page 11

Examples
(3) Called procedure:

FUNCTION F3 (Q : STRING; P, Q : INTEGER) : INTEGER

Call:

k := F3 (Message, j, 17)

Calling code:

ADDR @17, TOS

MOVD j, TOS

MOVD Message_length, TOS
ADDR Message, TOS

CXP 	F3

MOVD R0, k

(4) Called procedure:

FUNCTION F4 (I, J : INTEGER) : INTEGER, REAL

Call:

a, Q[3] := F4 (1, 2)

Calling code:

MOVQD 2, TOS

MOVQD 1, TOS

ADDR Q+12, TOS ; address Q[3] passed for result

CXP 	F4

MOVD 	R0, a

Page 16

Panos Technical

Page 12 	 Issue D Provisional

Examples

(5) Called procedure:

FUNCTION F5 (R: LONGREAL) : STRING

Call:

S := F5 (0.2536)

Calling code:

MOVL 	=0.2536, TOS 	; parameter

MOVD 	=S––size, TOS 	; size of result buffer
ADDR 	S, TOS 	 ; address of result buffer

CXP 	F5

MOVD 	R0, S–length 	; actual length returned in R0

(6) Called procedure:

FUNCTION F6 (S : STRING) : STRING, STRING, STRING, INTEGER

Call:

s1, s2, s3, status := F6 (Name)

Calling code:

MOVD 	Name–length, TOS
ADDR 	Name, TOS

ADDR 	status, TOS

ADDR 	s3–length, TOS
MOVD 	=s3––size, TOS
ADDR 	s3, TOS

ADDR 	s2–length, TOS
MOVD 	=s2––size, TOS
ADDR 	s2, TOS

MOVD 	=s1––size, TOS
ADDR 	s1, TOS

CXP 	F6

MOVD 	R0, s1–length

Page 17

Panos Technical

Issue D Provisional 	 Page 13

Page 18

Panos Technical

Acorn 32016 Second Processor

Object File Format

Issue A Provisional

Design Document

(c) Copyright Acorn Computers Limited 1984

24-May-84

Page 19

Panos Technical

Object File Format

Contents

Overview 	 1

Overall structure of an object file 	 1
Two formats 	 1

Description of Format 	 2
o Module header command 	 3
o Module end command 	 4
o File end command 	 5
o Module description commands 	 5
o Declare area 	 5
o Define global symbol 	 8
o Set position 	 9

Page 20

Panos Technical
o Store block 	 9
o Repeat store 	 9
o Initialise link 	 10
o Check use 	 11
o Relocate doubleword 	 12
o NOP 	 13
o Repeat NOP 	 13
o Comment 	 13
o Define SB 	 14
o Define entry 	 14
o Define handler 	 15
o Define Type Dictionary 	 15

Appendix A: Syntax of identifiers 	 16

Appendix B: Syntax of data and time strings 	 17

Appendix C: Packed Format 	 18

Appendix D: Language Codes 	 19

Appendix E: Type definition format 	 20

Issue A Provisional 	 Page i

Change record
02-May-84 	 - : Roffified.
22-May-84 	: Amendments made according to MT's comments.

Page 21

Panos Technical

Page ii 	 Issue A Provisional

Overview

An object file is a sequence of one or more independent module descriptions.

Each module is in byte stream format: single-byte commands with a variable

number of parameters following. The commands are instructions to a linker to

allocate and initialise areas of store, and to define the position of global

symbols, referenced across modules. Each module description, unless it contains

no code, is directly related to a module as defined in the architecture of the
machine. It is required that all language systems which make use of this format
operate with the 32016 module mechanism.

Overall structure of an object file

The structure of an object file may be summarised as below:

module-header-command
module-description-command *
module-end-command
(module-header-command
module-description-command *
module-end-command) *

where:

X * 	means an item comprising 0 or more occurrences of item X

X ? 	means an item comprising 0 or 1 occurrences of item X
(X
Y) means item X followed by item Y, treated as a single item

Two formats
Page 22

Panos Technical

This definition covers two formats: packed format and general format. Packed
format is the standard format for use in Acorn systems; general format allows a
more flexible but less efficient layout of the module description. Where

possible packed format should always be generated, but in certain cases (e.g.
initial compiler development and testing) general format may be used. All system

components handling AOF will handle packed format modules; certain components
(e.g. the static linker) also accept general format.

In packed format, there is a fixed order in which the module description
commands must occur. This order is defined in appendix C.

In general format, module description commands may occur in any order.
Comments are also accepted in general format - this may be useful in compiler

testing.

Issue A Provisional 	 Page 1

Description of Format

Notational Conventions:

nnn 	base 10 number - decimal radix is the default

bb_xxxx 	base bb number, where bb is in decimal e.g. 16_2F = 47

LL..UU 	number range LL to UU (inclusive)

 	byte value b - whether it is treated as signed or unsigned is
indicated in the context of individual uses within the format. Bit 0

is the least significant bit (LSB), bit 7 is the MSB.

<<v>> 	32-bit signed value, presented as 4 bytes in order LSB..MSB.
Bit 0 is the LSB, bit 31 the MSB.

[d] 	variable length integer field - - this is encoded in the objects
stream in a similar way to that in which displacement fields are
treated by the 32016 CPU, as follows:

One byte is read from the stream.
If bit 7 of the byte is clear then

the remaining bits (0. .6) form a 7 bit value
else if bit 6 is clear then

bits (0..5) and the next byte from the stream form a
14-bit value with the 6 bits from the first byte at the

most significant end.
else if bit 5 is clear then

bits (0..4) and the next three bytes from the stream (in
order MSB..LSB) form a 29-bit value.

else if bits 0..4 are all 0 (zeros)
the next four bytes in order LSB..MSB from a 32-bit value.

else
the displacement field is illegal and an error will be

reported.

This type of field will be referred to as a "disp". The

interpretation of the value (i.e. whether it is treated as
signed or unsigned) is indicated in each context where a disp

Page 23

Panos Technical
field is used. Fields marked as being signed are handled by

copying the topmost bit of the original n-bit value into the
remaining 32-n bits. In the case of unsigned fields, 0 is
copied into these bits. Mence for a single-byte disp field
(7-bit, value) the values which may be represented are -64..63
if the field is specified as signed, and 0. .127 if unsigned;
2-byte (14-bit) disps encode -8192..8191 when the field is
signed, and 0..16383 unsigned, etc.

"sss" 	byte-string consisting of a length byte (c) followed by C bytes
of data (commonly text). A null string is represented by a single 0

byte.

..dd.. 	byte-sequence consisting of a length field [L] (an unsigned
disp), followed by a sequence of L bytes of information. The empty

sequence is a disp field, value 0.

< X > 	conditional field - the occurrence of item X depends on a
preceding item's value.

Page 2 	 Issue A Provisional

Description of Format

Module header command

o Form:

<1> <<16_32456250>> <type> {[length]} "name" "time" {"source"}
"info" {[language]}

o Fields:

Type is an 8-bit set of flags.
Length if present is a unsigned disp field. >= 12.

Name is an identifier string, or null.
Time is a date+time string (format defined below).
Source if present is a filename string (syntax system-specific).
Info is ageneral text string.
Language if present is an unsigned disp field.

a Effect:

Defines the start of a module. This command comes only at the start of

an object file or immediately after a module end command. The magic number

is required as a consistency check to reduce the risk of accidents with

files which are not object files.

The type field specifies attributes of the module; the bits in this

field are as below:

0 	 - : 	This specifies the format of the module. If bit 0 is 0, the

module is in general format; there is no length field. Otherwise the

module is in packed format; the length of the module description follows

as a disp. The length is the total number of bytes from the first byte

of the command to the matching end-module command, inclusive.

1 	:Bit 1 specifies the case-sensitivity of the names of global

symbols appearing in the module. If bit 1 is clear (0), module and
symbol identifiers are treated as case-insensitive; otherwise they are

case-sensitive. E.g. C and Modula 2 are normally implemented with
identifiers case-sensitive - "Sheila" is not the same as "SMEILA",
whereas in Pascal, FORTRAN and IMP the case of an identifier is not

significant. Note that the case of other identifiers, in particular area

names, is never significant.

2 	 - : 	This bit may only be set if bit 0 (packed format) is set. It

implies that the description of each PIC, non-common area is contiguous,
Page 24

Panos Technical
(i.e. all such areas have type bit 8 set in their Declaration), that the
start of the Data in each corresponDing "store block" commanD is aligneD

(using NOP or Repeat NOP commanDs) on a page bounDary with respect to
the start of the moDule heaDer commanD, anD that the moDule Description

as a whole is an exact multiple of the page size in length. CoDe
generators are NOT expecteD to proDuce moDules in this aligneD maDe,
since it is rather expensive in Disc space: this bit will normally only

be set by system utilities which improve the format of frequently

referenceD moDules. The alignment mechanism allows the optimisation of
moDule loaDing in VM systems so that the Data may be pageD-in rather

than force-loaDeD.

Issue A Provisional 	 Page 3

Description of Format

3 	 - : 	This bit inDicates the presence or absence of the language

fielD. If it is clear there is no language fielD. If it is set then the
language fielD is present - this contains a number inDicating which
lan uage generator was useD to proDuce this moDule. Each language
implementation proDucing AOF is assigneD a unique value, for use in this

fielD. This information will be maDe available (in a manner not DefineD

here) at run time, e.g. for the use of Diagnostic anD other proceDures.

4 	 - : 	If this bit is 0 then no source fielD is present. If it is 1
then the source fielD is present, anD shoulD contain the name of the

source file from which the current moDule was generateD.

All other bits in the type fielD are reserveD, anD must be 0.

Name is an iDentifier for this moDule (rules given in appenDix A). It may be
useD by certain languages (e.g. MoDula 2) for consistency checks. No two moDules

useD in a linking operation may have the same non-null name. A null name may be

useD to avoiD Di iculties in generating unique names.

Time is a string in stanDarD format giving the Date anD time of generation of

the original object file. The syntax of this is specifieD in appenDix B. The
string may be null if the Date anD time of generation are not known.

Info is a text fielD which shoulD contain the name of the object file
generator, the source language name, compiler version etc.

Values for the language fielD are, as inDicateD, assigneD uniquely to each

language implementation. AppenDix D gives the current list of languages for
which coDes are assigneD. The corresponDence between a particular running moDule

anD its generating language will be maDe available at run time (although this

mechanism is not DefineD here). This is intenDeD to be of use in a general
mixeD-language programming environment. E.g. a Diagnostic routine will wish to
Determine whether a particular moDule is written in the language which it is
specifically DesigneD to hanDle.

MoDule enD commanD

o Form:

<2>

o Effect:

This coDe marks the enD of the current moDule.

Page 25

Panos Technical

Page 4 	 Issue A Provisional

Description of Format

File end command

o Form:

<3>

o Effect:

This command marks the end of significant data in the file. The

linker, or other program processing an object file, will not read past

this point in the file. Note that if a file end command occurs anywhere

other than immediately after a module end command, the object file is

assumed to be corrupt and any processing will be abandoned. Mence a

compiler may conveniently abort the generation of an object file by

dumping this command into the file and stopping. The file end command is

optional - if the object file processor encounters the logical end of the

ob ect file at a point where it would accept this command, the effect

wM be the same. For convenience, it is recommended that this command

should not therefore be used, other than to abort generation as described

above.

Module description commands

The following commands describe the contents of a particular module and may
only occur between a module header command and a module-end command.

Declare area

o Form:

<4> <<flags>> <align> [size] "name"

o Fields:

Flags is a 32-bit set of binary flags.
Align is an unsigned byte.
Size is an unsigned disp.
Name is either null or conforms to identifier syntax.

o Effect:

Declares an area of store into which items may be placed by commands
in this module description. Areas are numbered (within a module) in order

of declaration - - the first area declared is area 1 etc. The number an
area is given is hereafter termed its tag. Tags are used in other

commands in order to refer to specific areas, and are represented in the

format as unsigned disp fields.

The individual bits in the flags field have meanings as follows:

0 	 - : 	If set, the area is read-only - once loaded it must not be
modified. If this bit is clear it will be assumed that write access is

required to this area.

Issue A Provisional 	 Page 5
Page 26

Panos Technical

Description of Format

1 	:This bit being set implies that the area is position independent
- it may be loaded at any address without any change being required to

the contents. In particular, if this bit is set, there must not be any

relocation of items in the area, and if the area is a code area, the

code must be pure, re-entrant, and make all references to external

objects via pointers in other areas (accessed via SB, FP, link table

etc).

2 	 - : 	Setting this bit implies that the linker may arrange for this
area to be shared between different processes, i.e. there will only be

one copy of the area in physical memory. This requires the area to be
position independent, since the virtual address at which it resides may
vary between processes. It is also normal only to share read-only
areas, but this is not enforced unless the area is a code area (see bit

3 below).

3 	 - : 	This bit if set marks the code area, if any, in this module. Only

one area with this bit set may be declared, since there is only one

pointer in the module table to the code area for this module, and hence
only one area is directly callable by other modules (by the CXP/CXPD

instructions). Note also that if this bit is set, and bit 2 is set

then bits 1 and 0 must also be set, i.e. shareable code areas must be

position-independent and read-only. If no area in a module is declared

as a code area, then the linker will not allocate a module table entry

for the module, but will still create and initialise the data areas

described (given that the module is loaded, of course).

4 	 - : 	Common area specification. If this bit is set, this area will be
treated as a 'common' area by the linker. That is, all modules
specifying this area by name reference the same memory, rather than

being allocated individual, private sections of memory. Thus e.g.
FORTRAN common blocks will have this bit set. If this bit is set, the
name field must be non-null, i.e. the area has a global name. This

enables other modules to reference it. This bit must not be set if bit

3 is set, i.e. code areas may not be common.

5 	 - : 	Common area definition. If this bit is set then bit 4 must be

set. It implies that the common area specified is being actually

defined by this module, rather than simply referenced by it. The effect
of this is to set the size of the area of the specified name. Any

module specifying a common block of this name must give a smaller or

equal size for it; it is an error if the size is greater. In one link

operation, at most one "declare area" command for a particular common

area may have this bit set. If none has this bit set, the space

allocated to it at link time will be the largest size speci ied in any

contributing module.

6 	 - : 	No initialisation. This bit is used to indicate to the linker
whether there are commands in this module description which initialise

the contents of the area being declared. If it is set, there will be no

such commands (store block, relocate doubleword, repeat store) for this
area - - it is an error if any are found. If it is clear, such commands
will be accepted and acted upon; it is not an error if there is none,
but all code generators should ensure that this bit is set if it can
be. This bit must not be set if the 'code' bit is set (i.e. code areas

must be initialised in some way!). This facility is provided as an

Page 6 	 Issue A Provisional

Description of Format

optimisation so that areas whose initial contents do not matter (e.g. a

heap or private stack-area) need not take up space in the image file.

7 	 - : 	No external relocation. If this bit is set there must be no
Page 27

Panos Technical
"relocate doubleword" commands using modes 3 or 4 in this area. Use of
this bit when possible permits the linker (or other program reading the

file) to omit a scan of the description of this area to determine
the names of external symbols referenced from it.

8 	 - : 	Contiguous initialisation. If this bit is set, then bits 1 and 7

must also be set, i.e. the area is position independent. This bit is

used to indicate that the area is defined as a single contiguous block

of data. The definition of the area should consist of one "set

position" command, to the start of the area, followed by a single
"store block" command, where the length of the data is the same as the
length of the area, as given in this declaration. It is an error if

this bit is set and the area is not so defined. This bit is provided to

permit the optimisation of module loading in certain circumstances -
only one transfer is required to set up the whole area.

All other bits in the flag field are reserved, and must be 0.

Align specifies to what boundary the contents of this area should be aligned,
as a power of 2. Mence 0 here means alignment to byte boundary (effectively no
alignment); 1 means word align, 2 means double-word align, 3 means 8 - byte align

etc. The maximum value allowed here is defined by he inker (it is current y
10, i.e. 1K).

Size is the size of the area in bytes. The specified amount of space,

starting at a suitably aligned address, will be reserved by the linker, whether
or not it is all initialised in this module.

Name is a textual name to be associated with this area. It will normally be
null unless the "common" bit is set, in which case it must be a valid
identifier, so that the area may be referred to from other modules. If the

common bit is clear then the name will be ignored. All area declarations in a

single linking operation which reference the same common area must specify the
same flags (except for the "common area definition" flag). As indicated in the
description of the "module header" command, the case of letters in area names is

not significant. The linker will arrange that all contributions to a common area

are overlaid in the order of module loading. The placement of non-common areas
is entirely in the linker's control.

Issue A Provisional 	 Page 7

Description of Format

Define global symbol

o Form:

<5> <type> [offset] { [area] } "name" { ..type_info.. }

o Fields:

Type is an unsigned byte.
Offset is a signed disp.
Area if present is the tag of a declared area.

Page 28

Panos Technical
Name is an identifier conforming to the rules below.
Type_info if present is a byte-sequence defining the symbol's use.

o Effect:

Defines "name" as a global symbol. For each global symbol referenced

by any module(s), there must be a definition in some module. The type

field defines characteristics of the item identified by the symbol, as

follows:

0 	 - : 	Absolute value - - area is not present. Offset is the symbol.
This is used for global constants.

1 - : 	Data symbol - area is the tag of the area in which the item
lies, and offset is the displacement of the item from the start of

that area. There is no restriction on the value of offset.

2 	 - : 	Code symbol - area is not present. Offset is the displacement of

the item from the start of the code area in this module (there must be

one), and must lie in the range 0..(size of code area-1). Apart from

this there is no restriction on the value of offset. Mardware

limitations mean that for each module table entry the code items
accessible via that entry must lie within a 64K range. Mowever the

linker will automatically allocate further module table entries in order

to ensure that all code items within a module are accessible, by setting

a different program base address into the 2nd (and further) module table

entries. This is transparent to object file generators; it is also not

likely to occur often in practice - few modules contain over 64K of

code! This however means that code generators must use the provided
mechanism to generate code-item descriptors - they may not plant code

which dynamically constructs these, since the run-time may vary.

128 - : 	Absolute value with type information.

129 - : 	Data symbol with type information.

130 - : 	Code symbol with type information.

For types 128, 129 and 130 	the type_info field is present, and 	ives
detailed information about the nature of the item; the format of this field is
defined in appendix E. All other values of the type field are reserved.

Defining the symbol "GO" is now equivalent to the 'define entry' command,
except that type checking is possible.

Page 8 	 Issue A Provisional

Description of Format

Set position

o Form:

<6> [area] [offset]

o Fields:

Area is the tag of a declared area. Offset is a unsigned disp.

o Effect:

The Current Position (CP) is set to point into the image of the area

being built. CP has two components - the Current Area, CA, and the

Current Offset, CO. This command sets CA to the area parameter and CO to

the offset parameter. After the operation, CO must lie in the range

0..size(CA), and CA must lie in the range 1..(number of areas declared in

this module). The initial position is area 1, offset 0 (unless there are

Page 29

Panos Technical
no area declarations).

Store block

o Form:

<7> ..data..

o Fields:

Data is a byte-sequence.

o Effect:

The block of data which follows is L bytes long, and is stored into

memory at CP. L must lie in the range 0..(size(CA)-CO) . After the block

has been stored, L is added to CO.

Repeat store

o Form:

(3> [count] ..data..

o Fields:

Count is an unsigned disp. Data is a byte-sequence.

o Effect:

This command is used when a pattern of data occurs repeatedly within

an area in module, e.g. an array of items which are all initialised to

the same value. The effect of the command is exactly the same as if

'count' store block commands with the same data had occurred in the file.

Issue A Provisional 	 Page 9

Description of Format

Initialise link

o Form:

<9> [ext_no] <mode> { [offset] } { [area] } {"module" "name"}

o Fields:

Mode is an unsigned byte in the range 0..7 (not 2).
Ext_no is a signed disp.
Offset if present is a signed disp.
Area ifxesent is the ta of a declared area.
Module 	present is an i9entifier string, or is null.
Name if present is an identifier string.

o Effect:

This command is used to specify an entry required in the link table

for this module. Ext_no is an index into the link table, with the same

sense as an 'external number' in instructions, i.e. extno*4 gives the

byte offset of the entry from the base of the link table. Note that extno

may be negative, i.e. it is possible to have a link table starting before

the address specified in the module table entry, and indexed backwards.
This permits code generators to be efficient in their use of external
references - they may use more byte-sized displacement values for the

Page 30

Panos Technical
external number.

N.B. External entries -1, -2, -3 and -4 are permanently reserved, and
must not be initialised by this command.

It should be noted that the allocation of space for the link table is
entirely under the control of the linker: the module does not define it

itself. The link table's size is worked out on the basis of the minimum

and maximum values of extno encountered in "initialise link" commands. As

a consequence of this, object file generators are constrained to allocate

external numbers contiguously (with the exception of entries -4..-1), and

to include entry 0. Mence if there is one external reference, it must be

through entry 0; if there are two, the must be via entries - 5 and 0, or
entries 0 and 1, etc. It is an error 4 the same entry is initialised
more than once.

The mode field specifies which type of initialisation is required for

the given entry. In each mode only those optional fields which are

relevant are supplied in the command:

0 	 - : 	the value of the entry is offset, i.e. a constant.

1 - : 	the value of the entry is the address of the start of the area

whose tag is supplied, plus the supplied offset.

3 	 - : 	the value of the entry is the address of the global symbol defined

by the name and module supplied, plus offset. Offset is normally, but

not necessarily, 0. If the module field is not null, then the entry will
only be looked for in the module of that name (there must be one). The

global symbol will normally be defined in some other module, but there

is no reason why it may not be defined in this module.

Page 10 	 Issue A Provisional

Description of Format

4 - : 	the value of the entry is a code entry descriptor for the global
symbol identified by the given module and name fields. As for mode 3,
the module field may be null, with the same meaning. The symbol must be

defined in some module, as a code entry. No offset 	eld is supplied in
this mode.

5 	 - : 	the value of the entry is a code entry descriptor for a local
entry point. In this case offset is the displacement of the entry from

the start of the code area. The effect of this is as if the entry point

had been defined as a global code symbol, and referenced by mode 4

above, except that no external definition need be created for it, nor

(more importantly) need its name be quoted. This type of entry may be
useful where an external procedure (i.e. one called by CXP), must be

called from within this module. This is also relevant to a language such

as C, in which all procedures (including so-called 'static', i.e.
non-global ones) must be called by the same mechanism. Although this
mode has been provided for convenience because there is no "BXP"
instruction), compiler writers may care to note that an alternative

solution to this problem is to use the instruction sequence:

SPRD MOD, TOS
BSR 	proc

which simulates a "branch to external procedure" instruction. The latter

solution may be more efficient (in space terms) if the procedure
concerned is called only once or twice from within the module. Otherwise

the link table entry solution is cheaper in space terms, although

marginally slower.

6 - : 	the value of the entry is offset + the allocated length of the

common area whose tag is given. This will be the largest value which was
specified in any declaration of this common area . The tag must be that

Page 31

Panos Technical
of a common area.

7 - : 	the value of the entry is offset + the address of the first byte
beyond the space allocated for the common area whose tag is given. This

is equivalent to the sum of the values obtained using mode 1 (with
offset=0) and mode 6.

Check use

o Form:

<10> <type> "module" "name" ..type_info..

o Fields:

Type is an unsigned byte in the range 0..2.
Module is an identifier, or null.
Name is an identifier.
Type_info is a byte-sequence.

Issue A Provisional 	 Page 11

Description of Format

o Effect:

This command is used to check consistency of usage between the

definition of a global symbol and a reference to it from this module. It
is an error if the symbol named is not of the same basic type (i.e.
absolute, data or code), or if the type information (if any) given at the

symbol's definition is not compatible with the information specified
here. If the length of the type_info field here is 0, then only the basic

type is checked. Note that even if this command is not used, the linker

will still check consistency to some extent: it is an error if a symbol
defined as a data or absolute item is referenced as a code item, and it

will issue warnings if a code item is referenced by address rather than

by descriptor.

Relocate doubleword

o Form:

<11> <mode> { [offset] } { [area] } { "module" "name" }

o Fields:

Mode is an unsigned byte in the range 0..7 (not 2).
Offset if present is a signed disp.
Area if present is the tag of a declared area.
Module if present is an identifier string, or is null.
Name if present is an identifier string.

o Effect:

This command is used to statically relocate a doubleword in store. It

is provided for use by language implementations which require that a

pointer may be initialised to refer to some other item in store. It is

similar to the "Initialise link" command: the meanings of the fields are

identical but the effect is to initialise the double ward pointed at by

CP, rather than a specified entry in the link table. See the description

of that command for a full specification of the modes of initialisation

possible. This command must not be used within an area which is declared

Page 32

Panos Technical
as being position independent or shareable; in fact its use is strongly

discouraged, since it complicates the overall clean architecture of the

system. It should only be used where there is no other practical solution
(for example dynamic initialisation). When this command is met, it is an
error unless CO is in the range 0..(size (CA)-4). After this command is

executed. CO is stepped on by 4.

Page 12 	 Issue A Provisional

Description of Format

NOP

o Form:

<12>

o Effect:

None. This command does nothing, but its presence is required to
satisfy certain constraints of packed format, in that parts of a packed

format file may require to be aligned on particular boundaries.

Repeat NOP

o Form:

<13> ..ignored..

o Fields:

Ignored is a byte-sequence.

o Effect:

This command is an extension of NOP, with the effect of making the

program reading the file ignore a number of following bytes. It is meant
to save time on the part of object file generators and the linker, in

that they do not have to write (or interpret) a large number of NOPs,
but just skip that section of the file.

Comment

o Form:

<14> "comment"

o Fields:

Comment is a string of bytes

o Effect:

This command is used to allow abject file generators to dump

information which may be of use for debugging purposes. For example a

Page 33

Panos Technical
compiler may dump the line number in the source file of the statement

which generated the following code for use by a program which correlates

code with source. No restriction is placed on the contents of the comment

string - it will be completely ignored by the linker. Comments may not

occur in packed format.

Issue A Provisional 	 Page 13

Description of Format

Define SB

o Form:

<15> <mode> { [area] } [offset] { "module" "name" }

o Fields:

Mode is an unsigned byte in the range 0..3 (not 2).
Area if present is the tag of a declared area.
Offset is a signed disp.
Module if present is an identifier or null.
Name if present is an identifier.

o Effect:

This command tells the linker how the static base field in the module

descriptor(s) for this module should be initialised. This command may

occur at most once in any module, unless there is no code area in this

module, in which case it must not occur at all. If there is a code area,
but this command is not given, then the linker will initialise the SB to

point at an inaccessible area of store (if possible). The value to which

the SB will be set is determined by the value of mode, as follows:

0 - : 	SB is set to the constant value given by offset. Area is not
present. This might be useful for example where a device handler module

accesses fixed-address memory-mapped device registers, in that the

static base could conveniently point at the start of these.

1 - : 	SB is set to offset + the start address, of the area whose tag is
given. This is similar to mode 1 in the "initialise link" command.

3 - : 	SB is set to the offset + the value of the global symbol whose
name (and perhaps module name) is given.

All other values of the mode field are reserved.

Define entry

o Form:

<16> [offset]

o Fields:

Offset is an unsigned disp.

o Effect:

Defines the global start address for the program. Offset is the

displacement from the start of the code area of the first instruction to

be executed when the program is run. This command may be used at most

Page 34

Panos Technical
once in a module, and exactly one of the modules bound together in a

linking operation must contain this command. It is an error if the

current module declares no code, or offset is not in the range
0..(size(code area)-1).

Page 14 	 Issue A Provisional

Description of Format

This command is now obsolete, but will be retained for reasons of

compatibility. The preferred way to mark the entry point is to define a

global code symbol "GO" (see the description of the 'define global
symbol' command).

Define handler

o Form:

<17> [offset]

o Fields:

Offset is an unsigned disp.

o Effect:

Defines the address of a module-local "handler" routine which will be

called prior to execution of this module, on termination of the pro ram,
and also in the event of synchronous errors (e.g. divide by zero, illegal
instruction trap) occurring while an instance of this module is active.
Offset is the displacement from the start of the code area of the first

instruction to be executed in the handler; it must lie in the range

0..size(code area)-1.

A handler is defined as a piece of code local to a module (rather than

a general code address), so that, should an error occur during handler

execution, the environment is correct as far as a second-leve handler is
concerned, i.e. the cause of the problem is traceable to the actual
module whose handler was originally called. In many cases the local
handler will be a very simple, short procedure which calls (via CXP) a

larger procedure specific to the language in which the module was
written. Thus the varying requirements of languages in respect of

initialisation and error handling may be met in a standard fashion. For

further details of the specification of handler routines, see the

appropriate document describing the runtime support system.

Define Type Dictionary

o Form:

<18> ..type_information..

o Fields:

type_information is a byte sequence

o Effect:

Defines local (tagged) and global (named) type information used within

the module.

Issue A Provisional 	 Page 15

Appendix A: Syntax of identifiers
Page 35

Panos Technical

In the above definitions, an identifier must conform to the following rules:

The character set is ASCII. All printing characters may be used, including

space, i.e. the range of valid character values is 32..126. An identifier
comprises between 1 and 255 characters selected from this range without
restriction. In respect of case-sensitivity (i.e. whether "a" = "A"), the
fallowing rules apply:

If the 'case-sensitive' flag in a module header is set, then all module and
global symbol identifiers used in that module are taken to be case-sensitive,
i.e. "Fred" is distinct from "FRED". Otherwise all names in the module are

preserved exactly as they were generated, but they are marked as case-
insensitive. When two strings are to be compared, the flags of both names are

tested, and only if both specify case-insensitivity is the comparison case-
insensitive (i.e. the identifiers are reduced to the same case before
comparison). Otherwise case must match precisely for the equality test to
succeed.

Page 16 	 Issue A Provisional

Appendix B: Syntax of date and time strings

The format of a date+time string is:

"YYYY-MM-DD MM:MM:SS"
or 	"YYYY-MM-DD HH:MM:SS.CC"

where:
Page 36

Panos Technical

YYYY is the year as 4 Digits AD.

MM is the month of the year in the range "01" .. "12"

DD is the Day of the month in the range "01" .. "31"

RR is the hour in the range "00" .. "23"

MM is the minute in the range "00" .. "59"

SS is the seconD in the range "00" .. "59"

CC is the centiseconD in the range "00" .. "99"

The centiseconD fielD (i.e. ".CC") is optional, but shoulD be incluDeD if
possible, to proviDe greater precision.

Issue A Provisional 	 Page 17

AppenDix C: PackeD Format

In packeD format, the orDer in which commanDs may occur restricteD. The
layout of a packeD format moDule Description is:

moDule-heaDer 	 -- the type fielD has the packeD-format
-- bit set, anD the size fielD is present

Define-entry ? 	 -- if this moDule Defines the entry point
-- using the olD mechanism

Define-hanDler ? 	 -- if this moDule Defines a hanDler entry
Define-SB ? 	 -- if SB is DefineD for this moDule
Define-type-Dictionary ? 	-- if one is requireD
Define-global-symbol * 	-- any coDe symbol Definitions (types 2, 130)

-- "GO" must be DefineD first, if at all
Define-global-symbol * 	-- any Data or absolute Definitions

Page 37

Panos Technical
init-link/check-use * 	-- any initialise link commands using

-- mode 4 (external code descriptor) must
-- occur here; any check-use command for a
-- particular symbol should occur immediately
-- after the corresponding "init-link" command

init-link/check-use * -- commands using all other modes here - again
-- with any "check-use" command fallowing the
-- "init-link" corresponding to it

declare-area * 	 -- areas with external relocation (i.e.
-- containing 'relocate doubleword'
-- commands using modes 3 or 4)

declare-area ? 	 -- code area, if there is one and it has _
-- not been declared alreall

declare-area ? --area for SB, if SB is d5ined using mode
-- 1, and area has not already been declared

declare-area * 	 -- all other areas
area-description * 	 -- area descriptions, in the same order in

-- which they were declared.
module-end

Page 18 	 Issue A Provisional

Appendix D: Language Codes

Current language implementations and codes have been assigned as below:

Language Implementation 	Code

"Unknown" 	 0
Algol 68C 	 1
BCPL 	 2
C (1) 3
C (2) 4
Cobol 	 5
Forth 	 6
FORTRAN-77 	 7
IMP 	 8
Lisp 	 9
Modula-2 	 10
Pascal 	 11

Note:

The "unknown" code is for use where conformance to the Acorn 32016 inter-
Page 38

Panos Technical
language calling standards is not under the control of the specific language

generator. Mence e.g. assemblers (in particular the ZASM 32016 assembler) will
use this code, although they may provide the facility to specify a language
code, if a given piece of code is intended to interface directly to a known
language.

N.B. TMESE CODES ARE ASSIGNED SOLELY BY ACORN COMPUTERS LTD.

Issue A Provisional 	 Page 19

Appendix E: Type definition format

This appendix defines the format of type-description information which should

be generated by compilers to indicate the type of all the external items defined
in, or referenced from a module.

Syntax of descriptions:

{:X:} 	 descriptor for type X
[V] 	 unsigned integer disp field
"sss" 	 byte-string field

? tag1. 	alternative: selected on initial unsigned integer disp field
f1 	having value 0 for case 1, 1 for case 2 etc.

/ tag2. 	tag1, tag2 ... are descriptive text for each alternative
f2 	 f1, f2 ... are the definitions of the alternative structures

...
?

X * exp 	multiple field - - 'exp' occurrences of item X

! comment text

Descriptions:

! Padding - this may be used (typically) in record descriptions for the
! case where fields are aligned internally in the record

Padding 	= 	[0]
Page 39

Panos Technical
[number of bits of padding]

! Lowest level of definition - used where the interpretation of a data item
! cannot be given - - e.g. BCPL "words", which have no implicit type

Raw-binary = 	[1]
[number of bits in item]

! Standard-type string - - passed by value, or returned as a function result

String 	= 	[2]

! General integer

Gen-Int 	= 	[3]
? unsigned
/ signed
?
[number of bits in integer]

Page 20 	 Issue A Provisional

Appendix E: Type definition format

! Standard machine floating point types

Floating 	= 	[4]
? floating. 	! 32 bits
/ long. 	 ! 64 bits
?

!Conventional pre-defined types - - these are essentially abbreviations for
! (and hence compatible with) the corresponding general integer type above

S-Int 	= 	[5] 	! 32-bit signed integer
S-Short 	= 	[6] 	! 16-bit signed integer
S-Byte 	= 	[7] 	! 8-bit signed integer
U-Int 	= 	[8] 	! 32-bit unsigned integer
U-Short 	= 	[9] 	! 16-bit unsigned integer
U-Byte 	= 	[10] ! 8-bit unsigned integer

! compound types

Vector 	= 	[11] 	 !
? fixed bounds. 	

single -dimension contiguous array

[lo bound]
[hi bound]

/ variable bounds.
?
{:element type:}

Array 	= 	[12] 	 ! multi-dimension or non-contiguous
[number of dimensions]
? fixed bounds.

Page 40

Panos Technical
! bounds below as: A (L1..M1, L2..M2, L3..M3 etc)
([lo bound] [hi bound]) * number of dimensions

/ variable bounds.
?

Record 	= 	[13]
? untyped.

[size in bytes]
/ typed

[number of fields]
{:field type:} * number of fields

/ named + typed
[number of fields]
("field name" {:field type:}) * number of fields

?

Variant 	= 	[14]
[number of alternatives]
{:alternative type:} * number of alternatives

Issue A Provisional 	 Page 21

Appendix E: Type definition format

Restricted = 	[15]
{:integer type:} [lo bound] [hi bound]
? subrange.
/ enumerated.

? weak definition.
/ strong definition.

"element-name" * (hi bound - lo bound + 1)
?

?

Pointer 	= 	[16]
{:referenced type:}

Named-type = 	[17]
"type-name"
{:definition:}

Name-ref = 	[18]
"type-name"

Tagged-type = [25]
[module-local tag]
{:definition:}

Tag-ref 	= 	[26]
[module-local-tag]

! Standard procedure

Procedure = 	[19]
[number of results]
{:result type:} * number of results
[number of arguments]
{:argument type:} * number of arguments

! Flexible procedure i.e. one that takes a variable number of parameters.
Page 41

Panos Technical
! These are removed by the calling code and not by the called procedure.
! This is an extension and is intended for use by C. Flexible procedures are
! compatible only if the result types are compatible; they are not
! compatible with any other procedures.

Flex-proc = 	[20]
{:result type:}

! General untyped pointer - e.g. ADDRESS type in MODULA-2

Address 	= 	[21]

Page 22 	 Issue A Provisional

Appendix E: Type definition format

! Nil parameter - for use by F77 when no formal/actual parameter passed: F77
! code conventions require that 1 doubleword is always pushed before the
! CXP. Nil is defined to be a doubleword with value 0, for this purpose.

Nil 	= 	[22]

! Language-specific type codes: Private requires that the called procedure
! must be in the same language as this one. Non-standard is a general
! extension. The semantics of these two codes is not yet defined!!!

Private 	= 	[23]
[language-code] 	 ! must match
[type-desc-length]
{:language-specific type description:}

Non-standard = [24]
[type-code]
[type-desc-length]
{:non-standard type description:}

Page 42

Panos Technical

Issue A Provisional 	 Page 23

Page 43

Panos Technical

Acorn 32016 Second Processor

Calling PANOS Standard Procedures from C

(c) Copyright Acorn Computers Limited 1986

17-MAR-86, ADC

Page 44

Panos Technical

Calling PANOS StanDarD ProceDures from C

This Document contains the information requireD to write C programs which call
the operating system proceDures DescribeD in the Panos Programmer's Reference

Manual; it explains how the pseuDo-language useD in that Document to Describe

Panos proceDures corresponDs to the functions anD Data types available in C.

Note that some Panos operations are also proviDeD by C library functions which
Do not neeD to be calleD in a special way: for example, getenv(can be useD to
get the value of a Panos global string variable, system(calls the Panos

Page 45

Panos Technical
command line interpreter to process a command string, exit() calls Stop, and

malloc() performs storage allocation.

Declaring Panos Procedures

A C program must contain explicit declarations of all external functions it
calls which are not written in C; this includes all of the Panos standard
procedures, which are written in Modula-2.

Declarations of non-C functions must contain the keyword asm, as shown in the

examples below. This is important: unpredictable run time errors will occur if
the asm keyword is omitted.

extern void XSelectInput() asm; 	/* no result */
extern int SelectInput() asm; 	/* int result */
extern DeleteFile() asm; 	 /* int by default */

Data Types

The correspondence between the data types used in the Panos Programmer's

Reference Manual (INTEGER, CARDINAL, STRING and so on) and the data types
available in C is shown in the table below, and illustrated in the example

sections which follow.

Panos Type 	C Type

INTEGER 	int
CARDINAL 	unsigned int
ADDRESS 	any pointer type, e.g. (char *), or int
BOOLEAN 	 int (0 is FALSE, 1 is TRUE)
MIDDEN 	 int
RECORD(format) any struct type
STRING 	 see section on String Parameters below
PROCEDURE 	see section on Procedure Parameters below

Error Detection

Most Panos standard procedures are functions which return an integer status code

indicating whether or not the requested operation was performed successfully. A
negative status code indicates failure (the value is a standard Panos error
number); a zero or positive value indicates success.

- 1 -

Panos procedures whose names begin with the letter X (e.g. XFindInput) handle
error conditions differently. If an X procedure returns to its caller the
operation was successful. If an error occurs, control does not return to the
caller: instead, a Panos exception condition is signalled. Conditions can be

trapped under program control using the standard procedures described in Section

11 of the Panos Programmer's Reference Manual (Condition Mandlers). Conditions
which are not trapped cause output of a diagnostic traceback showing the state
of the program at the time of the error; execution is then halted.

Either error handling technique can be used in C programs: the programmer can
choose whichever is more convenient (status code or signal).

Simple Examples

The easiest functions to call are those with integer-like arguments and results.
The C program below uses Panos to 10 random numbers.

Page 46

Panos Technical

extern unsigned int Random() asm; /* obligatory */

main()
{

unsigned int r; 	/* i.e. CARDINAL */
int i;

for (i = 0; i < 10; i++) {
r = Random();
printf("%u\n", r);

}
}

If you prefer, this can be tidied up a bit by using C's typedef feature to
define the type CARDINAL as equivalent to (unsigned int).

typedef unsigned int CARDINAL;
extern CARDINAL Random(} asm;

main()
{

CARDINAL r;
int i;
for (i = 0; i < 10; i++) {

r = Random();
printf("%u\n", r);

}
}

Multiple Results

Some Panos functions return more than one result, e.g. the Allocate function
returns a status code and a pointer to the block of storage allocated.

Allocate(INTEGER:Size);
INTEGER: Result
ADDRESS: BlockPointer

- - 2 - -

In fact, only the first result (INTEGER:Result above) is returned as a proper C
function result. For all the others the calling routine must pass pointers to

variables where the extra results will be stored. These extra arguments go at
the beginning of the argument list, so the function synopsis for Allocate looks

like this:

typedef char *ADDRESS; /* a pointer */

int Allocate(BlockPointer, Size)
ADDRESS *BlockPointer;
int Size;

You could write a version of the C library function malloc() based on Allocate.

extern int Allocate() asm; /* returns status code */

char *malloc(nbytes)
{

char *block; 	/* points to allocated space */
if (Allocate(&block, nbytes) < 0) 	/* failed */

return(0);
else

retu rn (bl ock);
}

Page 47

Panos Technical

Multiple extra arguments are written left to right, in the order they appear in
the Panos procedure definition. (Including STRINGS and RECORDS, see below). For
example, the OSByte procedure returns four results. Its definition is

OSByte(CARDINAL:ByteNo
CARDINAL:Param1
CARDINAL:Param2); INTEGER:Result

CARDINAL:Result1
CARDINAL:Result2
BOOLEAN:CBit

In C this becomes

int OSByte(Result1, Result2, Cbit, ByteNo, Param1, Param2)
unsigned int *Result1, *Result2, ByteNo, Param1 Param2;
int *Cbit;

STRING Parameters

Many Panos procedures require STRING arguments, or return STRING results.
Unfortunately, a Panos STRING is different from a C string. C strings are
represented by a (char *) pointer to an array of characters, terminated by a NUL

('\0') character. A Panos STRING is represented by two values: a (char *)

pointer to an array of characters, and an integer which is the length of the

string.

This means that to call a Panos routine with a STRING argument a C program must
pass two actual arguments: a pointer to the string, and the length of the string

(obtained using the C library function strlen).

- 3 -

The example program below uses the Panos XDeleteFile routine to delete a list of

files whose names are read in from the standard input stream.

extern void XDeleteFile() asm; 	/* no result */

main()
{

char fname[64];
while (gets(fname)) 	 /* read file name */

XDeleteFile(fname, 	 /* pointer to string */
strlen(fname)); /* length at string */

}

This program is flawed: it will give a diagnostic traceback and stop if it fails
to delete a file (perhaps because the file did not exist). The program below
corrects this problem. It calls DeleteFile rather than XDeleteFile, and checks
the status code returned by Panos to see if the file was successfully deleted.

extern int DeleteFile() asm; 	/* returns status code */

main()
{

char fname[64];
while (gets(fname)) {

if (DeleteFile(fname, strlen(fname)) < 0)
printf("can't delete %s\n", fname);

}
}

STRING Results
Page 48

Panos Technical

Some Panos procedures return STRING results. Each STRING result requires three
extra function arguments: a pointer to a buffer where the result string is to be

written, an integer indicating the size of this buffer, and a pointer to an
integer variable which will be set to the actual length of the string. The extra

arguments go before normal arguments.

The program below prints out the current operating system version number by
reading the contents of the Panos global string variable SYS$Version using the
GetGlobalString "procedure, defined as

GetGlobalString(STRING:GlobalStringName);
INTEGER:Result
STRING:GlobalStringValue

Mere is the program.

extern int GetGlobalString() asm,
Stop() asm;

#define MAXLEN 128

main()
{
char buf [MAXLEN]; 	/* buffer for result string */
int len; 	 /* actual length of string */
int status; 	 /* Panos error code */

- 4 -

if ((status =
GetGlobalString(buf, MAXLEN, &len, /* GlobalStringValue */

"SYS$Version", 11), /* GlobalStringName */
< 0) 	 /* failed */
Stop(status);

buf[len] = '\0'; 	/* convert buf to C string */

printf("Panos version: %s\n", buf);
}

There are several points to note about this example.

First, the arguments corresponding to the STRING result (GlobalStringValue) go
before the normal arguments (GlobalStringName).

Second, a constant string input argument ("SYS$Version") is passed as a C string

literal (the C compiler generates a pointer to the first character of the
string) and a constant length count (11).

Third, the GlobalStringValue returned by Panos in the array "buf" is not

automatically terminated by a '\0' character. Instead, the "len" argument is

assigned the actual length of the string value returned. So before using "buf"
as a normal C string (by passing it to printf), the program must write a '\0'
character at the end of the string.

Beware: there is an important special case of STRING results, where the STRING
is the first (or only) result of a Panos function. In this case, only the string

result buffer and maximum length count are passed to the procedure as extra
arguments. The actual length is returned as the integer result of the function.

For example, the program above could be rewritten to call XGetGlobalString

rather than GetGlobalString. The definition of XGetGlobalString is

XGetGlobalString(STRING:GlobalStringName);
STRING:GlobalStringValue

The new program would look like this.

extern int XGetGlobalString() asm;
Page 49

Panos Technical
#define MAXLEN 128

main()
{

char buf[MAXLEN]; /* buffer for result string */
int len; 	 /* actual length of string */
int status; 	/* Panos error code */

len = XGetGlobalString(buf, MAXLEN, 	/* GlobalStringValue */
"SYS$Version", 11); /* GlobalStringName */

buf[len] = '\0'; /* convert buf to C string */

printf("Panos version: %s\n", buf);
}

-5 -

RECORD Parameters

RECORD parameters correspond to C struct types. For each RECORD argument the

caller must pass a pointer to an appropriate struct variable. RECORD results are

handled as for other data types: the caller passes pointers to variables where
the results will be stored; these extra arguments go before the normal

arguments.

The example below uses GetFileInformation to examine a file whose name is given
on the command line.

extern int GetFileInformation() asm,
TextualTimeOfBinaryTime() asm;

extern void Stop() asm;

main(argc, argv)
int argc;
char *argv[];
{

struct BTim { unsigned int Low, Migh } date;

struct FileData {
unsigned int load_addr, 	/* load address */

exec_addr, 	/* execution address */
len, 	 /* file length */
attr; 	 /* BBC filesys attribs */

} cat;

char s[128]; 	 /* string result buffer */
int len, status;

if (status =
GetFileInformation(&cat, &date, /* results */

argv[1], strlen(argv[1])) < 0
Stop(status);

if (status =
TextualTimeOfBinaryTime(s, 128, &len, &date) < 0)
Stop(status);

s[len] = '\0';

printf("%s: %d bytes, (%s)\n", argv[1], cat.len, s);
}

Page 50

Panos Technical
PROCEDURE Parameters

Panos PROCEDURE type parameters correspond to C function pointers.

Consider the Panos ArgumentInit procedure.

ArgumentInit(STRING:KeyString
BOOLEAN:InputWanted
BOOLEAN:OutputWanted
STRING:Identif i cati on
PROCEDURE:Mel pProcedu re);

INTEGER:Result
MIDDEN:Mandle

- 6 -

In C, this becomes

typedef int BOOLEAN;
#define TRUE 1
#define FALSE 0

int ArgumentInit(Mandle, KeyString, KeyStringLen, InputWanted,
OutputWanted, Id, IdLen, Melp)

int *Mandle, *KeyStringLen, *IdLen;
BOOLEAN InputWanted, OutputWanted;
char *KeyString, *Id;
void (*Melp)();

An example using ArgumentInit is given below.

#include <stdio-h>

extern int ArgumentInit() asm;
extern void Stop();
typedef int MIDDEN;
#define TRUE 1

static char keystring[] = "Source/A/E-rof",
ident[] = "roff vl.2";

main()
{

MIDDEN handle;
extern void help();
int status;

if ((status =
ArgumentInit(&handle,

keystring, strlen(keystring),
TRUE, TRUE,
ident, strlen(ident),
&help)) < 0)

Stop(status);

.

.

.
}

help()
{

fprintf(stderr, "roff text formatter\n");
}

Page 51

Panos Technical

- 7 -

Page 52

Panos Technical

Acorn 32016 Second Processor

Pandora Definition

Issue B Provisional

User Document

(c) Copyright Acorn Computers Limited 1984

24-Oct-84

Page 53

Panos Technical

Pandora Definition

Contents

1. Introduction 	 1

2. User Interface to Pandora 	 2
2.1 MOS REQUESTS 	 3

o 2.1.1 OS_WRCM (TK_oswrch) 	 4
o 2.1.2 OS_STRING (TK_string) 	 5
o 2.1.3 OS_ASCI (TK_osascii) 	 6

Page 54

Panos Technical
o 2.1.4 OS_NEWL (TK_osnewl) 	 7
o 2.1.5 OS_INLINE (TK_immediate_out) 	 8
o 2.1.6 OS_RDCM (TK_osrdch) 	 9
o 2.1.7 OS_BYTE (TK_osbyte) 	 10
o 2.1.8 OS_WORD (TK_osword) 	 11
o 2.1.9 OS_CLI (TK_oscli) 	 12
o 2.1.10 OS_FILE (TK_osfile) 	 13
o 2.1.11 OS_FIND (TK_osfind) 	 15
o 2.1.12 OS_ARGS (TK_osargs) 	 16
o 2.1.13 OS_BGET (TK_osbget) 	 17
o 2.1.14 OS_BPUT (TK_osbput) 	 18
o 2.1.15 OS_GBPB (TK_osgbpb) 	 19

2.2 Events and Event Control 	 21
o 2.2.1 OS_MANDLER (TK_set_event_handler) 	 24
o 2.2.2 OS_CONTROL (TK_control_event) 	 25

2.3 The Virtual Dispatch Table 	 26
o 2.3.1 OS_SETVDT (TK_set_vdt) 	 27

2.4 Miscellaneous 	 28
o 2.4.1 OS_ENTRY (TK_set_control_program_entry) 	 28
o 2.4.2 OS_VERSION (TK_get_version) 	 29
o 2.4.3 OS_SETVDU (TK_set_vdu_handler) 	 30
o 2.4.4 OS_CONFIG (TK_read_config_switches) 	 31
o 2.4.5 OS_PRIV (TK_privilege) 	 32
o 2.4.6 OS_NOLOAD (TK_no_osc1i_load) 	 33
o 2.2.7 OS_ERROR (TK_read_error) 	 34
o 2.2.8 OS_EXIT (TK_exit) 	 35
o 2.2.9 OS_ESCAPE (TK_read_escape) 	 36
o 2.2.10 OS_SVR (TK_to_supervisor_mode) 	 37
o 2.2.11 OS_INDIR (TK_indirect_svc) 	 38

3. Entry to the Control Program 	 39

4. Memory Map 	 40

Appendix A - - Summary of SVC Calls 	 41

Appendix B - - OSWORD 	 43
Table of OSWORD calls 	 43
OSWORD calls - - descriptions 	 43

Appendix C - - Meader of 32016 Control Programs 	 48

Appendix D - - VDU handler data structure 	 50

Issue B Provisional

	

	 Page i

Change record

07-Feb-84 : Adjusted for version 5.00 Kernels.
03-Apr-84 : Adjustments by John C Moore to tidy up.

15-Aug-84 - : Further changes by John.

04-Oct-84 : Amended by Simone to Pandora Definition Issue B.
All previous references of Tiny Kernel ==> Pandora

TK 	 ==> P

Page 55

Panos Technical

Page ii 	 Issue B Provisional

1. Introduction

The main purpose of Pandora is to allow programs running an the 32016 second
processor to have access to the BBC operating system. It does this by generating

the necessary interface to the TUBE via which the BBC MOST and 32016 SLAVE

communicate.

Pandora enables the BBC machine to be used as an I/O processor without requiring

the user to have any knowledge of the low-level tube interface protocols.
Pandora takes over the hardware Dispatch table and filters out all interrupts
pertaining to the TUBE before passing the remainder on to the user via the

"Virtual" Dispatch table (see section 2.3).

Certain Tube interrupts correspond to EVENTS signalled by the I/O processor.

Events of this type include the timer event and the buffer full event. All these

events are enabled explicitly via the OS_BYTE request to the BBC MOS.

There is another class of EVENTS which do not directly correspond to OS_BYTE
requests; events of this type are enabled using the OS_CONTROL call. For example

one may request that an event is received every time the escape flag is updated
(see section 2.2). In addition, this class includes events which cannot be

attributed to a specific request to the Pandora. For example, Pandora is unable
to determine the originating OS_WRCM request when the host signals a "Can't
extend error" whilst spooling. There is an additional problem because sometimes
I/O errors can be incorrectly attributed to an otherwise error free SVC call. To

avoid this problem spooling should be avoided.
Page 56

Panos Technical

The following section describes in detail how to use Pandora to gain access to
the functionality of the BBC microcomputer.

Section 3 describes entry to the control program.

Issue B Provisional 	 Page 1

2. User Interface to Pandora

The requestor calls the Pandora by executing a SVC instruction. For direct

calls, the byte following the SVC instruction is the SVC number. Whereas, for

indirect calls the byte following has the value 16_00 and the SVC number is
contained in R0(B). If the SVC number is a valid one, then Pandora passes the

request onto the BBC MOST.

Pandora is also entered when the NS32016 signals an exception condition. Pandora

is entered via the NS32016 Dispatch table and deals with any exceptions relevant

to the operation of the TUBE. Other exceptions are passed onto the control

program, control indirecting via the Virtual Dispatch Table.

There are four classes of SVC calls:

(i) MOS REQUESTS
Calls to request an operation by the host I/O processor.

(ii) EVENT CONTROL CALLS
Calls to mechanise the enabling, disabling and receiving of events.

(iii) VIRTUAL DISPATCM TABLE MANAGEMENT CALL
A call to define the position of the Virtual Dispatch Table.

(iv) MISCELLANEOUS
Calls to control kernel operation.

The MOS REQUEST SVC calls are described in detail in Section 2.1. The EVENT

CONTROL calls are presented in Section 2.2 and, in Section 2.3 the Virtual
Dispatch Table is discussed together with the associated SVC call. The
miscellaneous calls are described in section 2.4.

For easy reference the various SVC calls are listed in Appendix A. In this

Page 57

Panos Technical
document the following conventions apply:

o Numbers not in decimal are prefixed by their base. For example 16_1A is
decimal 26.

o Characters are presented in ASCII code (see P 492 of BBC User Guide).

Page 2

	

	 Issue B Provisional

2.1 MOS REQUESTS

The control program gains access to the functionality of the host I/O processor
by putting the appropriate values in the NS32016 registers and then executing a
SVC instruction.

For several calls to Pandora the requestor is required to pass pointers to data

structures. For example, OS_STRING requires that R1 should point at the string
to be output. Pandora assumes that all data structures (including the byte

following the SVC instruction) reside within the supervisor space. Of course,
when no MMU is present then both supervisor and user addresses are the same and
therefore this restriction is not visible.

In the description of the operating calls which follow, all registers and flags

are preserved unless otherwise stated.

An error is indicated by a return with the F bit set, in which case R1(D)
contains the error number. Error numbers in the range -1 to -256 are returned
when an error is detected on the I/O processor, (i.e. the least significant byte

of R1 is the byte error code returned by the host and all other bits of R1(D)
are set. Pandora performs certain checks itself and if it detects an error then
it returns an error value in the range 256<=R1(D)<=511.

It should be noted that some of the requests may cause unattributable errors to
occur. Far example, a OS_WRCM whilst spooling can result in a "Can't extend
error" which may cause an EVENT (see Section 2.2).

RESERVED SVCs
SVCs 0-127 are reserved for use by Acorn.

Page 58

Panos Technical

Issue B Provisional 	 Page 3

2. User Interface to Pandora

2.1.1 OS_WRCM

o SVC code = 1

o Effect:

Write character to currently selected output stream(3) selected with

OS_BYTE call 03.

o On Call:

R1(B) contains character to be written.

o On Return:

F bit clear always. All registers unchanged.

Page 59

Panos Technical

Page 4 	 Issue B Provisional

2. User Interface to Pandora

2.1.2 OS_STRING

o SVC code = 2

o Effect:

Write character string to the currently selected output stream(s).

o On Call:

R1(D) is a pointer to a string of characters.
R2(D) is length.

o On Return:

F bit clear always. All registers unchanged.

Page 60

Panos Technical

Issue B Provisional 	 Page 5

2. User Interface to Pandora

2.1.3 OS_ASCI

o SVC code = 3

o Effect:

Write character to currently selected output stream(s). If character is
a carriage return (ASCII 16_0D) then a line feed (ASCII 16_0A) followed

by the carriage return is output.

o On Call:

R1(B) contains character to be written.

o On Return:

F bit clear always. All registers unchanged.

Page 6 	 Issue B Provisional

Page 61

Panos Technical
2. User Interface to Pandora

2.1.4 OS_NEWL

o SVC code = 4

o Effect:

Writes the current newline string to the output stream(s), (see

OS_SETVDU for details)

o On Call:

No call parameters.

o On Return:

F bit clear always. All registers unchanged.

Issue B Provisional 	 Page 7

2. User Interface to Pandora

2.1.5 OS_INLINE

o SVC code = 21

o Effect:
Page 62

Panos Technical

Output an inline string with effect as OS_STRING.

o On Call:

A byte string of format <length><string to be output> follows the SVC

instruction in store.

o On Return:

F bit clear always. All registers unchanged.

Page 8 	 Issue B Provisional

2. User Interface to Pandora

2.1.6 OS_RDCM

o SVC code = 5

o Effect:

Reads a character from the currently selected input stream. The input

stream can be selected with OS_BYTE 16_02.

o On Call:

No call parameters.
Page 63

Panos Technical

o On Return:

If F bit clear then the read was successful and R1(D) contains the

character read (in least significant byte). If F bit set then error or

escape has been detected and R1(D) contains error code (=16_11 for

escape).

Notes: If an escape condition is detected than it must be acknowledged

using an OS_BYTE call 16_7E.

Issue B Provisional 	 Page 9

2. User Interface to Pandora

2.1.7 OS_BYTE

o SVC code = 6

o Effect:

Invokes a miscellaneous set of operating system calls on the Most (the

OSBYTE or FX commands of the BBC Microcomputer).

The mapping between the osbyte calls described in the BBC machine user

guide and their Pandora counterparts is:

o On call:

The call function (6502 A register) is placed in R1(B).

Parameter 1 (6502 X register) is placed in R2(B).

Parameter 2 (6502 Y register) is placed in R3(B).

Page 64

Panos Technical

o On return:

The F bit is clear if no error occurred. The validity flag (6502 C flag)
is placed into the C bit.

Calls type 0-16_7F return:

R2(D) contains zero extended result (6502 X register).

Calls type 16_80-16_FF return:

R2(D) contains result 1 (6502 X register) in b0-b7 and result 2 (6502 Y

register) in b8-b15.

R3(D) contains zero extended result 2 (6502 Y register).

Exceptions to this rule are:

Call 16_82 - R2(D)=0 (indicating client, not host, memory)

Call 16_83 - R2(D)=Lowest address not allocated for use by Pandora (see

sections 3, 4).

Call 16_84 - - R2(D)=Address of the first byte of Pandora high memory
workspace.

Call 16_9D - changes no registers.

Page 10 	 Issue B Provisional

2. User Interface to Pandora

2.1.8 OS_WORD

o SVC code = 7

o Effect:

Invokes a miscellaneous set of operating system calls on the MOST. Unlike

OS_BYTE calls these calls all require a control block.

On entry to the routine R1(B) contains the OS_WORD function required.
R2(D) points to the control block.

A list of OSWORD calls available is in Appendix B. Note that the format of
the control block for OSWORD 0 is different to that used when calling OSWORD
on the BBC MOST.

Page 65

Panos Technical

Issue B Provisional 	 Page 11

2. User Interface to Pandora

2.1.9 OS_CLI

o SVC code = 8

o Effect:

Sends a line to the BBC mos command interpreter in the MOST.

o On Call:

R1(D) points at command line. R2(D) is length.

o On Return:

If F bit clear, command executed successfully and all registers are as on

call.

If F bit set, error detected whilst executing command. R1(D) contains
error number. Error messages can be read using OS_ERROR. If the error

code is 16_104 then LOADs from within OS_CLI have been prohibited and
this call attempted such a LOAD (see section 2.4.6).

If a program to be loaded and run has a valid 32016 header then the

program is entered in supervisor mode as a control program. Otherwise it

is entered with the same status (PSR) as caller.

Page 66

Panos Technical

Page 12 	 Issue B Provisional

2. User Interface to Pandora

2.1.10 OS—FILE

o SVC code = 13

o Effect:

Loads and save data to a file and reads/alters catalogue information.

o On Call:

R1(B) contains a OS—FILE function number (see below)
R2(D) points to file/directory name
R3(D) length of name
R4(D) contains load address
R5(D) contains execution address
R6(D) contains the Data start address or length
R7(D) contains the Data end address or attributes

o On Return:

F bit clear: successful request
register contents depend on OS—FILE function

F bit set: 	error detected by MOST whilst executing command
R1(D) - - error number returned by I/O processor (MOST).
Error message can be read using OS—ERROR
all other registers unchanged

OS—FILE
FUNCTION

16—FF LOAD file to given address/file's address.
The low byte of the execution address (R5B) determines
whether the file should be loaded to it's own address
(if non-zero) to be the supplied load address (if zero).

The file's catalogue information will be written into the

registers, see item 5.

16—00 SAVE data to file (no wild cards are allowed in the file name).

If start address = end address then the data is of zero length.
Page 67

Panos Technical
The file's catalogue information will be written into the

registers, see item 5.

16_01 WRITE catalogue information for file (no wild cards are allowed
in file name).
Length information is not alterable.

16_02 WRITE the load address to the catalogue information.

Only the Load address is required.

16_03 WRITE the execution address to the catalogue information.

Only the execution address is required.

16_04 WRITE the attributes to the catalogue information.

Only the attributes are required.

Issue B Provisional 	 Page 13

2. User Interface to Pandora

16_05 READ file's catalogue information.
The Load address (R4 D), Execution address (R3 D), Length
in bytes (R6 D), Attributes (R7 D) and Type (in R1 D) are
returned for the particular file.

16_06 DELETE the file (no wild cards are allowed in the file name)

and return catalogue information.

The attribute of a file is a 4 byte (32 bit) item whose bits refer to

the state of various protection flags, and other catalogue information.
Filing systems may not use same of the flags.

The bottom 8 bits have the following meanings:

bit 	 meaning

7
6 	The file is executable by other users.
5 	The file is writeable by other users.
4 	The file is readable by other users.
3 	The file is locked.
2 	The file is executable by you.
1 	The file is writeable by you.
0 	The file is readable by you.

Filing systems with date information available place it in the remaining
24 bits (or a subset of them). Otherwise, they should be returned as 0.

The Type in R1(D) describes the object which was found:

Type 0 is no , o%ct found
Type 1 is fi e ound
Type 2 is directory found

Page 68

Panos Technical

Page 14 	 Issue B Provisional

2. User Interface to Pandora

2.1.11 OS_FIND

o SVC code = 11

o Effect:

Opens a file for reading/writing/update.

o On Call:

R1(B) determines the type of OS_FIND operation (see below).

o On Return:

F bit clear: successful request, register contents depend on OS_FIND
request

F bit set 	error detected by MOST while executing command.

R1(D) contains error number returned by I/O processor.
error message can be read using OS_ERROR
all other registers unchanged.

o On Call R1(B) nonzero

R1(B)<>0 causes a named file to be opened.
R2(D) 	points to the name of the file to be opened.
R3(D) 	is the length of the file name pointed at by R2.

If R1(B) = 16_40 the file is opened for input only.
If R1(B) = 16_80 the file is opened for output only.
If R1(B) = 16_C0 the file is opened for reading and updating.

o On Exit:

F bit clear
implies that the file was successfully opened.

R1(D) is handle for the opened file
(which will be in the range 1..255)

F bit set
signals an error

R1(D) = #X100 implies that the file could not be found.

o On call R1(B) zero

R1(B) = 16_00 causes (a file)/(files) to be closed.

If R2(B)<>0 the file whose handle is iven by R2(S) is closed.

If R2(B) = 0 all open files are closeg
(including SPOOL and EXEC files).

o On exit:

F bit clear operation was successful

Page 69

Panos Technical
F bit set operation failed

Issue B Provisional 	 Page 15

2. User Interface to Pandora

2.1.12 OS—ARGS

o SCV code = 12

o Effect:

Reads/Writes an OPEN file's attributes.

o On Call:

R1(B) specifies the type of operation.
R2(B) contains the file handle.
R3(D) contains data to be written.

If R2(B) is non-zero then OSARGS will do one of the following jobs on
the file of which R2(B) is the handle:

R1(B) = 16—00 read sequential pointer to R3(D)
R1(B) = 16—01 writes R3(D) to sequential pointer
R1(B) = 16—02 read extent to R3(D)
R1(B) = 16—03 writes R3(D) to extent
R1(B) = 16—FF ensure this file is up to date on the media.

If the pointer is set to past the end of the file then the file will be

padded such that intervening bytes read as nulls.

If R2(3) is zero then OSARGS will do one of the fallowing operations on

the filing system:

R1(B) = 16—00 Return type of filing system in R1(D):
0- No current filing system
1- 1200 baud CFS
2- 300 baud CFS
3- ROM filing system
4- Disc filing system
5- Econet filing system
6- Teletext/Prestel 'Telesoftware'

R1(B) = 16—01 Return address of rest of command line in I/O
processor in R3(D).

R1(B) = 16—FF Ensure all open files (and any other necessary
information) are up to date on the media.

o On Return:

F bit clear: Successful, R1(D) and R3(D) operation specific

F bit set: 	Error, R1(D) is the error code.

Page 16 	 Issue B Provisional

2. User Interface to Pandora

Page 70

Panos Technical
2.1.13 OS_BGET

o SVC code = 13

o Effect:

Gets a byte from a specified OPEN file.

o On Call:

R2(B) is the file handle

o On Return:

F bit clear: implies a successfully completed transfer and R1(D)
contains the byte read.

F bit set: 	An error has been detected.
If R1(D) = 16_1FE then an attempt has been made to read past
end of file.

Issue B Provisional 	 Page 17

2. User Interface to Pandora

2.1.14 OS_BPUT

o SVC code = 14

o Effect:

Puts a byte to specified OPEN file
Page 71

Panos Technical

o On Call:

R2(B) is the file handle and R1(B) contains the byte to put.

o On Return:

F bit clear: implies a successfully completed transfer
F bit set: then error detected by MOST and R1(D) contains error number.

Page 18 	 Issue B Provisional

2. User Interface to Pandora

2.1.15 OS_GBPB

o SVC code =15

o Effect:

Write/Read a group of bytes from a specified open file.

o On Call:

R1(B) determines the type of operation:
R1(B) = 16_01 Put byte using byte offset
R1(B) = 16_02 Put byte ignoring byte offset
R1(B) = 16_03 Get byte using byte offset

Page 72

Panos Technical
R1(B) = 16—04 Get byte ignoring byte offset
R1(B) = 16—05 ReaD title/cycle number/option/Drive
R1(B) = 16—06 ReaD current Directory
R1(B) = 16—07 ReaD current library
R1(B) = 16—08 ReaD file names

R2(B) is the file hanDle
R3(D) points to the start of the Data area
R4(D) contains the number of bytes or items to transfer
R5(D) contains the optional value of the pointer

o On Return:

F bit set: implies error DetecteD.

F bit clear: implies transfer completeD successfully.

Values returneD are as below:

R1(B) = 16—01 to 16—04:

R3(D) is upDateD (i.e. olD Data aDDress plus the amount transferreD)
R4(D) shows how much Data has not been transferreD

(anD is usually zero)
R5(D) is the upDateD value of the pointer.

PanDora returns the value 16—1FE in R1 if an attempt is maDe to reaD
past the enD of file.

R1(B) = 16—05:

This returns in the area pointed at by the Data pointer the

title/cycle number/option anD Drive o the currently selecteD Disk.

It is returneD in this form:

(title length)(title)(option)(Drive)

The cycle number, option anD Drive are single binary bytes.

Issue B Provisional 	 Page 19

2. User Interface to PanDora
R1(B) = 16—06:

This returns in the area pointeD at by the Data pointer the currently

selecteD Directory name.
It is returneD in this form:

<length Disk name><Disk name>
<length Directory name><Directory name><priv>

<priv> = 16—00 =>0wner
<priv> = 16—FF =>Public

R1(B) = 16—07:

This returns in the area pointeD at by the Data pointer the currently

selecteD library name.
It is returneD in this form:

<length Disk name><Disk name>
<length library name><library name><priv>

<priv> = 16—00 =>0wner
Page 73

Panos Technical
<priv> = 16_FF =>Public

R1(B) = 16_08:

This returns the names of files in the current directory.
The format of the control block is similar to that for sequential
files:

R2(B) returns the cycle number
R3(D) is the address to put the data
R4(D) is the file number of filenames to transfer
R5(D) is the file pointer

If the pointer is set to zero the search will begin with the first
file. All registers are updated in a similar manner to the way

pointers are updated for R1(B) = 16_01 to 16_04.
The format of the filenames is as follows:

<length filename 1><filename 1>
<length filename 2><filename 2>

Page 20 	 Issue B Provisional

2. User Interface to Pandora

2.2 Events and Event Control

There are two classes of events. One class corresponds to events being signalled

by the I/O processor. Generally, these events are enabled/disabled using the

relevant OS_BYTE call. Events in the other class do not correspond to OS_BYTE
requests and are enabled using the SVC OS_CONTROL. For all events, the Kernel
calls a routine to deal with it. By default the Kernel supplies a null event

routine for each event. The call OS_MANDLER enables the control program to

choose which routine should be called for each of the events.

Events enabled by OS_BYTE calls are as follows:

EVENT NUMBER
0 	 Buffer Empty
1 	 Buffer Full
2 	 Keyboard Interrupt
3 	 ADC conversion complete
4 	 Start of TV field pulse
5 	 Interval timer crossing zero
6 	 Escape condition detected
7 	 RS423 error event
8 	 Network event
9 	 User event
255 	 Event unknown by Pandora

Events enabled by OS_MANDLER are:

EVENT NUMBER
Page 74

Panos Technical
251 	 Pandora SVC error detected
252 	 End of Pandora SVC call
253 	 Escape flag update
254 	 Unattributable error detected by I/O processor

Issue B Provisional 	 Page 21

2. User Interface to Pandora

For all events the event routine is entered:
(a) with bits I, S, U and T cleared in PSR,
(b) with R0-R7 containing what they did when the event occurred

(c) the supervisor stack looking as below:
NB. addresses increase upwards and leftwards.

	

31 	 0
+ 	+ 	+
|PSR | MOD | 	values at time of event
+ 	 +

| 	PC 	|
+ 	 +
| event number|
+ 	 +

| 	X param 	|
+ 	 +

| 	Y param 	|
+ 	 +
| --- | MOD | 	context within kernel to allow return
+ 	 +

	

SP => | 	PC 	|
+ 	 +

If it is required to continue after the event then an RXP0 should be executed.

The event is described by the data addressed as 8(SP) through 16(SP):

For events 0-9:
8(SP) contains the "Y" parameter supplied by I/0 processor

12(SP) contains the "X" parameter supplied by I/O processor

16(SP) contains the Most event number (0-9)

For event 255:
8(SP) contains the "Y" parameter supplied by I/0 processor

12(SP) contains the "X" parameter supplied by I/O processor

Page 75

Panos Technical
16(SP) contains the Most event number (9-255)

For events 251 and 252:
8(SP) is undefined

12(SP) is undefined
16(SP) contains the event number (251 or 252)

For event 253:
8(SP) is undefined

12(SP) the value of the escape flag maintained by the MOST

e.g. =0 when escape flag clear and
=1 when escape flag set

16(SP) contains the F event number (i.e. 253)

For event 254:
8(SP) is the error number

12(SP) is undefined
16(SP) is the event number (254)

Page 22 	 Issue B Provisional

2. User Interface to Pandora

When enabled, type 251 events occur if a Pandora call ends in error (i.e. the F
bit set).

If event 252 is enabled then when the next Pandora SVC returns (excluding return

from OS_CONTROL and OS_MANDLER) an event is generated. Values of the stacked

MOD, PSR and PC correspond to the instruction following the SVC instruction.

If both events 251 and 252 are enabled at the same time then event 252 takes

preference - - event 251 is ignored and the End_of_SVC event handler is entered.
The F bit in the stacked PSR indicates whether the previous call was successful.

If it is wished to return to the place of interrupt then the routine should:

(1) Return after a short period
(2) Take care not to corrupt R0-R7.

Only calls to SVCs not involving TUBE protocols are allowed from event routines;
SVCs in this category include those defined in sections 2.2, 2.3 and 2.4.

Page 76

Panos Technical

	

Issue B Provisional 	 Page 23

2. User Interface to Pandora

2.2.1 OS_MANDLER

o SVC code = 30

o Effect:

Defines the supervisor routine that will be executed on a specific I/O

processor event.

o On Call:

R1(B) contains the event number
R2(D) contains offset/module of routine entry in the standard 32016 external

procedure descriptor format:

	

31 	 0

	

+ 	 + 	+
| OFFSET | MOD |

	

+ 	 + 	+

o On Return:

F bit clear: successful and R2(D) contains offset/module of old handler
F bit set : illegal event number
All registers are as on entry

Page 77

Panos Technical

Page 24 	 Issue B Provisional

2. User Interface to Pandora

2.2.2 OS_CONTROL

o SVC code = 57

o Effect:

Enables/disables events 251-254 (see section 2.2).

(NB. other events are enabled/disabled using OS_BYTE)

o On Call:

R1(B) is the event number
R2(D) bit 0 =0, Disable event

bit 0 =1, Enable event

o On Return:

F bit clear - : successful and R2(D) bit 0 contains the old status.
F bit set 	: illegal event number.

Page 78

Panos Technical

Issue B Provisional 	 Page 25

2. User Interface to Pandora

2.3 The Virtual Dispatch Table

In order to service tube interrupts correctly and ensure that exceptions

occurring whilst in the code of Pandora may be attributed to the originating SVC

request, it is required that Pandora takes over the hardware Dispatch Table and

presents to the control program a "virtual" table as a replacement. This table
is called the Virtual Dispatch Table (VDT).

The control program informs Pandora about the whereabouts of the VDT using the
"OS_SETVDT" call which sets the virtual dispatch table to a supervisor mode
address supplied by the control program.

The user sees the VDT as a replica of the hardware defined Dispatch Table. When
Pandora needs to inform the control program of an exception then it uses the VDT

to obtain the external procedure descriptor of the service routine to call.
Pandora enters the service routine, faking the entry so that it appears to the
control program that the VDT is the true hardware defined dispatch table. After
servicin the exception the return should be made using RETT or RETI where
applicable.

o Traps occurring whilst in the control program are routed directly to the
relevant routine supplied by the control program.

o NVIs and NMIs are passed on after the Kernel has filtered out any
interrupts relevant to the workings of the TUBE.

o SVC exceptions are also filtered and any exceptions which are not known
to Pandora are passed onto the service routine of the control program.

It must be noted that the control program should not alter the position of the
hardware dispatch table. Alteration of INT_BASE will result in total Kernel
malfunction. If the control program does not inform Pandora of the presence of a

VDT then the Kernel indirects via the Kernel's default VDT to a Kernel supplied
routine which prints out a diagnostic message on the VDU and enters a dynamic
halt.

Page 26 	 Issue B Provisional

2. User Interface to Pandora

2.3.1 OS_SETVDT

Page 79

Panos Technical
o SVC code = 40

o Effect:

Informs Pandora where the Virtual Dispatch Table resides in the supervisor

space. The Kernel uses this table to indirect after a hardware exception

to the application routine. OS_SETVDT is called from supervisor mode and

the address supplied is, of course, taken to be within supervisor space.
If OS_SETVDT is called from user space then Pandora passes the SVC on via

the VDT.

o On Call:

R1(D) contains address of VDT

o On Return:

F bit clear always.
All registers unchanged.

Issue B Provisional 	 Page 27

2. User Interface to Pandora

2.4 Miscellaneous

2.4.1 OS_ENTRY

o SVC code = 51

o Effect:

Defines entry address in control program on subsequent <break>.

Page 80

Panos Technical

o On Call:

R1(D) is the address of a control program which is entered on any

subsequent break. On entry to the control program after a break R1 = 1.

o On Return:

F bit clear always. All registers unchanged.

Page 28 	 Issue B Provisional

2. User Interface to Pandora

2.4.2 OS_VERSION

o SVC code = 52

o Effect:

Returns the version number of Pandora.

o On Call:

No parameters

o On Return:

The version number is returned in R1(D). For example, version 3.23

returns R1(D) = #X00000323.
Page 81

Panos Technical

F bit is clear always.

Issue B Provisional 	 Page 29

2. User Interface to Pandora

2.4.3 OS_SETVDU

o SVC code = 53

o Effect:

Code is loaded into the I/O processor to control the operation of its vdu

driver.

o On Call:

R1(D) <= 255

R1(D) is the identity of a standard VDU handler:

R1(D) = 0 The raw BBC MOS vdu handler (see BBC micro user guide)

R1(D) = 1 The modified BBC MOS vdu handler used by mast languages
on the 32016. Differences from the standard one are:

#X0A - : Newline code - generates a <CR> and then an <LF>

#X0D - : Carriage return - - only does a <CF> never a <LF>
#X1B : Down-line - moves vertically down in current column

Page 82

Panos Technical
OS_ASCI is identical to OS_WRCM when this handler is selected

R1(D) = 2 -> 255 	reserved

R1(D) > 255

R1(D) contains the address of a vdu handler data structure. This
contains 6502 code, relocation bit map, newline string and other
information in the format in Appendix D.

o On exit:

F bit clear: successful
R1(D) = The identity of the previous handler

(so you can restore it)

F bit set: error, the handler was not inserted because:

R1(D) = -1 The format of the data structure was incorrect.
R1(D) = -2 A bad newline string was supplied
R1(D) = -3 Incompatible tube software
R1(D) = -4 Insufficient space in the host

Page 30 	 Issue B Provisional

2. User Interface to Pandora

2.4.4 OS_CONFIG

o SVC code = 54

o Effect:

Returns the value of the second processor configuration switches.

o On Call:

No parameters

o On Return:

F bit clear always, R1(D) contains the configuration information:

Bit in R1 	 Meaning

0 	 =1, FPU present =0. FPU absent
1 	 =1, MMU present =0, MMD absent

	

2-7 	 RESERVED

	

8-31 	 =0 always

Page 83

Panos Technical

Issue B Provisional 	 Page 31

2. User Interface to Pandora

2.4.5 OS_PRIV

o SVC code = 55

o Effect:

Controls which SVC operations Pandora will carry out.

o On Call:

R1(B) = SVC number.

R2 bit 0 =0 -> pass this SVC on via the VDT
=1 -> carry out this SVC in Pandora

All other bits reserved

o On Return:

F bit clear, operation successful F1(D)
previous status of this SVC in bit 0

F bit set, error R1(D) contains the error code
=16_101 Attempt to modify status of non-Pandora SVC
=16_102 Attempt to modify the status of OS_PRIV
=16_103 Called from user mode

Page 84

Panos Technical

Page 32 	 Issue B Provisional

2. User Interface to Pandora

2.4.6 OS_NOLOAD

o SVC code = 56

o Effect:

Controls whether or not OS_CLI calls are allowed to cause LOADS into the

second processor store. After this call any OS_CLI operation which
attempts to load data into the 32016 store will fail.

o On Call:

R1(D) bit 0 = 0, Disallow LOADs from OS_CLI operations.
bit 0 = 1, Allow LOADs from OS_CLI operations.
All other bits reserved.

o On Return:

R1(D) bit 0 contains the old status.

Page 85

Panos Technical

Issue B Provisional 	 Page 33

2. User Interface to Pandora

2.4.7 OS_ERROR

o SVC code = 31

o Effect:

Reads Pandora error message. After reading the length of the current

message is set to zero.

N.B. In order to avoid the current message being overwritten the
OS_ERROR should be called prior to any further Kernel calls.

o On Call:

R1(D) points at error message buffer of requestor

R2(D) is maximum length of error message to be accepted

o On Return:

F bit = 0 always.

R2(D) is length of message.
(truncated to the maximum length of supplied buffer)

R3(D) is the error number

All other registers are unchanged.

Page 86

Panos Technical

Page 34 	 Issue B Provisional

2. User Interface to PanDora

2.4.8 OS_EXIT

o SVC coDe = 17

o Effect

Causes control to be passeD back to the control program. The entry point

at which the control program is entereD is DefineD using OS_ENTRY. On

entry to the control program R1=2 inDicating that entry was causeD by

OS_EXIT.

o On Call:

No parameters

o On Return:

This call Does not return.

Issue B Provisional 	 Page 35
Page 87

Panos Technical

2. User Interface to Pandora

2.4.9 OS_ESCAPE

o SVC code = 20

o Effect:

Reads the kernel escape flag.

o On Call:

No parameters

o On Return:

F bit clear: no escape detected
F bit set: 	escape has been detected
All other registers are unchanged

Page 36 	 Issue B Provisional

2. User Interface to Pandora

2.4.10 OS_SVR

o SVC code = 32

Page 88

Panos Technical
o Effect:

Clear the U bit in the PSR register.
All other PSR are unchanged.

o On Call:

No parameter

o On return

F bit = 0 always
All other register unchanged

Issue B Provisional 	 Page 37

2. User Interface to Pandora

2.4.11 OS_INDIR

o SVC code = 0

o Effect:

Calls the SVC request passed in R0.

o On Call:

Registers contain parameters appropriate for the called SVC.
Page 89

Panos Technical

o On Return:

Registers and flags contain return values from the called SVC.

Page 38

	

	 Issue B Provisional

3. Entry to the Control Program

o Initial Entry

After reset (power on, <ctrl-break> or <shift-break>), Pandora checks

whether the MOST has sent a NS32016 program (i.e. ROM/FILE header has

required type -32016- and copyright message - - see appendix C) down the
TUBE. If so, then the program is considered the control program and

entered. Otherwise, Pandora enters the default control program - - the
command interpreter of PANDORA. The default control program is a simple

program which reads in command lines and passes them (using OS_CLI) to

the BBC MOS. This facilitates the loading and running of user programs.

Note that Pandora enters the control pro ram with no stacked information
and takes no advantage of the position N the supervisor stack. Therefore
the control program may reposition the supervisor stack to any convenient

area of memory as long as there is always room for kernel to stack 16_400

bytes.

o Re-entry
Page 90

Panos Technical

The control program can be re-entereD by
(a) <break>
(b) <shift-break>
(c) unDer program control via OS_EXIT
(D) via OS_CLI (i.e. loaD anD run a file with a valiD 32016 heaDer)

o On entry R1 inDicates how the control program was entereD:

R1=0 initial entry (power-on or <ctrl-break>)
R1=l entry after any variety of <break>
R1=2 entry via OS_EXIT
R1=3 entry via OS_CLI

On entry U = 0, S = 0 anD I = 1 in the PSR register.

All Data structures in the PanDora workspace are re-initialiseD:
the VDT reverts back to the Default table,
events are DisableD,
event routines revert to the Default (null) routines,
the table Determining which SVCs are valiD is reset.

The layout of memory on entry to the control program is DescribeD the

next section.

Issue B Provisional 	 Page 39

4. Memory Map

PanDora runs from ROM but requires two areas of RAM for workspace, one at the
bottom anD one at the top of memory. The limits of the memory area available to
the application system can be DiscovereD by the use of OS_BYTE calls 16_83 anD
16_84.

Store layout

	

Top of RAM + 	 +

	

| 	Kernel Workspace 	|

	

+ 	 |<-Top of available RAM

	

| 	 | 	 | (from OS_BYTE 16_84)

	

| 	Default supervisor stack 	|

	

| 	 | 	 |

	

| V 	 |

	

| 	 |

	

: 	 :

	

| 	 |

	

| 	 |

	

| 	 |

	

+ 	 +<-Bottom of available RAM

	

| 	 | (from OS_BYTE 16_83)

	

| 	Kernel Workspace 	|
0 	| 	 |

Page 91

Panos Technical
+ 	 +

Page 40 	 Issue B Provisional

Appendix A - - Summary of SVC Calls

SVC Number
Name 	 Dec Mex 	Description

MOS Request
OS_WRCM 	 1 &01 Write character to output stream(s)
OS_STRING 	 2 &02 Write string to output stream(s)
OS_ASCI 	 3 &03 Write char with CR-> LF/CR to output
OS_NEWL 	 4 &04 Write LF/CR to output stream(s)
OS_RDCM 	 5 &05 	Read character from input stream
OS_BYTE 	 6 &06 A large group of miscellaneous calls
OS_WORD 	 7 &07 A large group of miscellaneous calls
OS_CLI 	 8 &08 Pass command line to BBC to execute
OS_FILE 	 10 &0A Manipulate file data and catalogue
OS_FIND 	 11 &0B Open file for read/write/update
OS_ARGS 	 12 &0C Read/write an open files attributes
OS_BGET 	 13 &0D Get byte from file
OS_BPUT 	 14 &0E Put byte to a file
OS_GBPB 	 15 &0F Read/Write bytes to a file
OS_INLINE 	 21 &15 	Output inline string

Control of events
OS_MANDLER 	 30 &1E Set routine to be called on event
OS_SVR 	 32 &20 	Enter supervisor mode
OS_CONTROL 	 57 &39 	Enable/disable events 251-255

Virtual Dispatch Table Management
OS_SETVDT 	 40 &28 	Positions the Virtual Dispatch Table

Miscellaneous
OS_INDIR 	 0 &00 Request SVC call passed R0
OS_EXIT 	 17 &11 Returns control to control program
OS_DEBUG 	 18 &12

Page 92

Panos Technical
OS_ESCAPE 	 20 &14 Read value of kernel escape flag
OS_ERROR 	 31 &1F Read error message from I/O processor
OS_ABORT 	 33 &21 Jump through ABORT vector

OS_SPLIT 	 50 &32
OS_ENTRY 	 51 &33 Defines <break> entry address
OS_VERSION 	 52 &34 Returns the version number of kernel
OS_SETVDU 	 53 &35 	Install vdu handler in the I/O processor
OS_CONFIG 	 54 &36 Returns the value of the M/W switches
OS_PRIV 	 55 &37 Control passing of SVC operations
OS_NOLOAD 	 56 &38 Allow/disallow LOAD from within OS_CLI

Issue B Provisional 	 Page 41

Appendix A - Summary of SVC Calls

Numerical List of SVC calls

SVC Number
Dec Mex Name 	 Description

0 &00 OS_INDIR 	 Request SVC call passed R0
1 &01 OS_WRCM 	 Write character to output stream(s)
2 &02 OS_STRING 	 Write string to output stream(s)
3 &03 OS_ASCI 	 Write char with CR-> LF/CR to output
4 &04 OS_NEWL 	 Write LF/CR to output stream(s)
5 &05 OS_RDCM 	 Read character from input stream
6 &06 OS_BYTE 	 A large group of miscellaneous calls
7 &07 OS_WORD 	 A large group of miscellaneous calls
8 &08 OS_CLI 	 Pass command line to BBC to execute

10 &0A OS_FILE 	 Manipulate file data and catalogue
11 &0B OS_FIND 	 Open file for read/write/update
12 &0C OS_ARGS 	 Read/write an open files attributes
13 &0D OS_BGET 	 Get byte from file
14 &0E OS_BPUT 	 Put byte to a file
15 &0F OS_GBPB 	 Read/Write bytes to a file

17 &11 OS_EXIT 	 Returns control to control program
18 &12 OS_DEBUG

20 &14 OS_ESCAPE 	 Read value of kernel escape flag
21 &15 OS_INLINE 	 Output inline string

30 &1E OS_MANDLER 	 Set routine to be called on event
31 &1F OS_ERROR 	 Read error message from I/O processor
32 &20 OS_SVR 	 Enter processor supervisor mode
33 &21 OS_ABORT 	 Jump through ABORT vector

40 &28 OS_SETVDT 	 Positions the Virtual Dispatch Table

50 &32 OS_SPLIT
51 &33 OS_ENTRY 	 Defines <break> entry address
52 &34 OS_VERSION 	 Returns the version number of kernel
53 &35 OS_SETVDU 	 Install vdu handler in the I/O processor

Page 93

Panos Technical
54 &36 OS_CONFIG 	 Returns the value of the M/W switches
55 &37 OS_PRIV 	 Control passing of SVC operations
56 &38 OS_NOLOAD 	 Allow/disallow LOAD from within OS_CLI
57 &39 OS_CONTROL 	 Enable/disable events 251-255

Page 42 	 Issue B Provisional

Appendix B - - OSWORD

Table of OSWORD calls

R1(B) 	DESCRIPTION

00 	Read a line from currently selected input.
01 	Read system time.
02 	Write system time.
03 	Read system time interval counter.
04 	Write to system time interval counter.
05 	Read I/O processor.
06 	Write to I/O processor.
07 	Make a sound.
08 	Define an envelope.
09 	Read pixel value.
0A 	Read_character definition for given character.
0B 	Read palette value for given logical colour.
0C 	Write palette value for given logical colour.
0D 	Read last two graphics cursors.
0E 	Read real-time clock
0F 	Write to real-time clock

7D 	Get DFS cycle number.
7E 	Read current DFS disc size.
7F 	Bash disc controller.

OSWORD calls - descriptions

OSWORD call 16_00

o Read a line from the currently selected input. R2(D) points to a buffer
containing:

0(R2) The address of the buffer for the input line
4(R2) The length of the buffer
5(R2) Input character lower bound
6(R2) Input character upper bound

Characters will only be entered in the buffer if they are within the

range specified by locations 5(R2) (inclusive lower bound) and 6(R2)
(inclusive upper bound). During input, DEL deletes the last character
input and NAK (ctrl/u) deletes the entire input line.

o On Exit:

Page 94

Panos Technical
F = 0 Indicates that a carriage-return (ASCII 16_0D)

terminated the line.

F = 1 Indicates that an escape condition occurred.

R3D is set to the length of the input line (including the CR if F = 0).

Issue B Provisional 	 Page 43

Appendix B - OSWORD

OSWORD call 16-01

o Read system time

The five byte system time is read into locations 0(R2) (lsb) to 4(R2)
(msb).

System time is set to zero by a hard reset.

OSWORD call 16_02

o Write system time.

The five byte system time is reinitialised with the value at locations

0(R2) (lsb) to 4(R2) (msb).

OSWORD call 16_03

o Read time interval counter.

The system time interval counter is a five byte incrementing counter. It

is reset to zero by any reset. When the system time interval counter

crosses zero an event is generated. The five byte interval counter is
read into locations 0(R2) (lsb) to 4(R2) (msb).

OSWORD call 16_04

o Writes to the system time interval counter.

The five interval counter is initialised with the value at locations

0(R2) (lsb) to 4(R2) (msb). (Note that the counter is an incrementing

counter, thus a value of 16_FFFFFFFFFF would give a time interval of 1

centisecond).

OSWORD call 16_05

o Read a byte from I/O processor.

Uses a 32 bit address taken from locations 0(R2) to 3(R2), result
returned in 4(R2).

Useful when used in conjunction with the tube - - the tube will only
pass the byte if the address is in the top range.

OSWORD call 16_06

o Write a byte to I/O processor.

Page 95

Panos Technical

Uses a 32 bit address taken from locations 0(R2) to 3(R2). Byte for

writing is taken from 4(R2).

Page 44 	 Issue B Provisional

Appendix B - - OSWORD

OSWORD call 16_07

o Make a sound.

The 8 bytes at locations 0(R2) to 7(R2) are treated as 4 2-byte values,
0(R2) lsb, 1(R2) msb etc. These four values define the sound effect. See

the sound specification in the new user guide for more details.

OSWORD call 16_08

o Define an envelope.

The 13 bytes at locations 1(R2) to 13(R2) are used to define the envelope

indicated by 0(R2). See the sound specification in the new user guide for

more details.

OSWORD call 16_09

o Read pixel value.

The 4 bytes at locations 0(R2) are 3(R2) are treated as 2 2-byte values.
0(R2) (lsb) and 1(R2) (msb) represent an X-coordinate, 2(R2) (lsb) and

3(R2) (msb) represent a Y-coordinate. The value of the pixel at the
addressed coordinate is deposited in location 4(R2). An invalid
coordinate returns a value of 16_FF.

OSWORD call 16_0A

o Read character definition far a given character.

The character definition for the character given in location 0(R2) is

deposited in locations 1(R2) (top row) to 8(R2) (bottom row).

OSWORD call 16_0B

o Read the palette value for a given logical colour.

The 4-byte physical colour definition for the logical colour given at

location 0(R2) is deposited at locations 1(R2) to 4(R2).

OSWORD call 16_0C

o Write the palette value for a given logical colour.

The 4-byte physical colour definition at locations 1(R2) to 4(R2) is

assigned to the logical colour 0(R2).

Issue B Provisional 	 Page 45

Appendix B - OSWORD
Page 96

Panos Technical
OSWORD call 16_0D

o ReaD graphics cursor positions.

The last two positions visiteD by the graphics cursor are returneD as X,
Y, X, Y (each two byte integers).

OSWORD call 16_0E

o ReaD the real-time clock.

OSWORD call 16_0F

o Write to the real-time clock.

OSWORD call 16_7D

o ReaD the DFS cycle number (of currently selecteD Directory). The cycle
number is returneD in the location (R2 D).

OSWORD call 16_7E

o ReaD the DFS Disc size (in bytes of the currently selecteD Disc).

The four byte Disc size is returneD in locations 0(R2) to 3(R2).

OSWORD call 16_7F

o Access the Disc controller.

(R2 D) points at this control block:

OFFSET

	

0 + 	 +

	

| 	 Drive 	 |

	

1 + 	 +
| ADDress to put to/get from |

	

5 + 	 +

	

| 	Number of parameters 	|

	

6 + 	 +

	

| 	 CommanD 	 |

	

7 + 	 +

	

| 	 |
|Parameters 	 |

	

| 	 |

	

7+p + 	 +

	

| 	 Result 	 |

	

8+p + 	 +

The Drive byte will select Drives 0-3 in the stanDarD DFS manner (i.e.
Drive 2 is siDe two of Drive 0). If set to 16_FF however no Drive will be

Page 46 	 Issue B Provisional

AppenDix B - - OSWORD

selecteD. It shoulD be noteD that no commanD will work if the Drive is

not spinning. The aDDress bytes are where Data shoulD be taken from/put to

DepenDing on the type of commanD. If no Data transfer takes place, then

they may be ignoreD.

(R2 D) + 5 Determines the number of parameters for the Disc controller
Page 97

Panos Technical
after the command byte.

The command byte is the command for the disc controller command register.
Bit 6 should be set and bit 7 should be unset as the drive selection is

done automatically and these bits are used for it. Thus the command for

read sector becomes 16—53 and write sector 16—4B. The parameter bytes are
sent to the disc controller parameter register after the command byte is

sent to the command register.

The result returned at the end of the operation is read from the result

register and stored in the next byte after the parameters.

Note that the direction of any possible data transfer is determined by

bit 4 of the command byte: a 1 means that you are reading from the disc,
a 0 means that you are writing to it.

Issue B Provisional 	 Page 47

Appendix C - Meader of 32016 Control Programs

The fragment of assembly code below describes the format of the header which
enables the code to be entered as a control program on the 32016 second
processor.

; ROM format constants

ROM—SERVICE 	 EQU 	#b10000000
ROM—LANGUAGE 	 EQU 	#b01000000
ROM—TUBE 	 EQU 	#b00100000
ROM—ELK 	 EQU 	#b00010000
ROM—PROC—MASK 	EQU 	#x0D
ROM—6502 	 EQU 	#x00
ROM—TURBO—6502 	EQU 	#x01

Page 98

Panos Technical
ROM-PROC-4 	 EQU 	#x04
ROM-PROC-5 	 EQU 	#x05
ROM-Z80 	 EQU 	#x08
ROM-32016 	 EQU 	#x09
ROM-286 	 EQU 	#x0C
ROM-ARM 	 EQU 	#x0D

I-6502-JMP 	 EQU 	#x4C
I-6502-RTS 	 EQU 	#x60
ROM-MOST-ADDRESS 	EQU 	#x8000

ROM-ADDRESS 	 EQU 	#x00000200
ROM-TYPE-BITS 	EQU 	ROM-LANGUAGE ROM-TUBE ROM-PROC-32016

RELORG ROM-ADDRESS

ROM-BASE 	 DCB 	I-6502-JMP

	

DCW 	LANGUAGE-6502-ROM-BASE+ROM-MOST-ADDRESS

	

DCB 	I-6502-JMP

	

DCW 	SERVICE-6502-ROM-BASE+ROM-MOST-ADDRESS
ROM-TYPE 	 DCB 	ROM-TYPE-BITS

	

ROM-COPYRIGMT-OFFSET DCB 	ROM-COPYRIGMT - - ROM-BASE

	

ROM-VERSION-NUMBER DCB 	2
ROM-NAME 	 DCS 	'BCPL-32016', 0

	

ROM-VERSION-STRING DCS 	'Version 0.35 of 10th August 1983'
;

ROM-COPYRIGMT 	DCS 	0, '(C) Acorn 1983', 0
ROM-RELOCATION 	DCD 	ROM-ADDRESS
ROM-EXECUTION 	DCD 	BOOT-ROM-BASE

LANGUAGE 6502 	DCB 	#x58,#xA9,#xAA,#xA2,#x00,#xA0,#xFF,#x20

	

DCB 	#xF4,#xFF,#x86,#x00,#xA9,#xAB,#xA2,#x00

	

DCB 	#xA0,#xFF,#x20,#xF4,#xFF,#x86,#x01,#xA9

	

DCB 	#xFC,#xA2,#x00,#xA0,#xFF,#x20,#xF4,#xFF

	

DCB 	#x8A,#xA8,#x88,#x30,#x1B,#xB1,#x00,#x29

	

DCB 	#x4D,#xC9,#x40,#xF0,#x54,#xD0,#xF3,#xA9

	

DCB 	#x7E,#x20,#xF4,#xFF,#x20,#xE7,#xFF,#x00

	

DCB 	#x99,#x43,#x73,#x63,#x61,#x70,#x65,#x00

	

DCB 	#x18,#x20,#xE7,#xFF,#xAD,#x01,#x80,#x69

	

DCB 	#x8A,#x8D,#x02,#x02,#xAD,#x02,#x80,#x69

Page 48 	 Issue B Provisional

Appendix C - - header of 32016 Control Program

	

DCB 	#x00,#x8D,#x03,#x02,#xA9,#x2A,#x20,#xEE

	

DCB 	#xFF,#xA9,#x06,#x85,#x00,#xA9,#x00,#x85

	

DCB 	#x01,#xA9,#xF0,#x85,#x02,#xA9,#x00,#x85

	

DCB 	#x03,#xA9,#x7E,#x85,#x04,#xA9,#x00.#xAA

	

DCB 	#xA8,#x20,#xF1,#xFF,#xB0,#xB9,#xA2,#x06

	

DCB 	#xA0,#x00,#x20,#xF7,#xFF,#xD0,#xD5,#xF0

	

DCB 	#xD3,#x98,#xAA,#xA9,#x8E,#xA0,#xFF,#x4C

	

DCB 	#xF4,#xFF,#x20,#xE7,#xFF,#xA0,#x01,#xB1

	

DCB 	#xFD,#xF0,#xAD,#x20,#xEE,#xFF,#xC8,#xD0

	

DCB 	#xF6

SERVICE-6502
; If the ROM contains OS services, then set the ROM-SERVICE bit in
; the ROM-TYPE byte, and insert the 6302 service code here.

	

DCB 	I-6502-RTS

Page 99

Panos Technical

Issue B Provisional 	 Page 49

AppenDix D - VDU hanDler Data structure

Section missing.

Page 100

Panos Technical

Page 50 	 Issue B Provisional

Page 101

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101

