University of Edinburgh

Department of Computer Science

LAYOUT

Internal Report CSR-21-78

James Clerk Maxwell Building , February, 1978
The King’s Buildings

Mayfield Road

Edinburgh

EH9 3JZ

LAYOUT

A document production program

LAYOUT is a program, written by Hamish Dewar, for the
production of documentation from an input consisting of the
text of the document interspersed with simple commands. The
program is available on many machines, in particular, the
Computer Science Department's PDP9, PDP15 and Interdata
systems, ERCC's EMAS and 2980 systems, and the SRC's
DECsystem 10 and the POP1l running DEIMOS or DOS.

P. Mclellan
February 1978, revised September 1978.

Contents

Introduction

The source file

Shift conventions
Directives

The $A directive

The $L directive

The $E directive

The other directives

A simple example
Tabulation and indentation
The $A directive revisited
The updated source file
Inhibiting output

Shift conventions revisited
Errors

Summary

Appendix 1 - use of LAYOUT

Appendix 2 - use of Diablo

10
11
12
14
16

LAYOUT is a program which produces a paged formatted document from a
source file. The motivations for this are twofold. Firstly, the formatting
of the document can easily be altered by simple editing of the source file.
Secondly, any changes or updates to the document can be effected by editing
the source file, with any effects of the.changes on the formatting of the
document handled automatically. In order to simplify editing, LAYOUT also
produces an updated version of the source Ffile, with a line structure
similar to that of the output document. This document is an example of the
output from LAYOUT.

The source file

The source file consists of text interspersed with directives to LAYOUT.
Directives are described in detail later on. The basic operation of the
program is to read words from the source file and transfer them to the
current line of the output file separated by single spaces; a new line is
started when a word will not fit on the current line. If the word ends a
sentence, then extra spaces are inserted. A word is any sequence of
characters up to (but not including) a space, newline or directive; thus a
word is usually a sequence of letters, perhaps with some punctuation at the
end. If a word ends with any of ".!1?" and the following word begins with a
capital letter, then it is treated as ending a sentence. The spacing and
line structure of the source is discarded; directives to the program are
required to output extra spaces, blank lines and so on. If requested, lines
can be fully justified (as these ones are).

Shift conventions

For ease of typing, especially on devices which do not support lower case
letters, LAYOUT interprets the source file using a shift convention. All
letters are forced to lower case, except that any letter following an "@",
and the whole of any word starting with a "." is capitalised (naturally, the
“@" or "." does not appear in the docunent). Any character following a " ",
and the whole of any word starting with a "3" is underlined, though
punctuation symbols at the end of words are not underlined. Combinations,
such as. "%¥@" for an underlined word starting with a capital letter are
allowed; ".3" must be used (rather than "%.") for underlined capitalised
words. When typing running text, these conventions soon become automatic.
The shift convention can be altered or disabled, but this is not explained
unt later. For example, if the source file contained the lines:

@MOST LETTERS ARE FORCED TO ZLOWER CASE BY .LAYOUT. @SOME
ARE LEFT IN .%UPPER CASE. @SHIFT CHARACTERS CAN
APPEAR WITHIN WORDS, LIKE AGLP_HGABET.

then LAYOUT would output:
Most letters are forced to lower case by LAYOUT. Some are left

in UPPER case. Shift characters can appear within words, like
alphAbet.

Directives

Directives consist of a "$" followed by a letter. A "$" followed by a
character other than a letter causes that character to be treated literally,
and not accorded any special significance. In particular, "$$" outputs "$";
“$ " outputs " " but does not teminate the word being read (so the space
will be underlined {f the word is, and the space will not be extended during
Justification); "$." at the end of a word inhibits recognition of the end of
a sentence (useful with initials).

The effects of the various directives are detailed later, but three
require special expianation.

The $A directive

The details of operation of LAYOUT are governed by a number of
paraneters. These can be altered at any time by a $A assign directive. A
$A directive consists of a source line containing "$A" followed by a number
of assigments, separated by semicolons, of the form "¢parameter>=<value>".
The <value> can be either a number or another parameter name. If it fs an
unsigned number then this 1s the new value of the parameter; if it is a
signed.- {"+" or "-") then the value increments or decrements the current
value of the parameter. If it is another parameter name, then the new value
is the current value of that parameter. For example:

$A PAGENO=17

$A LEFT=4; LINE=68; NLS=2
$A LINE=-8; LEFT=+4

$A TOP=BOTTOM

Amongst the parameters alterable by an assign directive are those
specifying the page size and margins. These will nommally be set in a $A
directive at the start of the source file, though they may be altered at any
time. The parameters are:

Tor The number of blank lines to be left at the top of each page to form
the top margin., This is initially set to 2.

BOTTOM The number of blank lines to be left at the bottom of the page to
form the bottom margin; initially 4,

PAGE The number of lines in the page available for text, not counting any
top and bottom margins: initially 60. PAGE+TOP+B0TTOM should add up
to the number of Tines in the physical page, probably 66. If set to
zero, then page turns are suppressed and the document is produced as
a continuous run VYike a galley proof.

LEFT The number of spaces to be left at the start of each line to form
the left hand margin; initially zero (no left margin).

LINE The number of chéracters available in the line for text, not
counting any left margin; initially 72, The difference between the
physical line length and LEFT+LINE gives the right hand margin
width.

PAGENO The page number. If non-zero (it is initially zero) then at the
bottom of each page the PAGENO is printed (in the centre of the
middle line of the bottom margin) and the PAGENO is incremented by
one.

SECTNO The section number. If non-zero (it is initially zero) and PAGEND
is non-zero, then page numbers are printed as section-page (for
instance "2-13"). .

MARK Page marker flag. Pages are filled out to the physical page length
with blank lines. If MARK is zero (as it is initially) then no
further action is taken; if it is one then pages are additionally
delineated by a line containing only a "=" as the first and last
characters (useful if using continuous roll stationary); if set to
any other value then pages are separated by formfeeds (Ascii 12).

As already explained, LAYOUT inserts words into the output line separated
by single spaces, inserts extra spaces at the end of sentences and outputs
the line, possibly having justified it. The details of this operation are
under the control of more parameters alterable by a $A directive as follows:

SGAP The sentence gap, the number of spaces to be inserted at the end of
a sentence (1f it is not the last word on the line). Unless altered
this is 2 spaces.

PGAP The paragraph gap, the number of spaces by which the first line of a
paragraph (signalled by a $P directive, see later) is indented,
initially 3 spaces.

JUST Justification flag. If non-zero (it is initially zero) then lines
which are output because the next word will not fit are fully
Justified. Incomplete lines (such as the last line of a paragraph)
are not justified unless they are output because of a % directive
(see later).

NLS Line spacing. This is initially one, so that the document is single
spaced. If it set to more than one, then extra blank lines are
inserted after each document line to double (or more) space the
output.

The $L directive

Sometimes, particularly for headings and titles (such as those on the
first page), the normal action of LAYOUT is inappropriate. To deal with
this, the $L 1lines directive is used. This causes the docuient to be
structured as it is in the source file. The spacing and line structure of
the source file are preserved; the usual shift convention is, however,
observed. A $L directive consists of a line containing "$L" followed by the
nunber of source lines to be copied in this way; if the number is zero then
all source lines up to the next directive (which must start a line) are
copied. Following the number, one or more of a number of modifiers may be
present. These are:

C: Capitalise all letters.
U: Underline all characters (including spaces).
M: Middle; centralise each line.

If the U modifier is used, then each line is regarded as a single word;
in particuiar the whole word capital shift (".") is only accepted at the
start of the line {when 1t capitalises the whole Tine).

The directive must always be the last item on a 1ine. The copying begins
with the following line. For example, the heading to this section could be
generated by the following source Vines:

SL1v
@THE $s@. DIRECTIVE

The $E directive
The $E directive is used to terminate the source file. It must occur in

every source file (as the last item!). It consists of a line containing
just "$E". LAYOUT fills out the current page with blank Tines and stops.

The other directives

As described above, to get extra blank lines, new pages and so on,
directives are used. The remaining directives are all concerned with
spacing and page turning. A1l these directives terminate the current output
line (unless it is empty), as do the A, SL and $E directives already
described. Many are followed by a number, which, if omitted, defaults to
one. The directives are as follows:

$8<num> Blank lines. If there are more than <num> lines left on the current
page then output <num> blank lines, otherwise start a new page. If
a new page was taken just prior to the directive, then the blank
lines are discarded unless the page was taken as the result of a $N
or $V directive (see below). Note that $BO can be used to terminate
the current output line.

$N Newpage. The current page is filled out with blank lines and a new
page is started. However, if the current page is empty (no lines,
even blank ones, printed) then the directive is ignored. Because of
this rule, to get a blank page use “$SNSBSN",

$P<num> Paragraph. A new paragraph is started by outputting <num> blank
lines, and indenting the next line by an extra PGAP (see the $A
directive) spaces. If there are fewer than <num>+2 1ines free on
‘Ui\e current page, then a new page is started in place of the blank

nes.

$V<mm> Verify. A new page is started if fewer than <num> lines remain on
the current page. -This can be used to ensure that headings do not
occur as the last line on a page, that a section is unbroken by a
page boundary and so on.

A3} Justify. The current output line is terminated, and justified if
JUST (see the $A directive) is non-zero.

$S

Section. A new section is started; a new page is started, the
section number is increased by, one and the page number is reset to
one. For example, if the current page was numbered "“2-7", then the
next (automatically started) page would be numbered "3-1".

An examy:g

The features detafled above are sufficient for the simple use of LAYOUT
in preparing running text, interspersed with headings. There are further
features concerned with indentation, tabulation and altering the shift
conventions which are described later. As an example, suppose that the
following output was required:

THE COLOURED BOWLING PINS

A wealthy man had two bowling lanes in his basement. 1In one
lane ten dark coloured pins were used; {in the other. ten
Tight-coloured pins. The man had a mathematical turn of mind and
the following probiem occurred to him one evening as he was
practising his delivery:

Is it possible to mix pins of both colours, then select ten
pins that can be placed in the usual triangular formation in such
a way that no three pins of the same colour will mark the vertices
of an equilateral triangle?

If it is possible, show how to do it. Otherwise prove that it
cannot be done.

then the source file would need to contain something like:

$A LEFT=9; LINE=54; JUST=1

$V8 $L1lumMc

THE COLOURED BOWLING PINS

$P1GA WEALTHY MAN HAD TWO BOWLING LANES IN HIS
BASEMENT. @IN ONE LANE TEN DARK-COLOURED PINS WERE
USED; IN THE

OTHER, TEN LIGHT-COLOURED PINS. @THE MAN

HAD A MATHEMATICAL TURN OF MIND, AND

THE FOLLOWING PROBLEM OCCURRED TO HIM

ONE EVENING AS HE WAS PRACTISING HIS

DELIVERY: $P1@IS IT POSSIBLE TO MIX

PINS OF BOTH COLOURS, THEN SELECT TEN PINS THAT
CAN BE PLACED IN THE USUAL TRIANGULAR FORMATION IN SUCH
A VAY THAT NO THREE PINS OF THE SAME COLOUR WILL
MARK THE VERTICES OF AN EQUILATERAL TRIANGLE?
$PLRIF 1T IS POSSIBLE, SHOW HOW TO DO

IT. GOTHERWISE PROVE THAT IT CANNOT BE DONE.

Note the following features of the source. The spacing and 1line
structure is not particularly systematic since it is fgnored by LAYOUT. A
$V directive is used before the $L directive to ensure that the heading to
the section is not left at the bottom of a page. The first line is a $A
directive setting up the page parameters.

Tabulation and indentation

LAYOUT maintains a vector of tab settings which can be used for
indentation and tabulation. This is under control of further directives as
explained below, and two more parameters to the $A directive as follows:

TAB Tab settings. Unlike other parameters, TAB takes a 1ist of up to 25
values, separated by commas. These are the new tab settings.
Initially, tabs are set every 8 characters, at coluwns 9, 17, 25, 33
.o The first number is tab position one; tab setting zero is always
column one.

INDENT The tab setting to which all lines are automatically indented. If
zero (as it is inftially) then lines are not indented. It must be
emphasised that the value is a tab setting and not a character
position.

The tab settings can clearly be used for producing fully tabulated
tables, but they are more often used to specially format paragraphs, such as
those above (TAB...). The following directives control tabulation, or
override the default indentation, in conjunction with the tab settings.

$1<num> Indent (for one line only). If <num> is unsigned, then a new line
is started and indented to tab setting <num>, irrespective of the
current value of INDENT (see above). 1If <num> is signed, then the
new 1ine is indented by an extra <num> tab settings from INDENT (if
<num> is negative then it is indented less than usual). Thus “"$I-1"
means indent by one less tab setting than usual. This directive is
especially useful when INDENT is non-zero, to override it for one
1ine (for example, the first line of this paragraph).

$T<num> Tabulate. If <num> 1is unsigned, then tab to setting <num> (a new
1ine is not started for this directivel). If it is signed positive,
then tab forward <num> times (at least one space for each). If it
is negative, then tab backwards <num> times (at least one space for
each); the columns passed back over must all be blank. If
Justification is on (JUST non-zero) then only the text following the
Tast $T directive is jJustified; thus justification will never upset
columnns aligned by $T.

$C<num> Column. This directive is exactly the same as the $T directive
above, except that <num> is a column {character position), not a tab
setting. Thus "$C+3" will 1leave three spaces, "$C20" moves to
column 20, and so on.

$L (Again). There is a further modifier I (besides U, M and C, see
earlier) to the $L directive. This causes all copied lines to be
indented to the current setting of INDENT.

For example, the paragraph above on the $C directive is produced by the
following source text:

$A INDENT=1
$10 $$OC<NUM> $T1 @COLUMN. O@THIS DIRECTIVE IS
EXACTLY THE SAME AS THE $$@T DIRECTIVE ABOVE, EXCEPT TUAT ..

As an example of how the tab settings can be used to produce tables,
consider the follwing source:

$A INDENT=3
$A TAB=3,28,44

$11@ROB INSON$T2 01-557-43565T+1 48 @SOME @STREET, @NEASDEN,
@LONDON.

$BSI1 @SMITH $T3 GNOPHONE @{0USE, @BIRMINGHAM.

$81$11 @SOMERVILLE $T2 @MUDDLESVILLE 435674 $I3

32 OHIGH @STREET, @MUDDLESVILLE, @SUMCOUNTY.

which would produce the following output:

F

Robinson 01-557-4356 48 Some Street, Neasden, London.
Smith Nophone House, Birmingham.
Somerville Muddlesville 435674
32 High Street, Muddlesville,
Sumcounty.

When tabulating numerical data (as in the exanple above), a space must
follow the nunerical part of directives followed by a number; for example,
in the table above, if "$T2 01-557.." had been typed as "$T201-557..", then
it would have been read as tab 201 times,

The $A directive revisited

The $A directive described above can in fact store values of parameters
for later recall. This facility depends on the assigmment operator as
follows:

= Simply assign the new value to the parameter. This is the case
already described.

<= Save the current value of the parameter before assigning it the new
value.

> Reinstate the last value saved for the parameter.

< Save the current value of the parameter but leave its value

unal tered.

>= Reinstate the last value saved and then assign a new value; only
really useful if the new value is an increment (signed number) on
the old value.

The operators may be used repeatedly, so that more than one value of a
paraneter may be stored. These stored values are retrieved on a first in,
Tast out basis. .

The usual use for this facility is to preserve an environment and then
reinstate it. For example:

$A INDENT<=2; JUST<=1

@THIS TEXT WILL BE INDENTED TO TAB SETTING 2

AND JUSTIFIED IRRESPECTIVE OF THE ORIGINAL

SETTINGS OF JUST AND INDENT.

$A INDENT>; JUST>

@THIS TEXT WILL BE INDENTED TO THE ORIGINAL TAB SETTING.

Another use for this facility is to stack a number of settings for a
directive (using "<=") for later retrieval {using ">"). For example:
$A INDENT=3; TAB=4,8,12,16,20
$A INDENT<=2; TAB<=3,6,9,12,15
$A INDENT<=1; TAB<=4,8,20,32,40,44

If these directives occurred at the start of the source, then the
settings stored could be instated by a statement:

$A INDENT>; TAB>

The updated source file

A version of the source file, the updated source, can be output by
LAYOUT. Each Vine of the updated source contains either only directives, or
contains the source text for a line of the document (possibly containing $C
or $T directives), subject to a 1ine length restriction:

SLINE The maximum line length for the updated source file; lines which
would exceed this length are split into two.

Inhibiting output

When preparing a large source file, it is often wasteful to print the
entire file, but it is not usually feasible merely to process a section of
the. source, since directives early in the file can have effects later on.
To simpiify inhibiting output, the following parameters, alterable by the $A
directive are provided.

START The first page of output to be printed. LAYOUT still constructs
earlier pages but these are suppressed. Note that START refers to a
number of pages, and not the page number, though these will often be
the same.

FINISH The last page of output to be printed. LAYOUT stops just as if a $E
had been encountered before the next page.

IGNORE If non-zero, then LAYOUT ignores everything in the source file apart
from $A and $E directives. Each time it is set back to zero, a new
page is started and processing continues normally.

One of two methods are normally used to suppress output using the above
parameters. If it is known which pages are to be output, then START is set
to the first page and FINISH to the last page. If it is only known which

sections of the source file are to be output, then IGNORE is set non-zero
before the first page, zero before each section to be printed, and non-zero
again afterwards. OFf course, one way to prematurely stop output is to edit
a "SE" into the source file.

If any of these techniques are used to suppress output, then an updated

source file should not be produced, since, in general, it will be
incomplete.

Shift conventions revisited

As mentioned in the earlier section on shift conventions, the conventions
can be altered. This is done by yet more parameters to the $A directive.
As well as being able to alter the conventions for the source file, it is
possible to alter the conventions for the updated source file so that it is
produced to a different convention to the original source. The right hand
side of some of the assignments is a character. This should be quoted (for
example, '@'Y. The parameters are as follows:

INVERT If non-zero, as it is initially, then all upper case letters are
inverted to lower case (and lower to upper). If zero, then letters
are left in the case in which they are read. Thus if the letters in
the source file are all in the correct case, then INVERT should be
set to zero.

CAP The single character capital marker, initially (and usually) ‘e@".
UND The single character underline marker, initially ' ‘.
CAPSH The whole word capital shift, initially “.".

UNDSH ?h? whole word (actually rest of word) underline shift, initially
% .

ESCAPE The directive marker, initially '$'. [If followed by a character
other than a letter, that character is treated 1literally, as
explained earlier. Directives are accepted in upper or lower case.

CAPO, UNDO, CAPSHO, UNDSHO, INVO
These are the equivalent shift characters to be used for the updated
source file, and have the sane initial values as their corresponding
parameters for the source.

ASCII If non-zero, as it is initially, then wunderlining will be
implenented by carriage return (ascii 13) and overprinting with
underscores. If it is zero, then underlining is indicated by
setting the eighth bit of the code of the underlined character.
Whatever the value of ASCII, LAYOUT accepts this convention in the
source file.

If the parameters for the source file are different from those for the
updated source (so that the shift conventions will be changed), then the $A
directives defining the shift conventions will need to be altered before the
updated source is suitable for reinputting to LAYOUT, since they will have
been copied across verbatim and will thus refer to the old source
conventions.

10

If any of the source shift characters is set to zero, then that shift is
disabled; for example, if CAPSH is set to zero then no character will be
recognised as capitalising the whole of the following word. If one of the
updated source parameters is set to zero them the updated source will be
produced without making use of that shift; for example, if CAPSHO is set to
zero then words will be capftalised by changing their case (in particular,
if INVO is zero, then capitalised words will be output in upper case). If
any of the underline shifts is set to zero, then underlining is indicated by
setting the eighth bit of the underlined character.

The parameters can be used completely independently; for example, to
output the line:

The cat sat on 2 MATS.
all of the following lines would be acceptabie:
OTHE %CAT SAT ON _2 .MATS.

$A CAP='*'; CAPSH='#"; UND='8"
*THE %CAT SAT ON &2 MATS.

$A INVERT=0; UND="_"; CAP='@'; CAPSH="."
@the %Zcat sat on _2 .mats.

SA INVERT=0; CAP=0; CAPSH=0
The %cat sat on _2 MATS.

$A INVERT=1; CAP=0; CAPSH=0
tHE %CAT SAT ON _2 mats.

Errors

In the event of errors being detected in the source then a message
(self-explanatory) is printed on the report stream (normally the user's
console) followed by the offending 1ine as it appears in the updated source
(note, not the original source). For example, the source line:

$12@THE CAT SAT ON $T1 THE $Z MAT.
Would produce the following on the report stream:

*QVER TEXT T

$12 @THE CAT SAT ON $T1 THE

*UNKNOWN DIRECTIVE Z
$Z MAT.

11

Summary

The following preamble can be regarded as being on the start of every

source file; it lists every paraneter with its intial value.

ToP=2
BOTTO=4
PAGE =60
LEFT=0
LINE=T72
NLS =1
SGAP=2
PGAP =3
PAGENO=0
SECTNO=0
START=1
FINTSH=9999
IGNORE=0
JUST=0
MARK=0
INDENT =0

Top margin.

Bottom margin.

Usable page length.
Left margin.

Usable line length.
Newlines per line.
Spaces between sentences.
Paragraph indentation.
Page number.

Section number.

First page printed.

Last page printed.
Ignore flag.
Justification flag.
Page separator.
Indentation tab setting.

TAB=9,17,25,33,41,49,57,65,73,81

ASCII=1
ESCAPE="$"
CAP="p'
CAPSH=" '
UND=' "
UNDSH='%"
INVERT=1
SLINE=80
INVO=INVERT
CAPO=CAP
CAPSHO=CAPSH
UNDO =UND
UNDSHO=UNDSH

Tab settings.
Underlining procedure.
Directive escape character.
Capitalise single letter.
Capitalise whole word.
Underline single character.
Underline rest of word.
Case inversion of source.
Max imun updated source line length.
Corresponding
parameters
for
updated
source.

12

Exampies of all the directives follow, together with a note of their
effects on the output. .

$A INDENT=+2; ESCAPE<='&"; JUST=1

Increment INDENT by 2; save the current ESCAPE character and set it
to “&'; set JUST to 1.

$A ESCAPE>; INDENT=-1; CAPO=CAP

$83
$80

$C7
$C+3
$Cc-2
$E
$13
$1+1
$1-2
3]

SLSUM
$LOIC

SN
$P1
$s
$T3
$T+2
$T-1
$v7

Reinstate the saved value of ESCAPE; decrement INDENT by one; set
CAPO to the current value of CAP.

Three blank lines.
Start a new line (do not justify old line).

Move to column 7.

Advance 3 columns.

Move back over 2 columns.

Stop processing.

Indent to TAB(3).

Indent to TAB(INDENT+).

Indent to TAB(INDENT-2).

Start a new line (Justify old line).

Copy five lines, underlining and centralising each line.
Copy up to the next directive, indenting and capitalising each line.

Start a new page.

Start a new paragraph, preceded by one blank line.
Start a new section, increasing section number by one.
Move to column TAB(3).

Tab twice forwards.

Tab once backwards.

Start a new page if there are less than 7 lines remaining on the
current page.

13

Appendix 1 - use of LAYOUT

Interdata

. LAYOUT is invoked on the Computer Science Department's Interdata systems
by a command of the form:

LAYOUT source/document ,usource

The updated source (or document) may be omitted if not required. For
exanple:

LAYOUT MANUAL/MANUAL:LAY
LAYOUT MANUAL ALP

LAYOUT MANUAL/LP,MANUAL
LAYOUT MANUAL/,MANUAL:NEW

PDP9 or POP15

LAYOUT is invoked on the Computer Science Department“s PDP9 or PDP15s by
a comnand of the form:

.LAYOUT source/document ,usource

The updated source (or docunent) may be omitted if not required. For
example:

<LAYOUT MANUALAP

<LAYOUT MANUAL /OT5 TEMP,NEWHAN
-LAYOUT DT3 DOC/PRETTY

EMAS

Before wusing LAYOUT on EHAS it 1is necessary to first append
CSDEPT.LAYOLIB. 1t is then invoked by a comnand of the form:

LAYOUT source/docunent ,usource

The updated source may be omitted if not required. For example:
LAYOUT MANUAL/.LP
LAYOUT MANUAL/MANUALL

LAYOUT ECSC48.LDOC/MYCOPY
LAYOUT MANUAL/.NULL,MANUALN

ICL 2980
LAYOUT is invoked on the 2980 under WME/B by use of the macro LAYOUT,

with parameters SOURCE, DOCUMENT and UPDATEDSOURCE (optional) nominating the
files.

14

DECsystem 10

LAYOUT 1s invoked on the Science Research Council's DECsystem 10 by a
command of the form:

R LAYOUT

The program will then prompt "Files:-"; type the filenames in the form:
output,usource=source,TTY: !

The program will then prompt "SECTIONS (Y OR CR):"; type Y cr. For example:
R LAYOUT

Files:- MAN.LST ,MAN.NEW=MAN.LAY,TTY:
SECTIONS (Y OR CR): Y

PDP11, DEIMOS
LAYOUT is invoked under DEIMOS by a command of the form:
LAYOUT source/document,usource
The updated source may be omitted if not required. For example:

LAYOUT FRED/GOOD,NEW
LAYOUT 3.JIM(35)/0.DOC

PDP11, DOS
LAYOUT is invoked under DOS by a comnand of the form:
R LAYOUT
The program then prompts "*"; type the filenames in the form:
document ,usource=source
The updated source may be omitted if not required. For example:

R LAYOUT
*LP: ,NEW=SOURCE

Other systems

LAYOUT is written in IMP and is thus easily implementable on any system
which supports an IMP compiler. .

15

Appendix 2 - use of Diablo document printer

The versions of LAYOUT on the computer science department's Interdata
systems produce output suitable for Diablo document printers. This output
is produced on output stream 3 in addition to the usual output on output
stream 1. The exact form of the output is governed by more parameters to
the $A described below. Note that none of then have any effect on the
normal output - indeed, the documnent output and the Diablo output are always
the same text in the same format, except that the printed area on the Diablo
is moved across and down the page.

DCPI

DLPI

DLEFT

Dtop

DPAGE

DHOLD

The nunber of characters per inch on the Diablo; this will normally
be 10 (as it is initially) or 12 but in any case it is rounded to a
mul tiple of 120ths of an inch.

The nunber of lines per inch on the Diablo; this will normally be 6
(as it is initially) but in any case it is rounded to a multiple of
48ths of an inch.

The additional 1left hand margin in 100ths of an inch; this is
initially 150 (1.5 inches).

The additional top margin in 100ths of an inch; this is initially
250.

The actual physical page size on the Diablo in 100ths of an inch;
initially this is 1700 (for 17 inch pages).

The Diablo can be halted at the end of each page and waits until the

HOLD button is pressed; if DHOLD is non-zero (as it is initially)
then LAYOUT halts the printer at the end of each page.

16

