20

List processing facilities in Atlas Autocode

J. S. Rohl and G. Cordingley*

* Department of Computer Science, The University, Manchester 13

Education is becoming a major part of the computer science scene. This paper describes the list
processing facilities formally embedded in Atlas Autocode for use in teaching undergraduates.

(Received March 1969)

As computer science continues to expand as an academic
discipline, it becomes more and more important to refine
our ideas about programming topics, such as list pro-
cessing, syntax analysis, simulation and so on, in such a
way as to facilitate their teaching. In particular, if
programming is regarded as a practical subject, then
facilities must be provided for students to get experience
in the field. It is for this reason that the list processing
facilities described here have been implemented at
Manchester.

General considerations

List processing facilities can be provided in three ways.

1. Implementing one of the Classical Systems such as
LISP (McCarthy, 1960). This solution has the advantage
that the systems are well documented, are universally
understood and have been implemented widely. On the
other hand, they are complete programming systems so
that the student has to come to grips not only with the
list processing concepts but also with all the other ideas
contained in the whole system. This is not to say that
those systems are not of interest, but that in the limited
time available in any undergraduate course, the major
effort must be devoted to the essential list processing
concepts.

2. Providing a package of procedures to be used with
a general purpose language such as ALGOL (for example
Barnes, 1965, Trundle, 1966, and Townsend, 1968).
This solution partially overcomes the major disadvantage
of the classical systems. Nevertheless, it suffers from
other disadvantages. Firstly, such systems do not deal
with a list concept but with integers used to represent
lists. Thus it is impossible to refer explicitly to lists, and
rather inconvenient to refer to atoms. Secondly, these
packages impose a system on the users to establish which
integers are to be regarded as lists to aid garbage col-
lection. Thirdly, they are very inefficient. It is true that
the amount of time used on any particular machine will
be quite small and inefficiencies will be of little practical
consequence, nevertheless, it seems educationally un-
sound to use as teaching devices, systems which are for
no good reason so inefficient.

3. Formally embedding list processing facilities in a
general purpose language, such as ALGOL. This
approach is often used for discussion of list processing
(for example, see Foster, 1967) but it is less often
implemented. It is one such system that is described
here.

Regardless of the method of implementation, there
are basically two forms of list processing that may be
provided. Either the system may be concerned with
explicitly manipulating storage (as in SLIP, IPL V) or
it may be concerned with lists as data objects whose
storage is of incidental interest (LISP). The Atlas
Autocode (AA) facilities are modelled on this latter
pattern partly because automatic garbage collection can
be integrated with the dynamic storage allocation
mechanism, and partly because it illustrates to students
that types other than integer, real, complex and Boolean
exist and can be formally manipulated.

The form of lists

List processing is naturally concerned with lists. In
AA, a list is either an atom (an indivisible object from a
list processing point of view, see below), or a string of
elements separated by commas and enclosed in brackets,
where an element is either an atom or another list.
Formally:

(list) ::= <element)
(element) ::= <{atom)|(<element list))|()
{element list) ::= <element)|<{element list),{element)

For example:

Atlas

(Man Utd, Man City, Liverpool, Everton)
(+’ (*’X, Y)’ (*’XQ Y))

O

This last is an empty list.

List processing is concerned with the manipulation of
these lists of atoms. For example, the third list above
might be rearranged as:

(*2,X,Y)
There are two forms of atom:

1. a numeric atom (at present integral);

2. a symbolic atom. This consists of any string of
symbols except one containing all digits.

The list processing facilities

The facilities are built round the concept of variables
of type list, these variables being introduced by means of
a declaration of the form:

The Computer Journal Volume 13 Number 1 February 1970

€20z KelN 8z uo 1senb Aq Z0688E/0Z/1/E | /oI0Ne/|uf0/Wwod"dno-owepese)/:sdRy Wouy PaPEojUMOQ

List processing in Atlas Autocode 21

list /1, 12,13, 14, 15, I6.

They are initially set to empty lists. List processing is
performed by means of a list processing assignment
statement in which a list variable on the left-hand side
of an assignment is set to the value of the list expression
on the right-hand side.

(list assignment) ::= (list variable) = (list expression)

To describe the facilities we assume the above declara-
tions and that /1 has the value

(+,(*,XY),(*X,Y))
Formally, a list expression may be defined:

(list expression) ::= (list variable)
| '¢atom)'
| list function)
{actual parameter part)
| Cexplicit list)

The simplest form of a list expression is a list variable
so that /S = /1 gives I5 the value (4-,(*,X,Y),(* X, Y)).
A list expression may also consist of an atom enclosed
in quotes. Thus IS = 'I1' sets the value of /5 to the atom
/1 (i.e. the atom consisting of two symbols ‘/” and ‘I°).
The built-in list function head (corresponding to LISP’s
car) has as its value the first element of the list which is
its parameter. Thus the assignment:

12 = head(I1)

gives /2 as its value the atom +. There is no head to
an atom or an empty list.

The associated function tail (LISP’s cdr) has as its
value the rest of the list which is its parameter, after the
first element has been deleted. Thus

I5 = tail(I1)
gives IS the value ((*,X,Y),(*,X,Y)), and
13 = tail(head(tail(11)))
sets /3 to (X, Y).

The tail of a list of one element is an empty list; an
empty list or an atom has no tail at all.

Lists may be built up from other list elements by means
of the function join (in LISP cons) which inserts the list
element which is its first parameter, into the front of the
list which is its second parameter. Thus if /2 and /5 have
the values above, then

IS = join(12, I5)

sets /5 to the original value of /1. The second parameter
must not be an atom, though the first might well be.
Lists of arbitrary complexity may be built up by means
of join statements. Thus /1 could have been set up
initially, assuming /6 to be an empty list, by means of
the statement:

11 = join('+', join(join('*', join(' X', join(' Y',16))), join(join

("*', join('X', join(' Y',16))),16)))

This is clearly an inelegant statement whose meaning is
not immediately clear. The fourth form of list expression
is an explicit list. This has the same form as the data
lists except that atoms are enclosed in quotes. Thus the
above instruction may be more concisely expressed as:

ll — (!+ I’(l*l,lxl’! Yl)’(l*l’le’l Yl))
The elements may be list variables, so that /1 may also
have been set up by:
15 — (V*l, 'X', !Yl)
n=("+'15,I5*

AA has no type Boolean: the concept of a condition is
used instead. A simple condition is defined:

{simple cond) ::= {expr){comparator){expr)
{comparator) ::= =|#|>|<| >|<

where <{expr) is an arithmetic expression. Simple
conditions may be combined with and’s and or’s to form
conditions. Statements are made conditional by pre-
ceding them by:

if (condition) then
unless {condition) then

or following them by:

if {condition)
unless {condition

The statement is obeyed if (or unless) the condition is
satisfied.

The form of simple condition is extended to include
the list processing conditions:

(list expr) is an atom

<list expr) is a number

(list expr) is empty

(list expr) is equal to (list expr)

The first three alternatives are self explanatory. The
fourth condition is satisfied if the two list expressions
have values which are both atomic and equal.

Transfer functions

One of the advantages of embedding a list processing
system in a high level language is that the full powers of
that language are available to the list processor. If use
is to be made of the computation facilities then some
transfer functions must be available to convert variables
of type list to variables of other types. At present only
two transfer functions are available, and these are
associated with numerical atoms. The function value
operating on a list expression whose value is a numerical
atom, produces an integral result with the same value
as the atom. Clearly only a numerical atom has such a
value. The reverse transfer function is newatom. This
function produces as its result a numerical atom with the
same value as its integer parameter. Thus if /1 = (2)
then i = value (head(l1)) sets i = 2 and [2 = newatom
(i + Dsets 2 =3.

Routines and functions

The routine and function facilities (the procedures and
type procedures of ALGOL) have been expanded to
allow operations on lists. AA has, in the main, two
types of parameters, those called by value (for example,
integer and real) and those called by reference or simple
name (for example, integername and realname). The

* The alternative would produce a different list structure from

that produced by the other two (see later), though such a difference
is undetectable with the facilities provided.

€20z KelN 8z uo 1senb Aq Z0688E/0Z/1/E | /oI0Ne/|uf0/Wwod"dno-owepese)/:sdRy Wouy PaPEojUMOQ

22 J. S. Rohl and G. Cordingley

characteristics of these two types of parameter can be
summarised: within the routine a value parameter
behaves as a local variable which is set on entry to the
value of the actual parameter which may be an expression.
Operations on the variable within the routine have no
effect on the actual parameter. On the other hand a
name parameter acts as an indirect address to the actual
parameter which must be the name of a variable. All
references to the parameter are indirect references to the
actual parameter which may therefore be altered. Two
further parameters list and listname having similar
characteristic properties have been added.

Two routines are permanently provided for input and
output of lists. They have the following specifications:

routine spec read list (listname /)
routine spec print list (list /)

An example

To illustrate the facilities we give the classical example
of analytical differentiation. We represent the sum,

product or power of two quantities as a list of three
elements giving the sum product or power in Forward
Polish form. Thus:

a+b is represented as (+,a,b)
a -+ bx is represented as (+,a,(*,b,x))
ax* + b is represented as (+,(*,a,(4},x,2)),b)

We will assume for purposes of illustration that the power
is always an explicit integer > 0. The following list
function differentiates such an expression (e) with respect
to a specified variable (x).

list fn diff (list e, x)
list /1, 12,13
if e is equal to x then result = 'l'
if e is an atom then result = '0'
11 = head(e)
12 = head(tail(e))
13 = head(tail(tail(e))
if /1 is equal to '+' then
result = ('+,diff (12,x),diff (13,x))

STACK
~
~
N
N
N
N
~
~N
~N
~
\ ~
~
N S
~
LIST . N
STORE \ ~
] RV
/ /4’/ ///’ l I ‘
N /’ N P T .}
| - - | 1
' — |/ | i
L - __/_,__/___..___7_/__1. _______ j— 1
- \ 22 A
_ P | fvit o
-7 - AN CHADN
-
/// -
-~

ATOM
STORE

The store layout, in full lines of the list
n =(=+, (*9Xy Y)9 (*3X9 Y9))
and, in dotted lines, after the instructions
12=head (I1)
13=tail (head (tail (11)))
14 = join('*', join ('2', I3))

Fig. 1. Example of store layout

€20z KelN 8z uo 1senb Aq Z0688E/0Z/1/E | /oI0Ne/|uf0/Wwod"dno-owepese)/:sdRy Wouy PaPEojUMOQ

List processing in Atlas Autocode 23

if /1 is equal to '*' then
result = ('+',("*',12,diff (13,x)),('* ', diff (21,x),13))
if /1 is equal to! 4 ! then
result = ("*',('*,13,(' 4 ',12,newatom(value(I3)
—1))),diff (12,x))

end

Implementation

The list variables like all variables are stored in the
stack, and so the space they occupy is automatically
deleted on exit from a routine or function. Each con-
tains the address of the list structure which contains its
value. The lists themselves are stored as list structures
which are implemented along classical lines, with each
element of a list occupying two (half) words, the first
containing the information, the second the link to
the next element of the list. The information word may
be either the untagged* address of the sub-list, or the
tagged address of an atom.

The link in the last element of a list is also tagged,
and is, for historical reasons, the address of the atom
NIL.

The amount of store to be used for the lists is declared
by the user by means of a statement of the form:

list store 500

This initially chains up that amount of store and sets
B89 to the address of its first element. This is referred
to as the main chain.

The atoms are stored in a linear area of store called
the atom list. Numerical atoms occupy one half-word
which contains the tagged integral value of the atom.
Non-numeric atoms are packed up three characters to a
half-word, preceded by an untagged half-word containing
the number of characters. Atoms are created in three
ways:

1. During translation of a program by its appearance
between quotes.

2. During running by reading a list.

3. During running by using newatom.

Regardless of how they are created atoms are compared
with all the atoms currently in the atom list, being added
to the list only if not already there. The atom list is
preloaded with the atom NIL.

List variables, like other variables, are stored in the
stack, and contain the addresses of the lists assigned to
them.

Fig. 1 shows, in full lines, one possible layout of the
store containing the single list /1 whose value is

(+’(*’X, Y),(*’X, Y))
and in dotted lines the result of the instructions

12 = head(I1)

13 = tail(head(tail(11)))

14 = join('*', join('2', 13))
As this description implies, the basic list processing
operations are simply implemented. An assignment such

* The Atlas addressing structure allows addresses to refer down
to a character. When the address is of a half-word, the bottom
two lists are ignored ; when of a full word, the bottom three. These
bits may then be used as tag bits. We use the bottom bit through-
out as a tag since it can be tested with a single order.

as I1 = [2 is compiled into orders to evaluate the right-
hand side /2 in the list accumulator, and an order to store
the list accumulator in /1. If the right-hand side is
simply a list variable or an atom, then only one order is
required to load the list accumulator.

If the right-hand side is of the form head (I2) or tail (I12)
then /2 is evaluated in the list accumulator and one order
is planted to replace it by either its information word
(for head) or link word (for tail).

As indicated earlier, only a non-empty list has a head
or a tail. This condition can be checked by two orders
placed before each order which evaluates a head or a
tail:

Set a characteristic number in a register for use by the
fault monitoring routine.

Jump to the fault monitoring routine unless the list
accumulator is tagged.

Clearly to compile these for every head and tail would
be extravagant since they treble the time taken for each
basic operation and in any case most loops (iterative or
recursive) terminate on a similar explicit test. Instead
they are compiled at the option of the user. The
declaration

compile atom check,

which may appear anywhere, causes the checking
instructions to be compiled until it is countermanded by
the statement

stop atom check.

The list expression join(I1, I2) is compiled into a longer
sequence since it takes a word from the main chain, called
the join word, and a check must be inserted to test
whether the main chain is empty. If it is garbage col-
lection is initiated. The two parameters are then
evaluated and stored in the information word and link
word respectively of the join word taken from the main
chain. Since either parameter may itself contain a join
and since this join may initiate garbage collection, join
words are immediately stacked after being taken from
the main chain.

The second parameter may not be an atom, and if the
expression is being compiled after compile atom check
orders are planted to check for this.

The conditions all load the <list expr) under test into
the list accumulator before testing them. To test whether
the list is an atom involves one further order to test
whether the list accumulator is tagged. Note that by
this definition an empty list is an atom—the atom NIL.
Since ‘NIL’ is preloaded, its address is known and two
orders suffice to test whether the list accumulator contains
an empty list. Two further orders test whether a list is
a number—one replaces the list accumulator with the
actual atom, the other tests whether this is tagged.

Testing the equality of two (list expr)’s is a little more
involved, since the {list expr)’s must be evaluated in the
list accumulator, and tested both for equality and for
being atoms (unless one is a literal atom).

Garbage collection

This follows classical lines in that when a word is
required from the main chain which has become empty,
garbage collection is automatically invoked. The lists
currently referenced by list variables are scanned and

€20z KelN 8z uo 1senb Aq Z0688E/0Z/1/E | /oI0Ne/|uf0/Wwod"dno-owepese)/:sdRy Wouy PaPEojUMOQ

24 J. S. Rohl and G. Cordingley

their information words tagged. (Provision is made for
scanning common lists only once.) The whole list store
is then scanned linearly returning untagged words to the
main chain and untagging tagged words. These facilities
have been added to the original Compiler Compiler
version of AA which, unlike the hand-coded AB version,
does not retain name lists at run time. Therefore, the
list variables are distinguished in the stack by being
specially tagged. Since they can only be found by
scanning the stack, garbage collection could be slow if
the program used large arrays—though this is, of course,
unlikely. A better solution would have been to retain
the name lists at run time.

Conclusions

These facilities are meant to give experience to under-
graduate students and should be reviewed in that light.
Nevertheless, it is possible to write programs to solve
real problems with reasonable efficiency.

It should be noted that there are no facilities for
altering list structures in any way (except during garbage
collection). This is not because it is difficult to allow it—

References

a relaxation to allow an implicit list name on the left-
hand side of an assignment statement (for example,
tail(l) = 1) and as an actual parameter for a listname
parameter (read list(head(tail(l)))), would enable list
structures of any complexity to be created. Rather it is
because we wish to retain the basic characteristic of
value parameters—that any operation on a value para-
meter inside a routine cannot affect the actual parameter.

Many improvements suggest themselves to make this
a more useful tool. Transfer functions could be pro-
vided between non-numeric atoms and variables of type
string.* Further it might be desirable to associate values
with non-numeric atoms to be used after the list pro-
cessing has been done. This could be done in a number
of ways, perhaps by associating non-numeric atoms with
scalar variables of the same name.

Acknowledgements
We should like to thank the S.R.C. who provided the
grant to enable one of us (G.C.) to pursue this work.

* There are, as yet, no string facilities in AA, so this suggestion
is non-trivial.

BARNES, J. G. P. (1965). A KDF9 Algol list processing scheme, The Computer Journal, Vol. 8, p. 113.

FosTER, J. M. (1967). List Processing, MacDonald: London.

McCARTHY, J. (1960). Recursive functions of symbolic expressions and their computation by machine: Part 1, CACM, Vol. 3,

p. 184.

TownsenD, H. R. A. (1968). A List processing system for the 903 computer, The Computer Bulletin, Vol. 13, p. 120.
TRUNDLE, R. W. L. (1966). LITHP—an ALGOL list processor, The Computer Journal, Vol. 9, p. 167.

Book review

An Introduction to the Approximation of Functions, by
Theodore J. Rivlin, 1969; 150 pages. (Blaisdell Pub-
lishing Co., $7.50.)

This book belongs to the Blaisdell series in Numerical Analy-
sis and Computer Science, whose jacket motif is a reel of
magnetic tape—perhaps a little misleading in this case. A
brief introductory chapter is followed by five others: the first
three deal respectively with uniform, least-squares and least-
first-power (the author’s term) approximation. Chapter 4
covers polynomial and spline interpolation and the final chap-
ter is on approximation and interpolation by rational func-
tions. A very happy choice of material. Many will be
especially grateful for the inclusion of the chapter on least-
first-power (i.e. best L;) approximation and the chapter
dealing with splines.

The author begins with the definition of a normed linear
space, which he uses to prove the existence of best approxima-
tions. Thereafter, Dr Rivlin commendably restricts his atten-

tion to polynomial approximation and, as he notes in his
preface, resists making the easy extension to arbitrary Cheby-
shev systems. To borrow the nomenclature of P. J. Davis,
this is good news for earth-men; space-men can easily supply
the generalisations for themselves. Both groups will learn
much from this book.

The reviewer is very impressed. Dr Rivlin has written a
very fine, scholarly text which will, without doubt, be
welcomed by all students and teachers of approximation
theory. The material is most skilfully developed in an
exciting way. What appear to be gaps in the text turn out to
be filled neatly at the chapter’s end by appropriate exercises.

As for misprints etc., the reviewer has only three to point
out: the exponent 2 is omitted twice on page 29; a factor w (x)
is omitted from one integral on page 49; lastly, the footnote on
page 50 seems a little out of step with the text, due to the
statement of orthonormality.

G. M. PuiLLips (St Andrews)

€20z KelN 8z uo 1senb Aq Z0688E/0Z/1/E | /oI0Ne/|uf0/Wwod"dno-owepese)/:sdRy Wouy PaPEojUMOQ

