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Abstract

The APM, or Fred Machine, was an experimental networked workstation designed

by the University of Edinburgh Department of Computer Science in the early 1980s.

Development continued throughout the 1980s, with many hardware components and a

large collection of software being added until the system was decommissioned in the

early 1990s.

Even though only 60 or so of the machines were ever built[5], it is instructive to

examine the design decisions behind both the hardware and software. As a whole, the

system has some interesting strengths and weaknesses, and in some ways was very

much ahead of its time.

In 2001, as a 4th year project, Cristopher Lisle wrote a partial emulation of the Fred

Machine and the networked filestore. This project extends this work by improving the

emulation and by researching in further detail the hardware and software that made up

the system.
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Chapter 1

Introduction

Yet herein will I imitate the sun,

Who doth permit the base contagious clouds

To smother up his beauty from the world,

That when he please again to be himself,

Being wanted, he may be more wondered at

William Shakespeare,Henry IV

1.1 What is the Fred Machine?

In the late 1970s and early 1980s, it was observed that if Moore’s Law1 continued

to hold, it would soon be possible to put astonishingly powerful workstations on the

average researcher’s desk. One oft talked about milestone was the3M Machine: an af-

fordable workstation with 1MB of memory, a 1 MIPS CPU, and a 1 megapixel display.

The Fred Machine, built in Edinburgh, more than meets all of these design targets.

As well as this, the Fred Machine has other desirable attributes. Being based on

the locally developedFred Bus, it is very modular and flexible. From the beginning it

was designed to be a networked workstation, and using a smart network adapter which

could handle low level networking protocol details, it communicates over a 2.1Mb/s

Ethernet-like network.
1An empirical observation that the number of components that can be fitted onto a given area of

silicon at a given price point seems to double approximately every 18 months

1
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The hardware and software for the Fred Machines were built up and refined over the

course of the 10 or so years that they were in operation. Many staff and students wrote

a variety of software for the system, including compilers, assemblers, interpreters,

computer vision software, circuit design software, graphics libraries, games, a TEX

environment, and even new operating systems.

Much of the design work for the core Fred Machine system was documented in a

set of reports and technical documentation, and much of this still exists. A number of

backups of some of the network filestores have been kept on CD.

This project aims to write software to emulate on a modern computer the behaviour

of the Fred Machine and the network it ran on. This will allow the original Fred Ma-

chine software to be ‘brought back to life’ and to be run inside this simulated environ-

ment. Since a previous project[1] attempted to emulate the Fred Machine hardware

with some degree of success, this project follows on from there.

Before giving more detailed goals for this project, we first give the reader an

overview of the Fred Machine and its history.

1.2 The History of the Fred Machine

The Fred Machine project was started in 1981 with the initial intent of being a flexible

platform for experimenting with computer hardware. The hope was that the Computer

Science Department could extend their expertise with computer software and theoreti-

cal computer science to include the hardware side of computing.

A number of computer systems developed in Edinburgh in the late 1970s had a

strong influence on the development of the Fred Machine project.

1.2.1 Background

1.2.1.1 ELAN

One of the most obvious influences was the development of Ethernet at Xerox PARC[8]

in the mid-1970s. This work prompted interest in Edinburgh, and two experimental

network designs were explored. By 1980, an Edinburgh team had agreed on one of



Chapter 1. Introduction 3

the designs, and went about setting up a network called ELAN (Edinburgh LAN)[3].

This was based on a system that was broadly similar to Ethernet, that is to say, it

was based on a shared bus and collision detection hardware. Since Ethernet had not

formally been standardised at this point, some details were different–the frame format

differed, timings and the maximum network size differed, and most significantly it ran

at 2.1Mb/s rather than 10Mb/s.

The ELAN boards, orStations, became a core part of the Fred Machine.

1.2.1.2 The Filestore

Within the Computer Science Department in the late 1970s a number of Interdata series

70 minicomputers were available and ran the locally developed ISYS operating system.

When a number of discless Interdata 74s were introduced, the filestore–a networked

fileserver on the Interdata 70 was written[4] to allow them to share expensive storage.

The filestore was based on LEGOS, another Edinburgh OS based on ISYS.

1.2.1.3 IMP and EMAS

EMAS (the Edinburgh Multi-Access System) was a time-sharing operating system

written for large mainframes in Edinburgh in the 1970s2. As with U, most of it was

written in well structured code in a high level language. In this case, the language was

IMP, a language designed in Edinburgh which was derived from Atlas Autocode.

The design of EMAS influenced the Fred Machine, and one of the first things to

be done on the software side of the Fred Machine project was to write a reliable IMP

cross compiler and a native IMP runtime for the Fred Machine itself. Since the IMP

cross compiler was also written in IMP, it could be compiled on itself. Because of

this, as soon as the runtime was complete, the Fred Machine had a fully functioning

self-hosted compiler. After this, much of the Fred Machine software was written in

IMP.
2EMAS ran on a number of ICL machines throughout the 1970s and early 1980s, including a 4/75,

followed by a 2972, a 2976, and a 2980.
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1.2.2 The Fred Bus

One of the main features directly attributable to the Fred Machine project was the

development of the Fred Bus. The Fred Bus was designed to be a simple and flexible

bus that made it easy to build add-on boards, whilst still being reasonably powerful. It

has a 32 bit address space, and is capable of transferring 8, 16 or 32 bit words. Devices

on the bus can act as either masters or slaves, and there is a well defined protocol for

acquiring the bus, and determining which card should be the bus master.

1.2.3 The First Fred Machines

The first 3 prototype Fred Machines were built between 1981 and 1982, by a group of

three people; Fred King, Hamish Dewar, and Rainer Thonnes.

Initially, it had just one card on the bus–an 8MHz M68000 with 16KB of local

memory (divided into a boot ROM and some RAM), a Motorola 6840 providing pro-

gramable timers, a Motorola 6850 providing an RS-232 port, and a simple MMU for

translating memory accesses by the M68000 into Fred Bus transactions.

Once this was functioning, the next card to be added was one containing a ½MB

of RAM. Since the location where these appeared in the Fred Bus address space was

configurable by hex switches on the card, several of these could be added, allowing the

CPU to access up to 7½MB of external RAM.

The most sophisticated card to appear on the prototype machines was an ELAN

Station. This has hardware which can send and receive frames on the ELAN network.

The hardware is controlled by a Z80 processor with firmware in EPROM and 4KB

RAM. The firmware handles the low level mechanics of frame transmission, as well as

a managing buffering and acknowledgement of packet receipt. The station provides a

number of registers allowing it to communicate directly with the CPU card.

On the software side, a 68000 IMP cross-compiler as well as an assembler and

disassembler all written in IMP, were written and run on the Interdata machines. Since

there was no operating system on the Fred Machine yet, the IMP runtime had to be

written to work directly with the bare hardware, and had to provide some simple oper-

ating system services. Since these development tools were written in IMP, once they
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were sufficiently complete, the compiler could compile itself, and thus a self-hosting

development system was created for the Fred Machine in short order. When this had

been done, further development could continue on the Fred Machines. This helped

the development process, since the Fred Machines had much more memory, and were

faster than the Interdatas3.

1.2.4 The APM

Once the work on the prototype Fred Machines had been completed, the Fred Machines

had become a useful, if somewhat bare bones, workstation.

In the summer of 1982, the workstation was demonstrated at a University Open

Day, and was introduced as theAdvanced Personal Machine. As the name implies,

this meant that, rather than being primarily a research platform, the Fred Machine was

now targeted at being a general purpose workstation to be used by staff and students.

To some extent, this new emphasis constrained the further development of the Fred

Machine.

However, in both software and hardware, a number of advances were made over

the prototype machines.

The memory boards were revamped to take advantage of denser DRAM chips, and

so were able to hold 2MB RAM rather than ½MB.

The CPU on the CPU board was upgraded to the M68010 with MMUs, and this

made virtual memory possible, although the operating system never took advantage of

it.

A number of video boards were produced, the simplest of which provided a 1024×

1024 pixel framebuffer, with either 4 bits per pixel, or when upgraded, an 8-bpp frame-

buffer with a programable colour lookup table.

A hard disc controller and laster printer controller were built, which meant that a

Fred Machine system could replace an Interdata filestore as a file and print server.

3The Interdata 74 was fitted with 32KB of memory, for example.
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1.3 Project Resources

To emulate a computer system three things are needed: Detailed specifications on

the hardware components; information on how they are interconnected; and software

(ideally with documentation) to run on the system.

Thankfully, for the most part, all the above existed for this project.

• The three most complex chips used in the Fred Machine are the Motorola M68010

on the CPU board, the Zilog Z80 on the ELAN Station, and the 6809 on the 6809

kit board. All of these are very well known, well documented chips, and many

emulators have been written for them4.

• The interconnects are unique to Edinburgh, but fortunately they are both simple

(from a software point of view), and partially documented.

• The Fred Bus specification describes operations at a very low level, something

which is appropriate for an electronic engineer. This provides us with more in-

formation than we need for an emulation5. For a correctly functioning emulator,

we can impose simplifying assumptions6, and thus can ignore most of the intri-

cacies of the Fred Bus protocol.

• The custom Fred Bus MMU on the CPU board, and the I/O peripheral addressing

provided by the board are also well documented[6]. These are also implemented

by Christopher Lisle’s project, which provides a useful compliment to the spec-

ifications.

• The interface that the Level 1 and Level 1½ graphics boards expose to the Fred

Bus is documented in the working documents[6]. A minor error in this speci-

fication was discovered when trying to test real graphics software, but this was

easily fixed.

4As an example, see the emulator cores in the MAME project[10]
5Of course having too much information is a much better position to be in than having too little

information.
6Such as pretending bus transactions are instantaneous, and thus cannot interfere with each other.
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• The original ELAN network and the ELAN Station are also well documented[3].

A couple of details are unspecified, such as what the generating polynomial for

the 16 bit CRC checksum is.7 This is unimportant for a purely software emula-

tion, as we can create our own frame format, but it does become an issue if we

want to interface with real ELAN hardware.

Unfortunately, although the ELAN Stations used in the Fred Machines are based

on the original ELAN work, they have a completely different (if conceptually

similar) interface to the CPU board. Some details of the host/station protocol

which passes over this interface have also changed. These changes were pri-

marily motivated, it appears8 by a need to allow the filestore to have more than

15 users logged on simultaneously. We were unable to find any explicit defini-

tion or documentation of the interface or protocol changes, and so had to resort

to analysing source code from the Fred Machine to infer the design. Happily,

a major amount of the work done on the original Fred Machine Emulation in-

volved determining how the networking worked, and writing a partly functional

emulation, and much of this can be reused.

• The ELAN Station doesn’t just send and receive frames, it also implements a

higher level protocol. From an emulation point of view, it is unfortunate that it

does this. The protocol, while explained in the ELAN document, is to a certain

degree open to interpretation. A state transition diagram, or something similar

would have been useful.

• The physical interface the ELAN Station uses to communicate with the CPU

reveals another problem. There is a second bus used on the Fred Machines called

theFront Bus. This appears to be an electrical extension of the Local Bus on the

CPU board, and allows the CPU to read and write to other cards’ registers, and

allows the cards to assert interrupts on the CPU. No documentation was found

for this bus, and as it is used for the ELAN Station, the DMACK serial controller,

and other cards such as the 6809 kit board, and so must be emulated, we must

7It cannot be the same as standard Ethernet, as it has a 32 bit checksum. At a guess, it is probably
CRC16-CCITT.

8Personal communication with George D.M. Ross
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guess at its behaviour.

• There is an extensive document describing the original filestore[4], however

there are a few problems with it. Firstly, the protocol itself has been subject to

revision over the years. New features have been added, and behaviour changed.

See, for instance, [7]. Secondly, the precise semantics of the filestore protocol

are not always described. For many commands, the document does not describe

exactly how failures should be handled, and what particular errors should be re-

ported if they do. The source of a number of versions of the filestore (written in

IMP) were made available for this project, and this helped clarify many details

on how the filestore was expected to behave.

• On the software side, a number of extensive backups of a number of the file-

stores from 1987, 1989, 1991 and 1993 were made onto CD-ROM, totalling

several hundred megabytes of source code, binaries, and data. Excerpts from

these have been made available for testing the emulation. A useful emulation

would have been close to impossible without them. The availability of source

code makes debugging the emulation considerably easier. It is much easier to

infer the propose of a program, and how it works, from the source, rather than

having to disassemble a binary object.

1.4 Project Goals

Thanks to the Fred Bus, and the fact that to a certain extent the Fred Machine was

regarded as a research machine, there is no one canonical Fred Machine with a well

defined set of peripherals. Thus, to do an emulation, some design tradeoffs must be

made. Some of these choices are mutually exclusive, some are not. For example, do

we want to emulate Level 1 or Level 2 graphics? Do we want to emulate a M68010 or

a M68030 processor9? Do we want to emulate multiple processor boards? How about

the DMACK boards, the hard disc controller, and the laser printer controller?

9On an OS level they require mutually incompatible exception handling. Most of the Fred Machines
used 68010s.
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Another question, which arises with all emulators, is at what level do we want to

emulate various pieces of functionality? For instance, we need to emulate the Ethernet

station, since it is central to the system, but at what level do we emulate–emulate the

low level hardware, and run the firmware on a Z80 emulator? Or perhaps emulate the

behaviour based on the interface exposed to the CPU? We could even try to trap the

calls at a higher level in the operating system (perhaps by patching the OS kernel when

it is loaded).

A third, and potentially quite complex, question is how do we interface with the

host environment? As a case in point, nobody uses 2.1Mb/s Ethernet anymore, so how

are we going to transfer frames from one emulated Fred Machine to another? Or from

an emulated Fred Machine to a real one? Or, for that matter, from one emulated Fred

Machine to software in the host environment? Similar questions arise for terminal I/O,

graphics emulation, hard disc emulation, and mouse input.

The overriding design decision for this project can be summed up with the term

Software Archæology. That is, while the hardware may be interesting in its own right,

for the purposes of this project we only care about it insofar as it provides a platform

on which to run existing software. Thus, if none of the existing software base ever used

a particular feature of the Fred Machine hardware, or if emulating a particular detail

of the hardware unduly complicates or slows the emulation without having much of an

effect on the software, then we ignore it.

Some of these decisions are detailed in chapter5.

Since the previous project got to the stage of providing a read-only U filestore,

a partly functioning network simulation, could boot the simulated Fred Machine, and

could run a few simple commands before failing, we must extend on this work.

A primary target was chosen for this project: to improve the emulation to the point

where we can run interactive graphical programs.

1.5 The Results, in Brief

The project was successful in meeting its target.

• The behaviour Level 1½ graphics card has been accurately emulated; a number



Chapter 1. Introduction 10

of fixes were made to the networking and filestore, to make it more robust in

the face of an interactive environment; and quite a bit of graphical software was

found in the system backups and was coaxed into to working.

• Level 1 graphics test programs such asTESTCARD, andBARPOLE work. Lots of

graphics demos such asPERSIAN, HARMONY, andRUBIK work.

• More sophisticated programs that use theEDWIN library, such asSPIRO, VIEWPDF,

GILVIEW, and a vector graphics editor calledDRAW run under emulation. Unfor-

tunatelyDRAW requires a mouse for user input, and an emulation of this hardware

wasn’t completed at the time of writing.

• One of the most demanding tests was to get interactive games to run.FROGGER

runs completely successfully. Three other games–PACMAN, AST10, andTAILGUN

all work, but since they need a mouse for user input, they aren’t playable at the

time of writing.

10An Asteroids clone



Chapter 2

Fred Machine Internals

We are what we pretend to be, so we must be

careful of what we pretend to be.

Kurt Vonnegut,Mother Night

Half the work that is done in the world is to

make things appear what they are not

Elias Root Beadle

2.1 Fred Machine Hardware

2.1.1 The Cabinet

The Fred Machine hardware is designed, both logically and physically, as a set of

boards hooked up to a common bus. The Fred Machine cabinet (CSD144 described

in [6]) is a metal case, with a perspex door and a 400W power supply. It is frequently

described as being microwave like in appearance. It has a backpane that can hold

up to 19 Fred Bus cards, and provides pins to arbitrate bus mastering requests from

individual cards.

11
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Figure 2.1: The Fred Machine case

2.1.2 The Fred Bus

The Fred Bus is a medium-speed 32 bit bus connecting intelligent peripherals together.

Cards attach to the bus via a 96 pin connector. The pins provide power, bus signalling,

a 100Hz clock, and 32 data and 32 address lines.

The cards can operate in one of two modes–Masteror Slave, and there is a 3 level

protocol for defining how cards communicate with each other.

The first step in performing a Fred Bus transaction involves taking control of, or

acquiring the bus. Obviously, it would a bad thing for multiple devices to attempt to

send data simultaneously. A card numberedi which isn’t already in control of the

bus requests control by asserting the BRQi (Bus Request) pin, and waits for the bus

controller to grant it by asserting the BGRi (Bus Grant) pin. This will not occur until

other cards finish their transactions. The BRQi pin remains asserted for the duration

of the transaction.

The second step involves the bus master specifying a destination address and send-

ing an 8, 16 or 32 bit data transfer across the bus. Each of the slave cards listens for

transfers, and if the address matches a card, it responds by performing the appropriate

read or write, and can either acknowledge the transfer, or raise an error.

For the third and final step, the bus master receives the acknowledgement or error,

and can read any resulting data (if necessary), and finally releases the bus.

As we can see this procedure is rather involved, and it has to be done for every read
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Figure 2.2: Inside the Fred Machine

or write to system memory, for every update to the video display, and so on.

2.2 The Arbitration Board

On most Fred Machines, there is only ever one card (the CPU board) that can initiate

transactions on the Fred Bus. In this particular situation, there is no need to have any

hardware to check whether a device already has control of the bus–the CPU board just

asks for control of the bus, and is immediately granted it. In hardware, this is done

by connecting the BGR and BRQ lines together, so as soon as a request is made, it is

immediately granted.

Some more complex Fred Machines were built with multiple processor cards.

Since each of the CPUs could individually start transactions, bus arbitration hardware

needed to be present to handle this. The hardware took the form of an extra Fred

Bus card (that used the Fred Bus simply for power lines). The BGR and BRQ pins

from each of the CPU cards were connected directly by wires to a set of pins on the

arbitration board.
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According to George Ross, the Fred Bus itself was a relatively noisy bus, electri-

cally speaking (since there were so many pins in such a confined space), and there

were subtle bugs in the arbitration board. This caused problems with the reliability of

the multiprocessor systems.

It is interesting to note that a without the arbitration board, similar details of the

Fred Bus transaction sequence are ignored as are by the emulator. This suggests that

this is not an unreasonable approach to take. The only difference is that an emulator

can guarantee in code that bus collisions cannot occur, whereas in hardware we must

take care not to use the wrong mixture of cards.

2.3 The Processor Board

Figure 2.3: The CPU board

In one sense, the CPU is the ‘heart’ of the Fred Machine. Without something to

initiate and coordinate the activities of the system, all the cards will just sit idle waiting

for transactions to happen.
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That said, from a Fred Bus point of view, there is nothing special about the Pro-

cessor Board–it is just another board on the bus, albeit one which starts rather a lot of

bus transactions. One consequence of this is that, arbitration hardware aside, there is

no special hardware required to have multiple CPU boards in the one system. Special

software has to be designed to allow the boards to perform meaningful work together,

but the hardware works as is.

2.3.1 The CPU

The CPU board in most Fred Machines holds a small daughter-board with 10MHz

Motorola M68010 microprocessor and a pair of Motorola 68451 MMUs. The 68451

was Motorola’s first attempt at an MMU for the 680x0 processors, and apparently

was dramatically inferior to the much more popular 68851 that Motorola introduced

later. A pair of MMUs is required to make paging with 4K pages possible, although in

practice, none of the standard Fred Machine software actually uses the MMU.

The daughter-board is plugged into a local bus on the CPU board, along with 16KB

of local memory which is arranged in 4KB chunks of either ROM or RAM. This is usu-

ally configured with the first 4KB containing two 8-bit 2KB EPROMs used to bootstrap

the system, and the remaining 12KB holding 6 8-bit 2KB DRAM chips as local RAM.

The OS kernel is loaded into the local RAM, and things like the OSpseudo-vector

tableand various OS housekeeping information are stored here too. This is sensible,

as the local memory isfast memorysince accessing it doesn’t require transactions to

go across the Fred Bus.

The M68010 communicates with every component on the CPU board via theLocal

Bus. To access the Local Bus, the 68010 has 24 address pins (A0-A23), onto which it

puts the address it wants, as well as another pin which specifies whether it wants to read

or write, and a final set of pins which are used to specify the data that is read or written.

Circuitry on the local bus routes the memory accesses to the correct components, thus

providing both memory mapped I/O, and access to local and system memory. The

particular mechanisms used are described later.
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2.3.2 The M6800 Bus

Hooked up to this Local Bus is an M6800 bus, which uses M6800 timing, and sig-

nalling which is compatible with a number of Motorola’s peripheral chipsets. Two

of these chips are used on the CPU board: the Motorola 6840–a chip with 3 pro-

grammable timers, and a Motorola 6850 which is an RS-232 serial port controller.

The 6840 appears on the M6800 bus as 8 readable and writable single byte regis-

ters. Its interrupt pin is connected to an interrupt line on the Local Bus, and generates

a level 6 interrupt on the CPU.

The serial controller appears as 2 single bytes registers on the M6800 bus. It is

hooked up to a set of toggle switches which allow the user to choose the baud rate at

which the serial port operates. Its interrupt pin is hooked up to the M68010 via a line

on the local bus, and generates a level 5 interrupt on the CPU.

The other device on the M6800 bus is a rotatable mains switch which is used when

the user powers on the system. It appears as a single byte read only register.

2.3.3 Interface with the Fred Bus

A final set of devices to appear on the Local Bus is a set of registers that control how

the CPU generates Fred Bus transactions, and a set of registers that allows other boards

on the Fred Bus to read the CPU state and generate programmable interrupts.

2.3.3.1 Address Mapping

The first set of registers forms a set of 8address mappingregisters. They consist of 12-

bit write only registers that appear only on the Local Bus, and are used to translate the

addresses the CPU specifies when accessing system memory into addresses suitable for

the Fred Bus. The CPU can access 8MB of system memory, and each register maps

a 1MB block of memory onto a 1MB block of the Fred Bus address space. Address

lines A22-A20 are taken as a 3-bit index into the 8 entry address map table, and are

used to generate the high order 12 bits of the Fred Address. The low 20 bits come from

A19-A0.
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Since the M68010 can’t write 12 bit words, the registers are set by writing a 16 bit

word. The top 12 bits are extracted from the write and put in the appropriate register.

As the address mapping registers are write only, the APM working guide recom-

mends that whenever system software updates the registers, it should keep a readable

copy of its contents in RAM.

2.3.3.2 Processor State

The second set of registers is accessed from the ‘outside’ by other cards on the Fred

Bus, so they are not visible on the CPU’s memory map. The Fred Bus addresses that

these registers appear at are controlled by a set of 4 hex switches on the CPU board.

These define the top 16 bits of the 64KB block of memory where the CPU board

appears on the Fred Bus. Within this 64KB block are 9 single-byte registers, which are

selected with bits 15-13 of the Fred address.

Register 0 is a read only Processor State Register. Bits 0 and 1 are always set to 1;

bits 2 and 4 are always set to 0; bit 3 is set if the processor halts after a fatal bus error;

and bits 5, 6, and 7 hold the 3 bits of the function code for the last CPU cycle.

Registers 1-7 are interrupt registers–when read they return an interrupt state register

(which has bit 7 set if there is an interrupt pending at the given interrupt level), and

when any value is written to them, they notify the CPU of an interrupt, and set the

appropriate bit of the interrupt register.

When the CPU acknowledges an interrupt, the corresponding interrupt register is

cleared.

The final register is called the Combined Interrupt State Register, is read only, and

contains the state of the other 7 interrupt registers. Bits 1-7 of the interrupt register are

set to 1 if there is a level 1-7 interrupt pending. Again, when the CPU acknowledges

an interrupt, the corresponding bit in the CISR is cleared.

2.3.4 The Memory Map

The memory map of the CPU board is formed by circuitry on the board which decodes

different address lines, and uses them as a switch to access different components on

the board.
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2.3.4.1 System Addresses

The main switch is the A23 line. When this is 0, the access is to the Local Bus. When

1, it is to the System Bus1. Thus the first 8MB of memory is local, and the 2nd 8MB

of memory is mapped onto Fred Bus accesses. Further mapping of system addresses

occurs as described in section2.3.3.1.

2.3.4.2 Address Mapping Registers

Local addresses are decoded further by examining A19. When this is set to 1, the

addresses A22-A20 define which of the 8 address map registers should be written

to. This particular arrangement means that the local memory map is divided up into

16 512KB chunks, and that writing to any word in one of the odd numbered chunks

(where the 1st chunk is numbered 0) updates the appropriate address mapping register.

2.3.4.3 The Local Bus

If A19 is 0 (and A23 is 0, as per section2.3.4.1), then memory accesses are made

using the protocol that the M68010 uses for accessing RAM. If A19 is set to 1, then

memory accesses are made using the M6800 protocol. This protocol allows the local

bus to interface with all the M6800 style peripheral chips on the M6800 bus. On the

existing CPU board, only the bottom 9 bits (ie 512 bytes) are used to address individual

peripherals.

So from the CPU’s point of view, the M6800 peripherals appear in the memory

map as a 512KB block at 4MB, and again at 5MB, 6MB, and 7MB.

2.3.4.4 Local Bus Peripherals

The key switch register appears as read only byte register on the M6800 bus at any of

the addresses between 0x30-0x3F with A0 set to 12. The lower four bits of this register

represent the key position.

1i.e. the Fred Bus
2i.e. 0x31, 0x33, 0x35, etc.



Chapter 2. Fred Machine Internals 19

The M6850 ACIA (the RS-232 controller) appears as two single byte registers at

0xC1 (which acts as the command and status register) and 0xC3 (which acts as the

data register) on the M6800 bus. The 6850 interrupt line is also connected up to the

M68010 as described in section2.3.2.

The M6840 programmable timer appears as 8 single byte registers on the M6800

bus at the even addresses from 0x100 to 0x10C inclusive. It also has an interrupt line

connected to the local bus as described in setion2.3.2.

All the remainder of the M6800 bus addresses are either unused, or have undefined

(and thus unsafe) effects when accessed.

2.3.4.5 The ELAN Station

Slightly surprisingly, rather than being being implemented as a set of Fred Bus regis-

ters, the interface to the ELAN Station is provided as a set of 4 registers accessed as 3

memory locations on the Local Bus. A ribbon cable is used to connect the CPU board

to the ELANA board over what is called theFront Bus. This interface will make more

sense when we examine the Front Bus, and history of the ELAN board in section3.4.

The registers appear in the M68000 part of the address space as 4 bytes just below

512KB (ie 0x7FFFC-0x7FFFF), they are also duplicated at 0x17FFFC, 0x27FFFC,

and 0x37FFFC.

The Status Register appears at 0x7FFFC, the Data Register appears at 0x7FFFD,

and the Control Register appears at 0x7FFFF.

The ELAN Station is also connected to interrupt line 4 on the local bus. Asserting

this line causes a level 4 interrupt to be raised on the CPU. The board can use this to

inform the CPU of incoming words on the station/host interface.

The behaviour of the ELAN Station is one of the most complex parts of the Fred

Machine and is described in its own chapter.

2.4 The Front Bus

The Front Bus is the second major bus that appears on most of the Fred Machine

systems. No documentation was found on it, and it isn’t mentioned at all in the APM
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working documents. It is used to connect devices such as the 6809 kit board, the ELAN

board, and the DMACK serial controller board directly to the Local Bus on the CPU

board.

Physically it appears as another 96-pin socket on the front of each of the cards

using it. A single ribbon cable with multiple connectors on it is the backbone of this

bus, and each of the cards is plugged in to it.

Since no hardware documentation is provided, we must guess at its behaviour from

the software that uses it. From the software, we discover that all the devices appear

around 0x7F000. From this we can guess that 68010 CPU controls the bus, and the

devices on the bus respond to the 68000’s protocol for accessing memory.

Further examination of the software shows that some devices can assert interrupts

on the CPU, so presumably the interrupt lines 4-7 on the local bus are also connected

up to lines on the Front Bus.

2.5 The Memory Board

Figure 2.4: The 512KB memory board

The standard memory board for the Fred Machine is called as the CSD136. It holds
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512KB of parity checked DRAM implemented using 64KB chips. The average access

time is 230ns, which allows for approximately 4 million memory accesses per second.

Given that the the CPU runs at 10MHz, and the 68010 takes several (sometimes many)

clock cycles to execute each instruction, this is sufficiently fast for memory not to cause

a huge performance bottleneck.

Several memory boards can be fitted in the one machine, and to distinguish between

them, each board has 4 hex switches that are used to define the top 16 bits of the

board’s address in the Fred Bus address space. Since 512KB requires 19 bits of address

space, the bottom 3 bits of the board’s address switches must be 0. The APM working

documents state that if the least significant switch is not set to 0 or 8, the board is

disabled.

For debugging purposes, the board has 2 LEDs–an access indicator and a parity

fault indicator. There is also a three way switch which controls the parity checking

behaviour. The switch in the up position disables the parity checking. The switch in the

middle position enables the parity checking, but disables the parity fault indicator. The

switch in the down position has parity checking enabled, and sets the parity checking

indicator to stay on once a fault occurs. The third state is the recommended state for

normal usage.

Later versions of the memory board use 256KB chips rather than 64KB chips, and

so hold 2MB of memory. Documentation was not avaliable for this board, but visual

inspection of a 2MB board in one of the remaining Fred Machines show that it has 3

hex switches rather than 4, and presumably it must restrict the bottom bit of the least

significant address switch to be 0.

2.6 The Level 1 Graphics Board

The level one graphics board provides a graphics controller with a write-only 1024×

1024 pixel framebuffer to the Fred Machine. Two versions were made avaliable: a

single board version capable of storing 4 bits of colour information per pixel and gen-

erating RGB TTL video outputs; and a two board version, storing 8 bits per pixel, with

a 256 entry 16 bit colour map, and an analogue video output.
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Figure 2.5: The Level 1½ board

Figure 2.6: The Level 1½ board’s two layers

2.6.1 The Hardware

Physically, the graphics board has four address selection hex switches, similar to those

on the memory board. The graphics board exposes 256KB of address space to the

Fred Bus, so in a fashion similar to the memory board, the bottom 2 bits of the least

significant hex switch must be 0.

The graphics board has an indicator LED which is lit if the framebuffer is being

updated.

The graphics board generates a video signal suitable for displaying on a Mitsubishi

C3419E monitor. This has a display resolution of 688×512 pixels, and since this is
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smaller than the resolution of the framebuffer, awindowof pixels from the framebuffer

is displayed. The offset of this window from the origin is controlled by one of the

graphics board’s registers (the Display Register). Note that this window can wrap

around from right to left (if thex offset is> 336), and from bottom to top (if they

offset< 512).

The layout of the Display Register allows us to do vertical hardware scrolling (as

would be used in a terminal emulator), in 1 pixel increments. Horizontal scrolling can

only be done in 16 pixel jumps. It is fortunate that the horizontal scroll is done in

multiples of 8 pixels, as this simplifies the display hardware.

2.6.2 Display, and the Framebuffer

The coordinate system of the graphics board, in common with PostScript, graphics

on the BBC Micro, and Cartesian geometry; and at odds with the likes of Apple’s

QuickDraw, Microsoft’s GDI and the X Windowing System, places the origin at the

bottom left of the framebuffer. Increasingx coordinates move from left to right, and

increasingy coordinates move from bottom to top. Thus Level 1 graphics coordinates

are in the range (0,0)-(1023,1023).

2.6.2.1 Bitmap Storage Models

Most modern graphics systems that expose framebuffers to a CPU treat the frame buffer

memory as a single linear sequence of pixel values. For example, a system with 32 bit

colour (8 bits of red, green, blue and alpha components) treats bytes 0-3 as being from

the first pixel, followed by bytes 4-7 from the second pixel, and so on. Sometimes this

is referred to aschunky graphics.

As an alternative to this approach, some systems use a different method: Memory

is divided up into a set of single bitplanes. In our example the 32 bits for the first pixel

would be stored as 1 bit at the start of 32 different bytes of memory.

Both systems have their strengths and weaknesses. The chunky approach is good if

photographic images or other bitmaps with many different colours are being dealt with,

or lots of updates to non-sequential pixel locations are being performed, since only one

operation needs to be performed to display a pixel (namely writing a single word to
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the framebuffer). It performs poorly for dealing with situations where only a few (or

perhaps just 2) colours are required–such as a terminal window. As the number of

bits per pixel increases, the amount of data that needs to be written to the framebuffer

increases in direct proportion. This means that a monochrome terminal window on a

32bpp framebuffer will require 32 times more memory traffic than a 1bpp framebuffer,

despite the fact that the same image may be displayed.

In a planar system, this is avoided. If one wishes to display only a single pair of

colours, as in a terminal window, one only needs to write to the appropriate plane of the

framebuffer. However, a simple planar system is very weak at updating random pixel

locations, as in a 32bpp system, 32 single-byte reads need to be performed, followed

by 64 bitwise logical operations by the CPU, and 32 single-byte writes.

2.6.2.2 The Level 1 Framebuffer

The Level 1 graphics board provides a planar approach, with a little added hardware

acceleration.

The board provides access to a single plane of 1024×1024 pixels, that appears as

128x1024 writable byte registers. Pixels are addressed from left to right and bottom to

top. Within a byte, the most significant bit represents the leftmost pixel, and the least

significant bit the rightmost. 8, 16 and 32 bit writes may be performed.

Writes to this pixel plane get mapped to the framebuffer as follows:

There are a pair of registers called the Plane Enable Register, and the Colour Reg-

ister. The Plane Enable Register is a single byte, and effectively acts as a bit mask

for pixel updates. If a bit in the PER is 0, then pixel updates to the given plane are

disabled.

The Colour Register is also a single byte register, and the value written to that

determines which colour planes will be set and cleared by writing to the pixel plane.

When a write is done to the pixel plane, each bit in the word written is examined.

If it is 1, then the 4 (or 8) corresponding bits in the colour planes for the appropriate

pixel are updated to the value stored in the Colour Register (as long as the appropriate

PER mask bits are set).
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2.6.3 Video Output

From the display point of view, pixel values are mapped to colours as follows:

On the 4 bit board, planes 0, 1 and 2 map to the red, green and blue guns being on

or off. Thus 8 colours are displayable–black, red, green, yellow, blue, cyan, magenta,

and white.

Plane 3 acts as a invert, orcursor plane. That is to say, it inverts the sense of the

3 other bits. This allows an efficient flashing cursor to be displayed purely in software

without an unreasonable CPU overhead, and without requiring a readable framebuffer.

On the 8 bit boards, we must discuss another set of registers, namely the colour

map. The colour map is a 256 entry table of 16 bit words. It appears as a writable set

of registers on the Fred Bus.

In each colour map entry, bit 15 is aflashbit, bits 10-14 specify the blue intensity,

5-9 specify the green intensity, and 0-4 the red intensity. This means that each colour

component has 32 possible values, leading to 32768 possible colours. When the flash

bit is set, the display hardware alternates between showing black, and the specified

colour every 16 frames.

When displaying pixels using the 8 bit boards, for each pixel, the 8 planes are used

to give an index into the colour table. The values from the colour table are used to

determine the intensity of the red, green and blue electron guns.

2.6.4 The Fred Bus Interface

As mentioned in section2.6.1, the Level 1 graphics card exposes 256KB of address

space to the Fred Bus. All of the graphics registers are write-only. The addresses are

interpreted as follows:

2.6.4.1 Framebuffer

If A17 is clear (ie, the write is to the bottom 128KB), then we write directly to the pixel

plane, with the effects described in section2.6.2.2.
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2.6.4.2 Control Registers

If A17 is set, then we write to one of the control registers.

When A16 is set (ie the address is between 192KB and 256KB), and we are using

the 8 bit graphics boards, then we write to one of the colour map entries. The colour

map entries are laid out as 256 32 bit words, with the color map being stored in the

bottom 16 bits of each word. So, the bottom 10 bits of the address determine which

entry is written to. If the bottom two bits are 0, or 1, the write is ignored. If it is 2,

the most significant byte of the word is written to, if it is 3, the least significant byte is

written to.

When A16 is clear (ie the address is between 128KB and 192KB) we write to one

of the control registers. The control register is selected using the bottom 2 bits of the

address.

When the address is 0, we update the Plane Enable Register from chapter2.6.2.2.

When the address is 1, we update the Colour Register from chapter2.6.2.2.

When the address is 2 or 3, we update the high and low bytes (respectively), of

the Display Register. The Display Register contains the x and y offsets described in

chapter2.6.1. The top 10 bits contain the y offset (i.e. the topmosty coordinate), and

the bottom 6 bits contain thex offset (i.e. the leftmostx coordinate) divided by 16.

This description of the Display Register is at odds with the in APM working docu-

ments. They describe they offset as being theY Finishing Index, which is the bottom-

mosty coordinate according to the illustration in the document. However if we use the

description from the working documents, some of the Fred Machine software does not

display correctly.

Note that, in common with much of the Fred Machine hardware, the addresses for

accessing the control registers are not fully decoded–the values of some of the address

lines are ignored. This means there is no unique address for the 3 registers (and the

colour map), and they appear many times within the address space.
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The ELAN Network

To pretend, I actually do the thing: I have

therefore only pretended to pretend

Jacques Derrida,The Post Card

The ELAN network was a digital computer network set up in the University of

Edinburgh in 1980. It was based on the design work that came from a pair of ex-

perimental systems, which were inspired by the Ethernet system developed at Xerox

PARC[8], and the subsequent standardisation effort.

The design goals were slightly different to those at Xerox PARC. The Xerox PARC

system was intended to connect a local network of graphical workstations (Xerox

Altos[9] with local discs in this case) to each other, for email and light file sharing,

as well as to a shared laser printer.

In Edinburgh, the system was intended to connect a large number of discless work-

stations to a small number of fileservers. Furthermore, the system needed to support

a number of different architectures, including the VAX, the Fred Machine, and some

Interdata minicomputers. Some of these systems, particularly the Interdata machines,

had relatively little memory and processing power, so this motivated handling as much

of the network stack as possible in firmware.

27
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Figure 3.1: The ELAN vampire tap

3.1 The Physical Network

The physical ELAN network, and the physical, and link level protocols used on it are

broadly similar to those of the standard 10Mb/s Ethernet.

The major differences are, broadly, as follows:

• Standard Ethernet runs at 10Mb/s, whereas ELAN’s network runs at 2.1Mb/s.

• Standard Ethernet is designed for networks with cable lengths of up to 2.5km,

and so the minimum frame size was 64 bytes (46 bytes of payload), to allow col-

lision detection to work reliably. ELAN is designed with slower hardware, and

smaller networks in mind, so the minimum frame size is 14 bytes (no payload).

The maximum frame size in Ethernet is 1518 bytes, and in ELAN is 548 bytes.

• Standard Ethernet uses 6 byte MAC addresses to uniquely identify an Ethernet

card. 3 bytes are aVendor ID(allocated from a central registry), and 3 bytes are

a Vendor Serial Number. ELAN’s addresses were also 6 bytes–a 1 byte local

Host ID, a 1 byte port number, and a 4 byteNetwork ID(allocated from a central

registry). Note that this introduces elements of a higher level protocol into what

is just a link level protocol on standard Ethernet.

• Standard Ethernet has a 16 bitService Access Point, or protocol type field in

each frame, indicating which protocol is carried in the payload, and a 32 bit

CRC. ELAN also has the type field, but uses it to hold the packet type, whether
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it is an acknowledgement, and a sequence number, again introducing elements

of a higher level protocol. ELAN’s checksum is a 16 bit CRC.

• The backoff algorithm, in case of collision, and the frame preamble bits are

different between Ethernet and ELAN. The interpacket spacing is 3µs in ELAN,

on Ethernet it is 9.6µs.

3.2 The Ethernet Station Hardware

Figure 3.2: The ELAN Station

The ELAN Station boards consists of an Ethernet transceiver for sending and re-

ceiving Ethernet frames; a controller for buffering packets and handling acknowledge-

ments, retransmissions etc.; and a simple interface to the host computer.

The transceiver has a number of features that save the host CPU from doing work.

• The receiving hardware has an optional filter that automatically drops frames

that are not addressed to receiving station. It also has a 256 bit broadcast mask
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which can be set to ignore broadcast frames to any of the 256 broadcast channels.

On powerup all 256 bits are set to 0, ie all channels are ignored.

• The receiver has a 64 byte FIFO, and the transmitter has a 16 byte FIFO, allowing

the controller not to have to poll all the time.

• CRCs are generated, and checked automatically by hardware.

The controller is a Zilog Z80 running at 4MHz. The firmware for the controller is

stored in a 4KB ROM, and 4KB of RAM is used as both working memory and a buffer

for 5 ELAN frames. The controller is connected to a DMA engine that has 4 unidi-

rectional channels, both to and from both the host and the transceiver. The controller

implements a simple connection oriented protocol with retries, acknowledgements, and

sequence numbers on top of the raw ELAN frames. In ways it is reminiscent of a sim-

plified version of TCP/IP, although unlike TCP/IP it would behave extremely poorly

outside a LAN environment, and has no notion of routing frames between networks.

3.3 Services Provided

From the developer’s point of view, the ELAN Station differs from standard Ethernet

in one major way: Whereas on Ethernet, arbitrary frames are sent from a specified

source to a specified destination, ELAN provides the notion of a port, which is roughly

akin to a bidirectional UDP datagram socket in TCP/IP. The standard ELAN firmware

provided 16 ports. Later versions of the firmware allowed up to 256 ports, although

this change required a change in the host/station communications protocol. This later

protocol is the one used in the emulation.

3.3.1 Ports

To explain this, firstly lets take a look at ELAN addressing. As mentioned earlier,

ELAN MAC addresses are 6 bytes, as in Ethernet.

• Byte 0 specifies a host identifier. Valid addresses include 1-127, which represent

a unique host, and 0, which represents a broadcast address. Bit 7 is reserved, and
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is always set to 0.

• Byte 1 specifies a context. For unicast packets, this is a value between 0-15, and

is the port number on the destination host that the frame is intended for. For

broadcast packets, the value represents the broadcast channel number (0-255).

• Bytes 2-5, the last four bytes, specify a network identifier–a unique ID handed

out by a central registry that specifies what LAN a station is on. On the ELAN

network, this was set to all zeros.

The ELAN Station maintains a context for each of the ports. With the exception

of port 0, a port must be opened, and associated with with a destination station (either

unicast or broadcast), before frames can be received or transmitted on that port. An

attempt to open an already open port implicitly closes the port first, before reopening it.

After use, a port can be closed, and an attempt to close an already closed port silently

succeeds.

An attempt to send a frame to a closed port, or the receipt of a frame from a source

other than the one specified by the port context both fail.

Port 0 is regarded as special. It is the only port that can receive broadcast frames,

and it is always open. Whereas with all the other ports, once a port is open, the host

just sends raw data packets and the controller automatically appends the necessary

addressing information, with port 0, there is no addressing context, so the host must

specify a destination address with every frame. The host also receives a source address

with every frame received from port 0. This allows port 0 to send frames to and receive

frames from arbitrary stations without any special setup. In many ways, port 0’s service

is most like that of standard Ethernet.

One side effect of this is that initiating a transaction between two stations is slightly

awkward: If a client station A wishes to connect to a server station B on some port, it

must first send a frame on port 0, requesting that station B should open the appropriate

port, and should then wait for incoming frames. After this, the client can attempt to

connect to the desired port. This is quite unlike UDP/IP, where on the server side, the

bind function can be set to allow an incoming socket connection from any host. The

server can then canlisten for connections from anywhere, andaccept them.
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3.3.2 Acknowledgement and Retransmission

Another less obvious aspect where ELAN differs from standard Ethernet is in its han-

dling of acknowledgement and retransmission. Ethernet does not attempt to provide

a reliable service, but ELAN does. In Ethernet, a frame may be corrupted (and thus

dropped) with a probability of 10−5 or less, frame collision may occur, or the destina-

tion host may not be available. An Ethernet interface just sends frames out onto the

ether, and as long as it doesn’t detect a collision while it is transmitting, it doesn’t at-

tempt to retransmit. Whether the frame is actually received by another interface or not,

is somebody else’s problem, i.e. any further data delivery guarantees must be provided

by higher layers of software.

In the Ethernet and ELAN frame format, there is a two byte field called the Service

Access Point, or protocol type field. In Ethernet it is used to indicate the ID of what

protocol stack should be used to process the payload–e.g. 0x0800 is IPv4, 0x6003 is

DecNet Phase IV, and 0x809B is AppleTalk. In ELAN the type field has two purposes:

the 7 least significant bits in first byte is used to identify the payload type, as in Ether-

net. This is protocol 0 for filestore traffic. The most significant bit is used to indicate

whether the frame is a network acknowledgement frame (1) or not (0). The second

byte is a sequence number. When a port is opened, the first frame transmitted has

a sequence number of 0. Each subsequent packet transmitted increases the sequence

number by one. After the sequence number reaches 255, the next sequence number is

1.

When a host requests to an ELAN Station to transmit a payload, the ELAN Station

wraps it up in a frame, buffers it and attempts to send it. The sending port is then

blocked until an acknowledgement on the correct port and with the correct sequence

number is received. If an acknowledgement is not received within a 35ms, it assumes

that the frame was lost and retransmits it with the same sequence number. This repeats

up to 30 times, with an extra 35ms being added to the delay each time, after which the

station gives up on the packet and sends a negative acknowledge to the host. On the

other hand, if an acknowledge is received in time, then the station can inform the host

that the data was successfully send.

Note that while a given port is waiting for an acknowledge, anther port can be
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sending. This ability to use ports in parallel partly makes up for the fact that this

send/acknowledge protocol has no windowing1, and as such is quite slow.

Note also that since a broadcast frame is not sent to any particular host, there is

no acknowledgement for broadcast frames, and as soon as the frame is buffered, the

station informs the host that it was successfully delivered.

3.4 The Host/Station Interface

There seem to have been some changes in the interface between the host and the ELAN

Station over time. The 1982 ELAN document[3], describes the interface to appear

logically as a pair of nine bit wide unidirectional channels, which can be used for

transmitting or receiving data or control bytes. On these channels, control bytes were

distinguished from data by having the topmost bit set to one.

However, when we examine the ELAN code used in all of the Fred Machine soft-

ware, it refers to 3 memory locations as in chapter2.3.4.5. These provide 4 single byte

wide registers: a Status Register, a Command Register, a Data Register, and a Control

Register. These registers are used to manipulate the 2 logical 9-bit host-to-station, and

station-to-host FIFOs which are described in the ELAN document.

Delving further, it appears that the format of the command characters has evolved

a little bit also. Rather than being a single command byte split up into a 4 bit command

field, and a 4 bit data field, a single byte writes to the Control Register appear as the

command. The controller then waits for writes to the Data Register, and treats them as

the arguments to the command. Amongst other things, this means that the host/station

protocol can handle having up to 256 ports, as the OPN and CLS (port open and port

close) commands take a single byte argument.

To support extra useful functionality, the behaviour of the 4 registers is a little more

complex than one would first suspect. The behaviour is described below.

• Reading from 0x7FFFC reads from the Status Register, and works much as one

would expect–it gives the host information about the state of the ELAN Station.

1i.e. data transmission proceeds in a sequential send, ACK, send, ACK order, and thus speed is
limited by the latency of the network. For a discussion of windowing see the RFC1323[12]
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If there is no protocol data to be sent to the host, it returns a 0 byte, however if

there is data in the station-to-host FIFO bit 0 is set to 1. If the next byte in this

FIFO is a control byte then bit 1 is set. This is the same as the top bit being set in

the protocol described in the ELAN document. If the next byte to be sent to the

host is either data or an argument following an incoming control byte, then bit 2

is set. Finally, if interrupts are switched on, and the Status Register is non-zero,

then bit 7 is set.

• Writing to 0x7FFFC is also possible, and behaves as writing to the Command

Register. The Command Register controls the overall state of the card. Writing

a 0 tells the Station not to assert interrupts on the CPU. Writing 6 to this register

instructs the Station to assert an interrupt when it wants to inform the host of data

on the station-host FIFO. When exactly it does this is not entirely clear, but it

appears to be when a new word is added to station-to-host FIFO. The Command

Register may support more commands than this, but these are the only two used

by the Fred Machine system software.

• Reading 0x7FFFD, or the Data Register, does one of two things: If the first word

on the logical host to station fifo is a data byte, or a command argument byte,

then that byte is removed from the FIFO, and its value is returned to the host.

If the first word on the FIFO is a control word, then the value of the word is

returned to host, but the word is not removed from the FIFO.

• If a previous control command has been sent to the station that requires either a

stream of data or an control argument to be sent to the station, then writing to

the Data Register sends the information to the station one byte at a time. If the

Station is not expecting information, then the byte is discarded.

• Writing to 0x7FFFF, the Control Register, does the equivalent of sending a word

with the high bit set to the station in the protocol described in the ELAN doc-

ument. That is, it sends a command character to the station. Depending on

the command, this may require further argument bytes to be sent to the Data

Register, followed by the results later being read from the Data Register. The

individual commands are described later.
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• Reading from the Control Register only works if the first word in the host to

station FIFO is a control word. If it is, then the word is removed from the FIFO

and returned to the host.

3.5 The Host/Station Protocol

The Host/Station protocol consists of control words (which can be sent from host to

station, or station to host), and corresponding arguments, and data that goes along with

them. Logically these words are 9 bits long, with the top bit signalling that the word

is in fact a control word. A brief description of the control words, and how they were

intended to be used follows:

• 0x04 – ENA –Enquire Network Address

This control character is sent from the host to the station. The station responds

with a control character SNA (Set Network Address), and a 4 data bytes contain-

ing the network address in the order they would appear in bytes 2-5 of a MAC

address.

• 0x05 – ESA –Enquire Station Address

This control character is sent from the host to the station. The station responds

with a control character SSA (Set Network Address), and a single data byte with

the host address.

• 0x06 – SNA –Set Network Address

This control character can be sent from the host to the station. The station waits

for 4 more data bytes, and then uses this as the network address of the station.

The station can also send this control character to the host in response to ENA

• 0x07 – SSA –Set Station Address

This control character can be sent from the host to the station. The station waits

for 1 more data byte, and uses the data byte as the host address of the station.

The station can also send this control character to the host in response to ESA.
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• 0x08 – PTR –Set Peek/Poke Pointer

This control character is sent from the host to the station. The station waits for

2 more data bytes (least significant byte first), and uses this as an address for

future GET and PUT commands.

• 0x09 – BON –Broadcast On

This control character is sent from the host to the station. The station waits

for 1 more data byte. The byte received is interpreted as a broadcast channel

number, and switches on the corresponding bit in the broadcast receive bit mask.

The station will not discard future broadcast frames received with this channel

number.

• 0x0A – BOF –(All) Broadcasts Off

This control character is sent from the host to the station. It has no argument.

The station immediately clears the entire broadcast receive mask – i.e. it will

discard any future broadcast frames received.

• 0x0B – ETX –End Transmission (of data)

This control character can be send by either the host or the station. It is used as

the terminal word when transmitting a packet of data initiated by either DTX or

OPN. It has no associated argument, as the port number can be implied from the

rest of the data communicated.

• 0x0D – GET –Peek byte

This control character can sent from the host to the station. The station imme-

diately returns a PUT control character, followed by the value of the byte in

the station’s local memory from the address specified by the most recent PTR

command.

• 0x0E – PUT –Poke byte

This control character can sent from the host to the station. The station waits

for 1 more data byte. That byte is written to the address specified by the most
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recent PTR command in the station’s local memory. The station can also send

this control character to the host in response to GET.

• 0x0F – RESET –Reset Station

This control character is sent from the host to the station. It effectively reboots

the station, and returns it to its state on power on.

• 0x10 – RDY –Ready

This control character can be send by either the host or the station. It is used as

an affirmative response to a DTX or OPN control character from the other side.

It is followed by a single byte indicating the number of the port that has just been

opened, or has is ready to receive a data packet.

• 0x20 – STX –Start Transmission (of data)

This control character can be sent by either the host or the station. It is used at

the initial word when transmitting a packet of data initiated by either DTX or

OPN. It is followed by a single byte indicating which port the frame is to be sent

on.

• 0x30 – DTX –Transmit Data

This control character can be sent by either the host or the station. It is used

to indicate that one side wishes to send an ELAN frame to the other. This oc-

curs either when the host wishes to transmit data on the network, or when the

station has received a packet that should be passed on to the host. The control

character is followed by a single byte indicating the port number associated with

the frame. The other side responds with a RDY. Once this is received, sends an

STX, followed by the data one byte at a time, then a final ETX. Note that the

entire operation from DTX to ETX is regarded as atomic. It is a protocol viola-

tion for either side to attempt to start other transmissions, or embed other control

characters inside one of these operations.

Note that DTXs on port 0 must prepend the user data with the 6 bytes of the

MAC address (transmitted in order from byte 0 to byte 5). The user data must

be no more than 532 bytes long.
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• 0x50 – NAK –Negative Acknowledge

When the station has attempted to send and resend a frame to a remote host

without success, and finally times out, the station releases the buffer, and sends

NAK control character to the host, followed by a single byte representing the

port number the packet was transmitted on.

• 0x80 – OPN –Open Port

This control character is sent from the host to the station. The station waits for

the host to transmit one more byte. This byte is the port number that host wishes

to open. The station replies with a RDY. The host then sends an STX, followed

by 6 bytes containing the MAC address that should be associated with the port

(transmitted in order from byte 0 to byte 5).

• 0x90 – CLS –Close Port

This control character is sent from the host to the station. The station waits for

the host to transmit one more byte. This byte is the port number that the host

wishes to close. The station closes the port, and doesn’t have any response.

• 0xA0 – ERR –Error

This control character is sent from the station to host. It is sent in response

to a command that doesn’t make sense, or is invalid – such as trying to OPN

an open port, or trying to send a RDY, or STX in the wrong context. If the

control character that prompts this error had a port number, the error character is

followed by a single byte representing the port number.

• 0xC0 – ACK –Acknowledge

When the station receives an acknowledgement from a remote station for a frame

that was transmitted to it on a particular port, it sends an ACK control character

to the host followed by a single byte representing the port number the packet was

transmitted on.

In addition to the above commands, the ELAN documentation describes aprotocol-

lessmode that allows the user to send an arbitrarily long stream of data from station



Chapter 3. The ELAN Network 39

to station. The splitting up of data into individual packets, and their transmission are

handled by the station itself. The user simply sends an SOT control character, followed

by a port number byte, and a stream of data terminated by any control character. This

mode was intended to make it easy to write minimal bootstrap code for simple host

processors. The Fred Machine software does not take advantage of this mode, the Fred

Machine filestore does not use it, and indeed none of the available firmwares for the

ELAN Station implement it. The only reference to it’s use is on the Interdata based

filestore when bootstrapping discless Interdata workstations.

Note that there was a certain amount of difficulty in pinning down some of the

ambiguities in the behaviour of the host/station protocol. The ELAN documentation

gives example traces of how the protocol should be used, but doesn’t define all the

different failure modes, and certainly doesn’t provide a state transition diagram. To

attempt to fill some of the gaps, we examined the ELAN firmware, the Fred Machine

system software and Christopher Lisle’s ELAN emulation. Hopefully these sources

combined should give a reasonably accurate picture of how the protocols worked.
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The Fred Machine System Software

When you see a good man, try to emulate his

example, and when you see a bad man, search

yourself for his faults.

Confucious,The Analects

As stated in the introduction, examining and using the software on the Fred Ma-

chine is the prime reason for emulating the system. To examine the software in general,

we will start with the system software since everything else relies on the services pro-

vided by it.

From a modern point of view, and from the point of view of somebody who is used

to a roughly U-like operating system design, the Fred Machine system software

seems rather odd. Some of its features seem quite interesting and sophisticated, and in

other areas (and with the benefits of hindsight) it seems quite lacking.

In many respects, it becomes quite clear that the system software is very much a

product of its history. It started out as a minimal I/O library and runtime system for the

IMP compiler, and grew into something bigger. When one realises this, a great many

things start to make sense.

A few observations about the system may be in order:

• It is not U. There is no notion of a separation between the kernel and the user-

land. The kernel is not privileged above other software, and does not provide an

abstraction of any hardware devices to user processes.

40
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• It is really not U. There is no multi-tasking, either pre-emptive, or co-operative–

just one process at a time. There is a single, flat, unprotected address space, and

the system software, libraries, memory mapped devices, and the currently run-

ning process are all equally accessible.

• It can only be used as a networked machine. Assumptions are made in many

places that file I/O is only done by speaking the filestore protocol. There are no

notions ofpluggable filesystems, or avnode layers. Even the file I/O code itself

is scattered around a number of libraries1. There is a notion of a currently logged

on user, but it is very much tied into being logged into the filestore.

• The services provided by the system ‘kernel’ are slightly ad-hoc–they include

a small low level debugger, interrupt based serial I/O, simple terminal I/O, in-

terrupt timer handling, interrupt handling for communications with the ELAN

board, handling some of the filestore protocol, a package that provides access

to 4 abstract I/O streams, string handling routines, and routines to manipulate

dictionary and array structures.

4.1 Bootstrapping

In the Fred Machine, the first 4KB of memory consist of boot ROM. This ROM sets

up some basic hardware, loads the system file off either hard disc, or a filestore, and

then passes control to the system file. The procedure occurs as follows:

• When the Fred Machine is powered on, the M8010 automatically reads in the

first 8 bytes of memory and uses the addresses from these to set the initial stack

pointer, and program counter, and starts executing code. Since the boot ROM is

located at the bottom of memory, these 8 bytes are read from ROM, and are used

to point the CPU at the ROM’s initialisation routine.

1One unusual instance of this is the CLI program, which generates raw filestore requests by hand to
load executable data, rather than using stream I/O. Presumably this is done in the name of efficiency, as
stream input is read one byte at a time.
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• The boot code contains a vector table used by the 68010 to store the addresses

of routines to call when various exceptional events occur (such as divide by

zero, bus error, etc.). To make this flexible, the ROM contains stub routines that

just jump to entries in a correspondingpseudo-vectortable in local RAM. The

system file will be loaded into this location, and this allows the system to change

its interrupt handling at any time, without needing to change the boot ROM.

• The boot code initialises the serial controller, initialises the ELAN Station, and

sets the mapping registers to do atransparentmapping2.

• The boot code determines the amount of available memory by writing values to

every 32 bit word of external memory until the Fred Bus detects an invalid write

and causes a bus error. Since the memory must be laid out sequentially, when

a bus error occurs, the boot code concludes that it has moved past the highest

addressable word of memory.

• If a key is held down, the boot ROM prompts the user for a file and filestore

to use as the system file, otherwise it uses a default (the fileFMAC:NSYS from

filestore 0). It then opens a connection to the filestore, reads in the system file

into local memory (starting at 4KB) and transfers control to the system.

4.2 The System Software

As mentioned earlier, the system handles a miscellany of low level behaviour. When

it boots, it initialises a number of housekeeping variables, including the lowest free

memory location, and a number of systemwide dictionaries used for file, command

and library management.

Here are some observations on various features provided by the system.

• In a manner similar to thecooked modeterminal access in U, a number of

control characters are handled specially by the terminal code. Ctrl-Y kills the

current program, and returns to the command line, Ctrl-T drops into the built in

2A transparent mapping is one where the translated and untranslated addresses are identical.
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debugger, Ctrl-P acts as an escape character allowing the next character to be

entered verbatim; Ctrl-S and CTRL-Q enter and leave auto-freeze mode–a mode

where the terminal displays one screen of data at a time and waits for a key press

to continue, CTRL-X deletes all the characters on the current line.

• The system provides 4 input and 4 output streams. The stream routines handle

the low level reading and writing of blocks of data from a file into a buffer as

necessary, and the user is given an API that allows them to read and write using

thereadsymbol, printsymbol andprintstring functions.

• As would be expected of a language runtime, the system handles serial I/O and

gives other programs an abstraction of a terminal. The terminal is tied into the

streams I/O system, so opening the file called:T gives the user access to the

terminal as if it is a file. This is similar to/dev/tty on U. Another special

file is :N which plays the same role as/dev/null in U andNUL: on VMS.

This functionality is hardwired into the streams code on a very low level–there

is a check in theopeninput function for these two special files.

• The system keeps track of the number of milliseconds that the computer has

been turned on, and configures the 6840 programmable timer to generate timer

interrupts at 10Hz. The interrupt routine updates the millisecond counter, so it is

accurate to 100ms.

• An interesting part of the IMP runtime is the ability to signalevents. Events

are IMP’s implementation of exception handling. It is possible to register an

event handler which is called whenever an exception is thrown (or an event is

signalled, in IMP parlance). Since this is provided at a low level in the system,

the system itself uses it as a part of its stream API, and as a means of notifying

user code that various sorts of problems have occurred.

One place where events are used is to signal various processor exceptions, such

as divide by zero occurs, or attempting to execute an illegal instruction, or at-

tempting to call a reserved TRAP. In this regard, events are used in a way not

unlike U signals.
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A more interesting example is how events are used as part of the streams API. To

read in an entire file, the programmer sets up an event handler to catch the end of

file event (event 9,1), and then goes into an infinite loop callingreadsymbol to

read the file one byte at a time. When the end of the file is reached, the handler

will be called automatically.

• There is a basic debugger as a part of the system. It can single step, provide

memory dumps, the user can set breakpoints. Finally the user can set apro-

tected32-bit word. When the protected word is modified by an instruction, the

debugger is entered automatically.

• The system makes heavy use of 4 data structures called dictionaries. Dictio-

naries are fixed sized pools of memory that allow strings to be associated with

index strings (like in a real life dictionary). They are built in such a way to allow

substring matching on the index string, and once a dictionary is full, a new dic-

tionary can be chained onto the end of the existing one to allow further items to

be added.

• The system is responsible for keeping track of a list of symbols exported by ex-

ecutable files. A program calledINSTALL can be used to load all the symbols

from an executable into the external dictionary. In the dictionary they are as-

sociated with the file they came from and a memory location if they are loaded

into memory. They are then available for use by other programs. Programs can

make use of external symbols, and when a program is being loaded, the loader

checks that all the external symbols are available in the external dictionary. If

they are available, it loads all the necessary executables into memory, and allows

the calling program to run. This effectively gives the system a shared library

facility.

• The system manages a command dictionary for the CLI. The command dictio-

nary maps a command line entry onto a shorter equivalent string. The func-

tionality is similar to that of aliases in the U shell, or command verbs under

VMS.
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• The system manages a file dictionary for the CLI. This associates a start address

with a given command symbol. The idea is that the user can allow certain fre-

quently used commands to be loaded into memory permanently. The CLI can

search the file dictionary to see if it needs to load an executable to run the com-

mand, or if it can just run the command directly from memory.

Once the system has finished initialisation, it loads the CLI executable from the

file FMAC:ACLI.MOB using a file stream, updates the system so that it appears to be

a normally loaded executable, and then transfers control to it. In ways, this could be

regarded as being the same as the way that a U kernel manually sets up the process

structures for the first process on the system and loads theinit executable into it.

4.3 The Command Line

The Command Line Interpreter on the Fred Machine is responsible for taking com-

mand line input from users, and using it both to maintain environment settings, and to

load and run programs.

As far as environment goes, the CLI manages the free memory on the system, keeps

track of which I/O streams are open, provides default terminal settings and default

event handling routines.

There are two types of binaries on the Fred Machine–old-style binaries, and new

styleFE02binaries3. Old style binaries, are just a simple binary object format, with no

references to anything other than common system routines. These can be run directly

by the CLI–it just loads them into memory and jumps to their start address.

The new style binaries have import and export tables, as well as code and static

data sections. This allows them to export functions and data, in other words they can

behave as shared libraries. As either programs or shared libraries, they can also access

functions and data from other binaries. To run the new style binaries, the CLI runs a

program calledFMAC:MEXRUN. MEXRUN is essentially the dynamic linker for the Fred

Machine and is responsible for making sure that references in the binaries’ import

3So called because the file header begins with the bytes 0xFE and 0x02
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table are resolved, and that any necessary libraries are loaded into memory before the

program starts.

The CLI andMEXRUN use and update the file and external dictionaries to store the

runtime information required to do dynamic linking.

Three other utilities that are used for dynamic linking areINSTALL, PRELOAD, and

REMEMBER. INSTALL reads an executable file, scans its export table for symbols, and

adds these symbols (and the file they belong to) to the external dictionary. After this is

done the executable is effectively registered with the system as a shared library.

PRELOAD complimentsINSTALL by taking an executable, loading it into memory,

and marking the executable so that it stays resident. This is useful for commonly used

libraries (such as terminal handling libraries etc.), as the standard behaviour would be

to load the library on demand each time a program that uses it is started, and to free up

the memory once the program finishes. UsingPRELOAD in these circumstances saves a

lot of unnecessary network traffic.

REMEMBER behaves in a manner similar toPRELOAD. It marks the executable so

that it stays resident, but it doesn’t actually load it into memory. The next time a

program does use the executable however, it is loaded into memory and stays there. So

REMEMBER is a load-on-demand version ofPRELOAD.

There are four kinds of commands that can be given to the command line:

• A string that begins with a ‘!’ is ignored completely, and can be used as a

comment.

• A string can be associated with a longer command name using the syntaxSYMBOL

=COMMAND STRING. When the CLI encounters this, it adds a new item to the

command dictionary, and any future commands get checked against dictionary

entries while being parsed

• A program can be run with the syntaxPROGRAM ARGUMENTS. The first part of

the input string gets checked against the command dictionary, and if there are

matches, the input is translated appropriately. Finally the input is broken up

into averb4 (or program name) and arguments, and the CLI attempts to run the

4This name probably was inspired by verbs in VMS’s DCL.
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program and pass it the appropriate arguments. The CLI automatically appends

.MOB to a program name if it is not included in name already.

• A script orobey file5 can be run with the syntax@SCRIPT ARGUMENTS. As with

programs, dictionary matching and translation are performed. The CLI automat-

ically appends.COM to an obey file name if it is not included in the name already.

Running an obey file simply involves the CLI reading in the obey file one line

at a time, and behaving as if the user had typed in the same commands on the

terminal.

Unlike the command line shells on U, there are no general programming con-

structs such as conditionals, loops and branches. This has this virtue of keeping the

CLI small and simple, rather than turning it into a miniature programming language.

To extend the bootstrap process a little further, and to allow for easy user customisa-

tion, the CLI automatically runs the obey fileFMAC:ASTARTUP.COM when it is started.

This file typically contains a number of command assignments, and someINSTALL

andPRELOAD commands to set up commonly used libraries. An example follows:

! Set up system

files=fmac:files

ie=fmac:ie

install=fmac:install

preload=fmac:preload

f=files

ml=ml:nufam -h 1200 ml:smlcore.exp

install l:pam,l:maths,l:terminal,level1:graph

preload fmac:lib.mob,l:pam.mob

! Use a VT220

5This term comes from the OS on the BBC Micro which had a similar notion.
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terminal=vt220

install l:wtlib

@custom:setup.com

4.4 The Filestore

A filestore server, in its later incarnations, was a Fred Machine with one or more in-

ternal hard discs and an ELAN Station, that was connected to the ELAN network and

served out files to client Fred Machines. Typically a filestore had between 100MB

and 300MB of storage, and could serve up to 31 simultaneous clients. We will not

discuss the file store in great depth, as it has already been described elsewhere[1][4],

but an overview of the service provided and some of its semantics are instructive for

understanding the Fred Machine software.

The filestore data structures that are stored on disc were vastly more limiting than

the filestore protocol actually allowed for. For example, on an unfragmented disc, a

directory could only store at most 102 files. We will not look at the implementation

of the filestore itself, but shall instead examine the service that was made available to

clients. We do this with a view to determining what features would have to be provided

by filestore software that running in the host environment.

4.4.1 Directories, Names and Metadata

The filestore provides the client machine with access to an arbitrarily large list of direc-

tories, each containing an arbitrarily large list of files. In the most common filestore,

directories could not contain other directories, so it is not a hierarchical system.

Each directory was owned by a single user called an owner, and all the files within

that directory shared that ownership. Each owner has a unique name (which is the same

as the directory they own), a password, and an administrator controlled disc quota.

All names in the filestore are case insensitive.

An owner-name consists of up to six alphanumeric characters, the first of which is

a letter. The dollar sign is reserved as a special owner-name.
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A filename consists of up to twelve characters. The first character must be a letter

or a dollar sign, and the remainder can be a letter, a digit, or a period.

A full filename is specifies the owner-name and the filename by separating them

with a colon e.g.FMAC:SYS.

Each file has several pieces of information, or metadata associated with it. One

piece of metadata is the filename, another is the list of block extents defining where the

file is stored on disc (this is not user visible), another is the date stamp, which stores

the creation date of the file to the nearest minute. A final piece of metadata is the

file’s attribute. This consists of the file permissions (described in chapter4.4.3), and

an archive bit which can be set to Archive or Vulnerable. Files with Archive set are

automatically archived if they have been modified since the last backup. Vulnerable

files which haven’t been used for a period of time are automatically deleted.

Unlike U, a directory is not a file, and can not be read directly using file opera-

tions.

4.4.2 File Creation Semantics

The filestore has a interesting feature which is not seen in U-like filesystems: Files

can be either permanent or temporary. Permanent files stay on disk until they are

explicitly deleted, as one would expect, and their disc usage is deducted from the

owner’s quota. Temporary files only exist for as long as the owner is logged in, and do

not use any of the owner’s quota. In one way, this gives the user a similar facility to the

/tmp directory in U, or SYS$SCRATCH on VMS. Temporary files are distinguished

from permanent files by having a name starting with a dollar rather than a letter. Since

temporary files only exist while the owner is logged on, they can only be created by the

owner. Since the owner can be logged on multiple times, the filestore keeps a reference

count of how many times the owner is logged on, and does not delete their temporary

files until the last session logs out.

Another filestore feature which differs from the U model is the notion of tran-

sient and subliminal files, and the semantics of file creation. Under U, when a new

file is created with the same name as an old file, the directory entry of the old file is

removed, and when the the use-count of the file goes to 0 (i.e. all processes have closed
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the old file), the file’s storage is reclaimed. On the filestore, when a new file is created,

it has the property of being a transient file. It gets new storage allocated to it, and when

closed becomes a permanent file.

If for some reason, the client or filestore crashes before a transient file is closed,

the file remains transient. The only operations that may be performed on this file are

to delete it, in which case it is removed; or to rename it, in which case it becomes a

permanent file.

If a new file is created with the same name as an existing one, two copies of the

file exist–the transient one, and the permanent one. In this situation, attempts to open

and read the file operate on the old permanent file, and any delete or rename operates

on the transient file.

Subliminal files are files that are due to be deleted. A file becomes subliminal if it

is being used by a client when another client attempts to delete it. A file created with

no name is subliminal for all of its existence. Subliminal files are deleted when the last

client using it closes it. In this sense, they are very similar to U files that have been

deleted–they are still backed by disk space, but they no longer have a name, and no

new processes can access them.

4.4.3 File Security

Each file has security metadata associated with it, in much the same manner as U’s

file mode bits. There four levels of permission, and they can be set for two kinds of

user: the owner and the public. The four levels are

• Free – The file can be read from, and written to. The owner may also delete this

file.

• Read – The file can be read from.

• Obey – The file can be read internally by the filesystem.

• None – The file may not be read from at all.

The permissions are constrained so that the owner must have at least the same level

of access to a file as public users.



Chapter 5

The Emulation

If you haven’t got it, fake it!

Victoria Beckham

We imitate; and what is imitation but the

travelling of the mind?

Ralph Waldo Emerson,Self-Reliance

As was mentioned in the introduction, the main purpose of this project is to provide

a sufficiently accurate emulation of the Fred Machine system to be able to explore a

substantial amount of the software written for the environment. Whenever questions

arose as to how precise the emulation should be, or how the emulation should interact

with the host environment, decisions were made on the basis of supporting existing

software. Verisimilitude, while desirable, is a secondary goal.

Since the programming work in this project builds on the work done by Christopher

Lisle[1], we briefly examine the functionality of his emulation, before describing the

enhancements made, and new features added.

5.1 The Existing Emulator

The existing Fred Machine emulation consists of three programs written in a mixture

of C and C++ and designed to run in a U environment with TCP/IPv4 available. On

51
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examination, much of the difficult work in this centres around attempting to provide

an accurate emulation of the ELAN networking from the point of view of the Fred

Machine’s CPU.

We discuss the networking in the next section, but in a nutshell, it consists of a

nameserver process, which maps ELAN hosts onto IP addresses; and C++ filestore,

which communicates with the emulator via ELAN frames encapsulated in IP data-

grams.

The Fred Machine emulation itself centres around an open source 680x0 emulator

called Musashi written by Karl Stenerud for the MAME project[10]. This provides a

thorough emulation of almost all of behaviour of Motorola’s 68000, 68010, and 68020.

The 68451 MMU is not emulated, but this is unimportant, as the CPU board’s MMUs

are never used by the Fred Machine software. One feature of the CPU emulation that is

missing is a means of handling bus exceptions when unavailable memory is accessed.

This is handled in the existing emulator in one specific case–when the CPU writes a

32-bit word from a data register to memory. This is sufficient for the boot ROM’s

memory probe, but there are other programs that check for the presence of cards in a

similar way, but with different instructions, and these do not work as expected.

The serial port emulation works by having a thread that repeatedly reads bytes into

a buffer usinggetchar(), and provides these to the emulation (along with interrupts)

as necessary. This scheme usually functions reasonably well, although it seems odd

and a little ‘un-U-like’ to use a thread for this purpose. However, there are some

odd situations where the emulator seems to randomly refuse input from the console on

boot up. Also, the user must remember to turn off U’s handling of control characters

for signalling, and U’s cooked modeline buffering using thestty utility.

The 6840 programmable timer is not emulated at all, and no attempt is made to

run the emulator at a speed close to that of the real hardware–instead it runs as fast

as possible. This is unimportant for a basic emulation, but becomes an issue with

interactive software, particularly for games. Less frivolously, it is also important for

any software that uses the timer to estimate how much CPU time some code has used,

or that attempts to provide timeouts for I/O code.

The emulation of RAM is hardcoded into the software as a single block of memory
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with no details of the hardware included. The emulated machine has 1MB of RAM,

and this can only be changed by recompiling the emulator. This is a little annoying, but

is simple to fix. Memory accesses take no emulated time to perform, and none of the

lower level details of the Fred Bus are emulated. The lack of cycle counting for Fred

Bus transactions means that even if the CPU were constrained to run at 10MHz, the

emulation would run faster than the real machine. Again, this situation could be catered

for, but it is unclear whether it is particularly desirable or not. The lack of emulation of

Fred Bus arbitration is probably the most sensible approach–the only situation where

one would need to care about those details is when multiple CPU cards are in use,

but since, apart from a research OS, no software was available for this environment, it

seems unnecessary to emulate it.

The Fred Machine case has a 5-way key that appears as a read only register on

the CPU Local Bus. This is not emulated, and there seems to be no pressing need to

emulate it, as no software was found that uses it.

The CPU card has a reset switch on it, and no means is provided to emulate this,

although it would be fairly simple to do this. One question that would arise in trying

to do so is how to provide an unobtrusive user interface for it. A possible means would

be to have the emulator react to a U signal such asSIGUSR1 by resetting the CPU.

The CPU emulation provides a basic debugger. This has some useful features,

including breakpoints, single step, dumping data, address and mapping registers as

well as memory dumps. These mostly duplicate the functionality of the Fred Machine’s

built in debugger, but the emulation also provides what could be a very useful feature:

a disassembler. Unfortunately, in practice the whole debugger is next to useless due

to the way it interacts with the console input. If the user single steps then everything

works fine, but as soon as the user tries to run until a breakpoint all further console input

gets read by the console input thread. Once the breakpoint is reached, the emulator

returns to the debugger and awaits user input, but since input is now consumed by the

input thread, this can never happen.

It might not seem so terrible to debug the boot process by single stepping, except

for the fact that the boot ROM has a loop that tries to write to every 4 byte word

of memory. On 1MB machine, this involves single stepping through about 500,000
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instructions. Clearly, this is not practical. There doesn’t appear to be any easy way of

fixing this in the emulator either, short of completely rewriting the console handling

code, or changing the debugger’s user interface.

5.2 ELAN And The Emulated Filestore

The most complex component in the Fred Machine, from the emulation point of view,

is the ELAN Station and the filestore it connects to. When emulating this, the previous

project made a few design decisions that seem questionable.

5.2.1 ELAN

Since the ELAN 2.1Mb network never existed outside Edinburgh University, is no

longer in use, and there are no ELAN Stations for modern computer hardware, sending

ELAN packets over an ELAN network is completely out of the question.

Since ELAN is quite close to standard Ethernet, another approach might be to send

raw ELAN frames directly over Ethernet. Unfortunately, due to the differences in

frame format, this is would be quite problematic, and would cause many nasty interac-

tions with host software. Firstly, the 16-bit protocol type field, used in modern Ethernet

to route frames to the appropriate software to do protocol decoding is used very differ-

ently in ELAN. As an example, type 0x809B means AppleTalk in Ethernet, but would

mean the acknowledgement for the frame with sequence number 155 in ELAN.

Secondly the MAC addresses under ELAN Ethernet, rather unfortunately put the

host ID and channel ID as the first two bytes of the MAC address. In modern Ethernet,

these bytes are the first two bytes of the 3 byte Vendor ID. The Vendor ID is allocated

by a central registry, and cannot be changed freely. So the chances are good that many

Host/Channel ID pairs would end up conflicting with already used MAC addresses.

Thirdly, modern Ethernet has a 32-bit CRC rather than a 16-bit CRC, and different

restrictions on maximum and minimum frame sizes, which are not compatible with

ELAN.

All of these problems could be worked around by encapsulating ELAN frames

inside Ethernet frames, but then other problems arise such as the user requiring special
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privileges to be able to read raw Ethernet frames, and the fact that these frames aren’t

routable across networks. In short, using Ethernet frames is too low level, and we

should search for an alternative solution.

The method used by the previous project encapsulates ELAN frames in IP data-

grams as follows.

There is a small nameserver program that maintains a mapping from each of the

127 possible ELAN Host IDs to a particular IPv4 address and port number. This com-

municates with the other software over a simple TCP/IP based protocol. The client

connects to the nameserver, sends a single byte Host ID to the nameserver, and the

nameserver replies with a null terminated string in the formataddress:port.

Software that wishes to communicate over emulated ELAN chooses a Host ID,

retrieves the appropriate IP address and port number from the nameserver and sets up

a thread that listens for incoming datagram connections on that port. Once it has done

this, it can receive replies, and so is ready to send frames.

To send an ELAN frame, it retrieves the appropriate address/port from the name-

server, opens a datagram connection to that address, sends a raw ELAN frame, and

closes the connection. The receiving thread will then get a matching reply from the

remote host, and can deal with it as it sees fit.

This is functional, but has a couple of problems. Firstly, it is quite inefficient.

For every single frame sent, a lookup has to be done, a connection opened, and a

connection closed. Then, the receiver has to do all this again, just to send back an

acknowledgement frame.

Secondly, by its very nature, it requires the programmer to use threads, even if

they just want to implement a simple client that just sends a couple of frames. The

encapsulation protocol requires the client to listen for incoming connections to receive

responses from the remote host. The ELAN protocol requires the client to resend

frames to the remote host if it doesn’t receive an ACK, and also that a frame must be

acknowledged, or dropped before another frame can be sent to the same destination.

Because of these two facts, the client must, at the very least, implement a miniature

‘server’ that receives ACK frames. To listen for incoming connections using IP sock-

ets, requires using thelisten call, which is blocking, and so cannot be in the main
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thread of execution. This forces the developer to use threads, or some other form of

concurrency, and makes it especially difficult to debug problems.

Thirdly, the specific implementation of this encapsulation used in the previous

project exposes many of the implementation details to the developer, and makes it

difficult to do anything without having to use more threads, where it should not be

necessary. Ideally, one would like to be able to write something like

elan_open_port(station, 1);

elan_send(station, 1, buf, 128);

elan_recv(station, 1, inbuf, &len);

elan_close_port(station, 1);

One feature that is completely absent from the ELAN emulation is support for

broadcast frames. It is unknown how much they were used, but it would be a nice

feature to support.

We investigate solutions to these problems in chapter5.4

5.2.2 The Emulated Filestore

One approach that could have been used to emulate the filestore required by a client

Fred Machine would have been to emulate one of the hard discs, and the correspond-

ing controller used in a Fred Machine filestore. It would then be possible to take a

raw dump of an actual disc from a filestore machine, and simply run a Fred Machine

emulation to provide a filestore. This would work, but has some practical problems.

The main one is how would one obtain a disc dump in the first place. The second

problem is that this doesn’t give the user any means of transferring files between the

host environment and the emulated environment. This is a good example of trying to

decide on what level to emulate a system. A low level emulation is more accurate, but

difficult to set up, difficult to work with, and interfaces poorly with the host system.

This is particularly true when both the host system and the emulated system are trying

to solve a similar problem (in this case, storing files on a hard disc).

Another approach, which is the one used, is to provide a native1 program that reads

1i.e. running directly on the host environment
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normal files on a local hard disc, and also speaks the filestore protocol to Fred Machine

clients over the simulated ELAN. This approach is made practical by the fact that the

filestore protocol is reasonably abstract and is not tied to specific details of how the

files are stored on disc. It is also quite well documented, although some details aren’t

very well specified. Fortunately the source code to some versions of the filestore were

made available.

As has already been described earlier in this chapter, the filestore semantics for

file creation are a little different from U’s semantics, and require special handling.

The existing filestore implementation avoids this by providing read-only access to the

filestore.

Considerable complexity arises in the filestore server because of the poor abstrac-

tion of the ELAN networking simulation. Each incoming request starts off a filestore

transaction, and each of these must be handled by a new thread. The locking con-

straints, and interactions between these threads and the rest of the code are not partic-

ularly clear, and make it rather difficult to debug the intermittent problems that occur.

On occasions the filestore does not respond to the client when it should, and on other

occasions it is possible to crash the filestore.

The presence of a native filestore client to stress test the system would have been of

considerable utility–it was frequently unclear in what parts of the code base a problem

was occurring: was it in the filestore code, or the networking emulation, or the ELAN

Station emulation, or in the emulated Fred Machine client code?

5.3 Level 1 Video

The existing Fred Machine emulation provided no video emulation, but it is mostly

straightforward to implement. The Level 1, and Level 1½ video are well documented.

To make the graphics code simpler, and to increase the performance of the emu-

lation, the emulated framebuffer is stored internally aschunky graphics–one byte per

pixel, rather than the 8 separate bit-planes that are used in the real hardware. This

doesn’t cause any compatibility problems, as the framebuffer is write only. The set of

pixels that represent the image displayed on the monitor is stored as a separate 16bpp
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framebuffer.

One design decision was to try to find a portable way of displaying the graphics

on the host machine. In the end, partly out of convenience, and partly for portability,

it was decided to make the framebuffer visible by making it an RFB server. RFB

is the Remote Framebuffer protocol, and was designed as part of a project at AT&T

called VNC[11] to allow arbitrary machines to display their graphics over a TCP/IP

network. It also allows remote machines to control the keyboard and mouse of these

machines. Viewers and servers have been written for many different platforms, from

the Palm Pilot, and Apple Newton, to Windows, and X. This project uses a library

called libvncserver to handle the low level details.

This decision does have the downsides that the user must run a separate program

to see the Fred Machine’s video, and that the network traffic and context switches

generated make it slower than a direct solution. However, none of the rest of the

graphics emulation hinges on this decision, and ultimately a different display solution

could be used, such as Cocoa under MacOS X, or a shared memory pixmap on the X

Windowing System.

Initially the graphics emulation was quite naı̈ve. Screen refreshes were performed

directly in response to writes to the video board. Some writes to the video board in-

volve 8 pixels being updated, and this might involve corresponding pixels on the screen

(i.e. the RFB framebuffer) being redrawn. Other writes involved updating the entire

screen (such as when the colour lookup table was modified, or when the offset register

was updated). These required all 688×512 pixels on the screen to be scanned and up-

dated instantaneously, thus making it considerably slower than the real hardware. One

place where this caused serious problems was in emulated code that updated all 256

CLUT entries in a loop. On real hardware, this should take milliseconds, however the

emulation would take many seconds, and 255 extraneous screen refreshes to do this.

The emulation was improved by breaking the screen up into tiles of 8x8 pixels.

Each tile can be marked as dirty or clean. Initially each tile is marked as dirty. When

a write to the frame buffer occurs, the video card frame buffer is updated, and a corre-

sponding tile on the screen is marked as dirty. Whenever a CLUT entry is updated, or

the offset register is changed, all the tiles are marked as dirty.
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The speedup comes from having a separate routine which is called every 200,000

CPU cycles. It scans every tile, and if any tile is dirty, it is redrawn from the frame-

buffer, and marked as clean. As well as being much faster than the naı̈ve scheme (tests

showed it to be nearly 10 times faster for normal situations, as well as avoiding the

pathological case when the CLUT is updated), it is also closer to the real hardware–on

the video board, writing to the framebuffer is handled separately from the hardware

that repeatedly scans the framebuffer and generates an analogue signal to send to the

display.

A further refinement was made to this scheme, to ‘smooth out’ the cost of updating

the screen somewhat. When the screen was refreshed every 200,000 cycles, if all of

the screen tiles were dirty, this could take a substantial amount of real time. This

could impact badly on timing sensitive parts of the emulation such as the networking.

Instead, the scheme was changed to refreshing one row of tiles every 3,000 cycles. This

corresponds even more closely to the real hardware–a row of tiles is not dissimilar to a

scanline, and also prevents the video refresh code from hogging the (real) CPU for too

long.

5.4 A New Model for ELAN over TCP/IP

As a part of the work for this project, a new model was designed for the ELAN net-

working emulation. There were several considerations taken into account when de-

signing it:

• The networking must have a sockets-like API which allows the programmer to

do both blocking and unblocking reads and writes without having to worry un-

duly about the internal implementation. Blocking calls are useful for utilities

like a native filestore, and unblocking calls are needed to hook into an emulator.

• The networking must be modular and have no particular dependancies on the

Fred Machine emulation itself. This makes it easy to write lots of quick little

utilities that communicate with the filestore or Fred Machine.

• The networking should, if possible, work across multiple real machines.
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• The networking should require no manual mapping of IP addresses to host IDs,

and allow connected ELAN interfaces to change their Host IDs.

• The networking should support broadcast ELAN packets.

• It should be possible to generate a trace of all network traffic from a centralised

location. An ELAN utility similar to tcpdump[13] would help immensely in

debugging implementation problems.

• Ideally, it should be possible to implement the networking emulation without

requiring pthreads or other forms of concurrency.

• The implementation should avoid inefficiencies such as requiring connections to

be opened and closed for each frame transmitted. There is no way of avoiding a

network round-trip per frame, because of the way the ELAN acknowledgement

works, but we should avoid more than that. As the networking saying goes

”bandwidth can be bought, but latency is forever”.

Some thought was put into the design, but an implementation was not finished due

to time constraints. The intent is to have a library that provides the ability to have

multiple virtual ELAN interfaces (i.e. network cards, or stations), each with their own

state. The interface state keeps track of the ELAN state machine, including pending

transmits and acknowledgements, so the user doesn’t have to worry about it.

The protocol works by connecting each ELAN interface to ahub process using

a persistent socket connection. The hub is responsible for keeping track of which

host ID is connected to which socket, and routes incoming frames from one socket

to the appropriate destination(s). It also provides a central point where logging can

be performed. In effect, the hub process is like a real Ethernet hub, and the socket

connections are like the physical cables connecting the hub to the stations.

The API is as follows:

• ELAN interfaces are created by callingelan open stwith a host ID as an argu-

ment. If the library succeeds in connecting to the hub and registering the host ID,
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it returns a pointer to anelan st structure. The connection to the hub is bidi-

rectional, so the library never needs to use the blockinglisten call to receive

data.

• ELAN interfaces are destroyed by callingelan close st with the station as an

argument. The station is shut down and disconnected from the hub. All pending

sends, receives and ACKs are discarded.

• ELAN interfaces can change their Host ID by callingelan change st id with

the station and the new ID as arguments. The hub allows the ID change if no

other connected station has the same ID. If the ID change occurs, the frames

queued for transmission are not modified in any way, and keep their old frame

headers.

• Ports are opened usingelan open port specifying the station, port, and address

the port should be connected to. Sends and receives to that port are restricted to

the specified address. Already open ports cannot be reopened2, and port 0 is

always open, by default.

• Ports are closed usingelan close port, specifying the station and port. It

discards all pending sends, receives and ACKs. Closing an already closed port

returns an error and does nothing.

• Data is sent on an open port by using the callelan send specifying the station,

port, data buffer, buffer length and whether the call blocks or not. The length

must be less thanELAN MAX DATA SIZE. If the call is set to block it doesn’t

return until an ACK is received, or the send times out, or the port or interface

closes.

The port keeps track of the number of ACKs that have been received by the

library, but have not been acknowledged by the software that uses the interface.

We call theseincomplete ACKs. ACKs received for blocking sends are implicitly

2This is at odds with the firmware semantics, but can be handled easily by emulation code. We vary
from the firmware semantics because this behaviour is safer and less liable to difficult to track down
bugs.
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acknowledged, and never count as incomplete ACKs. If the call is set to not

block, once the ACK is received the incomplete ACK count for the port increases

by one.

Only one unblocking send can be in flight at any one time. An attempt to perform

a second unblocking send while one is pending acknowledgement causes an er-

ror. Attempting a blocking send while an unblocking one awaits an acknowl-

edgement will work–the blocking sends merely waits for the acknowledgement

before proceeding with its own send.

Sends to port 0 have an extra 6 address bytes prepended to the data buffer, and

the length should include this.

• The emulation can check if there are anyincomplete ACKsby using the call

elan sends completed with the station and a port number as an argument.

This returns immediately with the number of incomplete ACKs. The library in-

ternally resets this counter to zero, thus this call provides a means ofcompleting

these ACKs.

• Data is received on an open port by usingelan recv specifying the station,

port, a preallocated buffer, and the buffer length. The call blocks: it doesn’t

return until a frame is received on that port, or the port or interface close. The

reception code automatically handles sending the correct acknowledgement to

the sender.

• The emulation can check if there is any pending data on any of the ports by

calling elan has incoming with the station as an argument. The call returns

immediately with the number of the lowest port with received data, or -1 if none

have data. This is non-blocking and is intended for implementing the receive

side of the interface between the station and the emulated Fred Machine.

This API is fine for implementing native communications–the user can write simple

serial code using the blocking variants of the send and receive calls, and things should

work fine.
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The emulator can not use blocking calls without tying up the whole emulation, but

for receives it can just useelan has incoming to see if there are pending receives,

and if there are, it can be sure thatelan recv will return promptly.

Similarly, the emulator can useelan send in non-blocking mode, followed by

calls toelan sends completed to check if it has completed. Due to the nature of the

ELAN host/station protocol, this count should never be more than one.

Clearly, working code speaks far more authoritatively than words in a design doc-

ument, and it is unfortunate that we don’t have an implementation to back up the ideas

here. It is hoped that an implementation will be completed in the near future.

5.5 Tweaking the Emulation

As with many engineering projects, a working computer depends on a large number of

complex components working as designed, and interacting harmoniously. The devil is

in the details, and this applies just as much to an emulation as it does to a real machine.

In the emulation, two major sources of ‘interesting’ problems was the networking

emulation and the filestore code. Here were a few bugs that turned up:

• Initially the code would not compile correctly. Evidently, the version of GCC

used (version 3.3) provides a stricter and more standards compliant C++ com-

piler than the GCC previously used. A number of small tweaks, such as defining

namespaces, and adjusting the types of variables were required.

• When the nameserver, filestore and emulation first successfully ran, the boot

ROM would successfully determine the memory size and read and start the

kernel (FMAC:NSYS). The kernel would initialise and attempt to load the CLI

(FMAC:ACLI.MOB). This appeared to succeed, judging by the filestore logs, but

the Fred Machine just printed out the numbers ‘4F 10 74 01 C2 82 2E 81 52

78 10’ on separate lines before freezing. Eventually, after tracing through the

boot ROM, kernel source, and filestore source it turned out that the filestore was

sending back a malformed response to ReadSq requests. Fixing this allowed the

boot sequence to continue to the point of runningASTARTUP.COM
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• After a number of transactions, the filestore would appear to stop sending re-

sponses to the Fred Machine. This could be fixed by restarting the filestore. This

became most obvious when repeatedly booting the Fred Machine–sufficiently

many transactions occurred between the Fred Machine and the filestore to trigger

the bug. It prevented further work when the Fred Machine got as far as running

ASTARTUP.COM. Some investigation uncovered that in both the emulation and

the filestore, the networking code was opening a socket for each ELAN frame

sent, but never closing it. Since the system in use (MacOS X) enforces a per-

process limit of 256 open file descriptors by default, and socket handles count

as file descriptors, the processes were eventually running out of file descriptors.

Annoyingly, the code for frame transmission was duplicated a few times in the

code, but once tracked down, this was easy to fix.

• If the filestore was stopped and restarted in the middle of a transaction, the Fred

Machine would retransmit an ELAN frame as a part of the ELAN protocol (since

it hadn’t received the ACK it expected). This results in the filestore receiving a

request for a transaction it has no record for. It correctly logs an error noting this

fact, but still attempts to use that transaction number, and crashes. Again this

was an annoying problem, but one that was easily fixed once diagnosed.

• An attempt to use the text editor IE froze the Fred Machine because it was trying

to open a configuration file called PROFILE.IE. The file did not exist on the

filestore, and the filestore code correctly checked for this case, but was sending

no reply to the client in response. The client expects some response from the

filestore, and ends up waiting indefinitely for one. The filestore was modified to

send an appropriately formatted error (of the form-; File ANON:PROFILE.IE

not found) to the client.

• Attempting to use the text editor IE exposed the fact that the filestore didn’t have

any knowledge of what the default directory for a user connected to the filestore

was. This caused problems with OpenR requests. Since user logins are not yet

implemented, a patch that recognises public users is all that is required in this

case.
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• Attempts to perform requests that aren’t implemented in the filestore resulted

in no response from the filestore. This causes the Fred Machine client to freeze

waiting for a response. This was fixed by returning a generic-2 Not implemented

error to the client. Programs that attempt to open files for writing are given the

error-= No authority.

• The general filestore request has an option to return the current time from the

filestore. This was used by a few utilities (such asSUGGBUG) and so was imple-

mented.

• A minimal version of the Quote request (which is used by the game Asteroids)

was implemented to allow it to run.



Chapter 6

Results and Conclusion

There are three arts which are concerned with

all things: one which uses, another which

makes, and a third which imitates them.

Plato,The Republic

The stated aim of this project was to improve the emulation of the Fred Machine

so it could run interactive, and graphical software.

This aim was met: The terminal emulation works sufficiently well that buffered

Command Line input works correctly. Programs that read and write to the console in

an unbuffered mode1 and use VT220 escape sequences and cursor keys (such as games,

and VT220 based menus) do what they should do. Special keystrokes such as Ctrl-Y

(exit program) and Ctrl-T (enter the low level debugger) work correctly. Indeed, if

the Fred Emulation were run over a serial console (rather than in a software terminal

window), its behaviour should be difficult to distinguish from the real thing.

The graphical emulation is accurate and fast enough to allow several games, many

graphical demos, test programs, and utilities to run.

The emulated environment has been improved to be more reliable in the face of the

increased demands that interactive usage puts on various parts of the system–especially

on the filestore.

There is always room for improvement, however.

1that is to say one character at a time, rather than one line at a time
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It was unfortunate that a new model for ELAN emulation was designed, but in-

sufficient time was available to write a working implementation. A filestore which

supported user login, passwords, quotas, and writing to files would also have made the

emulation much more complete. The lack of write access to the filestore meant that it

wasn’t possible to test the Fred Machine’s C, PASCAL and IMP compilers, which was

a disappointment.

A functioning debugger, with an awareness of the of the Fred Machine OS’s mem-

ory layout would be very useful, especially if it allowed the user to examine system

structures such as the external dictionary, the network buffers, etc..

Another useful tool would be a utility to trace all the network traffic over the ELAN.

Despite these failings, the emulation as it stands emulates enough to give a good

‘feel’ for the software environment that the Fred Machines provided in Edinburgh

throughout the 1980s and early 90s.



Appendix A

Some Fred Machine Hardware

Figure A.1: The Visual 200 terminal
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Figure A.2: The DMACK serial controller



Appendix B

Some Fred Machine Software

Figure B.1: LEVEL1:TESTCARD
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Figure B.2: ADEMO:SPIRO

Figure B.3: ADEMO:SPARKLE

Figure B.4: ADEMO:PERSIAN
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Figure B.5: GAMES:PACMAN

Figure B.6: ADEMO:HARMONY

Figure B.7: EDWIN:GILVIEW
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Figure B.8: CP:FROGGER

Figure B.9: EDWIN:DRAW
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Figure B.10: GAMES:AST

Figure B.11: ADEMO:ANNEAL
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Figure B.12: IFF:3D SOLID:ARTHUR.IFF

Figure B.13: FRED.IFF Fred King, December 3, 1986
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Figure B.14: GORDON.IFF (Gordon Brebner, July 1, 1987)

Figure B.15: JHB.IFF (John Butler, October 13, 1986)
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Figure B.16: JHBMUG.IFF (John Butler, October 31, 1987)
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