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Foreword

In the course of some of my jobs I visited quite modest-sized industrial
laboratories. The director of the laboratory, perhaps a little overawed by a
visit from someone he thought of as an eminent scientist, was liable to start
his description of the work of the laboratory with the remark ‘What we do
here is really not science at all, it is just trial and error’. I used to respond,
perhaps a trifle unkindly, that I did not know that there was anything to
science other than trial and error.

This identity of science and trial and error is often obscured by the
opacity of jargon and of sophisticated mathematics, but Dr. Michie, in this
book as elsewhere, demonstrates with charm on every page that he appre-
ciates that identity. The charm owes much to another truth that he appre-
ciates, that playing is an excellent way and often the best way of learning.
This fact is often hidden by an abnormal distinction that is drawn between
playing and ‘the serious work of learning’. Dr. Michie is never under that
apprehension. The joy of reading through this volume is precisely that one is
never left in doubt that he is enormously enjoying his games, and learning a
very great deal in the process, learning that is, with the pleasure of playing,
vicariously transferred to us, his readers. I was myself involved in space
affairs when, in-April 1970, a serious malfunction in the Apollo 13 mission
to the Moon led to great anxiety for the safety of the crew. By a rapidly
devised brilliant strategy, the crew returned to the Earth safe and sound,
albeit without having landed on the Moon. When I expressed my astonish-
ment to my friends at NASA that this strategy had been thought up and
adopted in the very short time available, I was told that this had only been
possible because the staff at Mission Control had been spending all their
time playing games with their equipment. Rescue from disaster had been
one of the games, and so they were familiar with what was needed, though of
course the exact problem that actually occurred had not been foreseen. A
less wise management would not have allowed their staff to play games with
their expensive equipment (perhaps to save the taxpayer’s money?) and
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then the rescue could not possibly have occurred. Our play instinct is always
something to be fostered and Dr. Michie shows us once again how fruitful
this indulgence can be.

In my younger days there were still plenty of people around in the
university world, largely, though not wholly in the humanities, who would
dismiss study of this or that with the words: ‘But of course it is a mere
machine’. It is worth stressing to-day that such views were nonsense already
fifty or even a hundred years ago, though their absurdity was only made
plain to everybody by the development of the computer. Yet even less
blinkered people took a long time to appreciate that there were difficulties in
understanding how a system containing even a quite modest number of
switches could act in circumstances not envisaged by the designer. Control
engineering is a new subject not because the need for it is new, but because
we humans were so slow to appreciate this need.

Dr. Michie’s subject of machine intelligence is seen by him, to our
benefit and enjoyment, very largely in this light. Putting a few devices of
relative simplicity together makes a system the responses of which cannot be
forecast but have to be explored. Nowhere is this more pleasantly displayed
than in his MENACE machine for playing noughts and crosses, where
machine learning through trial and error led with such speed to excellent
results. But altogether the sections on machine learning are very fascinating.
However, there are worrying aspects too, especially the point so well
brought out in this volume that by such or other means programs are
developed which are effective in practice but inscrutable in the sense that it is
not clear what the program is and therefore how it would handle unusual
situations. It is a matter of concern that, in the future, issues of real
importance may be decided (or at least decisions greatly influenced) in, say,
military matters by such inscrutable programs. If I may digress for a
moment, this is precisely the point that is perhaps most worrying to me about
non-democratic systems of government. In a democracy, the range of
opinions and attitudes is manifest. Their changes and the cross-currents are
there for all to see so that the response of government and opposition parties
to a developing new situation is, if not always predictable, yet is invariably
understandable. In the Soviet system or in that of, say, Franco Spain there is
no such decision taking with full public coverage. Decisions are reached
quite possibly efficiently but the process is opaque and cannot generally be
understood, let alone predicted.

To come back to my remarks about trial and error at the beginning,
development through trial and error is necessarily messy and follows a zizag
course. Thus, as Polanyi has said, science does not progress like a steam-
roller, much as this fact surprises many of our non-scientific fellow citizens.
The progress of science is piece by piece, and even the most brilliant
contributions are only keystones to arches of many irregularly laid other
stones.

Of course this is true of work on machine intelligence, but Dr. Michie
makes the intriguing and to me convincing point that it is likely also to be
true of human intelligence, quoting Herbert Spencer and stressing the
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essential messiness of evolutionary advances. Therefore the insights and
hints on the nature of human intelligence that may be gained from work on
machine intelligence are likely to be of just the right incremental type and
not of the ‘sudden light’ kind so much hoped for by non-scientists and so
unlikely to be really helpful.

I'hope and trust that most readers of this volume will share my delight in
it and therefore will agree with me in wishing more power to the elbow of Dr.
Michie and others in the field who will surely advance it with many
hesitations and false turnings, but overall progress, in the truly human
manner of all science.

Sir Hermann Bondi
April 1986



Foreword to the first edition

During a recent visit to China I was fascinated by the dexterity of the abacus
users in banks, shops and factories. This simple device, whose moveable
beads are the digits to be manipulated in accordance with the usual processes
of arithmetic, illustrates how ancient is man’s urge to supplement the digits
of his hands for calculating purposes. In the 1850s Babbage designed an
ambitious computing engine in which the processing of the digits was
performed by mechanical elements. Alas! his ideas were too far ahead of the
available technology and his success was limited. Nevertheless, Babbage’s
design concepts were sound, and by the use of thermionic tubes in place of
mechanical linkages the electronic engineers of World War II were able to
produce successful digital computing machines in response to the military
need for high-speed calculation.

The invention of the transistor in 1948 removed the power-consuming
tubes from the first generation computer and ultimately led to the modern
high-speed digital electronic computer in which the active elements are
solid-state integrated circuits. Such calculating engines have become indis-
pensable, not only in scientific research but in all aspects of engineering and
in the handling of business data. But the modern computer is not merely a
mammoth abacus, rather is it to be regarded as a general processor of
information. In order to perform the arithmetical operations the program or
sequence of instructions necessary to execute the calculation is held in store
in the form of coded binary digits, as are also the numerical data to be
processed. Other types of information may be similarly coded and stored
and ultimately subjected to a sequence of logical operations in accordance
with the program. Thus the modern electronic computer is concerned with
information processing in the broadest sense and has become the essential
tool of the age of Information Engineering in which we live — a small but
significant step towards the Intelligent Machine?

Computer programs and their ‘authors’ have become of crucial import-
ance in this broadened field of use. In modern jargon we say that the
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‘software’ which is to direct a mathematical investigation, the design of an
engineering component or the control of an automated chemical plant now
transcends in importance the ‘hardware’ itself, which is the computer and its
associated input and output devices. How is software engineering to be
advanced? Surely by the perfecting of computer languages which must far
exceed in power and flexibility the simple sequences of binary coded
instructions which formed the early programs. To be sure, new techniques of
programming will be developed as part of the specific engineering projects
they are intended to serve, but there is need also for broader research into
the whole software problem; this is just what the university team is ideally
fitted to perform. Improved computer languages have already stemmed
from the Edinburgh work, and these are finding application in fields remote
from the study of Machine Intelligence and computerized games which
prompted them.

I have been deeply involved in the design and operation of large radar
systems as used for airspace invigilation and control of civil air traffic. Here
the problem is to detect all aircraft flying within the region of surveillance
and to form the aircraft echoes as displayed upon the plan position indicator
into tracks that may be associated with the flight plans of the aircraft as filed
by the captains. The programs so far devised for computer-controlled target
recognition and tracking show many points of similarity with the trial and
error computer learning systems developed by Professor Michie and his
colleagues. Certainly, the radar problem is very much a case of the engineer
playing a game against the environment and there is need for the flexibility
of the programs to be such that a veritable learning process is required if the
computer tracker is to match the performance of the experienced radar
operator.

Again, the integrated circuit which is the essential component of a
modern computer can fulfil a multiplicity of very complex functions whether
of logic or storage, and a small wafer of silicon, the size of a pin-head, may
contain a large number of active elements. The design of such a device, and
the layout of the interconnections, is an extremely difficult topological
problem. It is therefore singularly appropriate that the computer itself
should be invoked to help design the vital elements of which it is composed.
CAD, i.e. computer-aided design, is now an essential activity within the
semiconductor industry, but the programs required are very complex and
tedious to write; new methods for preparing them are urgently needed.

In his essay on ‘Machine Intelligence as Technology’ Professor Michie
discusses the possible practical applications of the results of research
conducted in his own laboratory and others like it. Certainly Machine
Intelligence should not be regarded as the only approach to the automatic
factory, nevertheless it has a great contribution to make to the better
understanding of the role which the modern electronic computer can play in
such automated systems. In this essay one of the major goals of Machine
Intelligence research is identified as the discovery of ‘better design principles
for teachable programming systems’. I recognize the need for deep study of
programming techniques and also for methods of representing within the
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computer that knowledge of a limited part of the outside world which itis the
aim of the program to influence. Studies in university departments which
lead to better understanding of the total modelling process will be extremely
valuable to scientists and engineers in industry.

I have found these papers fascinating to read, elegant and persuasive in
their presentation of a complex subject, yet stimulating in their relevance to
my own technological problems. I trust that they will be widely read, not
only by scientists and engineers, but by all those interested in the role of the
computer in our modern world.

Sir Eric Eastwood
December 1973



Preface

A collection of mine was published in 1974 by Edinburgh University Press
under the title On Machine Intelligence, but sold out without reprinting.
The publishers of this new edition acquired the rights of the old one and
suggested that it be revised and extended by incorporating new material.
With the encouragement of John Campbell as Series Editor I took this in
hand, initially as something of a chore. But I found myself becoming
engrossed. In the event it has become more a new book than a new edition.
About half by bulk is newly written since the earlier publication. The
Introduction comes more or less unchanged from the earlier book, but
introductory notes have also been supplied for each of the new book’s four
main Sections.

I have not attempted to stamp out the duplications of topic which
inevitably crop up in this kind of collection. Such stringency would make
sense if I were expecting the reader to start at the beginning and to proceed
from left to right. But I see no reason to be officious. He should feel free to
hop about, if he prefers, or to read the book backwards. If he does, he will
still, I hope, find every Chapter self-sufficient.

Those who find themselves stimulated to pursue these topics further,
whether along academic or commercial lines, should know of various

institutions through which applied AI has become professionalized, in
~ particular the British Computer Society’s Expert Systems Specialist Group
and the American Association for Artificial Intelligence. These societies
coordinate a range of activities, including seminars, conferences, and
publication of periodic newsletters. In addition the National Computer
Centre offers a range of information services and other forms of assistance.

The thirst for information and advice in these areas is growing. Exposi-
tions of topics in artificial intelligence are a correspondingly urgent need,
admirably addressed by this series published by Ellis Horwood under
Professor John Campbell’s distinguished editorship. I am pleased to have
become a part of their endeavour.

Donald Michie
January 1986



Introduction

Certain tasks are generally agreed to require intelligence, for example
playing chess, translating from one language to another, building a boat, or
doing mathematics. Preceding and accompanying any of the physical trans-
actions involved in the above are certain operations of thought. Since the
earliest recorded times attempts have been made to construct systematic
rules for thinking. The high-speed digital computer has enabled us now to
discover that these attempts have carried us only a negligible part of the way
towards the desired objective. It is possible in principle to take any
sufficiently well specified theory of ‘how it is done’ and, by translation into a
programming language, to ‘run it on the machine’. When we turn, however,
to a chess primer, a grammar, a boat-builder’s manual, or a mathematics
text-book we encounter an uncomfortable hiatus. Even the rules proposed
by scholars with a special and systematic interest in the formalization of ‘how
it is done’, such as de Groot in chess, Chomsky in linguistics, and Polya in
mathematics, fail disappointingly to bridge the void. After the first flush of
excitement comes the question: ‘How would I program it?’ The conviction
follows that although here perhaps is a foothill or two, the mountain is yet to
climb.

We are faced, then, with an intriguing possibility, and it is one from
which Machine Intelligence derives its name and aim. If we can form a
sufficiently complete and precise theory of any given aspect of intelligence,
then we can convert it into a computer program. The program itself
constitutes an expression of the theory, but it should also, if the theory is
valid, have the power to cause the computer to manifest behaviour entirely
similar to that which the theory purports to describe. If we believe that we
really and truly understand Euclid, or cookery for that matter, there is an
acid test. We can be asked to convert our understanding into program, and
so cause the machine to do geometry or compose recipes as the case may be.
We must certainly own, from the present level of achievement in computer
programming for complex tasks, that we do not yet understand either Euclid
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or cookery: we may possess a kind of instinctual ‘understanding’ of such
tasks, analogous to that by which a high-jumper gets himself over the bar or
an acrobat balances on a wire, but we have not achieved understanding of
the understanding. If we had, we could program it. If we cannot, then
although, as Homo sapiens, we may display this or that capability, we cannot
claim truly to understand, in the given respect, what it is to be human.

The question of what most distinguishes man from the beasts remains an
open one. Man is not, for example, the only tool-using animal. In addition to
the recorded uses of tools by birds and mammals, some highly elaborate
procedures have been observed in the insect world. The tree ants of Africa
and Australia fasten leaves together with silk. A number of ants pull the
edge of a leaf into position. Others pick up mature larvae, squeeze them so
that they secrete liquid silk, and use them as we would a tube of glue to fasten
the leaf down. Other larvae are used as shuttles to weave the nest itself. A.
B. & E. B. Klots, from whom my account is taken, comment: ‘As far as is
known, this extraordinary habit is unique in the animal kingdom, the nearest
thing to it being the exploitation of child labour by humans’.

Nor is man the only language user, as recent studies of the use of sign-
language by the chimpanzee have established. It is even in doubt whether
the use of syntax, as opposed to association of signs without regard to order,
may possibly be unique to man.

Man is undoubtedly ‘wise’ or ‘intelligent’ (the right translation of sapiens
is hard to hit), but comparison with horses, dogs, dolphins, and apes seems
to reveal a difference in degree rather than kind. According to Tennyson, it
was not so much wisdom that Pallas Athene offered to Paris as

‘Self-reverence, self-knowledge, self-control’.

To frame from this a distinctive picture for our species, Tennyson’s line
should perhaps be capped:

‘And self-preoccupation most of all’.

Man worries about himself. On the high philosophical plane: ‘Who am I?
Where do I come from? Where am I going? What is my nature? How should
Ilive?’ On the plane of daily intimacy: ‘How do Ilook? What do I feel? What
sort of person am I?” And in his leisure life of books, music, magazines,
plays, cinema, and television, there is blended with the purely cultural and
the purely frivolous the same perpetual quest for mirrors, mirrors to
enlarge, mirrors to elucidate, mirrors to produce and to present himself to
himself.

In his loving and anxious quest there is no professional skill which has not
been enlisted. Yet man remains

‘Most ignorant of what he’s most assur’d—
His glassy essence.’

In the centuries which have passed, man’s ignorance of almost every-
thing else has been lessened or abolished. But the stubborn persistence of
self-ignorance has actually now come to endanger him. Man may or may not
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survive the next two hundred years without obliteration in war or strangula-
tion through industrial and population growth. Experts differ on magnitudes
of disaster and on time-scales. But on one point they seem to be in
agreement; that the need is not for more physics, for more chemistry, or for
more of the old-style industrial technology, but for better understanding of
the physiology, psychology, sociology, and ecology of our own species.

Thus Machine Intelligence is an enterprise which may eventually offer
yet one more mirror for man, in the form of a mathematical model of
knowledge and reasoning. From such work we may perhaps learn a little
more about our own capacities. When one speaks of Machine Intelligence,
one speaks of a collective venture to build ‘knowledge machines’; but one
also speaks of an unintended consequence: to fashion a mirror for the first
knowledge machine of all, the machine within the skull.

This book consists of a selection of semi-popular essays written from
time to time over the past twenty five years. Others may discern thematic
development. My own criterion for inclusion has mainly been that if I
enjoyed writing the essay in the first place, and if now I enjoy re-reading it,
then I put it in, and otherwise not. If it impels some of my readers to learn
more of this new subject, then I am content. Man’s cultural and intellectual
environment in the 21st century may possibly be conditioned more by
developments from this one field of enquiry than by any single pre-existing
branch of science or technology. So portentous-sounding a statement
deserves a solid basis, so I have included, in the last Chapter or two of each
Section, various distillations which bear on the question.
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Section 1 Computer game playing

INTRODUCTORY NOTE TO SECTION 1

The time-honoured tension between artist and patron is by no means to be
explained by the follies or knaveries of the two parties, much as each would
have you believe so of the other. The contradictions are intrinsic. Raising
the stakes, as when ‘research scientist’ and ‘institutional sponsor’ are
substituted for ‘artist’ and ‘patron’, only heightens the contradictions. It
finally becomes a wonder when these partnerships advance at all.

So what are the problems? I believe that there are two. Being myself a
scientist I can only expound them from a certain point of view, in which the
sponsors are of course the villains. Equally seeing eyes, in the heads of
others, will perceive the same two problems in terms destructive of the
scientists’ rather than of the sponsors’ credit.

The first contradiction is that scientists prefer to be given the money first,
$O as to use it to do the work. To sponsors it is obvious that funding is a
reward, which by its nature belongs after the event. Samuel Johnson’s
account of this phenomemon is apt:

Is not a Patron, my Lord, one who looks with unconcern on a man
struggling in the water, and, when he has reached ground, encum-
bers him with help? (letter to the Earl of Chesterfield, 1755).

There are no known formal solutions to this problem. An informal solution
is to make a practice of handing in for this year’s help the work completed by
spending last year’s. This depends, of course, on an initial ‘float’ which must
come from somewhere.

The second contradiction surfaces after broad topics and goals have been
agreed and materials and applications are being chosen. The scientist wants
to choose with a view to the discoveries or demonstrations which he is after.
The sponsor knows, however, that it is precisely the materials and appli-
cations which will be picked up by the technical and other media, to form the
image which he is buying with his money.



10 INTRODUCTION

How can the two agree? They cannot. Again, though, constructive guile
may bridge the gap. With luck, good work can be carried on the back of a
sufficient mass of other activity. In Al the matter comes to its sharpest focus
in the computer emulation of game-playing skills, How would sponsors look
if it were revealed in a Parliamentary or Congressional debate that tax-
payers’ money had been going on chess?

They would of course look bad. Not surprisingly, then, only an infinitesi-
mal fraction of national Al budgets is available for what is by far the most
searching proving-ground for experimental advance. Even this infinitesimal
expenditure, though, can be consequential. The papers in this first Section,
apart I hope from diverting the reader, can be used for assessing this claim.
Let us preview them in turn, picking out points on which light was thrown.

‘Trial and Error’ was an archetype of what the knowledge engineering
industry sees today as a design platitude: top-down decomposition into sub-
problems, with a rule-structured solution for each individual sub-problem.
This is the platitude, or in modern jargon the paradigm, of ‘rule-based
programming’. As a key move, the humble MENACE machine added a crude
form of rule-learning shown viable for serious problems by the BOXES
adaptive pole-balancer described in Chapter 3. A remote descendant of
BOXES, supplied by the author’s laboratory, is today keeping a Pittsburgh
nuclear fuels factory in balance with estimated savings in excess of $10M per
year.

The fuel-refining process is sufficiently puzzle-like as opposed to game-
like in structure, to use the terminology of Chapter 2, that a deterministic
form of rules-from-examples learning proved adequate. While re-reading
this Chapter I recalled many an industrial problem where this was not so,
and which cried out for a control automation capable of probabilistic
inference. Chapter 2 poses the problem, using the animal psychologist’s
hard-worked experimental subjects to model it. Chapter 4 elaborates the
same problem, using the chess-player as model, and introduces an operatio-
nal test: can the automated controller in an uncertain world not only make
good decisions but also evince some understanding of what is going on, in
the form of evaluative comments? Leading up through applications to
software technique in Chapter 5, Chapter 6 places the need for machine
articulacy in a context of social urgency. Failure by either side of a man-
machine partnership to form operational models of the other’s decision-
taking under uncertainty could seriously damage the planet’s health.

These partnerships today control power stations, military warning sys-
tems, air traffic and the like. On commission from the EEC’s programme for
Forecasting and Assessment of Science and Technology, Danny Kopec and
Ireported on the prevalent mismatch between machine representations and
human concepts (FAST series no.9, 1983) as a spreading emergency.
Subsequent ‘Star Wars’ talk of military ventures in space has further
sharpened that argument.
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Trial and error (1961)

Can machines think? The short answer is ‘Yes: there are machines which can
do what we would call thinking, if it were done by a human being.’

Consider the well-known theorem of Euclid, which states that the two
angles at the base of an isosceles triangle are equal to each other. Most of us
can probably remember, or reconstruct, Euclid’s own proof, which requires
as construction that a straight line be drawn from the apex to the base. Can
you devise an alternative proof which requires no construction? You may
spend hours or days of painful thought on this and will probably not find a
solution. As far as I know no human being has ever succeeded in doing so.
But Marvin Minsky recently gave a computing machine a simple program
for Euclidean geometry and it produced a new proof [1] which has the
above-mentioned property: it is construction-free. It is also shorter and
simpler than Euclid’s, and has an additional quality which an impartial
geometer might well describe as ‘brilliance’. Here is the proof:

A
B C
AB = AC (given)
AC = AB (given)
L BAC = L CAB
. AABC = AACB
L. LABC = £ ACB QED.

It is even possible to read this through a few times without getting the point,
so daring is the ruse of treating triangles ABC and A CB as separate entities
for the purposes of proof, but a single entity for the purposes of the
conclusion.
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If you or I had made this achievement, no one would grudge us the credit
of having done some thinking: indeed, thinking of a rather spectacular
quality. On the other hand a machine might conceivably arrive at the same
result by some set of procedures quite different from those involved in
human thought. From this point of view the use of the word ‘thinking’ could
be as misleading as to say that a boat swims or that a porpoise sails. We might
even decide to define ‘thinking’ to include the subjective experiences of the
thinker; it would then follow automatically that insentient beings, which
might be held to include machines, cannot think.

The argument is, of course, purely linguistic. Since boats have existed
long enough for there to be a separate word for their motion through water,
we are willing to say that they ‘sail’ rather than swim, and thus reap a gain in
precision. Aeroplanes, on the other hand, are such recent innovations that
we are content, for the time being, to say that they ‘fly’, although their
method of doing so has little in common with that of birds, bats, or bees. We
are in the same quandary with the even more recent development of
complex computing machinery. It will therefore not be through perversity,
but through need, if in describing mechanical processes I intermittently
borrow words from the vocabulary of human or animal psychology.

A much more interesting objection is sometimes made to comparisons
between human thought and mechanical reasoning. The objectors allege
that a machine can ‘in principle’ perform calculations only by rote, that is, by
following slavishly the train of thought dictated by a human master. It is
often alleged that however fast and accurately a machine can perform the
arithmetical or logical operations built or fed into it, it could never simulate
the two most important components of human intellectual activity, namely
(1) originality, and (2) the ability to learn. By learning I mean here the
modification of behaviour, in the light of experience, in a ‘purposive’ or
‘goal-seeking’ fashion.

The geometrical proof which was cited earlier should be sufficient to
dispose of the objection concerning originality. This chapter is devoted
mainly to discussion of the second question, concerning the nature of
learning and the possibility of simulating it mechanically.

THE MECHANICS OF LEARNING

There are two main reasons why a biologist like myself should be interested
in learning machines. The first is that being a biologist he is (pending the
development of mechanical biologists) also a man, and as such can expect to
have his habitat transformed by the advent of such machines, possibly
during his lifetime. The post-war development of electronic computers has
already had a resounding impact upon science, industry, and military
engineering. Yet most of the research effort has so far been limited to
improving the speed and storage capacity of what are in essence no more
than glorified desk calculating machines, or ‘high-speed idiots’ as they have
been called. Attention is now turning to the development of machines which
improve their own procedures as they go along, from machines which learn
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to recognize and distinguish symbols, letters, or pictures, to machines which
learn to play a passable game of draughts. The technical revolution which is
brewing is not to be compared with such events as the transition from sailing-
boats to steamers, for at some point a tearaway process is likely to get under
way: learning machines will be harnessed to the job of designing better
learning machines.

The second point of interest for biologists is more strictly professional.
Will the design and investigation of learning machines throw light on the
mechanisms of learning in the central nervous systems of man and animals?
There is a way in which a model of a biological function can be illuminating,
and a way in which it can offer a dangerous temptation. The temptation is to
construct a device which performs a given bodily function, and then to
exclaim: ‘That must be how the body does it!” No biologist in his senses
would look at a modern aeroplane and conclude that birds, despite appear-
ances, must work on a jet-propelled fixed-wing principle, but the temptation
sometimes presents itself in more subtle guises. All that we have a right to
expect from a model is that it may deepen our understanding of the matrix of
physical laws within which both the model and the biological system have to
work. In this sense the study of aeroplane flight can advance our understand-
ing of animal flight, not directly, but by elucidating aerodynamic laws to
which flying animals are also subject.

During the coming decades the machine-builders will be forced to
analyse in increasing depth and detail the logical and mathematical structure
of learning processes. The biologist will be able to use the results of these
analyses to sharpen his investigation of living nervous systems, which quite
possibly operate through entirely different mechanisms. At the same time,
whenever a learning machine exhibits a striking parallel with human or
animal behaviour, the biologist should be on the alert: it may be a clue to a
biological mechanism.

This last point is part of my justification for the construction of the simple
learning machine which I shall later describe. The starting-point was to
divide certain forms of trial-and-error learning into two components: one
which is difficult to simulate, and was therefore evaded, and one which is
easy. The two components may be termed classification of the stimulus and
reinforcement of the response. Classification of the stimulus is essential to
any form for learning, for if you cannot classify a situation as similar to one
previously encountered, how can you profit by your past encounters? If Mr
A raises his fist at Mr B, the latter is faced with a situation which he has never
met before in exactly that form. Even if Mr A has frequently menaced him in
such a fashion, even wearing the same clothes with an identical posture and
facial expression, he has never before produced precisely the same pattern
of stimulation on Mr A’s retina, owing to differences in lighting, back-
ground, position in Mr B’s field of view, and so on. Yet Mr B ‘instinctively’
raises his arm to ward off the blow. Actually instinct is precisely what is not
involved. Mr B has learnt the response from the many occasions, probablyin
his boyhood, when a raised fist was followed by a blow.

The problems posed by such a feat of classification are quite extraordi-
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narily complicated. It is the central problem facing those who are developing
machines to read a printed text—a highly desirable accomplishment for the
translating machines of the future, which will otherwise have to be spoon-
fed with texts laboriously punched on to teleprint tape by human typists. The
fact that it is difficult enough even to make a machine spot that ‘O’ is the
same letter as ‘0’, underlines the magnitude of the problem.

The second problem, reinforcement of the response, is much more
tractable. The response leads to an outcome (for example, Mr B is either
struck or not struck) which produces sensations in the responder which are
to some degree agreeable or disagreeable. The outcome can thus be said to
have a value which expresses in numerical terms the degree of pleasure or
displeasure associated with it. The probability of the person responding in
the same way when the ‘same’ stimulus is presented later depends on the
value of the last outcome of this response. If it has a positive value, the
probability is increased. If it has a negative value, the probability is
decreased, and the probabilities of alternative responses (if inaction is
included as a form of ‘response’) are accordingly raised. The word ‘reinfor-
cement’ will be used for the change of probability, with the understanding
that a decrease in probability represents a negative reinforcement.

THE MATCHBOX MODEL

We now have a conceptual blueprint for devising a simple learning machine,
provided that the problem of classification can be side-stepped. For this, the
number of discrete situations encountered in the task which the machine is
to learn must be sufficiently small for them all to be separately enumerated.

The task which I wish to consider from this point of view is that of
learning to play the game of noughts and crosses, known in America as tic-
tac-toe, but apparently unknown on the continent of Europe.

It would be easy to devise a machine which would play impeccable
noughts and crosses from the outset, but that is not the point. The point is to
construct a machine which starts with no prior information about how to
play, apart from the rules, but which will become an effective player through
practice. Such a machine would embark on its career making its moves
entirely at random, and end as an acknowledged expert.

An extremely simple machine of this sort is shown in Fig. 1.1. It was
made by glueing some three hundred empty matchboxes together so as to
form a chest-of-drawers, and placing different numbers of variously col-
oured small glass beads in the various boxes. In addition, each box has a V-
shaped cardboard fence fixed in the front, so that when the box is tilted
forward, one of the contained beads is selected by chance through being the
first to roll into the apex.

This machine is always allowed the opening move. For each of the three
hundred or so distinct positions with which Nought (by convention the
opening player) can be confronted, there is a corresponding box bearing on
its front a drawing of the position, together with a code number for ease of
reference. All three hundred boxes can thus be arranged in numerical order
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Fig. 1.1 — The original matchbox version of MENACE
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in the chest-of-drawers: this has not in fact been done entirely consistently in
the model shown in the photograph, and its castellated appearance is an
unnecessary refinement thought at one stage to facilitate indexing.

Each box contains a number of beads of assorted colours: there are nine
colours, corresponding to the nine squares of the board, and the selection of
a bead of a particular colour signifies a move to be made to the correspond-
ing square. A given box contains only beads of colours corresponding to
unoccupied squares, so that only legal moves can be made. Knowledge of
the rule defining legal moves is thus ‘built-in’ to the machine. If it were not,
the machine would simply learn the rule as it went along, but this would
complicate the problem unnecessarily. Moves which, owing to symmetry of
the position, are equivalent to each other are not separately represented.
For example, the figure below represents a position which is symmetrical
about one diagonal. It is Nought’s turn to play, and at first sight he appears to
have seven alternative moves, as there are seven squares unoccupied. But
the symmetry of the position makes the two squares labelled A equivalent to
one another, also the two labelled B, also the two labelled C. So a choice
need only be made between four alternatives, A, B, C, and D. Similarly
there are only three essentially distinct opening moves (corner, side, and
centre squares). The first box of the matchbox model therefore contains
beads of three colours only.

BA><
<O

D | C B

Suppose we wish to play against the machine. We ascertain its opening
move by taking out the first box, shaking it so as to randomize the positions
of the beads in it, and tilting it forwards so that the beads run to the front. If
the colour of the bead arriving in the apex of the cardboard fence is, say,
pink, we place a nought on the machine’s behalf in the centre (square 4). We
now replace the box in the chest-of-drawers, but for applying the reinforce-
ments at the end of the play (a ‘play’ is the complete series of moves leading
from the initial state—all squares empty—to an outcome—win, draw, or
lose) it is convenient to leave the drawer open. We reply with a cross to, say,
the top left-hand square (square 1). The position is now 51 in the code which
was adopted, and we must take out, shake, and tilt the box with this code
number in order to ascertain the machine’s next move; and so on until the
end of the play.

We now apply the ‘reinforcements’. If the machine has lost, we confis-
cate the apical bead from each of the three or four boxes which have been
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left open, thus making it less probable in each case that the same move will
be repeated when the same position recurs in the course of future play. If the
machine has done well (when it is playing against an expert, we call it ‘doing
well’ if it draws) each open box is given a bonus of one bead of the same
colour as the apical bead, thus encouraging repetition of the move con-
cerned. The open drawers are pushed shut and the machine is now ready for
the next play.

A little reflection should convince the reader that such a machine cannot
help improving its standard of play, after a fashion and to some degree. But
we have as yet said nothing about how many times each colour is replicated
in the various boxes. This matter is of great importance since it determines
the rate at which the probabilities are changed by the system of unit forfeits
and bonuses. With so crude a mechanical contrivance we cannot hope to
make its reinforcement system fully rational, and indeed the reinforcement
problem, as applied even to a much more simple system than the machine
under discussion, remains unsolved by mathematicians. A reasonably
workable system was arrived at in the present case along the following lines.
Itis clear that if the machine’s fourth move (stage 7 of the game) is followed
by defeat, it is a bad move without qualification, and there is no point in its
ever being repeated. Hence the boxes at stage 7 should have only one
replicate of each legal move, so that the confiscation of one bead expunges
the offending move for ever. It is equally clear that a defeat should be
regarded as a black mark against the move which was made at stage 5, but
the evidence is not so strong as against the stage 7 move. In like manner the
weight of evidence from a given outcome must continue to lessen as we
approach the beginning of the game. But even an opening move should
receive some reinforcement in the light of the ultimate outcome.

For the trial run, the simplest possible system was adopted, as follows:

machine’s number of
stage move replicates
1 1st 4
3 2nd 3
5 3rd 2
7 4th 1

It turned out that the allotment of only twelve beads to the first box (three
legal moves quadruplicated equals twelve) gave the machine scarcely
sufficient resources to withstand repeated discouragements in the early
stages of play against an expert. On more than one occasion the first box
nearly ran out of beads: if it had actually done so, we should have
understood the machine to be refusing to play. It sometimes happened that a
box at later stages became empty, but this was as it should be: it is reasonable
to resign in a hopelessly lost position. But at all events this reinforcement
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system in all its crudity was sufficient to make a surprisingly good showing
when the time came for the machine to be challenged by its inventor. This we
shall now see.

MAN VERSUS MENACE

For its maiden tournament the machine, which was given the name MENACE
(Matchbox Educable Noughts And Crosses Engine), was set up as already
described. The forfeit for a defeat was confiscation of the apical bead from
each open box. The reward for a draw was the addition of one bead of the
same colour as the apical bead. Against best strategy, as made clear by
D. W. Davies in a recent article [2], it is impossible to win at noughts and
crosses. One might therefore think, assuming that its human opponent
would adopt best strategy, that the question of rewarding MENACE for
victories would not arise. But in practice the machine quickly found a safe
drawing line of play against best strategy, so that its human opponent had to
resort to unsound variations, risking machine victories in the hope of
trapping it into a more than compensating number of defeats. This possibi-
lity had been foreseen (although not the speed with which it matured) and
the bonus for a win was fixed at three beads added to each open box. The
bonuses and forfeits can be regarded as equivalent to the value of the
outcome, if we take a defeat to have the value —1, adraw +1, and a win +3.

The tournament lasted for 220 plays of the game, occupying two eight-
hour sessions on successive days. By the end of the first twenty plays the
machine was settling into a stereotyped line which ensured a draw in face of
‘best strategy’. I therefore resorted to a series of theoretically unsound
variations, in order to draw the machine into unfamiliar territory. Each of
these paid off for a time, but after 150 plays the machine had become capable
of coping with anything, in the sense that whatever variations I employed I
could not get a better average result against it than a draw. In fact after this
point I did much worse than this, by unwisely continuing to manoeuvre in
various ways. The machine was by then exploiting unsound variations with
increasing acumen, so that I would have done better to return to ‘best
strategy’ and put up with an endless series of draws, or retire from the
tournament. This I eventually did after sustaining eight defeats in ten
successive games. At every stage, I used what tactics I judged to be the most
hopeful. It is likely, however, that my judgement was sometimes impaired
by fatigue.

The progress of the tournament is shown graphically in Fig. 1.2. The line
of dots gives a complete representation of the outcomes throughout the
tournament: the line jumps one level down for each losing outcome, one
level up for each draw, and three levels up for each win. The angle of the line
with the horizontal at a given stage of the tournament shows how well the
machine was doing at that stage. An upward slope of 45° corresponds to an
average drawing result, which is the best that the machine can do against
‘best strategy’. This is exemplified by the ‘testing run’ of twenty plays which
was made at the end of the tournament (see Fig. 1.2).

.
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Fig. 1.2 — Performance of the MENACE learning machine in its first noughts and
crosses tournament

We shall now turn to the consideration of what parallels may possibly
exist between the mechanical model and phenomena encountered in
biology.

PARALLELS WITH ANIMAL LEARNING

We shall adopt W. H. Thorpe’s [3] division of animal learning into five main
categories: habituation, conditioning (or the formation of conditional ref-
lexes), trial-and-error learning, insight learning, and imprinting. In all but
the simplest acts of learning, an animal will of course combine several of
these mechanisms.

Habituation describes the ‘Wolf! Wolf!” situation. A sight or sound or other
stimulus arouses our attention the first time we meet it; but on repetition we
get used to it and take no notice. This happens only if it is not accompanied
by any happening significant for us, such as the offer of something we want,
or the infliction of pain. In the terminology which we have used earlier, the
original response leads to an outcome of zero value (noxious outcomes have
negative values). If the matter is putin these terms, MENACE clearly does not
show habituation, if only because the reinforcement system does not allow
zero outcome values.

Conditioning. In a conditional reflex the most prominent feature is that a
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response such as blinking or secreting saliva comes to be evoked by a
stimulus, such as a sound, which did not evoke it at first. The animal
becomes ‘conditioned’ to respond in a particular way. This has no parallel in
the workings of MENACE, although it is well simulated by some other
learning machines, such as that designed by A. M. Uttley [4].

Trial-and-error learning is defined by Pringle [5] as follows: ‘Essentially, the
animal makes more-or-less random movements and selects, in the sense that
it subsequently repeats, those which produced the ““desired” result . . .” This
description seems tailor-made for the matchbox model. Indeed, MENACE
constitutes a model of trial-and-error learning in so pure a form, that when it
shows elements of other categories of learning we may reasonably suspect
these of contamination with a trial-and-error component. To illustrate this
point, it is convenient to take next the last category listed by Thorpe, namely
imprinting.

Imprinting has chiefly been described and studied in certain bird species. A
single experience at a critical phase of the animal’s development may result
in permanent modifications in its behaviour. A famous case is that of the
greylag goslings studied by Konrad Lorenz. The hatchlings ‘unquestioningly
accept the first living being whom they meet as their mother, and run
confidently after him’. One is reminded of Oberon’s threat concerning
Titania in A Midsummer Night’s Dream:

‘The next thing then she waking looks upon,
Be it on lion, bear, or wolf, or bull,

On meddling monkey or on busy ape,

She shall pursue it with the soul of love.’

In analogous fashion Lorenz contrived to gain the devotion of newly-
hatched goslings.

Imprinting is not quite as specific, or as long-lasting, as this description
suggests, but there is no doubt of the existence of the phenomenon. At first
sight it has nothing in common with trial-and-error learning. But consider
what would happen 1if, at some stage in the tournament, MENACE had been
given an over-riding reinforcement of the response to some stimulus, in the
shape of an arbitrarily large bonus of beads for a move made in some
particular position. From then on, whenever it encountered the same
position again, the machine would almost inevitably produce the same
move, just as the ducklings could not help following Lorenz. Is it possible
that imprinting operates through a mechanism analogous to that of trial-
and-error learning, differing only in that the reinforcement is very large?

If so, we must ask what changes occurring during imprinting could result
in an overriding reinforcement. One possibility is that the process is
associated with the relief of acute anxiety. Support for this idea would seem
to be lent by the fact that imprinting in hatchlings does not occur, or occurs
less strongly, if they are pre-medicated with tranquillizing drugs. There are
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also suggestive resemblances between imprinting and some types of human
neurotic behaviour.

Insight learning, Thorpe’s remaining category, is perhaps the most interest-
ing and the most inaccessible to analysis. I can best illustrate it by describing
the results of testing human subjects under exactly the same conditioris as
those under which MENACE was tested in the tournament described earlier.
All three subjects were Continental scientists with no previous knowledge of
the game of noughts and crosses. For each test the subject was informed of
the rules of the game, but not of its object. I then invited him or her to a
series of plays of the game, the subject having the first move of each play. At
the end of each play I announced ‘You have lost’ or ‘It is a draw’, but gave no
other information. The results in the three cases were closely similar. After
three or four plays the subject spotted the point of the game, and after five or
six plays had adopted best strategy.

Whatever else it involves, insight learning must certainly depend upon
highly sophisticated feats of stimulus-classification, and also upon sustained
flights of logical deduction. It seems likely that it also involves a process of
silent trial-and-error: imaginary stimuli are self-administered, trial res-
ponses are performed in fantasy, their outcomes are envisaged, and the
appropriate reinforcements are applied internally. The idea can be illus-
trated by a description of how a trial-and-error machine could simulate
insight learning.

With the aid of Mr John Martin of Ferranti Ltd, the matchbox model has
been programmed for a digital computer. The advantages, apart from a
thousandfold increase in speed of operation, are that both sides of the game
can be mechanized (so that a mechanical Nought plays against a mechanical
Cross), and either side can be set to play as an expert, as a random player, as
any sort of hybrid between the two, or as a self-improving player with any
desired degree of previous experience of play. In this way the properties and
merits of an unlimited variety of reinforcement functions can be tested over
a wide range of fully specified conditions. Could ‘insight learning’ be
exhibited by the electronic version of MENACE?

During play the computer produces a printed record, the printout, of
every move made. In fact, the printing of symbols on paper constitutes the
only overt behaviour of the machine. If nothing is being printed, then there
is no play in progress, according to the criteria which we apply to human
players. Let us now imagine that we set the Cross side of the program to
make its moves at random (excluding illegal moves), and let Noughtrunasa
mechanized learner as was done for the test of the matchbox model. We now
start the program running, but omit to switch on the printout mechanism.
What happens? Nought proceeds to run off a series of trial plays ‘in his
head’, without making any marks on paper, but, just as though he were
engaged in actual play, the outcomes of these phantom plays leave their
mark on his strategic habits through the reinforcement system. We might
then interrupt the machine’s reverie and, leaving the Nought side undis-
turbed, set the Cross side to play at some fixed level of skill (for example,
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expert). When now tested (with the printout switched on of course), Nought
will come out with a standard of play which is fair, good, or excellent,
depending on how long a period was previously allowed for him to gain
‘insight’ through silent meditation.

If any parallel at all exists with the behaviour of the aforementioned
Continental scientists, it is with the second phase of their behaviour, during
the rapid transition from knowledge of the values of different outcomes to
adoption of best strategy. It seems likely that part of what was going on in
their minds consisted of trial sequences of the form: ‘If I do this, then he may
do that, to which I might reply thus, and so on.” But it is damaging to the case
which we are here considering to put much weight on any alleged parallel
with human insight learning, since the part played by thought processes
other than those of trial-and-error is so preponderant in our species. When
we consider insight learning as it is found in lower animals, the example
afforded by the behaviour of the computer with its printout switched off
seems less obviously objectionable. Defining insight learning Pringle
remarks that ‘. . . the animal in this case appears to be able to work out the
consequences of a number of possible alternative responses to sensory
stimuli without actually performing them, and then, on the addition of a
further stimulus, to perform only the one which leads to a favourable result’.

LEARNING AS AN EVOLUTIONARY PROCESS

An evolutionary process is usually thought of as characterized by such
features as increase of complexity, and increase of orderliness. On such a
definition, learning is just as much an evolutionary process as is organic
evolution, that is the evolution of living organisms. It is therefore natural to
wonder whether the mechanisms by which the two processes operate have
anything in common; whether, in particular, as Pringle has suggested,
learning can profitably be studied with the concepts of Darwinian theory.
It is quite possible to think of the matchbox model as a Darwinian
system. The reader can divert himself by thinking of the boxes as discrete
habitats through which is dispersed a species of organism which takes the
form of glass beads. Each habitat is occupied by several varieties, one of
which, by reason of greater fitness to that particular habitat, usually
displaces the other and becomes the local type. Of more than trivial interest
is the fact that equally Darwinian systems are found incorporated in other
learning machines under current development. Thus, O. G. Selfridge’s [6]
machine Pandemonium, which has the task of learning to read Morse Code
as tapped out by human operators and converting it into typewritten
English, operates through a hierarchy of demons and subdemons (a demon
is a computing operation): subdemons which prove unworthy are eliminated
by the program, and their place is taken by new subdemons procreated by
the worthy survivors. The essence of subdemon selection had already been
foreshadowed in A.L. Samuel’s machine which learns to play checkers
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(anglice: draughts) [7]. Whether or not Samuel’s work influenced Selfridge,
it emphasizes how direct can be the road leading from games-playing
problems to applications of practical importance.
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Puzzle-learning versus game-learning
in studies of behaviour (1962)

This chapter is concerned with an elementary distinction which, it will be
argued, is of crucial importance in the study of animal and human learning.
The distinction is that between a one-person game or ‘puzzle’, and a two-
person game[1].

In a puzzle, as the term is here used, the player makes a succession of
moves, each of which results in a changed state of the apparatus. After each
move the rules tell the player whether the puzzle has now been solved or not.
They may tell him that there are no more legal moves available to him, even
though the puzzle has still not been solved, in which case he must restore the
apparatus to its initial state and start again. In this event the value assigned
to the outcome of his attempt can be conventionally described as a minus
quantity, say —1. The outcome of a successful attempt may be given the
value +1. One could imagine a more complex case where different valid
solutions of the puzzle were graded (for example according to economy in
the number of moves) on a quantitative scale, having values +1, +2, +3,
etc, and that unsuccessful outcomes might be assigned similar gradations on
ascale of negative numbers. We shall, however, take the simpler two-valued
case for ease of exposition.

The distinguishing feature of a puzzle, as opposed to a game, is that the
change effected in the apparatus by a given move is fully determined. In a
game, on the other hand, the player has to take into account not one single
necessary consequence of his move, but a range of alternative possible
consequences, a selection from which will be made by his opponent’s move
or moves before it is again his turn to move.

A game, it will be contended, summarizes the essential features of most
of the situations with which animals are confronted in real life, whereas most
of the problems given to animals in conventional studies of learning are
‘puzzles’. I shall attempt to show that mechanisms of learning which give
high efficiency for games are ill-suited to puzzles, and vice versa.
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Consequently it is possible to arrive at misleading conclusions if one presents
puzzles, as is the custom of experimental psychologists, to centrai nervous
systems which have been adapted by natural selection to cope with games.

ANIMAL-ENVIRONMENT INTERACTION AS A TWO-PERSON
GAME

In the language of games the two ‘persons’ are the animal and its environ-
ment. Moves are made alternately. The environment’s moves are called
‘stimuli’ and the animal’s moves are called ‘responses’. The outcome of the
game is assessed after some number of moves. The object, from the animal’s
point of view, is. to secure an outcome of the highest positive value,
outcomes being valued according as they contribute to the satisfaction of the
animal’s needs, or, on the negative side of the balance sheet, to the causation
of discomfort, pain, etc. It is not, of course, supposed in any literal sense that
the environment’s play is guided by any object, although in special circum-
stances it may be, as when the effective environment consists of a human
being or another animal. On the other hand, it will necessarily be subject, as
are the animal’s responses, to the ‘laws of nature’, which correspond to the
rules of the game. They determine what alternative moves are possible
(legal) in a given situation. Additional restrictions on the animal’s moves are
imposed by the limited range of responses to a given stimulus allowed by its
innate behaviour patterns. Purring is not a possible move for a cat to make
on receipt of a painful blow.

The essence of trial-and-error learning consists in whittling down the
range of innate potential responses to a small number which become
habitual. The process of selection in the light of experience can be likened to
that which transforms a beginner at chess, who may (as Black) make any one
of the twenty legal replies to ‘White 1. P-K4...’, into an expert who would
not seriously consider more than at most eight, and who probably uses only
three or four of these habitually. This analogy should not be pressed further
than its simple illustrative purpose demands, since human learning of a game
like chess makes heavy use of ‘insight learning’ in addition to ‘trial-and-
error’; this chapter is concerned only with the latter category.

Before examining the main thesis: that optimal mechanisms of trial-and-
error learning are fundamentally different according to whether the task
constitutes a puzzle or a game, it remains briefly to substantiate the claim
that most real-life situations are games rather than puzzles. This can be seen
to be true as soon as we recognize that at any point in time an animal is
responding not to the total actual situation (which it is in no position fully to
assess) but to the total stimulus-situation. Thus, the sight at noon on
Monday of a pine-tree from a westerly point at five metres distance
constitutes the same stimulus-situation as the sight of the same tree from the
same vantage-point at noon on Tuesday, assuming reasonable constancy of
climatic and other conditions. This is so even though every pine-needle of
the tree has meanwhile moved. But the actual situation underlying the same
stimulus-situation on the two occasions may be very different. A mountain
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lion may be in the tree on Tuesday which was not there on Monday, with the
consequence that a response which leads to a favourable outcome on one
occasion (e.g. using the tree for shade) may have a disastrous outcome on
another occasion. This multiplicity of actual situations underlying a single
stimulus-situation, and the resulting multiplicity of consequences attendant
upon a given response, is a sufficient criterion of game-like rather than
puzzle-like structure. The animal’s ignorance of the actual situation which
underlies the current stimulus-situation corresponds to the predicament of
the chess-player, who is inevitably ignorant of his opponent’s strategy
although fully aware of the current position on the board to which that
strategy has contributed.
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Fig. 2.1 — The interaction between animal and environment represented in terms of

a puzzle. S, S;, S, denote successive states of the environment or ‘actual situation’

with the corresponding ‘stimulus situation’ denoted by §'o, S’y and §',. The sequence

of states of the animal Ay, A; 1, A,.,, shows the path actually taken, with alternative
choices leading to potential states A, ;, Aj ;and A, 5, Aj 3, etc.

To summarize the ideas outlined above, we present two diagrams. Fig.
2.1 depicts a sequence of choices made by an animal confronted with a
puzzle. In this case (unlike that of a game) the stimulus-situation contains all
relevant features of the actual situation. In Fig. 2.2 the diagram reproduced
in Fig. 2.11is reproduced with a new feature added, which converts the puzzle
into a game. The new feature is the existence of alternative potential
transitions of the environment of which the animal must take account. These
transitions are entirely compatible with the stimulus-situation, although not
with the actual situation of which the animal is necessarily unaware.

We shall now consider the kinds of learning behaviour which would be
appropriate to these two very different kinds of problem.
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Fig. 2.2 —The interaction between animal and environment represented in terms of

a game. The new feature as compared with Fig. 2.1, is that a given response, say that

arising from A, ;, may trigger off any one of several alternative changes in the

environment for example those leading to states S, ;, S, ,, or S, 5. These paths

S¢—S:.1S;.1, and Ag—A; —A,,; represent those taken by environment and
animal respectively on a given occasion.

LEARNING TO PLAY A GAME VERSUS LEARNING TO SOLVE A
PUZZLE

Within the strict context of trial-and-error learning there is no alternative,
when faced with a new game or a new puzzle, but to embark on a series of
randomly-chosen moves. Sooner or later the series of moves will terminate
in an outcome, favourable or unfavourable; this is where learning begins. It
is obvious that the probability of the terminal move, the next time that the
same position is encountered, must be modified in some way. More
specifically, if the outcome-value was negative the probability must be
reduced, and if it was positive, it must be increased. But by how much? We
here come upon the first important contrast between puzzle-learning and
game-learning. It can be seen at once that, in a puzzle, the probability
change, or ‘reinforcement’, should be maximal. That is to say, if the move
has immediately led to a solution of the puzzle (outcome-value =+1), then
the probability of repetition should be adjusted to zero.

This is only true of a game where the outcome immediately follows the
last move, without an intervening move by the opponent. When a delay,
occupied by the opponent’s move, precedes the outcome the state of affairs
is entirely different. Consider the following example from the game of
noughts and crosses (otherwise known as tic-tac-toe):

OlOX
OIX
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On the first occasion when this position arises Cross places his move in the
lower right-hand corner, and is defeated when his opponent promptly
completes the left-hand column of noughts. In a world of puzzles this would
be sufficient for Cross to ‘learn his lesson’ and never again repeat the fatal
move. But in a world of games this move may be the one which in the long
run gives the best results. One unfavourable result is not sufficient to
excludethe remote possibility that Nought has a ‘blind spot’ which causes
him on most, but not all, occasions to reply to the centre square and thus to
allow Cross to win. Evidently Cross should be chary of repeating the losing
move, but should not discard it completely until further evidence on its
actuarial risk has accumulated: the probability of this particular response
should be reduced, but not to zero. This principle does not hold (an artificial
case from the real-life point of view) when the opponent’s play is guided by
‘best strategy’.

In real-life situations the outcome even of a terminal move is frequently
indeterminate, as in the case of Cross’s move in the above example. All that
can be attached to it in the light of the animal’s accumulating experience is an
increasingly well-charted frequency-distribution estimating the relative pro-
babilities of the various possible outcomes. Yet this is not true of the
laboratory conditions under which learning behaviour is commonly tested.
In the typical and simplest case, the animal is rewarded if it turns left and
punished if it turns right, and this rigid connexion between move and
outcome-value is held invariant throughout the experiment. The animal,
however, is not to know this. If, therefore, it requires a substantial number
of trials before settling decisively for the left rather than the right turn, its
sluggishness should not be imputed to imperfect learning powers: it may
merely indicate that the animal has a better grasp than has the experimenter
on the realities of its own daily life.

The second major contrast between game-learning and puzzle-learning
concerns the relation between temporal sequence and the strength of
reinforcement. In formulating his classical Law of Effect, Thorndike [2]
drew attention to ‘the effect of increasing the interval between the response
and the satisfaction or discomfort’, namely a diminution of the amount by
which the probability of response is modified in the light of the outcome.

In terms of game-learning we interpret ‘interval’ as meaning the number
of further moves intervening before an outcome is reached. An efficient
game-learning mechanism should modify the probability not only of the
move immediately preceding the outcome, but, in diminishing degree, also
that of the penultimate move, the antepenultimate move, and so on. This
principle has been utilized in constructing a simple machine which ‘learns’ to
play noughts and crosses[3]. Even though the desirability of applying non-
zero reinforcement to pre-terminal moves may seem obvious, we have to ask
ourselves what is it precise justification. As a first approach we can frame our
answer in rather loose language: the rationale of discouraging earlier moves
which have led to one particular unfavourable final outcome (or encourag-
ing those which have led to a particular favourable outcome) is that we take
the outcome-value as evidence that a given earlier move was bad (or good)
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in some more general sense than that it happened to lead to this particular
result in this particular case. More rigorously, we must consider the formal
representation of a game or puzzle as a branching tree. The principle of ‘guilt
by association’ to which we have given a loose expression above can be
expressed by saying that twigs of the same branch tend to bear similar fruit:
that is to say, the total variation in outcome-values, instead of being
distributed at random over the terminal spots, shows a trend towards
homogeneity within families of spots, and heterogeneity between families.

The principle is well known to game-players, and is a commonplace of
real life. But is it also true of puzzles? Doubtless it is true of many puzzies,
but it can easily be seen that it need not be true of any given puzzle, and that
there is no reason at all why it should be true of the particular puzzles which
experimental psychologists devise for their animals.

In the first place, there may be no opportunity for the principle to
operate owing to insufficient variation of outcome values. This is so in a
maze in which only one terminal spot contains a reward, the remainder
carrying punishments. A simple maze which does not allow re-tracing is
shown in Fig. 2.3. The terminal spot containing the reward is boxed in the

Terminal spot (a) (b) (9 (d) (e 0]
Outcome value -1 +1 -1 -1 -1 -1

Fig. 2.3 — A simple maze without retracing, drawn and labelled in such a way as to
exhibit the formal structure of a puzzle.

diagram.

The three pre-terminal spots represent choice-points, of which the first
can be termed ‘primary’ and the othe two ‘secondary’. Since this is a puzzle
and not a game, the most efficient learning procedure will, as we have seen in
an earlier section, discard immediately and irrevocably any secondary
choice which has once been followed by a negative outcome. A real animal,
as we have also seen earlier, will not do this because, in our submission, it is
adapted to game-learning rather than puzzle-learning. It will also display
another behavioural feature irrelevant to puzzle-learning, namely a modifi-
cation of primary choice consequent upon a negative outcome. If its first run
of the maze took it to terminal spot (a) where it received a punishment, it will
tend on the next occasion to make a left rather than a right turn at the
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primary choice-point. This spread of reinforcement to a preterminal move is
an adaptive mechanism in game-learning, owing to family likeness of
terminal spots. Yet in the puzzle under consideration the average number of
trials needed for solution of this puzzle (given maximal reinforcement of
secondary choices) is exactly 3.5, and this expectation is completely unaffec-
ted by any spread of reinforcement to the primary choice.

A different version of the same maze might contain two reward-boxes,
and these could be disposed in two essentially different ways, as shown in
Fig. 2.4. Here it is less obvious that spread of reinforcement is ineffective in
contributing to learning-speed. Everything, in fact, depends on whether the
puzzle belongs to type A or type B. For type B, which exemplifies the ‘family
likeness’ of outcome characteristic of games, a negative outcome should
indeed result in a negative reinforcement of the primary choice: if twigs of
the same branch tend to bear similar fruit, it is better, after a disappoint-
ment, to try another branch! But for type A, a negative outcome should
result in a positive reinforcement if a maximum efficiency is required. This is
because having eliminated one negative outcome in the family, we except a
corresponding higher proportion of positives in the surviving members of
the same family. In such a case a fundamental feature of learning which
forms a normal and necessary part of animal behaviour would not only be
useless to the animal, but would be actively harmful and serve only to lead it
into trouble.

Type A Type B
(homogeneity between (heterogeneity between
families) families)

Fig. 2.4 — Simplified representation of two contrasting types of puzzle, one in which

twigs of the same branch tend to bear similar fruit (type B) and one in which fruits are

dispersed evenly over branches. For more general application of this distinction we

would have to consider sub-branches, sub-sub-branches, etc., before arriving at the
twigs, or ‘terminal spots’.

The main ideas that have been advanced can be summarized as follows:

(1) Real life has the structure of a game rather than of a puzzle.

(2) Efficient game-learning by trial-and-error requires two fundamental
features in the reinforcement system: (a) partial rather than absolute
reinforcement of the terminal move, and (b) spread of reinforcement to pre-
terminal moves.

(3) Both these features are exemplified by trial-and-error learning in
animals.
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(4) By testing experimental animals with puzzles rather than games these
features can be nullified and may even unwittingly be turned to the discredit
of the animal’s estimated power of learning.
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Machines that play and plan (1968)

Proposals to construct man-like machines are nothing new. The following
particularly charming excerpt from the Scotsman newspaper of 100 years
ago recently came to my attention:

A STEAM MAN — The ‘Newark Advertiser’ (New Jersey) de-
scribes the very extraordinary invention of a machine which, moved
by steam, will perform some of the most important functions of
humanity — stand upright, walk or run, as he is bid, in any
direction, and at almost any rate of speed, drawing after him a load
whose weight would tax the strength of three stout draught horses.
In order to prevent the ‘giant’ from frightening horses by its
wonderful appearance the inventor intends to clothe it and give it as
nearly as possible a likeness to the rest of humanity. The boilers and
such parts as are necessarily heated will be encased in felt or woollen
garments. Pantaloons, coat and vest, of the latest styles, are
provided. Whenever the fires need coaling, which is every two or
three hours, the driver stops the machine, descends from his seat,
unbuttons ‘Damel’s’ vest, opens a door, shovels in the fuel, buttons
up the vest, and drives on.

Here the attempt is dominated by the ideas of motion and force central to
nineteenth century technology. In the twentieth century our technology
revolves increasingly around the notion of information, and it is the rational
rather than the muscular faculties of man which now challenge the machine
builders.

Games of mental skill devised by humans for amusement provide the
research worker in machine intelligence with ideal material. In such exer-
cises as programming a computer to play draughts (checkers), or chess, or
Kalah or Go, all the intellectual faculties on which we pride ourselves are
brought into play. Among these I would place high on the list the distinc-
tively human ability to look ahead, predicting the consequences of alterna-
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tive actions. This activity is normally called planning, and the design and
testing of machines that can play and plan is a central interest in all those
laboratories around the world dedicated to the machine intelligence
objective.

During the war I was a member of Max Newman'’s group at Bletchley,
working with prototypes of what we now call the electronic digital computer.
One of the people I came most in contact with was Alan Turing, a founder of
the mathematical theory of computation and the first apostle of the idea of
designing a machine to think as intelligently as a man. He was also much
interested in chess. But he was so profoundly intrigued by the deep
principles of the game that he could never keep his mind for long on the
tactical details. Beng one of the few people in the Bletchley environment
bad enough to give him a reasonably even game, I became his regular
sparring partner. After the war he and I engaged in some experiments with
the mechanization of chess which I think were the earliest to be conducted in
this field.

In those days we attached considerable polemical importance to showing
that even one non-trivial exercise of thought, and chess certainly qualifies as
that, could be convincingly mechanized. Looking back, I am not at all sure
why we thought this so important. The mental solution of differential
equations or the inversion of matrices constitute equally non-trivial tasks
and yet they can be solved by algorithms; that is, they can be clearly stated
and solved by applying a sequence of specified operations. No-one doubted
even in the 1940s that computers could outgun most human beings in these
feats of numerical mathematics. Consequently the discovery of equivalently
powerful algorithms in non-numerical problems such as chess should not
logically convey any added conviction.

So indeed it has turned out. The Greenblatt chess program is today
operating in America, under the professional name MacHack, as a tourna-
ment player of reasonable competence. But no-one hails MacHack as the
world’s first intelligent machine. Rightly so, since MacHack would be as
useless at solving differential equations as someone else’s differential
equations program would be at playing chess. The human intellect is marked
not so much for any special brilliance at some particular task but rather for
its ability to make a plausible shot at almost anything. We accordingly
suspend judgement about the idea of an intelligent machine, waiting until
one arises with the versatility and the powers of integrative behaviour which
we demand of our colleagues.

Machine intelligence is not about chess nor about any particular mental
task. It is about what can be generalized, including procedures initially
developed on a task-oriented basis but possessing the seed of generality.
Into this category fall various tree-searching techniques initially developed
in mechanized game-playing. They include such fundamental features of
planning as the generation of possible future states by a look-ahead process
followed by assessment of the relative desirability of these states by
approximate rules of strategic evaluation. The object of machine intelli-
gence work is to tie together all essential general components of cognition
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into a single library of computer programs held in the machine’s store in such
a way that the machine can respond to human interrogation in a coherent
and resourceful fashion. In Table 3.1 are listed the topics which I regard as

Table 3.1 — Design topics which must be studied in depth if intelligent machines are

to be developed are listed below. The first item is in the nature of supporting

technology: it is an essential ‘springboard’ for the development of adaptive and

problem-solving computer programs. Last item leads into the realm of robots —
intelligent machines able to see, feel, and move about.

Time-sharing systems and ‘conversational’ programming languages
Learning by rote

Learning by trial and error

Learning by generalization

Elementary deductions about a simple world

Tree-searching and automatic problem-solving
Theorem-proving by machine

Theorem-proving representations of the problem to be solved
How many library routines make a mind?

Talking to the library

Linguistic skills: syntax and semantics

Associative storage and retrieval

Sense organs: pattern perception

Exploratory behaviour and theory formation

the minimum set to be studied in depth. Each poses a design problem for
which solutions are necessary before the parts can be assembled into
something with which we might hope to hold a usefully intelligent
conversation.

The primary motive of work on machine intelligence is an engineering
one: we want to make a machine which is man-like in certain respects. At the
same time there is every reason to hope that spin-off may be produced which
the brain scientists can use. An excellent example of this kind of spin-off can
be found in the fact that we now have an understanding of the principles of
flight in birds, particularly in relation to the evolutionary changes in
anatomy which can be found in the fossil record. This new understanding has
been largely achieved through the work of John Maynard Smith, whose
application of the engineering concepts of feedback and aerodynamic
instability to birds and other flying animals was made possible by the fact
that he spent the war years working as an aircraft designer.

Learning by rote is perhaps the simplest of all cognitive aptitudes. I shall
use it to illustrate the theme of taking over a trick from someone’s special-
purpose program in order to fashion a general-purpose implement.

A. L. Samuel’s learning program for the game of draughts now plays at
respectable county championship level, although Samuel believes that it is
still a long way from attaining the calibre of a world champion. A fundamen-
tal feature of Samuel’s program is the evaluation of a board position by
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means of a ‘scoring polynomial’, in which the terms describe different
strategic properties of the board position and the coefficients denote the
respective weights to be attached to them. In addition, two learning
mechanisms operate in parallel: ‘rote learning’ and ‘learning by
generalization’.

The first of these bases itself upon a dictionary of previously encountered
board positions held on magnetic tape. A position is added to the tape with
its value as calculated by the scoring polynomial. The dictionary thus acts as
a look-up table for evaluating positions. If the position can be found on the
tape, then the value is obtained relatively quickly; otherwise the scoring
routine is entered and the value obtained by calculation. In the latter case
the new position—value pair is added to the dictionary at the end of the
evaluation. There is also a ‘refreshing and forgetting’ scheme whereby the
least used entries are allowed to drop out of the dictionary whenever it is
necessary to economize on storage space. As a result of this simple rote
learning system, evaluations are performed with increasing speed as exper-
ience accumulates on the tape. Time is thus freed for pushing the look-ahead
analysis deeper, with a gain in playing strength, and other learning effects of
a more subtle kind accrue.

Another illustration, this time from work by R. A. Chambers and
myself, is the surprising efficacy of crude rote learning for enabling a
computer to master a difficult control task: balancing a pole on a motor-
driven car under ‘black box’ conditions (see Fig. 3.1). The task, in common
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Fig. 3.1 —Trial-and-error learning enables a computer to balance a pole on a motor-

driven cart. The task has the same structure as that of learning to play a game, with

nature as the opponent. The computer learns by experience from an initial state of
ignorance.
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with adaptive control tasks generally, has the same formal structure as the
task of learning to play a game; a ‘game against nature’. The opponent’s
‘strategy’ is determined by the causal laws which govern the responses of the
unstable system to the control signals. The control signals themselves can be
thought of as the ‘moves’ made by our side, and the successive state signals
correspond to successive ‘board states’ in the play of the game.

What we need now is a way of generalizing these simple ideas, adding
them to the mental furniture, so to speak, of general-purpose computing
systems. We would like computers to learn from experience not only when
doing unusual things like balancing poles but even when engaged on the run-
of-the-mill tasks of ordinary arithmetic.

Contemporary programming languages provide for the definition of
mathematical functions, subject to more-or-less awkward restrictions which
I shall not discuss here. But existing languages such as ALGOL make no
provision for the fact that when a certain function is applied to a given
argument for the second time it may be more expeditious to recall the result
from memory than to work it out again from scratch. The means of making
any function into a ‘memo function’, complete with attached memory, has
now been provided in our Multi-POP system at Edinburgh. Typing the
appropriate instruction will attach to any function a memory with space for a
specified number of entries. There are other refinements analogous to
Samuel’s ‘refreshing’ and ‘forgetting’. The observed effect of the memo
facility is in the expected direction: with increasing experience of using a
given function, the computer carries out its task faster and faster. The self-
improvement effect turns out to be substantial, and speed-ups of the order of
tenfold are easily attainable in appropriate cases.

Now I want to consider the automation of mental processes more
sophisticated than ordinary arithmetic. I shall restrict my remarks about
graph-searching and problem-solving to a certain family of problems first
treated along these general lines by Alan Newell and Herbert Simon at the
Carnegie Institute of Technology. These are problems which can be repre-
sented as a set of discrete states and a rule book. The rule book specifies a set
of operators — ‘legal moves’ — by which some states can be transformed
into others. For example, in a sliding-block puzzle like the one illustrated in
Fig. 3.2 the operators are the physical sliding movements of individual
square blocks. Although I speak of this as a restricted class of problem, it is
rich enough to provide formal representations of a wide variety of problems
in which one is required to find a sequence of transformations leading from
some initial state to a goal state, defined either explicitly or by possession of
some desired property.

The activity known as problem-solving can be divided into two levels.
The higher level is concerned with finding improved representation of the
problem to be solved. This means in general replacing a problem graph — a
diagram of nodes, representing the states in the problem, linked by arcs
representing transformations — with another graph containing fewer nodes.
An example using the eight-piece sliding puzzle might involve identifying
states with symmetry classes instead of with individual board configurations.
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problem state
(node)

transformation
(arcs)

112(3
7

generated states (descendant nodes)

Fig. 3.2 — Sliding-block puzzle illustrates the treatment of problems which can be
represented as a set of discrete states and a rule book of transformations or ‘legal
moves’. All such problems can be represented in the form of a graph of nodes,
representing states, connected by arcs representing transformations, as in figure 3.4.

Another example with this type of puzzle could consist of replacing the
simple moves of the rule book with compound moves — for example, the
eight ‘corner twists’. (A corner twist is a cyclic sequence of four simple
moves confined to one corner which rearranges the three pieces occupying
this corner. The use of this operator set reduces the nodes of the problem
graph by a factor of nine, that is, to those representing ‘centre empty’
configurations.) I am not going to talk further about this higher level, which
is concerned with problem representation. Impressive work is being done in
this vital area by Saul Amarel of the Radio Corporation of America.

The lower level of problem-solving concerns what you do with your
graph once you have it. J. E. Doran and I have developed a simple search
algorithm in the form of a computer program called the Graph Traverser
(Fig. 3.3). To set it to work, the user must give it definitions for two of its
functions. These are, first, the ‘evaluate’ procedure which when applied to a
state produces a score intended to estimate, however imperfectly, the
distance of that state from the goal; and, second, the ‘develop’ procedure
which when applied to a state selects an operator and uses it to produce a
descendant state. While the ‘develop’ procedure thus embodies the rule
book, the ‘evaluate’ procedure embodies whatever information or notions
may be available concerning desirable or undesirable features of interme-
diate states (Fig. 3.4).

The real interest of the Graph Traverser idea lies in the possibility that it
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Fig. 3.3 — Graph traverser search algorithm is a computer program developed to
solve problems represented as graphs of nodes and arcs. By ‘develop’ is meant select
an operation from the rule book, apply it to the state in question, and evaluate the
descendant state so produced. X,,;, denotes the minimum valued state of all those
currently known to the program, that is, the most ‘promising’ of the states.

might be able to improve its own search strategy by exploiting in some way
its accumulating experience of the problem. The ‘develop’ and ‘evaluate’
procedures constitute two separate points of entry for the introduction of
learning ability. It is the ‘develop’ procedure which is concerned with the
order of preference in which operators are selected. In our experiments with
the Graph Traverser the program has always selected at random, but in the
next phase we shall allow it to re-order the set of operators by promoting on
the list those which turn out retrospectively to lie on the main path. A stage
beyond this very simple learning method lies the attempt to set up a
‘plausible move generator’ based on abstracted features of the current
problem state. This is done on a non-learning basis by the Greenblatt chess
program MacHack, but there is no reason why the process should not be
made adaptive. The preference orderings attached to the different classes of
problem state defined by the abstracted features need not be fixed for all
time but would be revised by a promotion process.

As for the ‘evaluate’ procedure, the problem here is essentially that
called by Samuel in his checkers program ‘learning by generalization’. His
scoring polynomial is a weighted sum of terms which measure various
strategic features of the board position; the program’s problem is how to
adjust these weights so as to improve its playing ability. Assuming that the
Graph Traverser’s evaluation function likewise takes the form of a weighted
sum of terms, is there any way of adapting Samuel’s approach to our needs?
The key idea is that, as search proceeds, past experience accumulates in the
form of a stored search tree with labelled nodes, the labels being the values
assigned by the evaluation function. To the extent that the function is a good
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Fig. 3.4 — Search method used by Graph Traverser program is shown diagrammati-

cally. Back-tracking automatically occurs when all arcs leading from a node are

blocked. These blocked arcs denote developments which fail to produce improve-

ments in the form of a reduction of the numerical values which are attached to the
nodes.

one, the numerical values of the labels will correlate well with the distances
from each other of the corresponding nodes. Moreover, the program is free
to ‘ruminate’ over this stored record, adjusting the scoring function so as to
improve this correlation. R. Ross and I have made preliminary tests of this
idea, using sliding-block puzzles, with promising results.

Why did the hen cross the road? Actually there were three hens. The first
was a clockwork hen and it crossed the road because its owner had wound it
up and pointed it in that direction. The second hen crossed the road because
an experimental psychologist was using it to illustrate a ‘taxis’ to his
behaviour class: the hither side of the road was in darkness and the visual
response to the illumination of the far side, together with reflex locomotor
responses to tactile and proprioceptive inputs from its limbs, were sufficient
to unroll a chain of actions which got it across the road. The third hen crossed
the road in order to get to the other side. The explanation for this behaviour
in a member of so unintellectual a species turned out to be that this hen was
an intelligent robot. Hence it was able to operate upon an internal model of
external reality, alternately updating the model inductively and using it
deductively to foresee the consequences of its actions.

My engineer-psychologist colleague Richard Gregory points out that this
predictive processing of stored information can be regarded as a way of
exploiting the redundancy present in the real world, and he lists the
following advantages which hen number three would enjoy:

(1) It can achieve high performance with limited information transmission
rate... The gain results because perception of objects (which are always
redundant) requires identification of only certain key features of each
object...

(2) It is essentially predictive. In suitable circumstances can cut reaction
time to virtually zero.

(3) It can continue to function in the temporary absence of any input, e.g.
turning the music page, blinking or sneezing while driving...
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(4) Itcancontinue to function when the input changes in kind. Thus in maze
learning, rats can continue to run a maze once learned though each
sensory input in turn is denied it — vision, smell, kinaesthetics etc...

(5) It can extract signals from ‘noise’, if internal models are highly redun-
dant. They can be called up with minimal sensory information. This
means that the models can enormously improve the effective signal/
noise ratio of sensory systems.

(6) Provided a particular situation is similar to the situations for which a
‘model’ was developed, behaviour will generally be appropriate. This,
in the language of experimental psychology, is ‘positive transfer of
training’.

As disadvantages, he lists:

(1) When the current situation is sufficiently similar to past situations which
have been selected and combined to give an internal model, but the
current situation differs in crucial respects, then the system will be
systematically misled by its model. This is ‘negative transfer’.

(2) Internal model systems will be essentially conservative (showing inertial
drag to change), for internal models must reflect the past rather than the
present.

Gregory’s notion of ‘internal models’ is decomposable into interpreta-
tive models, according to which the pattern of sensory stimulation is reduced
to ‘features’ and ‘objects’, and predictive or planning models, according to
which the likely consequences of applying alternative actions are computed
by combining these interpretations of current sensory input with stored
experience from the past. Fig. 3.5, which indicates where Gregory’s internal
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Fig. 3.5 — Intelligent robot’s cycle of activity as it reacts with its environment is
shown schematically. It operates by means of an internal model of external reality
(grey boxes). This internal model is composed of an interpretative model, which
reduces sensory stimulation to features and objects, and a predictive model which
combines these interpretations with past experience to determine the likely conse-
quences of alternative actions. The short circuit from ‘recognition’ to ‘action’ (dotted
arrow) is for skills which are either inborn or have become automatic by means of
practice.
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models may be thought to reside, bears a close relationship to the scheme
followed by my colleague J. E. Doran in his computer simulations of robots
able to explore, learn, and plan. The ‘predictive model’ box of the diagram is
mimicked in some essential respects by the Graph Traverser program
discussed earlier. When the program grows a search ‘tree’ it is using an
internal model to construct a plan, but when it is restricted to growing a
‘bamboo’, corresponding to what I have elsewhere called a ‘conditional
choice strategy’, it is operating in reflex mode (a bamboo stem has nodes but
no branches). The correspondence between Gregory’s formulations in the
behavioural realm and those of Graph Traverser design turn out to be
engagingly simple. Those which most immediately leap to mind are listed in
Table 3.2

Table 3.2 — Correspondence of the processes of exploration and learning in

the biological world and in machines is remarkably direct if biological

exploration and learning as formulated by R. Gregory is compared with the
notation used in the Graph Traverser program.

Biological exploration
and learning
(Gregory’s formulations)

Machine exploration
and learning
(Graph Traverser notation)

State of environment

State of problem (for example, slid-

ing block puzzle configuration)

Perceived state Node on problem graph

Repertoire of acts Set of operators

Pleasure—pain associations Evaluation function

Predictive model The ‘develop’ function of the Graph
Traverser program

Use of internal model
to construct a plan
Selection of action

Application of develop function

to grow a partial search tree
Printout of partial path under ‘dyna-
mic pruning’ regime

Chain of reflex actions Conditional choice strategy

Of particular interest are ideas which we are investigating experimen-
tally for enabling the Graph Traverser to apply increasingly severe pruning
procedures to its tree-growing activity, as its experience enlarges, until it has
converted its operations from ‘tree’ mode to ‘bamboo’ mode. The biological
analogy is with the embedding into fixed chains of habitual actions of
patterns of behaviour which the organism originally elaborates for itself on a
trial and error basis. When I first learned to tie my tie, the process was
painful and fumbling with many faise starts, backtracks and abandoned
experiments. Now the sequence of actions proceeds in smooth stereotype,



42 COMPUTER GAME PLAYING [Sec. 1

each action creating a new state which in turn infallibly elicits a unique
successor action, until it has run to completion. Only if I take a seriously
wrong turn — if, for example, I have selected a bow tie by mistake — am I
thrown back into ‘tree-growing’, as opposed to ‘bamboo’ made, until I have
worked back to a state sufficiently familiar to allow stereotyped habits to
resume control.

Aggregation into larger units so as to exploit redundancy is called
‘chunking’ by George Miller. The extreme product of this process in
linguistic behaviour is the cliché, the immense benefits of which in terms of
neural economy is evidenced by the cliché-ridden speech of the general
citizen. Chunking involves both input and output streams. Output chunking
corresponds to what are sometimes called ‘compound moves’ or ‘macro-
moves’ in the literature of automatic problem-solving.

Some of this discussion has been vague. The time for generalities is,
however, drawing to an end, as laboratories in different parts of the world
embark on the concrete task of constructing intelligent robots. In our own
laboratory we plan to construct a FREDERICK (Family Robot for Enter-
tainment, Discussion and Education, the Retrieval of Information, and the
Collation of Knowledge). In future time the reader will be rightly impatient
of any treatment of these topics which does not include accounts of the
exploits by brain, eye, and limb of actual machines perambulating the
laboratory proving ground. When that time comes I believe that certain
fundamental capabilities will be found common to all such machines,
including rote learning, generalization, the growing of look-ahead trees,
tree-to-bamboo conversion, and the inductive up-dating of predictive rules
in the light of accumulating sensory experience. Although the first explo-
rations of these design topics were made in the attempts to program
computers to play games, the nascent planning abilities of intelligent
machines will increasingly be devoted to playing ‘the game against nature’.
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Evaluative comments in chess (1981)

Classical game theory partitions the set of legal chess positions into three
evaluative categories: won, drawn and lost. Yet chess commentators employ
a much larger repertoire of evaluative terms than this, distinguishing (for
example) a ‘drawn’ from a ‘balanced’ position, a ‘decisive’ from a ‘slight’
advantage, an ‘inaccuracy’ from a ‘mistake’, and a ‘mistake’, from a
‘blunder’. As an extension of the classical theory, a model of fallible play is
developed. Using this, an additional quantity can in principle be associated
with each position, so that we have not only its ‘game-theoretic value’ but
also its ‘expected utility’. A function of these two variables can be found
which yields explications for many evaluative terms used by chess commen-
tators. The same model can be used as the basis of computer play. Itis shown
to be easier to justify, and to adjust to realistic situations, than the minimax
model on which state of the art chess programs are based.

REQUIKEMENTS OF A THEORY

The game tree of chess contains about 104 positions (Good 1968), a
substantial proportion of which are terminal. The rules of the game assign a
value to every terminal position, +1, 0, or —1 according to whether the
position is won, drawn, or lost for White. These values can be backed up the
game tree using the minimax rule, so that in principle every position can be
given a value, including the initial position. This last is known as ‘the value of
the game’, and is widely conjectured to be 0 for chess. If this conjecture is
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correct, and if both sides play faultlessly, i.e. only execute value-preserving
moves (it follows from the ‘back-up’ method of assigning values that there is
at least one such move available from every non-terminal position), then the

game must end in a draw. A fragment of a hypothetical game tree is depicted
in Fig. 4.1. In Fig. 4.2 the method of attaching game-theoretic values to
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Fig. 4.1 — A game tree with its terminal nodes (shown as squares) labelled with
outcome values from the set { + 1,0, — 1}. Shading of the remaining nodes (circles)
indicates which player has the move.

positions is illustrated.

An evaluation function could, in principle, map board positions into a
larger set of values making it possible to express a distinction between
positions which are ‘marginally’ won and positions which are ‘overwhelm-
ingly’ or ‘obviously’ won, or between drawn positions in which White, or
Black, ‘has the edge’ and drawn positions which are ‘equally balanced’, and
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Fig. 4.2 —The game tree of Fig. 4.1 with its non-terminal nodes labelled (underlined

values) by minimax back-up. White’s best strategy from B1 is drawn with a heavy

line. Arcs are marked with the conditional move-probabilities corresponding to

perfect play: since the game-theoretic value of Bl is + 1, Black chooses with
probability 1 to move to B2.

so forth. Two circumstances suggest that a useful purpose might be served by
multi-valued functions.

(i) Chess Masters and commentators have developed a rich descriptive
language for the expression of such distinctions.

(ii) Computer chess programs employ real-valued functions for evaluating
terminal positions, not of the game tree which is too large, but of the
look-ahead tree. Values backed up from the look-ahead horizon are
used to select the next move. We lack a formal basis for assigning definite
interpretations to such values.

There is thus a need for a stronger theory of position-evaluation. This paper
discusses chess, but the treatment is general and covers all two-person zero-
sum games of perfect information without chance moves.
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A good theory should explicate a variety of commentators’ concepts.
Table 4.1 is a representative list. Where a conventional symbol is available it
precedes the verbal comment.

MAIN FEATURES OF THE THEORY

The game-theoretic model presupposes perfect play, whereas in the real-life
game of chess (whether human or computer) both sides are susceptible to
error. Our theory is based on this distinction, and presents the following
main features:

(1) We follow Good (1968) and interpret the values of terminal positions as
utilities as though the game were played for a unit stake. Values for pre-
terminal positions are then calculated as expected utilities. In order to
avoid confusion we shall refer to these throughout as ‘expected utilities’
or ‘scores’, never as ‘values’, reserving the latter term for game-
theoretic values.

(2) A model of imperfect but skilled play is developed. Chess skill appears
in this model as an adjustable parameter running from 0 (random play)
to « (perfect play).

(3) In the new model the classical game-theoretic treatment appears as a
special case.

THE CALCULATION OF EXPECTED UTILITIES

Consider a state, 5o, from which transitions to successor states sy, s,, 53,... 5,
can occur with respective probabilities py, p, ps,... p,. Let us suppose that
these successor states have associated utilities u;, u,, us,... u,. Then the
expected utility associated with s is

n
z PiU;
i=1

It follows trivially that if we interpret as utilities the values attached by the
rules of chess to the terminal position, then the values assigned to the non-
terminal positions by minimaxing can be interpreted as expected utilities. In
this special case the ps associated with those arcs of the game tree which
carry a change of game-theoretic value are all 0. Consequently, the evalu-

n
ation of 2 p:u; at each node reduces to obtaining the ‘min’ or the ‘max’ of
i=1
the successor-values according to whether White or Black has the move. The
above specification is ambiguous in the case when two or more of the moves
applicable to a given board position are value-preserving. We can either
select one of these at random and assign a probabilitty of unity to it and zero
probabilties to the rest, or we can divide the unit probability equally among



48 COMPUTER GAME PLAYING [Sec. 1

Table 4.1 — A representative list of commentators’ comments

(1) A dead draw (nothing that either players can do can avert a
draw)
2 A complicated position
3 = A balanced position
4 = White has a slight advantage
6 F White has a clear advantage
(6) + —  White has a decisive advantage
™ A certain win for White
8 A difficult posiiton for White
9) A losing move
(10) An inaccurate move: White weakens his position
11) White strengthens his position
12) ? A mistake
(13) 7 A blunder
14) ! A strong move
s A very strong or brilliant move
(16) 1? A brilliant but unsound move
(17) Best move
(18) (1 Best move in difficult circumstances
19) A safe move
(20) White should press home his advantage
(21) Black should play for time

them. In the case of error-free play, calculation of expected utilities
according to either procedure leads to the same result. As the basis of a
model of actual play we shall adopt the second alternative, which is
illustrated in Fig. 4.2.

We now relax the game-theoretic condition that at each choice-point on
the tree there is a probability of unity that a value-preserving move (‘sound’
or ‘correct’ move) is chosen, and we introduce the possibility of error. In
constructing a model of error, we express the relative probabilities of
making alternative moves from a given position as a monotonic increasing
function (decreasing function for Black, since all utilities are expressed from
White’s standpoint) of the expected utilities of the corresponding successor
positions. Thus the move leading to the highest expected utility will be
chosen with highest probability (but not with probability 1 as in the game-
theoretic error-free model), the move leading to the next highest expected
utility with next highest probability and so on. We thus envisage an idealized
player whose statistical behaviour reflects the rank-ordering of the expected
utilities of chess positions. Using such a model it is again possible to label all
the nodes of the tree, working upwards from the terminal nodes, but by a
procedure which differs from the minimax method.
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THE NOTION OF DISCERNIBILITY

In order to carry out some illustrative computations based on this idea, we
now choose an actual monotonic function. No significance is claimed for the
particular choice, since the points which we seek to establish are qualitative
rather than quantitative. Certain ideas must, however, be reflected in any
such function. A central one is that of discernibility. We conceive the player
as standing upon a given node of the game-tree and looking towards its
successors. These are labelled with their expected utilities, but the labels are
not fully discernible to him. Discernibility is directly related to the strength
of the player (the labels are fully discernible to an infinitely strong player)
and inversely related to the number of moves separating the node from the
end of the game: next-move mates and stalemates are fully discernible even
to the beginner, but next-move expected utilities obtained by backing up are
less so. Reflecting these considerations, we shall define the discernibility
from a board state S, of the expected utility of a given successor state s; as:

d= (M + 1)[3(r,-+3)/(rj+ €)] (41)

where M is the merit of the player in kilopoints of the US Chess Federation
scale, so that 0 < M, and r;is the number of moves that the value associated
with s; has been backed up. The symbol € denotes an arbitrarily small
quantity introduced to avoid the expression becoming infinite for 7; = 0.
The expected utilities themselves are real numbers lying in the range
from —1 through 0 to + 1. They are interpreted as being in logarithmic
measure, to base d. Using this base, we take the antilogarithms of the
expected utilities associated with the n successors of a given position as
giving the relative probabilities with which a player of merit M who has

reached sq selects the corresponding moves. Thus, for the transition so— S s
P; < d¥ (4.2)
Normalising these so as to obtain actual probabilites, p;, p,,... p,, the

n
expected utility of a position is evaluated as 2 pu;, where u; is the expected
i=1
utility of the position generated by the ith member of the set of available
moves. Starting at the terminal positions, this gives a method for assigning
expected utilities to successively higher levels of the game tree until every
position has been labelled.

A SAMPLE COMPUTATION

Consider the terminal fragment of game-tree shown in Fig. 4.1. We shall
illustrate step by step the calculation of expected utilities so as to label every
node in the diagram. First we make assumptions for the playing strengths
My, and My of White and Black respectively. If we are to extract examples
of the broad range of evaluative concepts from so ultra-simplified a game
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tree we must set these strengths very low. Let usset My, = 0.2 and Mg = 1.4:
White is thus an abject beginner and Black a weak tournament player. In our
model M = 0 implies random play. The notation u(s) denotes the expected
utility of position s.

H4:
HS:
+1.
Gl1:
G2:
G3:

F9:

El:
E2:
ES:
Do9:

Cl:
Cs:
Cé:
B1:

All successors have the same value, + 1: u(H4) = + 1.
There is only one successor, so the move-probability is unity: u(HS) =

Unique successor: u(G1) =0.

Equivalued successors: u(G2) = — 1.

Equivalued successors: u(G3) = + 1.

From proportionality (4.2) we have

Move to G1: d°=1 = relative probability.

Move to G2: r=1, so, from Eqn (4.1), d=1.2'2=8.915.
Relative probability = 1/8.915 = 0.1121.

Move to G3: r=2, so d =1.27-5=3.925 = relative probability.
Normalized probabilities: G1, 0.1985; G2, 0.0222; G3,

0.7792.
u(F9)=(0.1985x 0) + (0.0222 x —1)+(0.7792 x +1) = +0.757.
Equivalued successors. u(E1l) = — 1.

r=0. u(E2) = —1, and similarly for u(E3) and u(E4).

Unique successor. u(E5) =0.757.

Move to E1: r=1. d=1.2!2 Relative probability =1/8.915=0.112

and similarly for moves to E2, E3, and E4.

Move to E6: Relative probability = 1, and similarly for move to E7.

Move to ES: r=4.d=1.2525=2.604. Relative probability = 2.0640.

Normalized probabilities: E1, 0.025; E2, 0.025; E3, 0.025; E4, 0.025;
ES, 0.457; E6, 0.222; E7, 0.222 (total
1.001).

u(D9) = (0.457 x 0.757) — 0.100 = 0.246.

r=0.u(Cl) = -1, and similarly for u(C2), u(C3) and u(C4).

Unique successor. u(C5) = 0.246.

Equivalued successors. u(C6) = 0, and similarly for u(C7) and u(C8).
Move to C1: r=1. d=1.2!2. Relative probability =1/8.915=0.112
and similarly for moves to C2, C3 and C4.

Move to C5: r=6. d=1.245=2.272. Relative probability = 1.2240.
Normalized probabilities: C1, 0.06703; C2, 0.06703; C3, 0.06703; C4,

0.06703; CS, 0.73190 (total 1.00002).
u(B1) = (0.7319 x 0.246) — 0.2681 = — 0.088.

: Equivalued successors. u(B2) = 0.

Move to B1: r=7. d =2.4*28_Relative probability = 1.391.
Move to B2: Relative probability =d°=1.

Normalized probabilities: B1, 0.582; B2, 0.418.

u(A) = (0.582 x —0.088) + (0.418 x 0) = — 0.051.

In Fig. 4.3 the tree of Fig. 4.1 is shown with expected utilities, calculated

as above, attached to the nodes. The expected utility of the root node, A,
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+1 +1 +1 +1

Fig. 4.3 — The game tree of Figs 4.1 and 4.2 labelled with expected utilities

calculated from a model of fallible play. White has been credited with playing

strength My, = 0.2 and Black has Mg = 1.4. Conditional move-probabilities gener-

ated by this model are entered against the corresponding arcs and used to ‘back-up’

expected utilities to successively higher levels. As before, backed up values are
underlined.

turns out to be one twentieth of a unit in Black’s favour — a ‘slight plus’ for
Black. The analysis of Black’s ‘plus’ is worth pursuing, for it illustrates
certain fundamental concepts to which our theory is directed, in particular
the idea that a losing move (in the game-theoretic sense of a transition for
White to value — 1 or for Black to value + 1) can also be the ‘best’ move
against a fallible opponent.

Note that Black can secure a certain draw by moving to B2. Note also
that the move to B1 is a losing move in the game-theories sense, for White
can then win by the sequence B1 — C5 — D9 — ES5 — F9 — G3, as shown
by the heavy line in Fig. 4.2. Yet the expected utility of the move, — 0.088, is
marginally better for Black than that of the ‘correct’ move (expected utility
zero), and our model of Black, possessed of a weak tournament player’s
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discernment, shows a 58% preference for the move. The statistical advan-
tage arises, as can be seen by inspecting the diagram, from the fact that play
is switched into a subtree where the error-prone White has numerous
opportunities for error presented to him. He has to find the needle of sound
play in a haystack of hazards. In such a situation we sometimes say that
Black sets ‘traps’ for his opponent. If the aesthetic features of the move to B1
appeal to the commentator, he may even use the annotation ‘!?’, which we
take to mean ‘brilliant but unsound’. A sufficient increase in the strength of
White could give cause to remove the ‘!’ or even to convert it into a second
‘7. To illustrate this point we have recalculated the entire diagram after
setting My, = Mg = 1.4, shown in Fig. 4.4. Here the move to B1 does not

Fig. 4.4 — Expected utilities backed up the game-tree using a different assumption

about the strength of the players, namely My = Mp=1.4; i.e. both players are of

weak club standard. The expected utility associated with the root node now favours

White, and the model of Black’s play shows a 40:1 preference at this choice-point for
the ‘safe draw’.
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appear as ‘best’, nor even as a mistake, but as a blunder, and correspond-
ingly our model of Black shows a preference of approximately 40:1 for B2.

Returning to the list of specimen evaluative comments in Table 4.1, we
can now derive explications for them (Table 4.2). Wherever possible, an

Table 4.2 — Explication of the evaluative comments of Table 4.1

O]
@

@)=

@ =,
() £,

© +-,

(M
®)

)
(10)
(1
(12)?,

(13) 72,
191,

sy,
(16) 12,

(17)
18) (v,

(19)
(20)

@y

Comment
A dead draw

s is complicated

s is balanced
Case 1: s is lifeless

Case 2: s has high tension

White has a slight advantage

White has a clear advantage (good winning chances)

White has a decisive advantage

Case 1: White has excellent winning chances

Case 2: Although White’s game is theoretically lost, he is amost
bound to win

Case 3: An easy win for White

A certain win for White

s is difficult

Case 1: White needs accuracy to secure the draw

Case 2: White needs accuracy to secure the win

Case 3: Although theoretically won, White’s position is so difficult
for him that he should offer a draw

A losing move

An inaccuracy: White’s move weakens his position
White’s move strengthens his position
A mistake

A blunder
A strong move

A very strong or brilliant move

A brilliant but unsound move

Best move

Best move in difficult circumstances

A safe move

‘White should press home his advantage.’ The rationale for trying
to shorten the game when ahead can be understood by noting in
Fig. 4.3 how the advantage decays as we move backwards from the
terminal positions. In Fig. 4.5 White, in moving from B1, has been
given an additional option in the form of a move to C5.1, from
which Black is forced to move directly to F9 (S-shaped arcin Fig.
4.5). Game-theorencally the choice between moving to C5 and
movmg to C5.1 is equally balanced since they are both ‘won’
positions for White. But the expected utilities, +0.246 against
+0.757, tell the true story, that if he incurs needless delay in a won
position, especially if it is a complicated position (high branching
ratio of immediately dependent tree), he multiplies his chances of
error. Our model selects the move to C5.1 with 1.7 times the
frequency of CS, with a corresponding increase of u(B1) (see Fig.

4.5).

‘Black should play for time’ is the complementary advice one
should give to the other player in the foregoing situation. If our
hypothetical node C5.1 had a second branch leading to D9 (shown
as a broken line in Fig. 4.5), then Black should prefer it to F9.

Explication
v=0 for all terminal
descendants of s
The first few levels of
the tree rooted in s have
high branching ratios
v=0andu =0
var (v,) =0 )

t see text
var (v)>0 |
v=0and u>0
v=0and u>0
u= +1
v=0andu = +1

v=—landu = +1
v=+landu = +1
v=+landu= +1
v>u

v=0and u<0
v=+landO<u<1

v=+landu<0
v(s;) = —1 and v(s;)>
-1

Av=0and Au<0
Av=0and Au>0
Av= -1 and not (Au
<0)

Av<0and Au<0
Av=0and Au>0and
s, is difficult
Av=0and Au>0
Av<0and Au>0
Au is max

Auis max ands, is diffi-
cult

Av=0and s, is lifeless
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explication is expressed in terms of two functions of a board position,
namely its game-theoretic value v and its expected utility u. Where a move,
rather than a position, is described, we use the notation Av and Au to
denote the changes in the corresponding quantities affected by the move.
We denote by s, the position from which the move is made and by s, the
position which it generates. Some items of the original list have for
completeness been differentiated into sub-concepts. Some of these would
never appear in a chess book although under assumptions of very low
playing strength they are generated by our model. Case 2 of (6) is an
example of this: a ‘decisive advantage’ of this kind would characterise, for
example, the initial position if Bobby Fischer gave Queen odds to a
beginner.

We exhibit systematically in Table 4.3 various combinations of u and v,

Table 4.3 — Evaluative comments on positions (comments on moves are now shown here)
corresponding to various combinations of expected utility, u, and game theoretic value, v

1.

Pl

u=0

v= -1

s is virtually impossible (be-
cause of the unlikelihood
that u should be identically
Zero).

s is a certain win for Black.
s is impossible.

White has excellent drawing
chances. Black needs accur-
acy to ensure his win.

An easy win for Black (deci-
sive advantage).

Black has a theoretical win
but is almost bound to lose.

. —1<u<0Black has a mildly difficult

win.

. + 1> u >0 Black needs extreme accur-

acy to make sure of his win
(a very difficult win for
Black).

v=0
s is a certain draw (‘dead
draw’).

s is impossible.
s is impossible.
s is a balanced position.

Black has excellent winning
chances. White needs ac-
curacy to make sure of the
draw.

White has excellent winning
chances. Black needs great
accuracy to make sure of the
draw.

Black has a slight advan-
tage. White needs care to
make sure of the draw.
White has a slight advan-
tage. Black needs care to
make sure of the draw.

v=+1

s is virtually impossible (be-
cause of the unlikelihood that
u should be identically zero).

s is impossible.

s is a certain win for White.
Black has excellent drawing
chances. White needs accur-
acy to ensure his win.

White has a theoretical win
but is almost bound to lose.

An easy win for White (deci-
sive advantage).

White needs extreme accur-
acy to make sure of his win (a
very difficult win for White).
White has a mildly difficult
win.

9. —1<u<0Blackhasaclearadvantage. Black has good winning White has a theoretical win
chances. White needs ac- but is likely to lose.
curacy to make sure of the
draw.
10. +1>u> 0 Black has a theoretical win White has good winning White has a clear advantage.

but is likely to lose.

chances. Black needs accur-
acy to make sure of the
draw.

entering in each case the
appropriate.

‘TENSION’

evaluative comment which seems most

The minimax value of s can be regarded as in some sense summarizing the
values of the terminal nodes of the tree rooted in s. More obviously, the
expected utility of s, which has the form of a weighted mean, constitutes a
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summary of a different kind of this same set of quantities. It seems natural to
proceed to statistics of higher order, i.e. from representative values and
means to variances. Might such second-moment statistics also possess
recognizable meaning in terms of the chess commentator’s vocabulary?
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Fig. 4.5 — A modified version of Fig. 4.3 in which a new node, C5.1, has been added

leading to F9 (the broken line represents a hypothetical delaying move for Black, see

text). Although without effect on the game-theoretic values of nodes lying above it in

the tree, interpolation of this short-cut option tips the balance of expected utilities, so
that at the root the move to B2 becomes ‘best’.

Good (1968) discusses a property of chess positions which he calls
‘agitation’. He defines it by considering how sharply the estimated utility of a
position is changed by investing a further unit of work in deepening the
forward analysis. This quantity will necessarily be positively related to the
variance of the distribution of u values over the dependent sub-tree, and
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hence to the measure which we develop below for the ‘tension’ of a position.
The former British Champion, Alexander, uses this term in an introductory

chapter to Fischer v. Spassky, Reykjavik 1972. Alexander (1972) writes (see
Fig. 4.6),

Giuoco Pianissimo Gruenfeld defence

Fig. 4.6 — Positions of low and high ‘tension’ (from Alexander 1972).

‘Let me illustrate (a little crudely) this question of tension by
comparing two openings:

A. (Giuoco Pianissimo) 1. P-K4, P-K6; 2. Kt-KB3, Kt-QB3; 3.
B-B4, B-B4; P-Q3, P-Q3; 5. Kt-B3, Kt-B3.

B. (Gruenfeld Defence: see the Siegen game Spassky v. Fischer) 1.
P-Q4, Kt-KB3; 2. P-QB4, P-KKt3; 3. Kt-QB3, P-Q4; 4. P X P,
Kt x P; 5. P-K4, Kt X Kt; 6. P x Kt, B-Kt2; 7. B-QB4, P-QB4.
The moves in example A are perfectly correct — but after five
moves the game is as dead as mutton; it is too simple, too balanced,
and is almost certain to lead to an early and dull draw. The movesin
example B are objectively no better — but the position is full of
tension; White has a powerful Pawn centre but Black can exert
pressure on it and, if he survives the middle game, may stand better
in the ending — the players are already committed to a difficult and
complex struggle in which a draw is not very likely.’

A simple way of capturing the spirit of Alexander’s definition within the
framework of our theory is to use the weighted mean square of the terminal
values of the tree rooted in s, i.e.

var(v,) = 2 pvé

teT
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where T is the set of terminal positions and p, is the probability of arriving at
the rth member of this set starting at s. A value of unity corresponds to
maximal tension and a zero value to minimal tension (the latter can only be
attained by a ‘dead draw’). The tension of the root node of Fig. 4.3 is
estimated by this method at 0.559. Referring to comment No. (3) above we
assign this root node to Case 2 rather than to Case 1 of the category
‘balanced’. Note that although ‘tension’ is calculated from game-theoretic
values, v,, use is made of the us in the calculation of the probabilities, p,, and
hence the measure is affected by variation of the merit parameters My, and
Mg. As soon as we postulate greater playing strength on the part of White
some of the tension of the position is reduced. The tension of node A in Fig.
4.4 is only 0.024, reflecting the fact that the Black is almost certain to steer
play into the ‘dead draw’ sub-tree.

Note that 2 pwv# is equal simply to the probability of a non-drawn
teT

outcome. But we have preferred to formulate the expression explicitly as a
variance, since in realistic cases game-theoretic values are not likely to be

available, or calculable in practice. The approximating formula 2 Py may
teU

then prove useful, where the ys have been assigned by some evaluation

function (or by human intuition) to the members of U, the set of states on the

lookahead horizon.

SUMMARY OF IDEAS SO FAR

We have extended the strict game-theoretic model of chess, which assigns to
board positions only three values: +1,0and — 1. A good model should do
justice to the profusion of chess commentators’ evaluations. Specimen
evaluative comments have been displayed as benchmarks against which to
assess the extended theory. We have illustrated with worked examples a
simple model based on the notions of utility and statistical expectation. Our
model finds no particular difficulty in explicating the specimen evaluative
comments. It also reduces to the game-theoretic model in the special case of
error-free play.

APPLICATION TO COMPUTER CHESS

A worthwhile study would be to explore parts of a non-trivial sub-game of
chess of which complete game-theoretic knowledge exists, as in K+ N
versus K+ R (Bratko & Michie 1980, Kopec & Niblett 1980). The pro-
gram’s own comment on sample end-game play could be compared with the
intuitions of experienced players.

A more satisfying use of the model would be for generating computer
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play. The procedure exhibited earlier for calculating scores by backwards
iteration from the terminal nodes of the game-tree was derived from
classical decision theory. State of the art tournament programs also use
‘backed-up’ scores and they base move-selection on them. But they follow
the minimax model. Might not such programs benefit from using expected
utilities rather than minimax? After all, the near-universal adoption of the
minimax rule in computer game-playing rests on no demonstrated theoreti-
cal foundationt.

When look-ahead is conducted to the end of the game, the validity of
minimaxing rests on its built-in guarantee against selecting a game-theoreti-
cally ‘losing move’. The reader can remind himself of this by inspecting Fig.
4.2: the constant-value sub-tree rooted in a given node defines a value-
preserving strategy for all play ensuing from that node, provided that we
have some rule for tie-breaking among a node’s equivalued successors. But
Fig. 4.3 shows that against a fallible opponent, this concept of validity is
harmful, for here a ‘losing move’ is Black’s decision-theoretically best
choice.

A further difficulty arises when computational resources do not permit
complete look-ahead . For this Shannon and Turing independently pres-
cribed that the program should look ahead to some limited depth, and then
assign to the terminal nodes of the look-ahead tree estimates of their game-
theoretic values supplied by an ‘evaluation function’ — typically a linear
combination of terms corresponding to measurable features of the position
(piece advantage, mobility etc.). These scores are then backed up by the
minimax rule to the current position’s immediate successors, in place of the
desired but inaccessible game-theoretic values. The rule of play selects the
successor with the most favourable backed-up score (move B in Fig. 4.7).

Except in the (unrealistic and uninteresting) case that the evaluation
function approximates the game-theoretic value so closely that the decisions
given by the rule are invariant with respect to the depth of lookahead, this
rule has lacked formal justification. We are thus free to attribute its
empirical success to the fact that it can be regarded as an approximation to a
decision-theoretically correct rule of the kind developed earlier. Note that
the larger are the values of My, and Mg, the closer is the approximation; in
the limit the two models coincide.

The new model raises a point of particular relevance to the present
situation in computer chess. Fast, partly parallel, special-purpose chess
machines have recently been developed and interfaced to powerful com-
puters (see for example Moussouris et al. 1979). Chess programs of conven-
tional type interfaced to such machines become capable of searching to an
average depth in excess of 9-ply, almost twice that attained by chess masters
(see de Groot 1965; note that we are speaking of the average length of the
longest branch of the look-ahead tree). To give such a machine the best
chances it should be endowed with a ‘hunger for complexity’. The idea must
be continually to drive for high-tension positons avoiding simplifying

+ Beal and Bratko have, however, recently established a sufficient condition (in Advances in
Computer Chess, Vol. 3, Pergamon).
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White to play

Fig. 4.7 — Positions are shown as circles in this look-ahead tree, in which the nodes

are marked with ‘face scores’ (bars over negative). Boxed figures are values backed

up from the look-ahead horizon. If move-selection were decided by face scores then

move A would be chosen, but if backed-up scores then move B. What is the rationale
for B?

exchanges where possible. In this way cognitive strain on the human player
is intensified by the need for vigilance against tactical traps which may lie
=9-ply deep. Such, a policy calls for a model incorporating opponent
fallibility.

CONCLUDING REMARKS

An objection to the theory here developed is that the opponent model is
arbitrary. Two comments are in order.

(1) It is of no theoretical consequence what particular opponent model is
used for illustration, provided only that it has the right overall proper-
ties. The reader is free to use the theory with any opponent model he
pleases.

(2) No choice of opponent model is as arbitrary, or as inflexible, as
minimax. Moreover, even on the basis of complete look-ahead to the
end of the game, minimax back-up does not yield the best strategy
against a fallible opponent.
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5

Computable sub-games of chess

A well-known argument, set out in the preceding chapter, demonstrates a
sense in which chess—and other finite two-person games in which both
players are allowed to see what is going on—is a foregone conclusion. The
same imagined computation for assigning a won—drawn-lost value to the
starting position (and any other position which we wish to evaluate) also
defines correct strategies for the players.

A strategy which is no more than correct is unsatisfactory in that it lacks a
‘sense of direction’. In a won position an ideal strategy presses forward to
victory, preferably by the shortest route. In a lost position a Fabian tactic of
delay is indicated: in case the opponent were fallible, we would want to give
him as many opportunities to slip as possible. These ideas can be formalized
by an appropriate modification of the minimax rule described in the earlier
chapter by which the won—drawn-lost values of terminal nodes are backed
up the tree of the game. The trick is to modify backed-up values according to
their distance from the end and then to proceed as before. The effect is to
pick out from the correct-strategy tree found by the unmodified procedure
an optimal-strategy sub-tree defining the behaviour of ideally motivated
players.

Note that a strategy which is ‘optimal’ is always ‘correct’, but the
converse does not hold. Correct but non-optimal moves could perhaps be
described as ‘inaccuracies’; they are not ‘mistakes’. There is a sense in which
an inaccuracy, or even a mistake, might be a ‘good move’ relative to the
limitations of an opponent. Such a sense, extensively explored in the
previous chapter, is not considered further here.

Considerable interest would attach to the computation by this method of
an optimal, or even a merely correct, strategy for the complete game of
chess. But the game is too large. Claude Shannon estimated that to perform
the required calculation, working back from all the terminal positions to the
start, a machine operating at the rate of one variation per micro-micro-
second would require over 10 to the power 90 years. He assumed an average
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move-choice of 30 from each position and a duration of 40 moves for the
typical game.

At first sight, then, the intersection of chess and practical computing
seems too small to be of interest. Actually this is far from the case.

At a lower level of aspiration than exhaustive computation of the
complete game, two different avenues are open, both inviting. First, one can
accept a degree of approximation or error in the results of chess compu-
tations, and decide simply to develop practical playing programs able to hold
their own with human masters. The second avenue, to which the present
chapter is devoted, exists by virtue of the fact that exhaustive computation
can fully solve sub-games of chess which are not fully understood by
Grandmasters, or even by life-time students of the end-game. Where this
has been done, results of interest have emerged.

The Grandmaster’s secret weapon (typically secret even from himself) is
his voluminous chess knowledge. Computers have now made it possible to
probe such knowledge, and to investigate how it can be acquired, applied,
refined, corrected, compacted, measured, and validated. Chess invites such
machine-based study, not least because of its vast accumulations of codified
lore. It has been something of a shock that the first machine analyses have
indicated that this corpus may be so deficient as to be almost valueless. A
Grandmaster is made by a combination of innate talent, inspiration from
mentors, and sustained study and practice. None of these, it seems, endows
him with the ability to articulate what he knows. It is in this sense that his
acquired knowledge is secret even from himself, as we shall see.

A first step of machine analysis is to chop a small fragment at a time from
the total game for detailed examination. Perhaps the smallest and most
elementary fragment is the ending King and Rook against King. Reuben
Fine’s Basic Chess Endings devotes one page to it, including a diagram of a
position said to require sixteen moves to mate. A computer tabulation by
Clarke of the legal configurations of pieces (28056 after allowing for
symmetries) reveals that with optimal play only fifteen moves are needed for
this position, and that the longest mating path for any positionis 16, not 17 as
stated by Fine. Even the smallest sub-games, then, raise questions on which
Grandmaster knowledge errs. Levels of increasing complexity can be
arranged in the following progression.

Level 1. Correct play is trivial for a Grandmaster, such as the
King-Rook-King (KRK) case cited, and other standard endings such as
KQK, KPK, KBBK, KBNK. Note that we distinguish between correct and
optimal play.

Level 2. A Grandmaster finds the problem of correct play sufficiently
soluble for practical play against human opponents, but finds serious
difficulty against an optimal machine opponent. Examples are the
King-Rook-King-Knight (KRKN), KQKR, and KPKP end-games. Opti-
mal-play tabulations have been computed not only for these but for all
pawnless four-piece endings, notably by Kenneth Thompson of Bell Labor-
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atories. Such a database can be used to detect departures from optimal play,
as also from correct play.

Level 3. Correct play is beyond the capability of the Grandmaster when
facing optimal opposition. Even if he has specially prepared for the given
end-game, sooner or later errors will rob him of the theoretically anticipated
outcome. Yet the problem space is still small enough for a complete look-up
database to be machine-constructed. Examples are KQPKQ, KRPKR,
KRBKR, KNNKP, and KBBKN. All the interesting pawnless five-piece
endings have now been tabulated by Thompson. Each such table comprises
upwards of a hundred million entries. With present technology complete
exhaustion in this style of the space of possibilities is probably feasible
(although not yet attempted) for end-games with as many as seven pieces on
the board in all, including the Kings.

Level4. Endings are too complex to be fully penetrated by exhaustive
computation, let alone by the skill of Grandmasters or end-game specialists.
Possibilities remain of constructing by man-machine cooperation complete
strategies even for endings such as these, and of proving them correct. But in
this case proof must of necessity be helped by formal reasoning, and cannot
rely on total exhaustion of the problem space. Even then exhaustive
databases can offer useful tests for gaps or mistakes in the proof, or can
support the main proof by brute-force verification of key lemmas.

LEVEL 1 END-GAMES

In the beginners’ manuals the King-Rook-King (KRK) ending is usually
followed by exposition of the much harder King-Bishop-Bishop-King
(KBBK) and of the very hard King-Bishop—Knight-King (KBNK).
Another level 1 end-game, namely King-Pawn—King, although easier to
play correctly than KBNK, has properties which make it a serious program-
ming challenge. Programs can be checked for correctness against a complete
look-up table computed by M. B. Clarke which gives the won-drawn value
for each position with the minimax-optimal path-length to pawn-promotion
in the case of won positions. The longest such path is 19 moves.

A program by M. Bramer uses a list of goal-patterns ranked in order of
desirability, and selects whichever move attains the highest-ranked of those
attainable in a single move. It has a modular structure which allows
modification of its play by incremental injection of additional goal-patterns.
At the cost of increasing the length of its goal-list from 20 patterns to 38,
adequate (correct) play was converted into play describable as ‘locally
optimal’, i.e. optimal with respect to the goal of safe pawn-promotion,
rather than going on to calculate the subsequent moves of the resulting
queen. A move which minimizes the number of steps to promotion is not
necessarily that which minimizes the number of steps to mate.

This result, incidentally, suggests at least a rough-and-ready basis for the
quantitative measurement of the difficulty of a task. One can say that
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optimal KPK has about twice the difficulty of correct KPK, judging by the
number of patterns that must be memorized in order to perform the
respective tasks in a calculation-sparing manner.

LEVEL 2 END-GAMES

Addition to the KPK game of an enemy pawn, even under the restriction
that it be on the same file as the friendly pawn, is sufficient to introduce the
possibility of the machine’s finding positions which a human master or end-
game scholar would recognize as ‘studies’. A study, or composition, is a
position with a unique winning (or in appropriate cases drawing) line of play:
for every variation introduced by the opponent there must be one and only
one way of bringing about the desired result. Also the composition should
exhibit certain properties of elegance, surprise, didactic value, and even wit,
which are not easy to define. Clarke has endowed his program with criteria
for searching through an exhaustive database to retrieve ‘study-like’ pos-
itions. Fig. 5.1 shows two of its discoveries for KPKP not previously in the

(a) White to win (b) White to win

Fig. 5.1 — Two computer-assisted study compositions in the KPKP domain. The
natural-looking Pd4 for (a) and Kg6 for (b) fail. Correct are Kc3 and Pd5
respectively.

chess literature.

Clarke’s computations showed that, allowing for symmetries, there are
245760 White-to-move positions, comprising 60271 wins, 29 804 losses, and
155685 draws and illegal positions. The longest path to a won KPKP
position is 23 moves.

The King-Rook-King-Knight end-game is comparable in playing diffi-
culty with that of the general KPKP game when this is not restricted to the
case where the pawns are on the same file. There are 1347906 legal positions
with the stronger side to play (White, let us say). There are 1567222 legal
positions with Black to play. In 1970 Thomas Strohlein performed the
earliest recorded exhaustive chess computations, for which he chose the
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KQKR, KRKB, and KRKN end-games. The latter has been further studied
in our laboratory. White can force the win in 696 414 of the 1347 906 White-
to-play positions and in 1364 561 of the 1567222 Black-to-play positions.
Two worst-case won-for-White positions exist with no fewer than 27 moves
(53 ‘plies’, counting Black’s replies) until capture of the knight. These are
shown in Fig.5.2.

Position; WK:d1, WR:h1, BK:bl, BN:g4

1 Rh4 Ne5 2 Re4 Nf7 3 Rb4 + Ka2

4 Kc2 Ka3 5 Kc3 Nd6 6 Rb6 Ned+

7 Kd3 Nf2 8 Kc4 Ndi 9 Rb3 + Ka4
10 Rf3 Nb2+ 11 Kc3 Ka3 12 Rg3 Nad+
13  kc4 Ka2 14 Kb4 Nb2 15 Rgd Nd3+
16 Kc3 Nc5 17 Rc4 Neb 18 Ra4 + Kbl
19 Ra5 Ng7 20 Re5 Ka2 21 Kd4 Kb3
22 Kd5 Kc3 23 Kc6 Kd4 24 Kdé6 Kd3
25 Ke7 Kd4 26 Rg5 etc.
Position: WK:cl, WR:f8, BK:a3, BN:e2

1 Kd2 Nd4 2 Kc3 Nb5S+ 3 Kc4 Nd6

4 Kc5 Nb7 S Kbé6 Ndé6 6 Rf4 Kb3

7 Kc5 Nb7+ 8 Kc6 Nd8+ 9 Kb5 Ne6
10 Rf3+ Kc2 11 Kc4 Kd2 12 Rf5 Kc2
13 Rf2+ Kdi 14 Kd3 Nc5+ 15 Kd4 Nb3+
16 Kc3 Kel 17 Rb2 Nc5 18 Kd4 Neb6
19 Ke3 Kfl 20 Rb6 Nc7 21 Ke4 Kf2
22 Ke5 Ke3 23 Rb7 Nab6 24 Kdé6 Kd4
25 Rb6 Ne5 26 Rb4 etc.

Fig. 5.2 — Optimal move sequences for the two longest wins in the King-Rook-K-

ing-Knight ending (White to move), from D. Kopec and T. Niblett, 1980. Many

positions, for either side, have more than one optimal continuation. The above two

lines should therefore be regarded as specimen paths excerpted arbitrarily from two
optimal-strategy trees.

To execute the winning manoeuvres reliably, or to conduct a good
rearguard action against them with the knight’s side, lies beyond the powers
of the chess-master, although the leading end-game specialist John Roycroft
was able by special study to acquire complete optimal-play mastery of play
of the Rook’s side from won-for-White positions (contrast Level 3 endings,
later).

A small step beyond KRKN in complexity brings us to territory in which
a new and unexpected effect compounds the problems of the human
opponent.
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This phenomenon made a public appearance when International Mas-
ters Hans Berliner and Lawrence Day undertook at the 1977 meeting at
Toronto of the International Federation of Information Processing to
demonstrate winning play of king and queen against king and rook. They
played against a minimax-optimal database of Kenneth Thompson.
Although every position with which they were faced at every stage was
theoretically won, they found themselves unable to make progress. They
complained that the machine’s style of defence was counter-intuitive and
even bizarre. This event dramatized the human’s dependence on economy
of mental representation, a need which is not shared by the machine.
Simplified rules of thumb must be adopted by the human player, yet these
will often be sub-optimal and sometimes erroneous. Masters self-trained to
play against masters only have experience of strategies which are compactly
describable and memorizable, and can flounder when faced with a strategy
which cannot be defined in humanly comprehensible terms.

LEVEL 3 END-GAMES

Working in Moscow on a British ICL System 4/70 computer, Vladimir
Arlazarov and Aaron Futer tabulated minimax-optimal strategies for
KQPKQ and KRPKR, storing the results in each case on 8 magnetic tapes.
Fast tape-search routines enabled the machine to demonstrate play at
tournament speeds. These were used for an adjudication by Grandmaster
Averbakh of a wager by International Master David Levy, which he lost, to
the effect that a correct KRPKR strategy could not be implemented on a
computer within a stated time limit.

In KRPKR the greatest length of any optimal path to pawn-promotion is
60 moves by each side. There are just two essentially distinct types of starting
position, each with two instances. The four positions are the following, all
with Black to move.

1. W: Kc3 Rc4 Pb2 : Ke4 Rdl.

B
2. W: Kc3 Rc4 Pb2  B: Kf4 Rdl.
B

3. W: Kdl Rd6 Pb2 B: Kh6 Ra8.

4. W: Kdl Rd6 Pb2 B: Kg7 Ra3.

The KQPKQ database computed by the same laboratory has the distinction
of being the first ever to be consulted during Grandmaster tournament play.
Bronstein, playing at Kiev, was left with a KQPKQ position at weekend
adjournment, leaving time for his seconds to arrange for a suitable excerpt
of computer printout to be sent by train from Moscow. After resumption
Bronstein played on to win. This database has also shown that the worst-case
optimal path to pawn promotion from a pawn-on-7th-rank position is 58
moves long, so that the win would be forfeit under the present tournament
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50-move rule. More extreme discoveries of this type had previously been
made without machine aids. Notably the King-Knight-Knight-King-Pawn
ending had been studied intensively by Troitzky in the early 1930s, following
a treatment by Chapais in 1780. There is a position from which Troitzky
states that 85 moves must elapse before the next advance of the pawn.
Experience with computable end-games indicates that all quantitative
assertions of this nature should be machine-checked. The same qualifica-
tion, a fortiori, attaches to the introductory pages of Troitzky’s celebrated
60-page treatise, which contains the words:

‘This end-game contains no more secrets’.

Returning to the computer era, Kenneth Thompson’s recent discoveries
of significant facts new to chess-include the status of King-Bishop-
Bishop-King-Knight (KBBKN) previously believed to be drawable pro-
vided that the Knight’s side can establish a ‘Kling-Horwitz’ position as in
Fig. 5.3(a) (either side to move).

White to move

(b)

Fig. 5.3 — Two positions from the KBBKN ending (see text).

The position dates from 1851. The verdict that the defending side can
draw positions like this (based on the placing of the two black men and
largely ignoring the white placement) is repeated in all relevant chess end-
game textbooks. In 1983 Thompson demonstrated the general win of this
end-game in at most 66 moves, and the particular win in Kling-Horwitz
positions in about 40-45 moves. Cases of this kind have pushed the World
Chess Federation into an increasing number of ad hoc modifications of the
50-move drawing rule.

Not only does the Thompson database, comprising some two hundred
million legal positions, show that the Bishops’ side can win from all but a few
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freak starting positions, but the manner of winning passes master compre-
hension. The critical fourth stage of a 5-stage win from the starting position
shown in Fig. 3(b) involves a procedure ‘not to be found in any book and
characterized by excruciating slowness and mystery’ (Roycroft). Moreover,
following more than a year’s study by the leading end-game specialist
A. J. Roycroft and others, with access to a variety of computer aids, it seems
possible that human mastery (as opposed to machine mastery) of this ending
may never be attained.

REASONING IN PLACE OF EXHAUSTION

Proving properties of sub-games of chess (e.g. that mate can or cannot be
forced from some or all starting positions in a given ending) introduces a new
perspective on feasibility in chess computations. Shannon’s earlier-cited
arguments were conducted entirely within the constraints of a self-imposed
assumption, namely that complete solution of a position or of a sub-game is
to be performed entirely by exhaustive deductions, i.e. in a space of
individual positions and moves. There is, however, another way to exhaust
large spaces, namely by reasoning about generalized categories: indeed by
this method infinite spaces can just as readily be subdued. The author has
used computer-assisted reasoning to validate a long-standing conjecture by
the Hungarian chess analyst Jeno Ban. Place the White king and rook in the
sole corner of an infinite board. Place the Black king anywhere else at all, as
in Fig. 5.4. Ban conjectured that White can force mate in a finite number of
steps.

Plainly, exhaustive computations are powerless against such a problem.
It succumbs, however, to pattern-directed case-analysis together with a
proof of properties of an optimal solution strategy. A formula for the
minimal number of solution steps from any given starting configuration was
also derived.

Although Troitzky’s treatment of the KNNKP game was not formal, the
spirit of this approach breathes through his classic analysis. He writes of ‘the
discovery of regularities’ and continues: ‘In this way I found it possible to
concentrate attention not on separate moves but on sequences of moves, to
find manoeuvres and combinations of manoeuvres, to devise tactics for both
sides and finally to construct entire strategical plans’.

For machine implementation, the Troitzky approach needs to be raised
to the level of full logical rigour and completeness. Although we may think it
unlikely, there is nothing in the present state of knowledge to tell us that the
space of some 10 to the power 46 legal positions could not be reduced to a
manageable number of theorems, and the game of chess brought within the
reach of complete analysis. As a corrective, however, to naive expectations
it would be prudent if an excursion or two in the foothills were first
attempted, such as rigorous symbolic proof of Troitzky’s KNNKP theories
or of Thompson’s empirical discovery that KBBKN is a won game. Suppose
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Fig.5.4 — A problem of KRK on an infinite board with one corner (top left).

Intuition says (correctly) that the White king must get to the south-east of the Black

king so as to drive him back to the corner. Intuition also says (incorrectly) that the
Black king can fiee as fast as the White king can pursue him.

that such attempts met with failure, or just rough going. The main game
would then stand revealed as unconquerable — certainly without aid of
locally exhaustive computations and possibly altogether. Be that as it may,
the use of symbolic reasoning, especially where it can be partly mechanized,
puts a new complexion on the notion of practical computability.

Let us illustrate by means of a toy example. ‘Everybody knows’ that
King-Knight-Knight-King (KNNK) is impossible for the knights’ side to
win. But how to prove it? An exhaustive approach might compute out the
space of a few hundred thousand legal positions by forward repetition-free
search and note failure to arrive at any forced mates. Could the same
generalizatioh be arrived at more directly and economically?

The answer is ‘Yes’. The general idea of such reasoning will be familiar to
everyone who has ever pondered about what the knights can and cannot do
against the lone king. His argument will have gone something like this.

First, no checkmate position is possible with the opponent’s king away
from the edge of the board, since the king’s square and the eight squares
surrounding it must all be attacked for the king to be in checkmate. It can
quickly be seen that no arrangement of the three White pieces exists which
controls a total of more than seven altogether of this block of nine squares,
since each knight can take care of at most two, and their king of only three.
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Computer chess and the
humanization of technology (1982)

Chess provides the opportunity for studying the representation of human
knowledge in machines. But it took more than a century since its conception
by Charles Babbage for chess playing by machines to become a reality. The
World Computer Chess Championship and other computer chess tourna-
ments where program is matched against program occur regularly. But can
the less clever but more intelligent human Master use the computer’s brute
force technology as a source of new chess knowledge?

The first serious proposal to have a machine play chess was made by
Babbage [1], the British pioneer of digital computing, but was never
executed. In the early years of this century the Spanish engineer Quevedo
demonstrated an electromechanical device for mating with king and rook
versus king [2]. But it was not until the late 1940s that serious experiments
with the complete game were conducted. The British logician and compu-
tation theorist Turing [3], in collaboration with Champernowne and others,
constructed and tested various ‘paper machines’ embodying mechanized
strategies for chess [4]. Play was poor. In 1950 the American founder of
information theory Claude Shannon [5] published the classic paper for the
theoretical ideas. During the same period Groot’s [6] study of the thought
processes of chess masters revealed that their special ability does not derive
from ‘computer-like’ qualities of memory or of accurate, fast, and sustained
calculation, but from powers of conceptualization. This result had been
foreshadowed by Binet’s [7] investigation in 1900 of the ability of chess
masters to play many games of blindfold chess simultaneously. He con-
cluded that in addition to la mémoire this accomplishment rested on
Pérudition (the use of accumulated chess knowledge to form meaningful
descriptions of positions) and I’imagination (ability mentally to reconstruct a
position from a description). Progress has been made in mechanizing the
‘computer-like’ mental attributes, but little in respect of Pérudition and
l'imagination.
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DEVELOPMENTS

The earliest chess programs, developed in the 1950s, have been reveiwed by
Samuel [8]. The modern era dates from the 1967 entry into human tourna-
ments of the Greenblatt—Eastlake—Crocker [9] program under the playing
name MacHack. This program played at the level of a weak-to-middling
club player — Category III, USCF rating 1400-1600 (Candidate Master
level begins at 2000, National Master at 2200, International Master at 2400,
Grandmaster at 2500).

Computer chess tournaments, in which all games are program-against-
program, are now organized annually in the United States by the Associa-
tion for Computing Machinery (ACM). The first took place in 1970 in New
York. In addition, every three years a World Computer Chess Champion-
ship sponsored by the International Federation of Information Processing
Societies is held. The first [10], in Stockholm in 1974, resulted in a victory for
the program KAISSA developed in Moscow by V. L. Arlazarov, G. G.
Adelson-Velskiy, A. R. Bitman, and M. V. Donskoy. CHESS 4.0, entered
by L. Atkins and D. Slate of Northwestern University, United States, came
second. Standards of play corresponded approximately to USCF 1600-1650.
In 1975 the ACM tournament evoked play at the same general level, but
produced one game, between CHESS 4.4 and CHAOS, of a more dis-
tinguished standard.

In the late 1970s most progress in computer play resulted from a
combination of improvements in the efficiency of deep tree-searching
methods with faster speeds of available computing hardware. CHESS 4.6
won the Second World Computer Chess Championship at Toronto in 1977,
and domination of the ACM by updated versions of CHESS continued until
BELLE (Bell Labs) won in 1979. The Third World Computer Chess
Championship at Linz, Austria in 1980 was also won by BELLE. The
program [11] ran on an LSI 11/23 micro-computer linked to a hard-wired
chess machine and could ‘see’ of the order of 100,000 board positions per
second.

In 1981 the four strongest programs BELLE, CHESS 4.9, NUCHESS,
and CRAY BLITZ, were all in the Candidate Master (2000-2199) range of
play. The same year saw the emergence of several commercially available
portable chess machines claimed by their manufacturers to rate at least 1900
(Category I).

Computer chess has been described as the Drosophila melanogaster of
machine intelligence. Just as Thomas Hunt Morgan and his colleagues were
able to exploit the special limitations and conveniences of the Drosophila
fruit fly to develop a methodology of genetic mapping, so the game of chess
holds special interest for the study of the representation of human know-
ledge in machines. Its chief advantages are: (1) chess constitutes a fully
defined and well-formalized domain; (2) the game challenges the highest
levels of human intellectual capacity; (3) the challenge extends over the full
range of cognitive functions such as logical calculation, rote learning,
concept-formation. analogical thinking, imagination, deductive and induc-
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tive reasoning; (4) a massive and detailed corpus of chess knowledge has
accumulated over the centuries in the form of chess instructional works and
commentaries; (5) a generally accepted numerical scale of performance is
available in the form of the US Chess Federation and International ELO
rating system.

COMPUTATIONAL AND COGNITIVE MECHANISMS

The fundamental procedure, proposed independently by Turing and by
Shannon, involves look-ahead from the current position along a branching
tree of possibilities. Of course, chess-masters also look ahead (concrete
analysis) but on a severely restricted scale. According to de Groot, 30
positions is around the limit of what is normally held in look-ahead memory.
By contrast chess programs commonly grow look-ahead trees comprising
millions of nodes.

Branching of the look-ahead tree ranges from around 25 branches per
node (if no pruning is applied) down to less than two branches per node for
Masters. The number, variety, and severity of pruning rules vary from one
program to another. In one or two of the stronger programs all but the alpha-
beta rule are effectively absent. In such a case the program seeks to make up
in brute-force calculation what it lacks in selectivity. All programs apply
termination rules to halt growth of the tree beyond certain limits. The main
factor in termination is the occurrence of quiescent positions (Turing’s
‘dead’ positions) in which no capture or other violent changes are in
immediate prospect. At the deeper levels of the look-ahead tree quiescence
is taken as a sufficient indication to discontinue forward analysis.

In the Turing-Shannon scheme on completion of the look-ahead tree the
program applies an evaluation function to the terminal positions, labelling
them with computed estimates of their degree of strategic strength or
weakness. The labels are then backed up the tree by the minimax rule: that
is, a node for which it is white’s turn to play is credited with the maximum-
valued of the labels attached to its successors, while a black-to-play node
receives its label from the minimum-valued of its successors. The wave of
labelling thus spreads through the tree from the terminal nodes towards the
root node (representing the current position) until all its successors are
labelled. The program then selects the move leading to the highest-valued of
these successors, if it is white’s turn to move; otherwise the move leading to
the lowest valued successor.

The functioning of this basic mechanism can be improved by various
devices aimed at eliminating redundant calculations and redundant storage.
In favourable conditions the alpha-beta rule [12] for pruning almost doubles
the realized depth of look-ahead without altering the final result of the
computation: the spirit animating this rule is that once the search has found
that a particular line falls short of being selected there is no point in
exploring its further ramifications to determine by just how far it falls short.
Look-ahead depths attained in modern computer chess lie in the range 6-15,
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somewhat in excess of the typical depths to which Masters and Grandmas-
ters look (average 6-7 as found by de Groot). In spite of this the standard of
computer chess remains far below Grandmaster levels. Some of the reasons
are as follows:

(1) Horizon effect. The computer scientist and former World Correspon-
dence Chess Champion, Hans Berliner [13], has pointed out that reliance on
the unaided Turing-Shannon procedure renders a program oblivious to all
events which may occur beyond its look-ahead horizon. Even though a post-
horizon loss, or a post-horizon gain, may appear inevitable and obvious to
the human onlooker, the program plans from hand to mouth, foolishly
sacrificing material to delay a loss which cannot indefinitely be averted;
alternatively it may forfeit an eventual large expectation by grabbing at a
small gain.

(2) Lack of long-range ideas. A Master plans at the conceptual level, linking
the main milestones with detailed steps as a separate operation. Contempor-
ary programs have no corresponding capability. In the end-game in particu-
lar, where long-range reasoning of this kind is at a premium, programs can
flounder aimlessly, promoting small disconnected goals with no unifying
strategic thread.

For these reasons, computer programs make a poorer showing in the
end-game than in the opening and mid-game, performing like club players
rather than candidate masters. Advances in sheer computer power, even
micro-microsecond processors or mega-megabyte memories, are not
expected in themselves materially to improve this situation. Remedies must
take their departure from an appreciation of the ability of the chess-master
to utilize very large bodies of highly conceptualized and cross-referenced
chess knowledge. But in programs of the Turing-Shannon type the only
significant repository of chess knowledge is in the evaluation function,
typically a linear combination of terms measuring such features as material
advantage (conventional scores: 9 for Q, 5 for R, 3 for B, 3 for N, 1 for P),
king safety, piece mobility, pawn structure, rook control of files, and so on.
Typically the number of features contributing terms to the evaluation
function in state-of-the-art tournament programs lies in the range 30-50.

So simple a scheme is too weak to represent the fine structure of human
knowledge marshalled in the standard expository works such as Reuben
Fine’s Basic Chess Endings. Contemporary research is directed towards
buttressing the Turing-Shannon paradigm along a line sometimes described
as the ‘knowledge approach’. Essential to this approach is the extension of
studies like Binet’s and de Groot’s to the discovery of the basic concepts
(properties and relations of pieces, files, ranks, and so on) which the Master
uses as the bricks and mortar of his mental descriptions. Chase and Simon
[14] found that the relations of defence of one piece by another, proximity of
pieces, and being of the same denomination or colour were all used as
mental building-blocks, and that a particularly important relation for
binding together clusters of pieces held as a unit in memory was combination
of pieces of the same colour to converge on the opponent’s King position.
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Tan [15] formalized the process of conceptualization for the special case
of pawn structures. His computer program was able to describe pawns-only
positions in terms of ‘islands’ and ‘fronts’ forming pawn-relations graphs,
from which ‘attack-defense-diagrams’ are automatically constructed. The
dynamic potentialities of the position are thus summarized. More recently a
computer induction algorithm [16] derived from Hunt’s “Concept Learning
System” [17] has been used to synthesize complete machine-executable
theories for the endings king and pawn versus king [18] and king and pawn
(on a7) versus king and rook [19].

Chess is a two-person finite game with perfect information which satisfies
the zero-sum condition — an outcome which is good for one player is bad in
equal measure for the other. For any such game it is theoretically possible
exhaustively to calculate backwards from the terminal (checkmate or
drawn) positions in such a way as to determine for every position whether it
is drawn, won, or lost, and in the latter two cases what continuations
correspond to best strategy. In practice such computations, even if per-
formed on the fastest conceivable computers, are infeasible except for end-
games simple enough to contain less than a thousand million or so legal
positions. Such computations were first done [20] for elementary ending
such as king and rook versus king (KRK) and king and pawn versus king
(KPK) which consist respectively of 50 015 and 179 656 legal positions.
They have been extended to all the non-trivial four-piece endings, such as
KQKR, KRKN, and so on and to a subset of KPKP (M.R.B. Clarke,
personal communication). The most complex enumerations to have been
performed in this way are KQPKQ [21] and KRPKR [22], of which the first
is notable for having been consulted with good effect by Bronstein during
adjournment of a master tournament in Kiev. Significant findings have been
made with the use of these end-game ‘databases’, including the previously
unsuspected prevalence of serious error in master texts on the end-game.
Thus Fig. 6.1 shows a derivative of the celebrated position given by al-Adli
in the ninth century, rediscovered and (incorrectly) analysed in The Chess-
players’ Chronicle in 1859, and repeatedly (and incorrectly) re-analysed
since then. Among errors of Grandmaster Fine’s analysis in Basic Chess
Endings is his classification of the position in Fig. 6.1 as a draw. Computer

analysis shows that knight-capture or mate can be forced in 12 further moves
[23].

BRUTE-FORCE COMPUTING IN TECHNOLOGY

The available power of computation advances at the rate of almost tenfold
every five years. For today’s large machines one hundred million calcula-
tions per second is not abnormal. Measured on a comparable scale, the
human brain musters perhaps five per second. The brain, being able to
deploy a large associative store of pattern-based concepts, is not normally
used in this restricted sequential way. Otherwise feats such as recognizing a
person from a photograph, or understanding his speech, would be imposs-
ible for a device with such weak calculational powers. On the other hand
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Fig. 6.1 — One of two positions generated in Fine’s analysis of the al-Adli position

(see text) to which the wrong won/drawn status is assigned. Fine states that, after

black’s Kb8, white can only draw. Computer analysis reveals that by Kc6 white can
then win in 12 moves. As shown in ref. 23, lesser errors abound.

computing systems still rely primarily on brute force. So long as the present
rate of advance in hardware technology continues, they can afford to. But
can we, their less clever but more intelligent masters, afford-to let them?

Several recent incidents have involved complex computer control sys-
tems. The suggestion is that reliance on the escalating power of brute force
may be heading towards danger. However effective and reliable such
systems may be in normal conditions, use of brute force may not be worth
the price paid during the rare episodes when a computer-controlled power
station or military installation or air-traffic control system malfunctions. On
these occasions a new factor becomes paramount: the human operator or
supervisor needs to follow what the computing system ‘thinks it is doing’.

The computer’s processes are measured in millions of steps per second.
The human’s proceed very slowly — but in a richly furnished space of
descriptive concepts. These concepts are not mirrored in any way in the
machine’s relatively small memory. So when operating conditions stray
from the norm, useful dialogue between the two breaks down. In its report
on the Three Mile Island accident the Kemeny Commission concluded that
the main failures were operator failures, and that the main cause of operator
failure was bewilderment by the stream of messages, warning displays and
the like from the control computer [24].

If such unsettling phenomena deserve laboratory analysis, then we could
hardly find better material than the game of chess. The current world
computer chess champion examines a tree of more than ten million possibili-
ties in look-ahead analysis before selecting a move, and is able on this basis
to stand up to Grandmasters in purely tactical play. The Grandmasters, by
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virtue of their associative stores of conceptualized chess knowledge, have
the edge in strategic, or positional play. But as earlier stated a Grandmas-
ter’s mental investigation of look-ahead positions averages at most 30. So
the kind of mismatch that was noted by the Kemeny Commission, namely
between the calculation-rich but concept-poor computer and the calcula-
tion-poor but concept-rich human, should be reproducible in the computer
chess laboratory. This is indeed the case, as has already been shown through
an analysis of the mechanisms employed in state-of-the-art computer chess
and its theoretical basis [25].

MACHINE PENETRATION

Machine penetration into complex positions began to reach beyond the
human horizon as early as 1977. In the Second World Computer Chess
Championship held that year in Toronto, the position shown in Fig. 6.2
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Fig. 6.2 — Position in the Toronto game DUCHESS against KAISSA after white

had played Qa8+. Black’s play of the apparently meaningless rook sacrifice Re8 was

seen by an audience which included several strong chess-masters as a grotesque
blunder. Overnight analysis by KAISSA’s programmers showed otherwise.

arose in a game between the then reigning champion KAISSA, a Moscow
program running on an IBM 168 computer, and the North Carolina program
DUCHESS. DUCHESS had just given check with the queen. To the several
hundred computer scientists and chess players in the auditorium the only
reasonable option was to move the king out of check. KAISSA instead
interposed a rook, promptly losing to QxR check. With a whole rook
advantage DUCHESS had no difficulty in crushing KAISSA in another 15



84 COMPUTER GAME PLAYING [Sec. 1

or so moves, and the Russian team handed in KAISSA’s resignation in the
conviction that they had been robbed by an unsuspected program error.

Next morning Arlazarov and Donskoy announced the result of a retrace
operation which had occupied them half the night and had revealed no
evidence of error. On the contrary, deep-going scrutiny showed KAISSA’s
apparent blunder to have been a brilliancy which purchased an extended
lease of life for a program which had already arrived in a hopelessly lost
position. The rook sacrifice had cleverly averted a mating combination
which both KAISSA’s and DUCHESS’s look-ahead were deep enough to
spot, but which eluded onlookers who included former world champion
Grandmaster Mikhail Botvinnik.

EXPERT VERSUS MARTIAN SYSTEMS

Now consider chess as a laboratory model of real-life decision-taking.
Imagine KAISSA’s brute-force computations to be those of an automated
control system for a nuclear power station. Let Grandmaster Botvinnik be
the engineering supervisor, highly knowledgeable about the domain,
assigned to monitor the system’s decisions and to intervene with manual
over-ride when he judges malfunction to have occurred. The machine makes
an unexpected decision. Does the supervisor intervene? Lacking the calcu-
lational power fully to probe the system’s martian mentality, let us suppose
that he does. Disaster follows. Yet had he been able to interrogate the
system he would have realized that the seemingly aberrant action was really
geared to buying vital time — time in which staff could be evacuated,
population warned, ambulances and fire engines summoned, and so forth.
Yet he has to decide on the basis of his knowledge and best judgement. Not
being a martian, he decides wrongly.

This problem cannot be brushed aside by improvements to the program’s
surface features, such as better trace and diagnostics and more ‘user-
friendly’ command languages. For the particular case, chosen from 1977
vintage computer chess, this might suffice. But as the depth of calculation
increases, a point is reached at which mere surface modifications will not do.
Radical reconstruction of the program becomes necessary, using as building
blocks machine representations for the very same concepts as those which
the knowledgeable human brings to bear on the problem.

This approach leads to a new form of computing system, known as the
‘expert system’, which is deliberately built in the human rather than martian
mental mould. The use of such systems to act as interpretative buffers
between the two mentalities was first demonstrated at the Rand Corporation
in RITA, a computer program knowledgeable both about the intricacies of
the ARPA transcontinental computer network and about the limitations of
non-programming personnel desirous of using the network [26].

Brute-force computing is pushing information technology towards re-
gions of complexity which only machines will be able to penetrate. To make
it possible for them to report back what they see, RITA-like developments
in human-interface software will be required. An eight-year programme of
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research and development in advanced computing technology recently
announced by the Japan Information Processing Development Centre is
based in part on this conception, namely on the design and construction of
intelligent knowledge-based systems [27]. Their role will be to mediate
betwen the world of machines and the world of people.

FUTURE WORK AND PROSPECTS

Large-scale transfer of human knowledge from books (or brains) to com-
puters has not been achieved in any human intellectual domain. Computer
chess is at the leading edge of experimental attempts to achieve it. Endea-
vours centre round three foci:

(1) The design of data-structures in forms suitable for representing concep-
tualized knowledge (descriptions, patterns, and theories) which are also
convenient for the human user to modify and increment interactively.

(2) Improved facilities for inductive inference, so that programs can acquire
new knowledge both from illustrative examples supplied by human tutors,
and also from the results of their own internal generation of examples for
self-administration.

(3) The engineering of conceptual interfaces between program and human
expert, making it easier for the latter to ‘teach’ the machine.

Advances under all of the above headings are required before the goal of
Grandmaster play by machine can be seriously envisaged. By the same
token, few investigators doubt the ultimate attainment during the present
decade of Grandmaster levels. Apart from benefits to the arts of program-
ming, such an extension of technique also has a bearing on the study of
cognition.

I thank Senior Master Danny Kopec for helpful comments.
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Section 2 Intelligent robots

INTRODUCTORY NOTE TO SECTION 2

It has been noted by moralists that on every issue of significance human
society takes two distinct views. It is not that a question is perceived as
having two sides, although this is sometimes asserted. On the contrary,
social man selects one side, the ‘right’ side, to which he then proceeds to give
two contradictory expressions. Contradiction vanishes when it is realized
that the expressions are intended for two different modes of being, con-
cerned respectively with doing and with acting.

The word ‘acting’ is here used in the theatrical sense, and corresponds,
one may say, to the ritual view of some matter, developed to shape and guide
mutually supportive feelings within a group. The other view is the operatio-
nal view, directed towards shaping and guiding reality. Interviewed in Dr
Jonathan Miller’s television series ‘States of Mind’ » the Princeton anthropo-
logist Clifford Geertz spoke of the accumulated technical lore by which
certain Pacific islanders guide the fashioning of their canoes. Along with this
lore is another valued accumulation, namely traditional incantations for
projecting safe and prosperous futures onto the vessel under construction.
The interviewer seemed taken aback: the second approach to boat-building
must surely be at best ineffective, at worst vacuous. How could one and the
same person practise and believe in both? That misses the point, insisted
Professor Geertz, since the domains of application of the two procedures are
entirely different and do not overlap. The incantations are not instrumen-
tally motivated in the sense of impacting causally on the external world.
Rather they are aimed at regulating a different world, an internal world
around which communal consciousness is assembled. It is important that
everybody should feel right, and feel in harmony, about the boat-building
operation. This is the role of the acting mode — to save the doing mode from
its own kind of vacuity.

I'want now to introduce a sacrilegious fantasy. Suppose that the tribal
boat chants include imaginings of what a superperfect canoe should be —
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how it should look, how it should handle in the water and progress at magical
speeds, a boat for the gods. Suppose that these passages are very detailed
and could in principle be put together and interpreted as a functional
specification. There is little danger that anyone will disrupt the practical
building work by actually trying to do this. For one thing the technology of
the islanders, optimized over centuries, contains its own detailed perfor-
mance specs suited to the constraints of the traditional methodology. In
addition it may be supposed that trained craftsmen can in any case dis-
tinguish between dreamings and blue-prints, between religious art and
technology, between acting and doing.

Suppose, however, that some canoe-builder, perhaps with the aid of
some of his peers, begins to attempt just this. In the process of straining for
forms and features not attainable by the old ways, his breakaway group is
forced along paths of exotic innovation. How will his fellows in the
community feel?

I think that this person is likely to be banned from the boat-yard. He may
fail to appreciate this as communal wisdom. He may imagine that it is the
fact of innovation itself which has offended. If so, then he will fail, as socially
insensitive innovators do, to understand what in the minds of others is at
stake. The stake is nothing less than the integrity of accumulated cultural
wealth. To revise the dreamings in order to restore them to harmony with
changed blue-prints must, to be sure, on occasion be contemplated. For this,
care and deliberation must be used as Cardinal Bellarmine repeatedly
counselled Galileo. Corruption of the culture in the reverse direction, i.e.
redirection of technical practice into conformity with literal interpretations
of mythology, has less sense and perhaps more danger: so much so that no
sane society will encourage it without deep prior reflection.

In Chapter 3 a scientific project to build a robot of a new type was
mentioned. Chapters 7-13 record the conception, design objectives, and
development of FREDDY. In retrospect I see these chapters as a series of
stills from an anthropological disaster movie, eventually resolving happily in
Chapter 14’s note added in proof.

Robots permeate the myths and legends of all ages. Homer’s god of
crafts, Hephaestus, built a team of gold androids (more properly ‘gynae-
coids’, since they were female) to labour for him at his forge. Judaeic lore
portrays a robotic creature, the Golem, of which we have a modern
rabbinical appraisal from the American Al pioneer Azrael Rosenfeld. In the
childhood of Mary Shelley, who was later to write the tale of Dr Franken-
stein, the Swiss clockmakers were already animating life-size simulations of
people. These performed feats of piano-playing and hand-writing on de-
mand, with melodies and messages respectively supplied by the user. The
level of human likeness and naturalness of movement then achieved has not
subsequently been equalled.

Here then is the acting-mode view of the robot: human-like to the closest
attainable degree of simulation, including human-like knowledge and intel-
ligence, if that too can be implemented. The burden of the FREDDY
project, and more broadly of this book, is that predictable developments of
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automation make it imperative to attempt precisely what I earlier said no
sane society will lightly encourage: namely without detriment to operational
effectiveness to restructure the technology of man to the forms of his inner
world.

As for doing-mode models, these were well established in the 1960s, not
only in concept but as practical factory devices: a blind, dumb, insentient
race of pick-and-place manipulators. When Richard Gregory and I, meeting
in New York in 1966, conceived the FREDDY project we wanted not to
dedicate yet one more laboratory to the stepwise refinement of what we
regarded as a cul-de-sac technology. As is made clear in the ‘Tokyo-Edin-
burgh Dialogue’ (Chapter 8), we sought a pattern-oriented approach to
cognitive modelling, as a means, among other goals, of promoting change in
the methodology of programming. The penultimate paragraph of
Chapter 10 seems worth picking out for relevance unaltered over the years:

Our aim is to contribute to restructuring the arts of programming so
that much of what is today done by programmers can ultimately be
done by machines. The science of programming needs, as does any
other science, such as physics, to develop both theoretical and
experimental sides. Robot work is an example of the use of
experimental programming to validate theoretical conjectures and
results and to suggest new hypotheses.

This passage outlining technological objectives was published in 1973, along
with a separate statement of scientific intent ‘the development of a systema-
tic theory of intelligent processes, wherever they may be found’
(Chapter 11). It was a time of great vulnerability for Al robotics. The task
was to balance pressures towards theoretical psychology against even less
welcome pressures from Government sponsors towards blind pick-and-
place automation. My own aspiration lay with neither, but with a new
approach to software which I christened ‘Knowledge Engineering’ to
symbolize the aimed-for confluence of programming methodology with
machine cognition (Chapter 12).

Chapter 13 was written to rebut ignorant charges that Al scientists had
been making overblown promises. It was also an opportunity to give wider
exposure to FREDDY’s technical triumph reported to the 1973 Internatio-
nal Joint Conference on Artificial Intelligence and subsequently in the
specialist literature (Pat Ambler, Harry Barrow, Christopher Brown, Rod
Burstall, and Robin Popplestone, Vol. 6 of Artificial Intelligence, 1975).

At that moment the scene received an incursion from an onlooker of
great eminence. His complaint was that it was not easy to distinguish
knowledge engineers from people naively trying to apply Mary Shelley’s
Frankenstein romance and other anthropomorphic myths. In my Pacific
island parable, collective wisdom prescribed a measure of discouragement
for aberrant canoe builders. To quell AI’s impious roboticists the instrument
of discouragement was the ‘Lighthill Report’ entitled Arrificial Intelligence:
a general survey, published by the Science Research Council. In computing
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circles this interpolation from a distinguished outsider — Sir James Lighthill
is a theoretical physicist — was seen as inappropriate.

It is possible that objections couched in these terms may rest on a
category confusion, as though Lighthill expected computer scientists to sit
down with solemn faces and read his report as a technical review document.
It is clear even from a cursory glance that it was not intended as anything of
the kind. It does not seek to assess technical or operational merits, but
chooses rather to question from a higher level: is it a respectable activity to
take the realities of automation and seek to wire them up literalistically to
creatures of folk-lore and science fantasy? Eminence is normally sufficient
entitlement to advise at the level of tribal attitudes. If anything was lacking,
therefore, it was not so much appropriateness as soundness of the advice.

Lighthill partitioned the domain of discourse with a celebrated ABC:

A — Advanced Automation
B — Bridge, or Building Robots
C — Cognition, or Central Nervous System

with the rider that B was not respectable and should cease.
The FREDDY project has the ABC:

A — Automation
B — Better software (via use of C as a functional spec for A)
C — Cognition

with the rider that B is all-important.

The last Chapter of this Section, number 14, completes the continuing
theme. Early in 1985 the project was relaunched in incarnation no. 3 at the
Turing Institute in Glasgow. My personal assessment is that, fourteen years
on, it is time to take a look at the FREDDY project’s own ABC and rider.
The eight chapters which follow supply a means for doing exactly this.
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Integrated Cognitive Systems (1970)

Work is in progress in several laboratories [1-6] directed towards the
construction of an integrated cognitive system (ICS). I avoid the phrase
‘intelligent robot’ because of its science fiction connotation of humanoid
appearances and other attributes. The research is concerned with intellec-
tual attributes, involving sensorimotor and reflex capabilities only to the
extent that these form a necessary substratum for the acquisition or display
by computing systems of purely intellectual skills.

At this early stage the ‘intellectual’ skills which research aspires to
emulate may seem to the onlooker so primitive as scarcely to deserve the
name. Let him, however, reflect on the struggles of small children with the
simplest tasks of deduction, generalization, and description, and their
dogged attempts to construct and refine world-models adequate for their
growing needs, representing a succession through which every developed
human intellect has passed. Even these first exploits of the infant mind are
beyond the abilities of any computing system yet devised. Computers
equipped with optical input and manipulative devices are available in at least
two laboratories, but understanding of machine perception and cognition
has not advanced so far that they could be programmed to compete with
human infants, for example on tasks such as the following, which is taken
from Stanford-Binet IQ tests [7]. The task involves obeying simple com-
mands, and is designed for 24 year old infants. With a brick, a button, a dog,
a box, and a pair of scissors laid in order on a table, the child is told (a) ‘give
me the dog’; (b) ‘put the button in the box’, and (c) ‘put the scissors beside
the brick’. A machine passing tests of this sort would be disqualified if it had
merely been pre-programmed ad hoc for each individual test. An artificial
intelligence worth the name must show some degree of generality.

Problems of abstracting from the world of crude sensations and of
planning and physically doing things in space and time are dominant in
intellectual activity at this early stage; possibly they also form an indispens-
able springboard for the flights of abstract thinking attained later. Emula-



92 INTELLIGENT ROBOTS [Sec. 2

tion by machine therefore demands, as a matter of technical necessity, the
design of non-standard computer peripherals to serve as ‘eyes’, ‘hands’, and
the like. The alternative course would be to simulate entire real-world
problem situations inside the machine, a desperate measure of unimagin-
able scale and cost. R.L. Gregory (private communication) has truly
remarked that the cheapest store of information about the real world is the
real world, and this indeed is the rationale of the recent emphasis by artificial
intelligence projects on ‘hand-eye’ and ‘robot’ devices.

How long is it likely to be before a machine can be developed approxi-
mating to adult human standards of intellectual performance? In a recent
poll [8], thirty-five out of forty-two people engaged in this sort of research
gave estimates between ten and one hundred years. There is also fair
agreement that the chief obstacles are not hardware limitations. The speed
of light imposes theoretical bounds on rates of information transfer, so that
it was once reasonable to wonder whether these limits, in conjunction with
physical limits to microminiaturization of switching and conducting ele-
ments, might give the biological system an irreducible advantage. But recent
estimates [9, 10], which are summarized in Tables 7.1 and 7.2, indicate that

Table 7.1 — A comparison of information-handling powers of brain and
computer.

Brain Computer

Speed 1000 bits traverses 1 neurone 1000 bits transferred in or out of

inls core memory in 1 us
Store  10'2-10'° bits 102 bits, retrieval 50 ms

This table is based in part on data from ref. [9]. The upper comparison,
which appears to give the computer the advantage in speed, is compensated
by the brain operating in a highly parallel fashion, as opposed to the
sequential processing characteristic of the computer.

this is not so, and that the balance of advantage in terms of sheer infor-
mation-handling power may eventually lie with the computer rather than the
brain. It seems a reasonable guess that the bottleneck will never again lie in
hardware speeds and storage capacities, as opposed to purely logical and
programming problems.

Granted that an ICS can be developed, is now the right time to mount the
attempt? Is it possible that effort should instead be put into some abstract
field of philosophy, linguistics, or pure mathematics? Perhaps only by
postponing rash attempts to construct actual systems can a sufficiently deep
understanding be gained to enable artificial intelligence problems to be
tackled in the right way.

Theoretical studies are certainly central. But it is not clear that they
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Table 7.2 — The supply position of mechanical energy and mechanical
information processing capacity.

(a) Ratio of energy available from mechanical sources and from human
muscle power

Year 1500 1700 1800 1900 1945 1965
ER 1074 1073 1071 1 5 10

Total human muscle power potentially available is assumed to be of the
order of 0-25 10°P Wh/annum (P = world population). For 1965 it has been
assumed that mechanical energy supply was of the order of 4x 101 kcalories
or 0-75x10'® Wh at 15-20 per cent conversion efficiency.

(b) Ratio of mechanical and human information processing capacity

Year 1955 1965 1970 1975
CR 5%10™* 1072 2 50

This comparison is based on those tasks where the human channel capacity
of c. 20 bits/s is a major rate-determining factor, as may be the case in many
routine clerical operations and computations.

As in (a), (b) attempts to compare facilities available world wide. Both
assessments, and in particular (b), are obviously very tentative only.

would be aided by abstention from experimental work. Indeed the lessons of
history point in the opposite direction, as with the relationship between
classical thermodynamics and the development of the steam engine. Typi-
cally engineering artefacts come first, and provide the theoreticians not only
with the needed spur to rationalize what is being done, but also with test gear
on which to check their formulations. There are elements of a similar
relationship between the robot building now in progress in various labora-
tories and the recent spate of activity by theoreticians in the same laborator-
ies in two areas in particular: visual scene analysis by machine [1,3,11], and
construction and formal description of abstract models of the world for use
as the basis of plan-formation [12-14].

Yet the principle of ‘unripe time’, distilled by F. M. Cornford [15] more
than half a century ago from the changeless stream of Cambridge academic
life, has provided the epitaph of more than one premature technology. The
aeroplane industry cannot now redeem Daedalus nor can the computer
industry recover the money spent by the British Admiralty more than a
hundred years ago in support of Charles Babbage and his calculating
machine. Although Babbage was one of Britain’s great innovative geniuses,
support of his work was wasted money in terms of tangible return on
investment. It is now appreciated that of the factors needed to make the
stored-program digital computer a technological reality only one was
missing: the means to construct fast switching elements. The greater part of
a century had to elapse before the vacuum tube arrived on the scene.
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It can reasonably be said that time was unripe for digital computing as an
industrial technology. But it is by no means obvious that it was unripe for
Babbage’s research and development effort, if only it had been conceived in
terms of a more severely delimited objective: the construction of a working
model. Such a device would not have been aimed at the then unattainable
goal of economic viability; but its successful demonstration might, just
conceivably, have greatly accelerated matters when the time was finally ripe.
Vacuum tube technology was first exploited for high-speed digital comput-
ing in Britain during the Second World War [16]. But it was left to Eckert
and Mauchly [16] several years later to rediscover and implement the
conceptions of stored program and conditional jumps, which had already
been present in Babbage’s analytical engine [17]. Only then could the new
technology claim to have drawn level with Babbage’s design ideas of a
hundred years earlier.

How is ripeness of time to be diagnosed for projects to build intelligent
machinery? The only absolute safe method is to wait until someone does it,
just as the only error-free pregnancy test is to wait for the birth of a
demonstrable infant. We would prefer, I think, to detect what is still in the
womb, and accept a risk of being wrong. Table 7.3 shows four possible

Table 7.3 — Check list of signs and symptoms for the early stages of five
technological projects.

A B C D E
(1) Multiplicity of effort N v X Vv
(i.e. how many laboratories?)
(2) Auvailability or feasibility of all X v X Vv Vv
essential instrumentation
(3) Demonstration of a working model X v X v oo
(4) Theoretical proof of overall X X X X X
feasibility
Fate: S succeeded F S F S ?
F failed

(A) Transmutation of elements in the time of alchemy; (B) steam
engines in the time of Watt; (C) stored-program digital computing in the
time of Babbage; (D) heavier-than-air flight in 1900; (E) intelligent machi-
nery in 1970. The symbol ‘(?)’ is used to mean ‘possibly imminent’ in
distinction from ‘?” which means ‘undecided’.

criteria of ripeness which might be applied, from the outside as it were, to
budding technological enterprises.

The four criteria are listed in decreasing order of superficiality. Criter-
ion1 is of a kind which can be applied by a policy-maker ‘off the cuff’,
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without delving into technical considerations. It says: ‘This is not a bee in an
isolated bonnet. Laboratories all over the world are in the race. Can we
afford not to join?". The fact that it is so widely persuasive stems chiefly from
the fact that it is superficial, and hence cheap and easy to apply: also it acts on
the ‘keeping up with the Joneses’ reflex. For what it is worth it is favourable
to the proposal to construct an integrated cognitive system, which is being
studied actively in America, Britain, and J apan. But we must remember that
the highest recorded score for this particular criterion could probably be
claimed for the alchemists.

Jumping to the other end of the range, criterion 4 is in general of little
assistance because of the ‘pregnancy test’ argument. Overall theoretical
analysis is usually only achieved on the morrow of success. An interesting
counter-example is Lovell’s project to build a giant radio telescope at Jodrell
Bank [18]. Here criterion 4 was satisfied in advance. But of course there was
never any problem concerning unripeness of time in the feasibility sense. All
that was in question was the balance of expected benefits against expected
costs. This issue was finally settled when the first Russian sputnik was
successfully tracked by an instrument designed for other purposes, and the
world found itself dependent on Jodrell Bank for accurate data on satellite
orbits. This decisively ended the era of uncertainties of funding for the
project. One may wonder whether some element of international ‘keeping
up with the Joneses’ was at work here, to the great good fortune of
astronomical science.

An even more interesting case is radio broadcasting. Feasibility was
shown theoretically by Maxwell in 1865, and verified experimentally by
Hertz about twenty years later. Shortly afterwards Popov and Marconi
independently achieved the first ‘working models’. An equally clear exam-
ple is the modern (junction) transistor, the basic action of which was
predicted by W. Shockley in 1949. A further application of criterion 4 arises
if theoretical infeasibility is demonstrated, as in the case of the perpetual
motion machine. Anti-gravity is another example, in spite of rumours of
continued multiplicity of effort behind the security curtain. But it is well to
look on such negative proofs with caution. The possibility of broadcasting
radio waves across the Atlantic was convincingly excluded by theoretical
analysis. This did not deter Marconi from the attempt, even though he was
as unaware of the existence of the Heaviside layer as everyone else.

INSTRUMENTATION

To summarize the uses of the four criteria, no. 1 is so weak that it is better
left alone, while no. 4 is so strong that it is usually not available in real cases
of doubt. We are therefore thrown back on criteria 2 and 3. It will be
interesting to relate these, if possible, to the present scene in machine
intelligence research. First, I shall consider availability of instrumentation.
Four categories are involved: (1) computing hardware; (2) programming
systems; (3) utility packages (such as deduction routines, parsing routines,
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learning routines, search routines and so on), and (4) ‘robot’ input—output
devices.

These can be interpreted as stages in a development programme. First,
get your computer. Then develop a software and programming language
base adequate for the needs of machine intelligence research. Only thenis it
feasible to build a library of useful packages and to construct special
peripherals such as ‘hand-eye’ attachments. The next step, at least in
aspiration, is the construction of a working model of an intelligent machine.
Most workers who partake of this aspiration would, I think, agree that
categories 1-4 are beginning to be in reasonable shape to provide the tools
for the job.

WORKING MODEL

A working model is almost a necessary condition of confidence in the
feasibility of any proposed technological innovation. It is by no means a
sufficient condition. New and possibly prohibitive difficulties may be
brought into being by the scaling-up process. We would do right to be
impressed by a power-driven model aeroplane. But suppose that an inventor
proposed to develop a man-sized jumping machine able to clear the top of St
Paul’s Cathedral. A flea-sized model jumping a similar multiple of its own
height would scarcely be convincing. So if the objective which I shall discuss
were to be attained within the next few years, this would by no means imply
that an intelligent machine was round the corner. But it might indicate that
significant success at the scaled-up level was perhaps only a decade or two
away.

What is meant by a working model of an intelligent machine? The best
approach is to map out roughly the principal constituents of such a machine’s
‘mental world’, and then say that a working model is constructed on
something like the same overall plan, differing only in the relative poverty of
the individual subsystems which are linked together. Also it must be
‘working’ in the sense of displaying the varioug constituents and their
collective operation in interacting with real-world problems; for example
problems of the type illustrated by the Stanford-Binet tests for infants which
I cited earlier. An ICS able to operate at this level would bear the same
relation to the intelligent machines of the future as a powered toy aeroplane
to passenger-carrying airliners. But even such a primitive ICS has two rather
interesting features: first, its achievement lies, in the opinion of some
workers, only a few years in the future; and second, such an ICS could
almost certainly be made the basis of an industrial development programme

to produce before the end of the 1970s a range of commercially useful
devices.

APPLICATIONS

At Edinburgh we recently commissioned the consultant firm Scicon Ltd to
do a study addressed to the question: ‘Assuming solution of the technical
' problems, what industrial applications can be envisaged for the late 1970s?’
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The possibilities included in their report were, first, anchored devices for
luggage-handling at airports, crane-controlled assembly, and automatic
control and inspection of machine tool output; and second, free-roving
devices for exploratory vehicles for the space programme, ocean bed
exploration, laying pipelines in deserts, and tree-felling in remote forests.

Activities such as these in inhospitable or inherently unstructured
environments are difficult and expensive when conducted by conventional
means, so that any prospect of delegating them to cognitive machines will
have attractions. At Edinburgh we are assisting in a feasibility study of
automatic parcel-handling for the Post Office Telecommunications Head-
quarters, and a Japanese group [5] are interested in applications of ICS work
to assembly line operations. The robot project at Stanford Research
Institute envisages exploratory vehicles of various kinds as a major indus-
trial payoff.

PROGRAMS AND PLANS

Leaving industrial implications, I shall now consider the quintessential
activity of an integrated cognitive system, in the sense that locomotion is the
quintessence of a motor car. This, it can be argued, is planning, for it is by
the relative absence of this activity that we recognize that existing automatic
systems of prediction and control, however sophisticated and ‘clever’, are
not true examples of intelligent behaviour. Further, when we speak of
machines able to form plans and to reason about the adequacy of a planto a
given task we can be quite precise about what we mean, by pointing out that
a plan of action can be usefully treated as formally equivalent to a computer
program (‘plan of computation’). Forming a plan is then seen as having the
same logical status as writing a program, and validating a plan as utilizing the
same mathematico-logical apparatus which programming theorists have
developed in recent years for proving things about programs. This insight,
elaborated recently by C. C. Green [12], is of profound importance for the
future development of artificial intelligence, and may well be destined to
occupy a place as central as, say, the equivalence of the corpuscular and
wave models in the theory of optics.

An integrative cognitive system, then, can be conceived as a plan
constructor and plan implementer. At any moment it is either in interactive
mode or in planning mode. ‘Planning mode’ is interpreted in a broad sense
to include all processes of inference involved in the formation of new plans,
including purely internal reorganizations or extensions of stored
descriptions.

In interactive mode it is executing a plan. No reasoning in the sense used
here occurs in this mode, until an interrupt generated by an input device
causes reversion to planning mode. Input (for example ‘eye’) and output
(for example ‘hand’) devices interact directly with an external world in such
a way that the next sense-datum received is dependent on the past input—
output sequence. The precise form of this dependency is governed by the
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laws of nature. It is part of the business of an ICS to form an approximate
picture of these by processes of abstraction.

What else is in memory, apart from plans, and to what top-level control
are the contents of the memory subject? Four major categories are envi-
saged (Fig. 7.1): ‘plans’ (in the form of programs); ‘images’ (in the form of
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Fig. 7.1 — Schematic representation of relations between an integrated cognitive

system and its external and internal worlds. The fixed systems are shown with solid

lines, while those which are subject to change in the interaction process are drawn
with broken lines.

data structures); ‘representations’ (for example in the form of relational
structures), and ‘descriptions’ (in the form of logic sentences).

At the top level a common inference system operates on: (a) plans, not
only to construct them, but to verify in advance that they will work, using in
the processs (b) images, which are direct point-to-point projections of
objects in the external world (for example a map is an image of a particular
geographical area); (c) representations, which model objects in the external
world by abstracted features, and (d) descriptions, usually called ‘theories’,
which make general statements about objects in the external world and their
relations to each other in space and time.

It is worth commenting on the extraordinary faithfulness with which the
brain can store images: the extreme case is ‘eidetic imagery’ in which a visual
pattern can be stored for periods in considerable detail. It is possible, and
has been argued by Richard Gregory [19], that this type of direct modelling
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is biologically more primitive, and hence has had time to evolve to a higher
pitch, than the storage and sequential processing of symbolic information, as
in natural language and in formal reasoning.

AUTOMATIC PLAN-FORMATION

The idea of getting a computer to write its own programs has appeared and
disappeared several times in the past two decades. Early attempts, inspired
by the example of biological evolution, were based on generating program
symbols randomly, conserving the more successful sequences [20,21]. Such
an approach is now considered naive, and nature tends to be thought a poor
model for cost-conscious designers. Present ideas centre round the systema-
tic construction of a program, either as a side product of mechanically
proving from given axioms that the task which the program is to accomplish
is theoretically capable of accomplishment, or alternatively as an end-
product of a process of heuristic search. Keeping in mind the formal analogy
between programs and plans, it may help fix ideas to consider an example
from an unpublished study by Popplestone in which elements of both
approaches are used.

The theorem-proving approach, developed by C. C. Green, uses the
apparatus of formal logic to form plans of action. There are difficulties in the
approach. One is the ‘frame problem’: it is necessary to say not only what
things are changed by an action, but also what remains unchanged. Not only
are the frame axioms tedious to write, but they also tend to lead the
theorem-proving process astray. This raises the second principal difficulty,
the Achilles heel of present-day mechanized proof procedures, that they
very easily stray into unprofitable inference paths through lack of any
adequate formulations of the notion of relevance.

An alternative approach to plan-construction, suggested by the work of
Floyd [22], is to start at the goal and work backwards to the present
situation. The goal is represented by a sentence, which is conceived as
having been deduced from the conjunction of a preceding situation (pre-
sented by a sentence) and an antecedent action. A backwards search tree
can be grown until a state-description is produced which is a logical
consequence of what is known about the initial pre-planning situation. This
process, which is currently being developed by R. J. Popplestone, is illus-
trated in Fig. 7.2 for a housekeeping task in a world furnished with a
cupboard, a table, and a chair. Initially the cupboard contains exclusively
forks and the robot’s hand is at the chair. A plan is required to create a
situation in which at least one fork is at the table. The example is exhibited
here for its didactic value rather than for its originality of approach. Novel
features do, however, exist (a) in the way in which general statements,
rather than detailed specifications, are handled in the search, and (b) in
Popplestone’s method for guiding the search heuristically. For this he uses a
notion of approximation to the desired condition of being logically implied
by the initial situation. The degree of approximation is estimated from the
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Fig. 7.2 — Successful action-chain constructed by backwards search from the goal
situation, using logical inference to associate descriptions with successively earlier
situations. The process terminates when a description is produced which is a direct
logical consequence of the initial state-description, in this case giving the sequence
D, C, B, A as the answer. A plain-language transcription of comments 1-5 might
read as follows: (1) there is at least one fork at the table; (2) the things at the table
together with the things held in the hand include at least one fork, and the hand is at
the cupboard; (3) the things at the table together with a random selection from the
things in the cupboard include at least one fork, and the hand is at the cupboard; (4)
the things at the table together with a random selection from the things distributed
between the cupboard and the hand include at least one fork, and the hand is at the
chair; (5) the things at the table together with a random selection from the things in
the cupboard include at least one fork, and the hand is at the chair. This last
statement can be obtained as a logical deduction from the initial state-description:
thingsat (cupboard) #+¢; thingsat (cupboard) C forks; placeof (hand) = chair. There
is also a goal description: thingsat (table) N forks +@. The method by which
description (2) is obtained from description (1) and action A, (3) is obtained from (2)
and B, and so on is due to Floyd [22].

number of interpretations of the description of the initial situation which are
inconsistent with the current one. The smaller this number the more
‘promising’ the given situation as a point of departure for extending the
backwards search.
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‘HAND-EYE’ PROBLEMS

The provision of a suitable formal basis for reasoning about even such simple
systems is by no means trivial, and the properties which must be possesed by
a satisfactory calculus of situations and actions have been re-examined by
McCarthy and Hayes [13] and by Burstall [14]. In several laboratories,
including our own in Edinburgh, experiments are in progress with various
‘hand-eye’ and ‘robot’ attachments to computers in order to provide
instrumentation and a software base adequate to put such calculi to the test
of practice. Each laboratory doubtless has its own graded repertoire of tasks
with which to challenge its local evolving ICS. Our schedule [6], designed to
fill the next two to three years, is concerned with six types of task: first, as far
as vision is concerned we wish to develop a machine that will identify single
objects (definitions provided by the programmer) placed within the field of
vision, and learn to identify single objects (by generalizing from examples);
second, manipulating a hand to move to any accessible prescribed position
and pick up an isolated object, and also an object from a group. The third
task is that of world modelling to enable the machine to ‘know’ relative
locations of objects and ‘self’, and to update the internal model on the basis
of sensory input; to integrate several views of an object and tactile infor-
mation. The fourth is simple planning by simulation (graph traversing) [23],
and is concerned with planning a route for ‘self” from one location to
another, avoiding contact with obstacles and planning movements of the
hand to pick up an object from a set and move it without disturbing other
objects, also executing plans and reforming them if they fail, or are about to
fail. The fifth task is that of higher-level planning (theorem proving) [12]
whereby, given a set of world axioms, means of achieving simple states are
designed, for example ‘Go to a cube’, ‘Put a ball into a cup’. The sixth task
we have set ourselves comes under the heading of generalization (induc-
tion): to learn general statements about simple events from specific occur-
rences, e.g. ‘“Put cup onto ball” implies failure’, ‘““Put ball onto cup”
implies success’; to generalize from several similar specified observations,
for example ‘“‘Put anything onto ball” implies failure’; and eventually to
generalize to qualified sets, e.g. ‘“Put anything flat onto cube” implies
success’.

EDUCATIONAL AIDS FOR YOUNG CHILDREN

There are similarities between some elements of our schedule and the
Stanford-Binet tests for infants. This circumstance justifies a speculative
postscript to the earlier list of industrial uses. It is generally agreed that an
important application for advanced computer systems will be in educational
technology. It is also already apparent that very young children, for example
of primary school age, are in some ways the most rewarding subjects,
because the teacher to child ratio is too low fully to satisfy the young child’s
appetite for continual responsiveness. Anyone who has watched 6 year olds
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wrestle absorbedly, through the complexities of the teletype, with com-
puter-supplied arithmetic homework cannot help being struck by the moti-
vating power of the interactive terminal. What about even younger age-
groups or mentally handicapped older children? Something can be done
using the cathode ray display and voice output, permitting communication
between child and machine in pictures and words. This possibility is being
investigated in our laboratory among others. But just as the human teacher
supplements pictures and words with direct demonstrations, by manipula-
tion, for example, of cuisenaire rods for arithmetic, of buttons and beads for
sets, of cups and sand and liquid for conservation laws and so on, so it may
turn out that when computer terminals can be equipped with adequate
‘hand-eye’ capability these too will be pressed into service as teachers’ aids.

The possibility of such a development deserves serious attention. It is
particularly attractive for the research worker who likes to have some
specific application in mind, because the subject matter of infant teaching
has a certain relevance to the intellectual content of artificial intelligence
research: namely the explication of real-world phenomena in terms of basic
logical and mathematical concepts. To the lay onlooker, however, there
may seem to be something de-humanizing, even psychologically dangerous,
in the exposure of the very young to interaction with machines. I shall not
trespass on the province of the educational psychologist, beyond saying that
in our own work with small children at Edinburgh [24] this criticism has
indeed been encountered in some quarters; but it has been conspicuously
lacking from three specific categories of person, (1) the teachers, (2) the
children’s parents, and (3) the children themselves.
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Tokyo—-Edinburgh dialogue on robots
in artificial intelligence research
(1971)"

At the Conference of the International Federation of Information Process-
ing Societies, which was held in Edinburgh in 1968, E. A. Feigenbaum of
Stanford University, USA, delivered a paper entitled ‘Artificial Intelli-
gence: themes in the second decade’[1]. In it he said:

‘History will record that in 1968, in three major laboratories for Al research,
an integrated robot consisted of the following:
(a) a complex receptor (typically a television camera of some sort) sending
afferent signals to...
(b) a computer of considerable power; a large core memory; a variety of
programs for analysing the afferent video signals and making decisions
relating to the effectual movement of...
(c) a mechanical arm-and-hand manipulator or a motor-driven cart.

The intensive effort being invested in the development of computer
controlled hand-eye and eye-cart devices is for me the most unexpected
occurrence in Al research in the 1963-68 period.

*This chapter was written with H. G. Barrow, R. J. Popplestone, and S. H. Salter.
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Since then research on computer-controlled robots, as a major aid to
artificial intelligence research, has proceeded apace, for example in the
three laboratories mentioned by Feigenbaum, directed respectively by M.
Minsky at MIT, J. McCarthy at Stanford University, and C. Rosen at
Stanford Research Institute.

Recently, Japanese groups have been entering the field in strength,
notably the Electro-technical Laboratory in Tokyo. This laboratory was
represented by S. Tsuji on a survey team of robot engineering recently sent
on a world tour by the Japan Electronic Industry Association under the
leadership of Professor Y. Ukita. The team paid a visit, among other ports of
call, to the Department of Machine Intelligence and Perception, University
of Edinburgh, and submitted a list of thirty-five questions concerning the
project in progress here. We found it an extremely useful and clarifying
exercise to answer these questions, which seem to us wide-ranging and
shrewd.

Since the aims and content of artificial intelligence research, and of
experimentation with robot devices in particular, are not yet widely known
outside a very few specialist groups, there may also be benefit in making the
dialogue available to a wider scientific readership. We produced the text of
the exchange below:

GENERAL

(1) Q What is the purpose of your research on intelligent robots?

A To investigate theoretical principles concerning the design of cogni-
tive systems and to relate these to the theory of programming. To devise
adequate methods for the formal description of planning, reasoning, learn-
ing and recognition, and for integrating these processes into a functioning
whole. In terms of application (long-range) we can envisage a possible use of
an intelligent robot as a teaching machine for young children. But our
project is a research project, not an application project. Robots for us play
the role of test gear for the adequacy of the formal descriptions referred to
above.

(2) Q Which do you think most important in your research — scene
analysis, problem-solving, dexterous manipulation, voice recognition or
something else?

A Problem-solving.

(3) Q Do you have a plan for developing any new hardware for manipu-
lators, locomotion machines or special processors for vision?

A We plan to use equipment already developed by ourselves and
others, and we prefer to simulate locomotion by movement of the robot’s
world as first suggested to us by Mr Derek Healy. The present ‘world’ is a 3
feet diameter sandwich of hardboard and polystyrene which is light and
rigid. It rests on three steel balls and is moved by wheels, driven by small
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stepping motors, mounted on the anchored robot. A pair of bumpers, one in
front, one behind, operate two microswitches to determine contact with
obstacles. Our next piece of equipment is a platform 5 feet square which may
be moved anywhere in a 10 feet square by flexible drive wires from two
servo-motors. The platform can carry weights of 200 Ibs and will move at up
to 10 inches per second with accelerations of 1/10 g. Various types of
hand-eye systems may be hung from a bridge above the platform.

(4) Q We assume that the speed of available digital computers is still too
slow for real-time processing of complex artificial intelligence problems. Is
this true? If so, do you have any ideas for solving the difficulty?

A We agree that the speed of available computers is still too slow,
especially for sophisticated peripheral processing such as vision. Dedication
of satellite processors to sub-tasks (e.g. pre-processing the video signal) is
one approach. Special-purpose hardware could of course increase the speed
of processing, but it seems doubtful whether it can exhibit behaviour of great
logical complexity which a digital computer is capable of doing. An
improved instruction set, or more parallel computation (multi-processor)
may yield significant improvements. But the immediate obstacles lie in
fundamental problems of software design, rather than in hardware
limitations.

(5) Q Which language do you use in robot research, FORTRAN, ALGOL,
PL/1, ASSEMBLER, LISP or other list processing language? What would
be the features of robot-oriented languages?

A We use POP-2 [2], [3]. The nearer a programming language is to a
fully general mathematical notation, the more open-ended its structure, and
the more flexibly adapted to conversational use, then the better the language
for robot research. We feel that an ideal robot-oriented language would be
one that dealt in relations as well as functions, and would have deductive and
inductive capabilities.

(6) Q Can you describe the software hierarchy structure in your robot
system?

A The mechanism of hierarchy is simply that of function call and a
typical hierarchy might be (example taken from the vision hierarchy)
top — program for guiding object recognition.
middle — region-finding program and program for matching relational
structures.
bottom — eye control program.

(7) Q What performance capability do you predict for intelligent robots in
1975?

A We expect demonstrations of feasibility before 1975 in the child
teaching machine application; that is a system able to recognize and
manipulate materials used in teaching children the elements of arithmetic,
sets, properties and relations, conservation laws etc.

(8) Q Will there be any chance of applying the newly developed techniques
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in research on intelligent robots to some industry (for example assembly
line) in the near future?

A We see possible industrial applications in the late 1970s including
assembly line. Other conceivable applications are luggage handling at
airports, parcel handling and packing, machine tool control and repair, and
various exploratory vehicles, e.g. for pipe-laying in deserts, forest clearing
in remote areas, ocean-bed work and planetary exploration. Applications
for cognitive vehicles will probably remain restricted to work in environ-
ments which are essentially intractable.

(9) Q What do you think of the control of many industrial robots by a mini-
computer? What level of ‘intelligence’ would such a computer-robot system
have?

A We would certainly expect to see the control of many ‘fixed program’
robots by a mini-computer. Such a system would not show much
intelligence.

(10) QMay we know the budget and manpower available for your project?
A We have £500 per annum from the Science Research Council for
‘construction of models for on-line control experiments’ supplemented by
small sums earned as revenue through consultancy and rental of computer
time. In additon the GPO Telecommunications Headquarters have awarded
a contract for £10 000 over two years specifically for the robot research.
The mechanical engineering for our Mark 1 robot, costing about £1000 to
construct, was largely the work of Mr Steve Salter of the Bionics Research
Laboratory of this Department, at that time directed by Professor R. L.
Gregory and supported by the Nuffield Foundation. The electronics, inter-
facing and software have been mainly done in the Experimental Program-
ming Unit by one grant-supported research scientist working part-time on
the robot work (Dr Harry Barrow) and one University Lecturer (Mr Robin
Popplestone). But the work is being carried out in the general context of a
large-scale study of machine simulation of learning, cognition and percep-
tion, financed on a generous scale by the Science Research Council
(£260 000 over five years) and by the University of Edinburgh. The POP-2
software and conversational computing system has received support also
from the Medical Research Council to the amount of about £70 000 over five
years. About a dozen research scientists are employed in the general
project. Seven of these constitute a ‘Robot working party’ which meets
fortnightly under the chairmanship of Professor Donald Michie, and plans
the robot work, but this is a side-line activity for them with the exception of
the workers mentioned above.

EYE
(1) Q What are the aims and targets of your research in the context of
vision?

A Picture-processing performance should be sufficient for forming
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plausible recognition hypotheses concerning members of a limited reper-
toire of simple objects (e.g. ball, pencil, cylinder, wedge, doughnut, cup,
spectacles, hammer) as a basis for experimental verification or modification
of such hypotheses by the robot through action (changing angle of view or
interfering with objects manually).

(2) Q Which input device do you use: vidicons, image dissector tubes, or
other special devices?
A We use vidicons but are investigating image dissectors.

(3) Q What is the performance of the input devices in areas such as
resolution, dynamic range, sampling rate of A to D converters? In such
areas are there any possibilities of improving the irput devices?

A Present resolution of TV sampling system is 64X64 points and 16
brightness levels. Speed of conversion of A to D converter is approximately
100 kHz. This system is to be improved to 256 X256 points and 64, or more,
levels. A to D conversion should be about the same rate.

Sampling time for a picture point is largely determined by the time taken
for the TV scan to reach the point (up to 20 ms maximum). We are
considering image dissectors, which have negligible settling time.

(4) Q Do the eyes of your robot move (electronic or mechanical move-
ment)? What are the merits of eye movement?

A The eye does not move relative to the main frame. We are consider-
ing relative movement of two eyes for depth perception. Also, we are
considering using one camera for wide angle views and a second camera with
a long-focus lens for investigation of details. Merits, obvious; demerits,
complication.

(5) QIsthere any processor for visual input? Isit special hardware? What is
the role of the preprocessor?

A We have installed a small processor for pre-processing visual input
and thus reducing the load on the multi-access system. Later on we may
build special hardware, for instance for doing ranging by stereoscopic or
focusing methods. In the case of the stereoscopic method we would probably
use hardware correlators. We might also build hardware contour followers
for the region analysis approach, if it could be shown that a very significant
saving in processing time would result.

(6) QDo you use linguistic methods to recognize the picture input? Is there
any trouble when the line drawing of the solids suffers noise? How do you
solve the shadow and hidden line problems? What is the most complex solid
which your robot can recognize?

A We are experimenting with a method which involves describing
pictures in terms of properties of regions and the relationship between
regions [4, 5]. We believe that the system will be moderately immune to
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noise. The shadow problem will be solved initially by allowing the combi-
nation of regions of different intensity level to form a new region and trying
recognition again. Later we might attempt to decide whether something was
a shadow or not by measuring differences in texture or distance on each side
of boundaries between areas of different light intensity.

At present the robot is capable of recognizing the simple objects
described under heading (1) of this section, under controlled lighting
conditions and viewing them from a roughly standard position.

(7) Q Does your robot have colour sensing? What are the merits of this?

A No. Colour sensing would, however, undoubtedly aid region analysis
and also facilitate communication with the human user concerning a given
visual scene. It would be easy to have a single colour-sensitive spot in a
moving eye system.

(8) Q How do you solve the difficulties of texture?

A At present we have no method of coping with texture. In the future
we will think of dealing with it by ideas like spatial frequency and spatial
correlation, e.g. for distinguishing between textures like wood grain and
textures like sand.

(9) Q Which do you think best for range measurements, stereoscopic
cameras, range finders as with SRI’s robot or sound echo method?

A Possible methods of range measurement that we are considering are:
stereoscopic cameras, focusing adjustment with a monocular camera, and a
touch-sensitive probe.

Focusing has the advantage over stereoscopy in that it cannot be
deceived by vertical stripes. However it is probably less accurate. We did a
little investigation of sound echo ranging techniques but rejected them. The
wave-lengths of practical generators are too long for good resolution on our
scale of equipment.

(10) Q How does your robot measure a parameter such as size or position
of the objects? Are the accuracy and speed of measurement satisfactory for
real-time manipulation?

A At present it does not make such measurements. We are prepared
to be satisfied with errors of approximately 5%. Speed limitations are likely
to be more severe for vision than for manipulation.

ARM AND HAND

(1) Q Describe the hardware specifications of the manipulators such as
degrees of freedom or sensors.

A A manipulator has been designed and is under construction. Two
opposed vertical ‘palms’ can move independently towards and away from
each other over a range of about 18 inches and can move together vertically
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through about 12 inches. Objects may thus be gripped between the palms,
lifted and moved a small distance laterally, in a linear cartesian frame of
reference.

Absolute accuracy of positioning will be about 0.2% of full range of
movement, but backlash, rigidity and repeatability should all be only a few
thousandths of an inch.

Later, it is intended to add rotation of the manipulator about a vertical
axis, and rotation of the palms to turn objects over.

Strain gauges at suitable points will give indications of the forces exerted
by the arms and the strength of grip.

(2) Q How dexterous will manipulation be and will it be successful?
A Too early to say.

(3) Q How do you design the control loop of the manipulators?

A The controlling computer will output positional information as 10-bit
digital words. These will be converted to an analogue voltage to control a
DC servo motor. Potentiometers will be used to measure position and
tachogenerators to measure velocity.

(4) Q Do you have any suggestions for a system with two hands which
would co-operate in a job with human beings?

A Not at this stage in terms of implementation. As an application area
we have already mentioned teaching aids for children.

(5) Q Do the manipulators have any reflex actions? Is there any need of a
small computer for the exclusive use of the manipulators.
A A peripheral loop will stop movement if an unexpected force is
sensed by the strain gauges.
Exclusive use of a satellite computer is not necessary. We shall, however,
be using such a machine to pre-process visual information and we will make
use of it in controlling reflex movements.

LOCOMOTION
(1) QIs there any great need to use legs instead of wheels?
A No.

(2) Q How does the robot direct its position in the real world?
A Combinations of dead-reckoning with landmark-recognition are
possible, and have been examined by simulations.

(3) Q Does your robot have balance-detecting and controlling equipment?
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A No.

(4) Q What are the application fields of robot-like machines with loco-
motive ability in the near future?

A Mowing lawns! If by ‘near future’ is meant the next two or three years
we do not see commesrcial applications above a rather trivial level.

COMMUNICATION

(1) Q How does your robot communicate with the digital computer?

A The robot communicates with the computer as a peripheral of the
Multi-POP time-sharing system, running on an ICL 4130 computer. Com-
munication is via transfers of single 8-bit bytes. The output byte is decoded
as a command to sample the picture or drive the motors. The input byte
contains the state of the bump detectors and brightness of the picture point.
When the satellite is installed, communication will be via a high-speed link
with the ICL 4130. The robot will be interfaced to the satellite, essentially as
it is now to the ICL 4130.

BRAIN

(1) Q What performance and abilities does the brain of your robot have?
Does it have self-learning ability?

A We have engaged in the past in experiments involving developing
various abilities in isolation and have not yet finished building an integrated
system using these abilities.

For instance there is the Graph Traverser program for problem solving
(Doran & Michie [6]; see Michie & Ross for an adaptive version (7).
BOXES and memo functions for rote-learning [8-10], programs for deduc-
tion and question-answering [11], and the Induction Engine [12]. Full
learning ability requires what is learnt to be expressed in a language more
powerful than simply a sequence of weights, as in Perceptrons or Samuel’s
Checkers learning program.

(2) Q What can the question-answering system in your robot do?

A We have implemented a number of approaches to question-answer-
ing. We have theorem-proving programs, which, as Cordell Green [13] has
shown, can be modified for question-answering. We also have a program
called QUAC based on relational combinators [11].

(3) Q What would be the best interface between robots and human beings?

A The best interface from the human’s point of view would be spoken
and written natural language, together with the ability to point at things with
the robot watching through its television camera. In the immediate future,
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for research purposes, typewriter and visual display using a flexible com-
mand language: e.g. ‘imperative mode’ POP-2.

(4) Q What is the most difficult problem in future artificial intelligence
research?

A Possibly the internal representation of the robot’s world, which will
certainly involve automatic methods for inductive reasoning from a very
large mass of (mostly irrelevant) data. It seems to us that, to be usable by the
robot for serious planning, internal models must involve both direct rep-
resentations in the form of appropriate data structures, as when a map is
used to model a terrain, and indirect representations in the form of axiom
systems and sentences in a formal language such as predicate calculus. Facts
are retrieved from the former by look-up and from the latter by reasoning
procedures. What is lacking at present is any general theory concerning the
relative economics of these two forms of representation, or any principles
for automatic transfers of knowledge from one to the other. We are inclined
to think that present work on automation of induction will help in the
required direction.

On the deductive side, we would mention the problem of discovering the
relationship between solving a problem by logical inference and solving it by
an algorithm (i.e. no redundant inferences made), so that opportunities for
reducing an inference process to an algorithm may be automatically
detected and exploited.

A certain confluence is now apparent between work on robot cognition
and the field known as theory of programming. This is because formal
equivalences can be set up betwen proving that a plan will be adequate to
bring about a given result in the real world and reasoning as to whether a
program will compute a given function [14]. We attach importance in this
connection to recent advances in the theory of formal proofs about programs
[15-17].

In terms of implementing systems capable of operating within reason-
able time constraints, methods for handling highly parallel processes will be
crucial, and these are still in their infancy.
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Artificial intelligence (1971)

A number of laboratories around the world are investigating how to
program computers to be a little more ‘intelligent’ than they are. Such
studies soon come up against a fundamental problem concerned with
‘understanding’. We have to discover, in rather precise terms, what is meant
by ‘understanding’ a topic, or a problem. Otherwise, attempts to get
computers to do things normally requiring human intelligence, are likely to
remain superficial and, in the long run, unproductive.

A classic example is the rosy dream about the possibilities of ‘machine
translation’. In the 1950s and 1960s, millions of dollars were spent in the
United States on research-and-development projects aimed at this. The
techniques of machines breaking up texts grammatically and looking up
meanings in a computer dictionary proved too shallow to crack the machine
translation problem unaided. Fundamental progress had to wait for the
development of an adequate theory of what is involved in ‘understanding’ a
passage of English-language text. The needed theory is only just beginning
to emerge.

The syntactic and semantic problems presented by natural language are
at present under study by the theoretical section of the Department of
Machine Intelligence and Perception in Edinburgh, headed by Professor H.
C. Longuet-Higgins. But this is only one of many areas in which we can
attempt to achieve ‘computer understanding’. An obvious and particularly
challenging area is that of understanding the ordinary material world around
us. Consider a very simple world, consisting of a play-pen with a few
commonplace objects. On first tackling this world, a child has to come to
terms with, and mentally organise, not only the visual and mechanical
properties of material objects, but also the basic laws of nature, such as
gravity, which determine their interaction.

To program knowledge like this into a computer, so that it can inspect
such a world through a TV camera and then carry out a particular plan of
action (for example, piling bricks, sorting buttons), is a task of at least
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comparable difficulty to the language-understanding task I have referred to.
In order to do research in this area we have to equip computers with
cameras, movable platforms, mechanical ‘hands’, and other ‘robot’ devices.
But this should not distract attention from the real point. The robot itself is
not the object of the exercise. In the robot project in our department, we are
concerned with the use we can make of a robot in order to develop theories of
‘computer understanding’ of the real world. The acid test of such theories is
provided by the robot itself. If it can be got to understand what is involved in
operations such as ‘find’, ‘fetch’, ‘build’, ‘tidy’, and so on, then, and only
then, can we program it to do these things.

In fact, a new technology, even more recent than software engineering
(the mechanics of computer instructions), is coming into existence. This
rapidly growing art might appropriately be called ‘cognitive engineering’.

To ‘engineer’ means to design and construct devices which actually
work. In case it seems premature to talk of man-made devices, even
software devices, which possess cognitive ability, let me first give an example
of something a cognitive software device can do. Take the integrated
arrangement of computer programs of which the program developed at
Massachusetts Institute of Technology and called PLANNER forms a part.

Fig. 9.1 depicts the simulated ‘world’ in which problem-solving is carried
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Fig. 9.1 — Problem-solving carried out by machine. Man’s command given via the
computer’s typewriter. Machine finally responds with OK.

out under this system, in response to acommand given in English, by means
of the computer’s typewriter. The figures show successive steps taken by the
system in order to carry out the command, and the following is a brief
excerpt from the accompanying dialogue between man and machine:
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MAN: Will you please stack up both of the red blocks and either a green cube
or a pyramid?

MACHINE: OK.

MAN: Which cube is sitting on the table?

MACHINE: THE LARGE GREEN ONE WHICH SUPPORTS THE RED PYRAMID.
MAN: Is there a large block behind a pyramid?

MACHINE: YES, THREE OF THEM: A LARGE RED ONE, A LARGE GREEN CUBE
AND THE BLUE ONE.

MAN: Put a small one onto the green cube which supports a pyramid.
MACHINE: OK.

The arrangement of programs which produced this behaviour consists of
about a dozen interlocking units, which, together with a dictionary of two
hundred English language words, give about 2.5 million separate units of
information, to comprise the computer memory requirements of experi-
mental artificial intelligence work today. But problems involving real
interaction with the outside world through TV cameras make even heavier
demands. People at the Massachusetts Institute of Technology laboratory,
in common with the other American computer centres regard a total of a
quarter of a million words of fast memory as necessary for a research
machine.

The construction of integrated intellectual or cognitive systems is among
the more ambitious aims pursued by workers in the field of artificial
intelligence. As a quick sketch of what I mean by the term ‘integrated’,
consider two hypothetical chess machines.

Machine 1 is capable of beating International Masters. They communi-
cate their moves to it in a standardized format through the typewriter.
Machine 2 plays bad amateur chess. But it inspects the board position
visually through a TV camera, makes its own moves for itself with a
computer-driven hand, can describe its own plans and explain its moves in
passable English, improves its play with practice, and can accept strategic
hints and advice from a tutor.

Which machine is the more intelligent? This is not a particularly
meaningful question; ‘intelligence’ on any reasonable definition is related to
a particular activity rather than being an absolute term.

Which machine would make the more ambitious goal for a research
project? Quite impossible to say: both goals would be very ambitious.

Which machine more properly belongs to the category of an integrated
cognitive system? Without any doubt at all, machine 2, where the interest is
not in the depth of any one skill but rather in the effective knitting together
of many skills.

Both machine 1 and machine 2 are figments of the imagination. The
nearest to machine 1 which has yet been achieved is probably the Atkins—
Slate chess program, which recently defeated a strong amateur player.
Possibly the system with strongest superficial resemblance to machine 2 is
not a chess program at all, but a program for making a robot play the game of
‘Instant Insanity’. The robot is the computer-controlled ‘hand-eye’ device



118 INTELLIGENT ROBOTS [Sec. 2

developed in Professor John McCarthy’s Artificial Intelligence Project at
Stanford University. The game of Instant Insanity is played with four large,
specially constructed dice, which have colours (red, white, blue, green)
rather than numbers on their faces.

If the four dice are pressed together side by side, the ‘left-right’ faces are
all hidden. We are interested here solely in the four colour sequences which
we can see as we look along the row; first at the four ‘top’ faces; then at the
four ‘near’ faces; at the four ‘bottom’ faces; and at the four ‘far’ faces. The
aim is to arrange things, by rotations of individual dice, so that no colour is
duplicated in any one of these four rows of faces.

My investigations lead me to believe that there are three and only three
essentially distinct solutions, but I have not proved it. A cube can be given 24
different orientations in space. So we can calculate 24X24X24Xx24 as the
upper limit of the arrangments we have to check. Allowing for symmetries
and redundancies, this comes down to about 2000 essentially distinct states.
A brute-force method of solution would have to examine all these
individually.

The Stanford program does not rise even as high as brute force. At
present the program is set up so that it knows the winning configuration in
advance. It concentrates its problem-solving efforts on inspecting and
identifying the four blocks and carrying out their final assembly. But like
machine 2, in my fanciful chess example, it does do everything for itself. It
inspects the cubes through a colour TV camera, and it performs all the
manipulations with its computer-controlled hand. One can thus say that a
coordination of ‘hand’, ‘eye’, and ‘brain’ exists, even though the individual
performance of each member of the trio may leave much to be desired.

The aim of the laboratories working with integrated systems is to master
real-world problems that are more and more challenging intellectually.

Now what would be a suitable task, intellectually more challenging than
Instant Insanity puzzles? A classic problem in artificial intelligence is known
as the ‘monkey and bananas’ problem, posed by John McCarthy almost ten
years ago. A monkey is in a room where a bunch of bananas is hanging from
the ceiling just out of the monkey’s reach. Somewhere in the room there is a
chair. Can the monkey manage to get the bananas?

At first sight, my example may arouse a sense of bewilderment. Why
should so trivial a problem be solemnly discussed as a matter of intellectual
depth? After all, real monkeys are capable of solving it, though they find it
difficult, whereas no one suggests that a monkey could solve Instant
Insanity. But the triviality is relative, rather than absolute; i.e. it is relative
to the amount of relevant knowledge a monkey or a person or a machine has
previously amassed and organized in its memory. Before a machine can be
even as intelligent as a monkey in real-world problem-solving, a great deal of
this kind of knowledge must somehow be got into it. Only then will these
problems begin to be trivial in the sense that they are trivial to a human
being.

The background knowledge required for problem-solving in some parti-
cular domain constitutes what has been called a ‘micro-theory’. The ‘micro-
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theory’ needed for problems of the monkey-and-bananas type must deal
with the fundamental logic of the location in space of physical objects
(‘bananas’, ‘monkey’, ‘chair’, are all instances of such objects) and their
translation through space by the operation upon them of actions (of which
‘goto’, ‘climb’ are instances). Such a micro-theory, if it is to mirror the world
we know, should, for example, assert that if object X is at position A, and A
is not equal to position B, then X is not at B (i.e. one thing can’t be at two
places at the same time). It should assert that if X is at A and X is not equal to
Y, then Y is not at A (i.e. two things can’t be at one place at the same time).

I'shall come back to the formidable complexities of building an adequate
amount (and arrangement) of such general facts into a machine. But, to
begin with, let me describe the first recorded solution by a computer-
controlled robot of a monkey-and-bananas problem. This was done by
Stanford Research Institute’s Artificial Intelligence Group and reported by
Stephen Coles.

Fig. 9.2 shows Stanford Research Institute’s robot ‘Shakey’. It stands the

Fig. 9.2 — ‘Shakey’ in action. The robot is remotely controlled over a radio link.

height of a man, and the computer controls it remotely by radio. Shakey has
no hand and cannot climb. The monkey-and-bananas problem was accord-
ingly translated into terms appropriate to the robot’s own input-output
devices. The reformulation, known as the ‘robot and box’ problem, is as
follows:
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The robot is in a room in which a box rests on a platform too high for the
robot’s wheels to mount. Somewhere in the room is a ramp. The robot’s task
is to cause the box to be on the floor.

The successful solution of the problem is illustrated in Fig. 9.2. I can here
only sketch the way in which the capability to reason out the solution from
first principles is programmed into the system. The key techniques are
derived from mathematical logic. The trick is to dress up the formation of a
plan of action so that it looks exactly like the task of proving a theorem in
some logical calculus. The kind of theorem the machine tries to prove is one
which asserts that ‘a possible state of the world exists in which the box is on
the floor’. It is possible to arrange that, as a side-effect of a successful proof,
a chain of actions is produced for bringing about the desired state of the
world.

There are all sorts of technical difficulties related to mechanical theorem-
proving even in such simple situation-and-action problems as this. One in
particular, is called the ‘frame problem’. For example, though you and I
know that, after the monkey pushes the chair, the bananas are still where
they were, a mechanical reasoning system must have such facts explicitly
represented in its knowledge base. In some other world, it might be the case
that chairs exert a repulsive force on bananas.

Coles sets out the stream of ‘thoughts’, if I can call them that, which go
through the robot’s ‘brain’ (by which I mean the program running in
Stanford’s SDS 940 computer) in the form of the following informal English
translation:

‘My first subtask is... to move the ramp over to the platform and align it
properly. To do this, I must first discover where the ramp is. To do this, I
must first see it. To do this, I must first go to the place where, if I looked in
the right direction, I might see it. This sets up the subsubtask of computing
the coordinates of a desirable vantage point in the room, based on my
approximate knowledge of where the ramp is.

‘Next, I have the problem of getting to the vantage point. Can I go
directly, or will I have to plan a journey around obstacles? Will I be required
to travel through unknown territory to get there if I go by an optimal
trajectory; and, if so, what weight should I give to avoiding this unknown
territory? When I get there, I will have to turn myself, and tilt the television
camera to an appropriate angle, then take a picture in. Will I see a ramp?
The whole ramp? Nothing but the ramp? Do I need to make a correction for
depth perception?

And so on. And so on. The reasoning part takes about twenty minutes,
and the vision and pushing activities another fifteen minutes. So the whole
operation takes over half an hour. Great speed-ups of the different functions
are likely to be achieved over the next few years of robot engineering. (We
have one or two ideas of our own at Edinburgh, where we are just beginning
to experiment with a reasonably advanced robot device.) But before I leave
Shakey, I would like to mention one concept which Coles raises, that is likely
to be important in the future.

This is the number of subgoals that are necessary to solve the problem;
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how direct or indirect the solution is. The robot-and-box problem has one
level of indirectness (associated with the sub-problem of how to get the ramp
to the platform). But, as Coles points out, any system that is complete
logically could, in principle, solve problems with as many levels as you like.
Yet problems possessing merely half-a-dozen levels of indirectness begin to
overtax human intellectual capability. We may think that, at the moment,
the human brain has much more sheer computing power at its disposal than
even the biggest computer in the world. But the time may be approaching
when such thoughts will require careful qualification.



10

Machine intelligence at Edinburgh
(1973)

Programming a computer to control an experimental robot (TV ‘eye’,
mechanical ‘hand’ and steerable viewing platform) seems a far cry from
management science. A point of relevance, however, can be found in
current plans, under active study in America and Japan, to bring into
existence the fully automatic factory.

The US Defense Department’s Advanced Research Projects Agency
met recently to discuss a report which it had commissioned two years ago
from the Rand Corporation concerning the feasibility of an automatic
factory project. These findings indicated feasibility in about ten years, given
a massive R & D programme to create the technical preconditions. A
Japanese plan with a similar time-scale, but on a larger scale (including
among its aims an entire computer-controlled city), has been described by
Yoneji Masuda, Director of Japan’s Computer Usage Development Insti-
tute. The total cost will be £25 000 million.

It goes without saying that the administrative processes of a factory must
be entirely computerized if the aim of total automation is to be realized. Less
obvious is the fact that a diverse range of mechanical handling operations
must also be coordinated and that these necessarily include operations of
‘eye’ and ‘hand’ which require some degree of intelligence when performed
by humans. Such tasks might include sorting out components from a
disorderly heap and fitting them together to construct a finished article, in
accordance with written and pictorial descriptions. To program a computer
to do this using children’s construction kits of the ‘Meccano’ type is an
important sub-goal of our project at Edinburgh.

Our general aim is to develop an integrated robot system capable of
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interesting behaviour in response to requests and ‘hints’ supplied by an
interactive user. Such work should lead ultimately to knowledge of how to
program what Hitachi calls ‘intelligent robots’, and I have called (Nature,
Nov. 21, 1970) ‘integrated cognitive systems’. This phrase is not ideal: it
appears to irritate, by its mental association with psychology, and hence to
distract from the technical content. The opening passage of my article is
reproduced here (Chapter 7 in this book):

‘Work is in progress in several laboratories directed towards the
construction of an integrated cognitive system (ICS). I avoid the
phrase “intelligent robot” because of its science fiction connotation
of humanoid appearances and other attributes. The research is
concerned with intellectual attributes, involving sensorimotor and
reflex capabilities only to the extent that these form a necessary
substratum for the acquisition or display by computing systems of
purely intellectual skills.’

‘At this early stage the “intellectual” skills which research
aspires to emulate may seem to the onlooker so primitive as scarcely
to deserve the name. Let him, however, reflect on the struggles of
small children with the simplest tasks of deduction, generalization
and description, and their dogged attempts to construct and refine
world-models adequate for their growing needs, representing a
succession through which every developed human intellect has
passed. Even these first exploits of the infant mind are beyond the
abilities of any computing system yet devised. Computers equipped
with optical input and manipulative devices are available in at least
two laboratories, but understanding of machine perception and
cognition has not advanced so far that they could be programmed to
compete with human infants, for example on such tasks as the
following, which is taken from Stanford-Binet IQ tests. The task
involves obeying simple commands, and is designed for 24 year old
infants. With a brick, button, a dog, a box and a pair of scissors laid
in order on a table, the child is told (a) “give me the dog”; (b) “put
the button in the box”. and (c) “put the scissors beside the brick”’. A
machine passing tests of this sort would be disqualified if it had
merely been pre-programmed ad hoc for each individual test. An
artificial intelligence worth the name must show some degree of
generality.’

Performance goals of the type indicated already seem, in terms of the
present state of programming technique, too ‘easy’. In our current specifica-
tion for a ‘working model’ of an integrated robot system we envisage
facilities for ‘teaching’ the system elementary tasks of assembly initially
presented by the user as ‘unseens’ (i.e. no pre-programmed knowledge of
each given task or of the materials provided for it). Although there may be
eventual applications for such work in automating factory assembly-line
operations (the Japanese Government, by voting expenditure of five million
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pounds per annum for research on ‘Pattern Information Processing’ includ-
ing robot work indicate that they believe this), our own selection of such
tasks has been guided by theoretical questions concerning the impact upon
current programming language concepts. At the same time, in order to
equip ourselves at all to use such novel input—output devices as TV cameras
and motor-driven ‘hands’ we have had to do a certain amount of baseline
work in areas such as machine perception and the design of software for
controlling the physical manipulations of perceived objects.

THE VISION PROBLEM

Before television cameras had been attached to computers, there was a
tendency to regard computer vision as a technological problem and not an
integral part of the field of machine intelligence. However, the consensus of
opinion is now that the problem of making a computer see what is going on
around it is inextricably linked with such problems as dealing with unreliable
information, making hypotheses and testing them, making plans of action,
using knowledge about the state of the world and its laws, integrating
fragments of information to produce a coherent whole and learning complex
relationships.

We require to produce a visual system for an intelligent machine. Our
first step has been to design a system for extracting and matching descrip-
tions of the retinal image adequate to identify with fair reliability a
repertoire of ordinary objects (hammer, cup, doughnut, ball etc., see
Barrow and Popplestone [1]; Barrow, Ambler and Burstall [2]). A complete
picture is read and stored in the computer. The program first tries to divide
the picture into areas which have strong contrast across their boundaries. It
does this by finding areas of approximately uniform brightness and then
merging together to form larger areas those which are adjacent and have
little contrast across their common boundary.

The picture is then described in terms of properties of the regions, e.g.
COMPACTNESS (measured as 47.Area/Perimeter’) and the relations
between them, e.g. ADJACENT, BIGGER THAN.

Finally, the program matches the picture description against stored
descriptions of views of objects. These have been formed by the program
from examples presented to it during a teaching session. The best match
identifies the object.

Identifications are currently made with about 95 per cent accuracy
(Turner [3]) at the expense of several minutes’ processing time for each
identification. Present work is directed towards improving the accuracy of
identification by various means, including the extraction of ‘depth
information’.

The above system was developed without initial reference to operational
criteria, i.e. to the robot’s use of tests and actions to perform tasks. We are
currently engaged upon setting up a visual system for our Mark 1.5 robot
which will enable it to perform a variety of simple tasks, especially such
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operations as picking up objects and placing them in or on other objects.
Until recently, work in the field of robot vision had been concentrated upon
the problem of making the computer produce a description of a picture. For
any single picture there are infinitely many ways in which that pattern of light
and shading could have been induced to fall upon the image plane of the
camera (e.g. a small thing close up, or a big thing a long way away). In order
to produce a likely interpretation the program must have built into it various
types of knowledge about the world, e.g. the objects are standing on a table
top, all surfaces of objects are planar, objects must be supported. Current
work at other laboratories is aimed at making the assumptions made by the
program more explicit, at examining the implications of certain assumptions
in considerable detail and allowing hypotheses to be made and retracted. So
far, however, research has been concentrated on the relationship between
polyhedra and their images.

We attack the problem of robot vision from a slightly different direction.
In real situations a robot is likely to be looking at a scene that it has seen
many times before and therefore about which it already knows a great deal,
e.g. positions of objects, their orientation and type. In such circumstances it
is unnecessary and even detrimental to performance to process every picture
as though it were being seen for the first time. A much more flexible
approach is required; sufficient processing should only be carried out to
confirm that one’s present world model is not radically incorrect. For
example, if a blob is seen in the top left of the picture and the robot knows
that there is a hammer at a corresponding point in its world, then it does not
need to analyse the blob further but it can assume that it represents the
hammer. Attention can also be directed to specific parts of the picture if we
are only concerned with a localized change in the world. We have already
found that it can be extremely cheap in terms of computer time to check
visually that there is not an object at a particular location, e. g. when looking
for a clear space to put something down, or making sure that a particular
object has been picked up. A few years ago the view was usually taken that
~ picture processing was always expensive and therefore should be used as
sparingly as possible. However, if the program knows what it is looking for it
can carry out highly specific tests which can be computationally cheap.

A working program written by one of our diploma students, Bill Dallas,
can be asked to sort the objects which are on the viewing platform, putting
objects of one type in one area and those of a second type in a second area.
Since we then had no tactile feed-back from the hand, the only way the
program can tell whether it has picked up an object is by looking at the place
where the object was and making sure it is no longer there. If it is still there
the program will make repeated attempts to pick it up. A visual check is also
made before putting the object down that the space into which the object
will be put is in fact empty. If it is not, a new destination can be calculated.
The program has a data-base of information about its world and will first try
to sort objects that it knows about; for each object that it knows about, if that
object is to be moved, a visual check is made that it is still at its expected
position and then it is picked up and placed in a clear space in the
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appropriate area. When the program has run out of known objects, it
searches the platform. Having taken a picture, it tries to interpret blobs in its
field of view as known objects.

THE ASSEMBLY PROBLEM

We aim to get the robot to put objects together. The repertoire of
components for building objects is to be extended beyond the plane
polyhedra of other projects, and must include such things as slotted rods,
shafts and bearings. Optical methods are required for measuring complex
surfaces, and the ‘shadowgraph’ method has been developed for 3-dimen-
sional perception. This uses a projector casting a stripe of light on a scene
together with the TV camera to build up a ‘depth map’. The principles
involved are similar to those used by the independently developed system of
Shirai and Suwa [4].

When a shadow is cast by a horizontal edge onto a surface, the irregular
path which the shadow appears to follow can be used to reconstruct the
relative altitude of every point on the surface lying on the path. Thus, if a
computer-controlled camera is looking vertically, and if the height and
position of the edge casting the shadow are known and also the position of
the light source, then a suitable program can reconstruct the entire 3-
dimensional contour of the surface by moving the shadow-casting edge to
successive positions.

A program has been developed which performs this reconstruction. An
angle of 45° for the light seems to give the best compromise between having
the light too oblique (when the edge of the shadow cannot easily be
determined) and having the light too vertical (when the shadow is so short as
to reduce the accuracy of the method). Light and edge are together moved
across the object so as to get height readings from most points on the surface.
It will be appreciated that there will be areas beside objects, of width less
than the height of the object, for which no height estimation is obtained.
Most of these lacunae can be filled by traversing the light from the opposite
direction leaving only a few unfathomed depths.

Some care is needed in distinguishing shadow boundaries from naturally
occurring changes in the object such a as white label on a dark parcel.
Various devices can be used to resolve such confusions: for instance, moving
the light source under computer control to exploit the fact that only
boundaries that move when the light moves can be shadow boundaries.

As a first step towards assembly by computer we are working on
automatic packing of parcels into boxes. This problem is of interest to the
GPO. The current version of the program analyses the outline of an object
into line segments. The outlines of the holes in the container are also
analysed into line segments. The program places parcels by trying ‘in its
head’ to put the parcel in a hole, with one corner of the parcel in a corner of
the hole. Studies are in hand to use look-ahead techniques to optimize
placing. In this connection a system is under trial for translating statements
about desired relationships of rigid bodies (‘make the rod fit into a hole in
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each of the blocks so that the blocks are against the wall’) into equalities and
inequalities as vectors, scalars and rotations, and then automatically trans-
lating these into program for iteratively solving them.

THE PROBLEM-SOLVING PROBLEM
Consider a sliding-block puzzle, such as the ‘Passalong’, shown in Fig. 10.1.

(a) (b)

Fig. 10.1

By a succession of sliding movements of the blocks in the tray we are
required to transform (a) into (b). This is plainly a problem. It belongs to a
class of games characterized by the properties:

(1) One or two-person;
(2) Perfect information;
(3) No chance moves.

This class extends from simple puzzles to the mechanization of mathematical
manipulations. Thus the three restrictions listed do not make such problems
necessarily trivial. They do, however, render them accessible to a range of
techniques which can be broadly described as ‘look-ahead’. Looking ahead
along a branching tree of possibilities is an activity familiar to anyone who
has played a game such as chess.

Now consider another problem. A blind, insentient robot must operate
in the world shown in Fig. 10.2. The robot has a ‘hand’, able to execute the

table

door
outside

Fig. 10.2
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actions GOBOX1, GOBOX2, GOTABLE, GODOOR, GOOUTSIDE, PICKUP,
LETGO. The laws governing this world, and the effects of the actions, can be
axiomatised in first-order predicate calculus, of which the following is an
informal translation. We have attempted a consistent use of upper case to
label constants. The reader is not asked to slog through this in detail, but to
try to get the general idea.

If a thing, ¢, is held in a situation, s, and the HAND is at a place, p, inss, then
the thing, ¢, is at p in s.

Iftis at p in s and the HAND is at p in s then a thing taken in s is held after
doing a PICKUP in s.

Nothing is held after doing a LETGO in s.

Iftis at p in s then tis at p after doing a PICKUP in s.

If a thing, ¢, is held in s then t is held after doing a GO to p in s.

If a thing, ¢, is at p in s then the thing, ¢, is at p after doinga GOto p ins.
If a thing, ¢, is not at p in s and ¢ is not held in s then t is not at p after doing a
GO topins.

Iftis at p in s then t is not at p after doing a LETGO in s.

If tis not at p in s then t is not at p after doing a LETGO in s.

tis at BOX1 or BOX2 or the TABLE or the DOOR or OUTSIDE in s.

We can then define the axioms [5] which specify a particular problem.
If a thing, x, is at BOX1 NOW and a thing, y, is at BOX2NOW then either x or y is
a handle.

A thing, A, is at BOX1 NOW.
A thing, B, is at BOX2 NOW.
A thing, C, is at the DOOR NOW.
Nothing is on the TABLE NOW.
If a thing, ¢, is at the DOOR NOW then t is red.
BOX1 is in the room.
BOX2 is in the room.
The TABLE is in the room.
The DOOR is in the room.
If p is in the room then the hand is at p after doinga GO top ins.
If a thing, ¢, is at the DOOR in s and ¢ is a handle then the HAND is at OUTSIDE
after doing a GOOUTSIDE in s.
Nothing is held NOW.
We now pose a problem, as follows:
If a thing, ¢, is OUTSIDE in s and ¢ is red then s is an ‘answer’ situation.
Is there an action-sequence guaranteed to bring about an ‘answer’ situation?

Can a robot be so designed as to be capable of generating valid plans of
action? The nub of this gestion can be re-expressed: ‘Can an algorithm be
specified which will generate and validate such plans?’ The execution of
plans in the real world belongs to the realm of (difficult and interesting)
engineering. We are not concerned with it here.

The first thing to notice is that unaided lookahead techniques are put out
of court by imperfect information (the initial state is not fully specified: we
do not know where the hand is), and by the intrusion of chance moves (the
PICKUP action transfers a randomly selected object from the place where the
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hand is into the hand). Is there an alternative approach sufficiently powerful
to do the job?

The answer is ‘Yes, in principle, but not in practice’. As sketched by
McCarthy & Hayes [6] and implemented by Green [7], the problem of
finding a valid plan can be distinguished as a problem of deduction from the
axioms which describe the problem. In the present case, such a deduction
might lead to (informally):

‘The situation resulting from the sequence
GOTABLE LETGO

GODOOR PICKUP GOTABLE LETGO
GOBOX1 PICKUP GODOOR LETGO

GOBOX2 PICKUP GODOOR LETGO
GOTABLE PICKUP GOOUTSIDE LETGO
GOTABLE PICKUP GOOUTSIDE

is an ““answer”’ situation.’

The trouble is that the best of contemporary theorem-proving strategies are
nothing like adequate to performing such a deduction with an acceptable
expenditure of computing time, and it is arguable that unaided deduction is
inherently inadequate to such a task.

~ An approach under investigation in collaboration with J. A. Robinson
combines the generation of plans with their logical validation. The two
systems are harnessed to work side by side within the same master program.
An automatic rote memory is incorporated which gradually builds up a
dictionary of conjectured and proved solutions to problems and sub-
problems within the task domain. This dictionary represents the system’s
accumulated operational knowledge about the domain and can be regarded
as a growing store of miniprograms for performing tasks in it. Proposals for
enabling the system to generalize over this knowledge, using ‘relational
description matching’ as developed by Ambler, Barrow, Burstall, Popples-
tone, and others, are now being considered.

At the moment the problem-solving work is not being used to control the
actual robot apparatus. Automatic creation of plans is a longer term
enterprise and in the immediate future we intend to program the robot more
directly. But we hope to try out the planning techniques using the hardware
when they have been further developed.

THE PROGRAMMING PROBLEM

Given a computer with a TV camera, a hand and a moveable table as
peripherals with certain manipulative tasks to be performed, one might well
ask “Why not simply program the computer to perform these tasks, just as
one programs a computer with a card-reader and a line-printer to perform a
payroll task?” We believe that even familiar and apparently simple manipu-
lation taks are very difficult to program in the conventional sense of the
term; at best one could devise inflexible programs for a few specific tasks.
The reasons are:
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(1) Imperfect and ambiguous information from the TV camera and other
Sensors;

(2) the tedium of weaving into each part of the program our detailed and
largely subconscious knowledge of physical objects, manipulations and the
laws which govern them.

The robot problem directs our attention to techniques beyond the scope
of classical programming. Two such techniques have been intensively
developed in Artificial Intelligence work: search techniques and logical
inference techniques. We are now beginning to find out how to incorporate
them in programming languages in a really smooth and unified way (for
example the PLANNER language developed at MIT by C. Hewitt [8]).

To incorporate search techniques we discard the notion that there is a
unique next instruction to be obeyed and say execute this instruction or that
instruction (i.e. do the first one but be prepared to back-track and do the
second if things don’t work out). We can use sophisticated heuristic control
to guide the search if we like.

To incorporate inference we realize that evaluating expressions like if on
(x,y) then... can be quite different from evaluating if x>y then..., since it can
make references to a data-base of facts and uses inference rules, either
standard ones such as resolution or ad hoc ones specific to the task. It is most
important that we can now improve our programs piece-meal by adding new
facts and inference rules, instead of trying to program the whole task in one
gargantuan effort.

The theme that has emerged in the last year or so is that search and
inference techniques alone are too weak to perform interesting tasks unless
intimately combined with the full power of a programming langauge.

The language enables us to tell the machine what to do, the search and
inference mechanisms enable us

(1) to avoid spelling out each step in explicit detail (if I say ‘Shut the door’ I
don’t have to tell you to walk to it first), and

(2) to have the machine do a little more than we tell it by piecing together
new plans from given components.

Thus we aim ultimately to develop a teachable system as opposed to one
which has to be programmed monolithically.

EXPERIMENTAL PROGRAMMING

Our aim is to contribute to re-structuring the arts of programming so that
much of what is today done by programmers can ultimately be done by
machines. The science of programming needs, as does any other science,
such as physics, to develop both theoretical and experimental sides. Robot
work is an example of the use of experimental programming to validate
theoretical conjectures and results and to suggest new hypotheses.
Insights acquired in this way are not, of course, to be developed for
ultimate application within the limited domain of laboratory hand-eye
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problems, but hopefully to the design and implementation of real-world
interaction systems which have economic significance, whether factory
assembly, navigational guidance, traffic control, air-line booking, chemical
engineering or other complex commercial systems. It is, however, often
desirable to learn to walk before attempting to run. Approached in this
spirit, the study of laboratory ‘hand—eye’ problems may help lay foundations
on which others can build more ambitious, and more economically appli-
cable, software systems.

ACKNOWLEDGEMENTS

Iwould like to thank my colleagues, Harry Barrow, Rod Burstall and Robin
Popplestone for assistance in writing this paper. The work of our group at
Edinburgh described here has been supported by the Science Research
Council and the General Post Office.

REFERENCES

[1] H. G. Barrow & R. J. Popplestone (1971) Relational descriptions in
picture processing. Machine Intelligence 6 (eds B. Meltzer & D.
Michie), 377-96. Edinburgh: Edinburgh University Press.

[2] H. G. Barrow, A. P. Ambler & R. M. Burstall (1972) Some techniques
for recognising structures in pictures. Proc. Intern. Conf. on Frontiers of
Pattern Recognition, Honolulu, Hawaii-New York: Academic Press.

[3] K. J. Turner (1971) Object recognition tests on the Mark 1.5 robot.
Research Memorandum MIP-R-92. University of Edinburgh: Depart-
ment of Machine Intelligence, School of Artificial Intelligence.

[4] Y. Shirai & M. Suwa (1971) Recognition of polyhedrons with a range-
finder. Proc. Second Intern. Joint Conf. on Artificial Intelligence, 80-7.
London: The British Computer Society.

[S] We also need axioms to do with the consequences of adding to, and
taking away from, finite sets.

[6] J. McCarthy & P. J. Hayes (1969) Some philosophical problems from
the standpoint of artificial intelligence. Machine Intelligence 4 (eds B.
Meltzer & D. Michie), 463-502. Edinburgh: Edinburgh University
Press.

[7] C. Green (1969) Application of theorem proving to problem solving.
Proc. Intern. Joint Conf. on Artificial Intelligence (eds D. E. Walker &
L. M. Norton), 219-39. Washington DC.

[8] C. Hewitt (1970) PLANNER: A language for manipulating models and
proving theorems in a robot. MIT Project MAC AI Memo 168.

See also:

R. M. Burstall (1969) Formal description of program structure and
semantics in first order logic. Machine Intelligence 5 (eds B. Meltzer &
D. Michie), 78-98. Edinburgh: Edinburgh University Press.

R.M. Burstall, J. S. Collins & R. J. Popplestone (1971) Programming in
POP-2. Edinburgh: Edinburgh University Press.



132 INTELLIGENT ROBOTS [Sec. 2

J. E. Doran & D. Michie (1966) Experiments with the Graph Traverser
program. Proc. R. Soc. A, 294, 235-95.

G. W. Ernst & A. Newell (1969) GPS: A Case Study in Generality and
Problem Solving. New York and London: Academic Press.

R. E. Fikes & N. J. Nilsson (1971) STRIPS: A new approach to the
application of theorem proving to problem solving. Proc. Second Intern.
Joint Conf. on Artificial Intelligence, 608-20. London: The British
Computer Society.

D. Michie (1970) Future for integrated cognitive systems. Nature, 228,
717-22, and above, 000-000.

D. Michie (1971) Notes on G-deduction. Research Memorandum MIP-
R-93. University of Edinburgh: Department of Machine Intelligence,
School of Artificial Intelligence.

D. Michie & R. Ross (1969) Experiments with the adaptive Graph
Traverser. Machine Intelligence 5 (eds B. Meltzer & D. Michie),
301-18. Edinburgh: Edinburgh University Press.

A.Newell, J. C. Shaw & H. A. Simon (1957) Preliminary description of
a general problem solving program — I (GPS-1), CIP Working Paper
no. 7. Pittsburgh: Carnegie Institute of Technology.

J. A. Robinson (1965) A machine-oriented logic based on the resolution
principle. J. Ass. comput. mach., 12, 2341,



11

Machines and the theory of
intelligence (1973)

The birth of the subject generally referred to as ‘artificial intelligence’ has
been dated [1] from Turing’s paper [2] Intelligent Machinery written in 1947.
After twenty-five years of fitful growth it is becoming evident that the new
subject is here to stay.

The scientific goal of research work in artificial intelligence is the
development of a systematic theory of intelligent processes, wherever they
may be found; thus the term ‘artificial intelligence’ is not an entirely happy
one. The bias towards artefacts is reminiscent of aerodynamics, which most
people associate with aeroplanes rather than with birds (yet fruitful ornitho-
logical application has been achieved) [3]. Here I shall review briefly some of
the experimental knowledge systems which have been developed, and
indicate how pieces of theory abstracted from these might fit together.

SOME PERFORMANCE SYSTEMS

Game playing was an early domain of interest, and Shannon [4], Turing [5],
and Newell, Shaw, & Simon [6] contributed classic analyses of how
machines might be programmed to play chess. The first significant perfor-
mance system was Samuel’s program [7] for checkers (draughts), which
eventually learned to play at the level of a good county player, far higher
than that of Samuel himself. This last circumstance played a valuable partin
discrediting the cruder manifestations of the doctrine that ‘you only get out
what you put in’.

The fundamental mechanism underlying all this work has been a cycle of
processes: look-ahead, evaluation and mini-maxing. These derive ultima-
tely from a method used to establish a ‘foregone conclusion theorem’ for
such games (two person, zerc sum, perfect information, no chance moves)
which states that the outcome value can be computed on the assumption that
both players follow a (computable) best strategy. For a trivial game, such as
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that schematized in Fig. 11.1(a), the computation can actually be per-
formed: all terminal board positions are assigned values by the rules of the
game, and these are ‘backed up’ by the minimax assumption that White will
always choose the immediately accessible position which has the maximum
value and that Black will select the one with the minimum value. Clearly the
procedure not only demonstrates a theorem but also defines a strategy.

But what is to be done when, as in any serious game, it is not practicable
to look ahead to the end? Turing and Shannon independently suggested
looking ahead as far as practicable, to what may be termed the ‘look-ahead
horizon’, assigning some approximate values to the positions on the horizon
by an evaluation function, and backing these up by the same minimax rule.
The corresponding strategy says ‘choose that immediate successor which has
the highest backed-up value’.

This rule has been proved empirically in numerous game-playing pro-
grams, but in spite of its intuitive appeal it has never been formally justified”.
The question is posed diagrammatically in Fig. 11.1(b).

Search procedures form part of the armoury of the operations-research
man and the computer professional. Stemming from such work as Samuel’s,
people concerned with game playing and problem solving have imple-
mented mechanisms for guiding the search, first, by forming sub-problems
[8] or, second, by making heuristic estimates of distance-to-goal [9]. Various
theorems have established conditions under which such techniques can be
used without sacrificing the certainty of termination or the optimality of the
solution found [10,12,13].

The use of an ‘evaluation function’ to guide the search is a way of
smuggling human ad hoc knowledge of a problem in through the back door.
There is no cause to disdain such a route; it is after all one of the principal
channels through which natural intelligences improve their understanding of
the world. At the same time automatic methods have been developed for
improving the reliability with which problem states are evaluated [11].

Samuel’s early work on game-learning [7] indicated that seemingly
pedestrian mechanisms for the storage and recall of previously computed
results can have powerful effects on performance. Recently the combination
of rote learning schemes with heuristic search has been shown to have
applications to plan formation in robots [13,14]. To exploit the full power of
this combination, whether in game-playing, in robotics, or in other appli-
cations, one would like the rote dictionary to contain generalized descrip-
tions of ‘concepts’ (for example, of classes of game-positions ‘essentially
similar’ from a strategic point of view) to be looked up by processes of
recognition, rather than by point-by-point matching. Such a dictionary is to
be used in the style: ‘If the situation is of type A, then perform action x, if of
type B, then action y’, and so on. One is then in effect processing a ‘decision
table’ which is formally equivalent to a computer program. There is thus a
direct link between work on the automatic synthesis of strategies in game
playing and robotics, and work directed towards automatic program-writing
in general.

*Beal and Bratko have recently proved sufficient conditions (in Advances in Computer Chess,
Vol. 3, Pergamon, 1986).
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Fig. 11.1 — (a) The root of this two-level look-ahead tree acquires a value by
alternate application of the ‘max’ and ‘min’ functions. If alternation is extended
backwards from all terminal positions of the game tree, the initial position of the
entire game will ultimately be assigned a value. Terminal positions are shown as
boxes. (b) Look-ahead tree in which the nodes are marked with ‘face values’ (bars
over negative values). Boxed figures are values backed up from the look-ahead
horizon. If move-selection were decided by face values, then move A would be
chosen, but if backed-up values then move B. What is the rationale for B?

Recognition usually involves the matching of descriptions synthesized
from sensory input with stored ‘canonical’ descriptions of named objects,
board positions, scenes, situations and so on. Choice of representation is
crucial. At one extreme, predicate calculus [15] has the merit of generality,
and the demerit of intractability for updating and matching descriptions of
objects, positions, scenes or situations; at the other extreme lie simple ‘state
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vector’ representations, which fall down through awkwardness for handling
complex inter-relationships. Somewhere in the middle lies the use of
directed labelled graphs (‘relational structures’, ‘semantic nets’) in which
nodes stand for elements and arcs for relations. Impressive use of these
structures has been made in a study of concept formation in the context of
machine vision [16].

Language interpretation has been the graveyard of many well-financed
projects for ‘machine translation’. The trouble proved to be the assumption
that it is not necessary for the machine to ‘understand’ the domain of
discourse. One of the first demonstrations of the power of the semantic
approach in this area was Bobrow’s STUDENT program [17] for answering
school algebra problems posed in English. A program by Woods, Kaplan
and Nash-Webber [18] for the interrogation in English of a database with a
fixed format has been used by NASA scientists to answer questions about
Moon rocks. An essay by Winograd [19] on computer handling of English
language dialogue, again making intensive use of an internal model of the
dialogue’s subject matter, has left no doubt that machine translation can
only be solved by knowledge-based systems. The knowledge base required
to render arbitrary texts non-ambiguous is now recognized to be bounded
only by the knowledge possessed by their authors. Winograd compares the
following two sentences:

The city councilmen refused to give the women a permit for a
demonstration because they feared violence.

The city councilmen refused to give the women a permit for a
demonstration because they advocated revolution.

The decision to refer ‘they’ to ‘councilmen’ in the first case and to
‘women’ in the second implies a network of knowledge reaching into almost
every corner of social and political life.

Mass spectrogram analysis was proposed by Lederberg as a suitable task
for machine intelligence methods. The heuristic DENDRAL [20] program
developed by him and Feigenbaum now outperforms post-doctoral chemists
in the identification of certain classes of organic compounds. The program is
a rich quarrying-ground for fundamental mechanisms of intelligence,
including the systematic conjecture of hypotheses, heuristic search, rote
learning, and deductive and inductive reasoning. I shall refer back to this
work later in connexion with the use made by intelligent systems of stored
knowledge.

Of all the knowledge systems which have been attempted, robotics is
perhaps the most simple in appearance. In reality, however, it is the most
complex. The chess amateur can appreciate that Grandmaster chess has
depth and subtlety. But there is no such thing as a human amateur at tasks of
navigation and ‘hand-eye’ assembly. Every man is a Grandmaster at these
tasks, having spent most of his waking life in unwitting but continual
practice. Not having been informed that he is a Gramdmaster, and having
long since stored most of his skill at a subliminal level, he thinks that what
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seems subjectively simple is objectively so. Experience of research in
robotics is a swift and certain cure. Something of the depth of analysis which
is required can be gleaned from the discussion by McCarthy & Hayes [21] of
the properties which should be possessed by a calculus of situations, actions
and causal laws.

The crux of any such calculus is how to represent in a formal language
what the robot knows about its world. McCarthy & Hayes distinguish
‘epistemologically adequate’ and ‘heuristically adequate’ representations.
(In an earlier generation Ryle [22] contrasted ‘knowing that’ and ‘knowing
how’.) ‘“The epistemological part is the representation of the world in such a
form that the solution of problems follows from the facts expressed in the
representation. The heuristic part is the mechanism that, on the basis of the
information, solves the problem and decides what to do.’

I shall consider now what is probably the simplest world to be seriously
discussed, that of Popplestone’s ‘blind hand’ problem (internal report,
Department of Machine Intelligence, Edinburgh), with the object of indi-
cating that there is more to robot reasoning than meets the eye, and
expanding a little the epistemological-heuristic distinction.

A blind, insentient, robot shares with one or more ‘things’ a world
consisting of only two places, ‘here’ and ‘there’, and has available to it the
actions ‘pickup’, ‘letgo’ and ‘go’. ‘Pickup’ is non-deterministic and causes (if
the hand is empty when the action is applied) a ‘thing’ selected at random
from the place where the robot is, to acquire the property ‘held’. An initial
situation called ‘now’ is defined, in which it is asserted that everything at
‘here’ (and there is at least one such) has the property ‘red’. A goal situation
is defined as one in which at least one red thing is at ‘there’.

INVARIANT FACTS AND LAWS

The kinds of facts which the robot needs to know include that the robot and
anything held by it must be in the same place, and that something cannot be
in both places at once. Using a prescription of Green [23], a formalization of
this apparently trivial problem in first order logic might start along the
following lines. (The variables t, p and s are to be interpreted as standing for
objects, places and situations respectively.)

for all t,p,s: held(thing(?),s) and at(thing(¢), p,s) implies
at(robot, p,s),

for all t,p,s: held (thing(?),s) and at(robot,p,s) implies
at(thing(?),p,s),

for all p,s: at(robot,p,s) implies at(thing(taken(s)),p,s),
for all t,s: at(t, here,s) implies not at(t, there, s).

The conjunction of these statements describes some of the physics of this
world. The last statement, for example, asserts that an object cannot be both
at ‘here’ and at ‘there’ in one and the same situation.

The initial situation, ‘now’, is described in like manner:
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for all t: at(t, here, now) implies red(t), at(thing (a), here, now).

The latter statement merely asserts that at least one thing (represented
by the constant (a) is at ‘here’ in situation ‘now’. The function ‘thing’ is a
convenience for distinguishing other objects from the robot, whom we may
wish to exclude from some otherwise universal statements — like one
implying that the robot is ‘held’, for instance.

How can the machine be enabled to reason about the chains of possible
consequences derivable from ‘now’ and so to construct an action chain
leading to a goal situation? The goal may be defined, using Green’s ‘answer’
predicate [24], as:

for all t, s: at(s, there, s) and red(¢) implies answer(s).

But how do we handle the actions? The contrast between epistemological
and heuristic criteria becomes very sharp at this point. Consider two
approaches.

One can go the whole way and stick to formal logic, defining the
transition laws of our world under the various actions. For example, the first
of the following three ‘letgo’ axioms translates freely ‘in the situation
produced by doing a “letgo”, nothing is held’:

for all t, s: not held (thing(¢), do(letgo, s))
forall t,p,s: at(t,p,s) implies at(t, p, do(letgo, s))
for all t,p,s: not at(t,p,s) implies not at(t, p, do(letgo, s))

and similarly for the other actions.

Now the problem of plan construction is reduced to one of logical
deduction, in fact deduction of the statement ‘answer (do(go(there),do-
(pickup,do(go(here),do(letgo,now)))))’. This says, in English, that ‘the
goal situation is the one resulting from doing a “go there” in the situation
resulting from doing a “pickup” in the situation resulting from doing a “go
here” in the situation resulting from doing a ““letgo” in the situation “now””’,
and it is clear how this can be reinterpreted as an algorithm.

This deduction can in principle be mechanized, but there are two severe
snags. First, the need to incorporate ‘frame axioms’ [24,25] (which spell out
all the facts which remain unchanged after the performance of given actions,
as in the last logic statement above) escalates for nontrivial problems and
renders the automatic deduction process intractable even in the present toy
problem. Second, the logic representation is not heuristically adequate.

On the other hand, one can go to the other extreme, and express the
whole problem as a computer simulation couched in a suitable programming
language, matching situations with data structures and actions with pro-
cedures. But this approach encounters difficulties with the epistemological
criterion, for the structure of the problem world can be readily complicated
so that it can no longer easily be described by the use of simple represen-
tations of the ‘state vector’ type. Various attacks are being made on the
representation problem in an attempt to make the best of both worlds, the
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epistemological and the heuristic. Some good early suggestions were made
by Popplestone, using essentially the same blind hand problem, and were
reviewed in Nature [27] two years ago. Since then powerful new program-
ming aids, such as the PLANNER (28], QA4 [29] and CONNIVER [30]
languages have come into play. In addition particular mention should be
made of the Stanford Research Institute’s study of autonomous plan
formation [14,15], in which many of the matters discussed above have been
under experimental investigation.

The key ideas on which much work centres is that plan construction
should be conceived as a search through a space of states of knowledge to
generate a path connecting the initial knowledge state to one which satisfies
the goal definition. Everything turns on finding ways of representing
knowledge states so that the transformation of one into another can be
neatly computed from the definition of the corresponding action (‘What will
I know about the state of affairs after doing A?”).

EXPERIMENTAL ROBOTICS

The STRIPS system [14,15] at Stanford Research Institute combines rea-
soning in first-order predicate calculus with heuristic search. In the situation
depicted in Fig. 11.2 the robot must devise a plan for pushing objects around

RI J_RZ
wedge Dl box 2
— D3 + T — D2
box 1
o l'ObOt D
R3

Fig. 11.2 — Robot environment for a constant problem [31].

so that one of the boxes ends up in room R1, subject to the constraint that at
no time must the wedge be in the same room as a box. If the plan goeswrong,
the system must be capable of recovering from error state and, if possible,
‘mending’ the failed plan appropriately. Facilities are incorporated whereby
successful plans are automatically ‘remembered’ and their elements recom-
bined for use in appropriate future situations [14].

Following simultaneous development of the idea of optical ranging in
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Japan [32], Britain (R.J. Popplestone, personal communication) and
America [33], Stanford University’s robot project uses a laser optical
ranging system for mapping the three-dimensional surfaces of ‘seen’ objects.
Another branch of the same project is currently able to assemble an
automobile water pump comprising two pieces, a gasket and six screws
(J. Feldman, personal communication). This is done blind, using mechani-
cal feedback.

At Edinburgh automatic assembly is also under study. Programs exist
for packing simple objects onto a confined surface, identifying a limited set
of objects by visual appearance, and solving problems of stacking rings on
pegs [34].

In industrial laboratories, notably in America (for example, the Charles
Stark Draper Laboratory of MIT) and Japan [35], automatic assembly
studies are multiplying.

IDEA OF A THEORY

I have already mentioned the abstracting of pieces of theory from perfor-
mance systems such as those listed above. What is meant by ‘theory’ in this
context? I have just considered a fragment of simple robot world theory, and
one can, of course, speak of a piece of chess end-game theory (for example,
that expressed by Tan’s program [36] for the two-kings-and-one-pawn end-
game) or of the theory of mass spectrometry embedded in the heuristic
DENDRAL program. One can even legitimately speak of Winograd’s
program as constituting a linguistic theory, or at least as containing or
implying one. But these theories are descriptive of specific domains, not of
intelligence itself.

It would be naive to pretend that the search for a meta-theory is
something new, or even that it is anything but old philosophy in new dress.
An early name suggested for what is now ‘artificial intelligence’ was
‘epistemological engineering’ (P. M. Woodward, personal communica-
tion). The new epistemology, however, has a trick which the old philoso-
phers lacked, namely to express any given theory (of knowledge, reasoning,
abstraction, learning and the like) in a sufficiently formal style to program
and test it on the machine.

Hence there is no longer a meaningful distinction to be drawn between a
theory of some given intelligent function, and an algorithm for carrying it
out (which could in turn be converted into a program for some particular
machine) together with any useful theorems for describing the algorithm’s
action. Algorithms, then, are theories, and this has been true for along time.
But there have been no reasonable mechanisms available for handling them.
Mathematics, on the other hand, has had the necessary mechanisms for
manipulating the formalisms which it uses for describing physical systems.
Hence closed-form mathematics has been the ‘typical’ embodiment of
theory in the physical sciences. By contrast, the ‘typical’ embodiment of
theory in cognitive engineering is algorithmic.
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WHAT USE IS KNOWLEDGE?

The value of stored knowledge to a problem-solving program again divides
into epistemological and heuristic parts. In the first place sufficient know-
ledge must be present for solutions to be in principle deducible. But that is
only the start. Heuristically, the value of knowledge is that it offers ways of
avoiding, or greatly reducing, processes of search. The natural enemy of the
worker in the field of artificial intelligence is the ‘combinatorial explosion’,
and almost his entire craft is concerned with ways of combating it. The
following three examples illustrate the use of stored knowledge to damp off
combinatorial explosions.

First, Tables 11.1 and 11.2 show the number of combinatorially possible

Table 11.1 — A labelling scheme [43]

1 Convex edge

2 Obscuring edges — obscuring body lies to

3 right of arrow’s direction.

Cracks — obscuring bodly lies to right of ar-
row’s direction

]

6
Shadows — arrows point to shadowed region
7
8 Concave edge
9
Separable concave edges — obscuring body
10 lies to right of arrow’s direction — double
arrow indicates that three bodies meet
11 along the line.

ways in picture-processing of labelling various patterns of intersecting lines,
contrasted with the number that are physically possible on the assumption
that they arise in retinal projections of three-dimensional scenes composed
of plane polyhedral bodies, such as that shown in Fig. 11.3(a). The com-
puter program achieves this order of reduction by the use of an appropriate
theory. Here I shall review briefly a subset of the theory, adequate for
interpreting line drawings of plane-surfaced polyhedra, with trihedral ver-
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Table 11.2 — Comparison of number of combinatorially possible labellings
with the number that are physically possible [43]

Approximate number Approximate number
of combinatorially of physically
possible labellings possible labellings

N 2500 80
% 125000 70
—< 125000 500
\( 125000 500
W 6x10° 10
>L 6x10° 300
AV 6x108 100
>< 6x10° 100
>< 6x10° 100
AZ 6x10° 30

tices only and without shadows. In this way the flavour can be imparted of
the kind of reasoning involved in more complex cases.

Each line in such a drawing can be assigned to one or another of various
possible causes: it corresponds to a convex edge, a concave edge, or to an
edge formed by two surfaces, only one of which is visible. A corresponding
label can be attached to each line, as has been done in Fig. 11.3(b) using
Huffman’s conventions [37]. The remarkable fact emerges from Huffman’s
analysis that only a few of the combinatorially possible ways of labelling such
drawings correspond to physically possible structures in the outside world:
only twelve distinct configurations of lines around vertices are possible. A
computer program can use the theoretical constraints to process the picture,
by searching through the space of possible labellings for those which are
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Fig. 11.3 — (a) A complex three-dimensional scene. (b) Huffman labels for a cube.

Plus implies a convex edge, minus implies concave, and an arrow implies that only

one of the edge-forming surfaces is visible The cube is assumed to rest on a plane
surface.

legal (i.e. do not entail that any line should receive two different labels)
under the constraints.

Second, Table 11.3 contrasts the number of topologically possible mole-
cular graphs corresponding to given empirical formulae with the number of
candidate interpretations remaining after the heuristic DENDRAL pro-
gram has applied its stored theory of chemical stability. The program
constructs, using evidence of various kinds, a GOODLIST of substructures
which must appear in any structure hypothesized by the program and a
BADLIST of substructures which must not appear. As a simple example, at
a given stage down a search tree might be the partial hypothesis
—CH;—O—CH,— and a possible next move for the structure-generator
procedure might be to attach a terminal carbon, forming
—CH;—O—CH;—CHj. But unless the data contains peaks at mass 59 and
at the molecular weight minus 15 this continuation is forbidden. Again, the
structure-generator can be made to handle as a ‘super-atom’ a fragment
indicated by the mass spectrum. Additional opportunities to do this arise
when the presence of methyl super-atoms can be inferred from nuclear
magnetic resonance data, when available.

Third, McCarthy’s problem of the mutilated checkerboard [38] is quint-
essential to the point here discussed. The squares at opposite corners of an
8x8 checkerboard are removed, leaving sixty-two squares. Thirty-one
dominoes are available, each of such a size and shape as to cover exactly two
adjacent squares of the checkerboard. Can all the sixty-two squares be
exactly covered by some tessellation of the thirty-one dominoes?

However sophisticated the search procedure which a heuristic program
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Table 11.3 — Comparison of the number of topologically possible molecu-

lar graphs corresponding to given empirical formulae with the number of

candidate interpretations remaining after the heuristic DENDRAL pro-
gram has applied its stored theory of chemical stability

Number Number of
of inferred isomers
isomers A B
Thiol 1-nonyl 405 89 1
n-decyl 989 21 1
n-dodecyl 6045 1238 1
Thioether di-n-pentyl 989 12 1
di-n-hexyl 6045 36 1
di-n-heptyl 38322 153 1
Alcohol n-tetradecyl 38322 7639 1
3-tetradecyl 38322 1238 1
n-hexadecyl 151375 48865 1
Ether di-n-octyl 151375 780 1
bis-2-ethylhexyl 151375 780 21
di-n-decyl 11428365 22366 1
Amine n-octadecyl 2156010 48865 1
N-methyl-n-octyl-n-nonyl 2156010 15978 1
N,N-dimethyl-n-octadecyl 14715813 1284792 1

A, Inferred isomers when only mass spectrometry is used; B, Inferred isomers when the
number of methyl radicals is known from nuclear magnetic resonance data [20].

might use to attack this problem by trial and error, the combinatorics of the
problem will defeat it. If the reader is unsure of this, let him mentally enlarge
the board to say, 80x80, or 108x108. But so long as the dimensions of the
board are both of even or both of odd length (such boards are called ‘even’

“boards) then the problem stays the same for any solver armed with certain
crucial pieces of knowledge, namely: that the two squares which are
removed from opposite corners of an even board must be of the same colour,
and that each domino must cover exactly one white and one black square.
The problem now falls apart. The mutilated checkerboard cannot be
covered.

To discover formal schemes within which such key facts can automati-
cally be mobilized and their relevance exploited in an immediate and natural
fashion is closely bound up with what was earlier referred to as ‘the
representation problem’. A familiar example is that certain representations
of the game of Nim trivialize the calculation of a winning strategy; but the
program capable of inventing such representations is yet to be devised.

PROGRESS TOWARDS AN ICS

Two years ago I discussed in Nature [27] the possibility of implementing in
software an Integrated Cognitive System (ICS). The attainment on a
laboratory scale of a ‘working model’, it was suggested, could be used as an
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indicator of ultimate feasibility. A working model of an ICS, as a minimal set
of requirements, should be able: to form an internal representation of its
task environment, summarizing the operationally relevant features; to use
the representation to form plans of action, to be executed in the task
environment; to perform directed perceptual sampling of the environment
to switch execution along conditional branches of the plan; to recover from
error state when execution fails; to cope with complex and ill-structured
environments; to be told new goals and to work out its own approaches to
them; and to use the record of past failures and successes to revise and
extend the representation inductively.

A computer program which was not able to do most of the above,
however excellent a feat of software technology it might be, would not count
as an artificial intelligence program. The guidance software for the Apollo
on-board computer, written for NASA by Draper Laboratories (J. Moore,
privately circulated report, Department of Computational Logic, Univer-
sity of Edinburgh) and charged with the task of getting the spacecraft to the
Moon and back, is disqualified on this criterion. On the one hand, it is an
acknowledged masterpiece, and on the other, in common with other and
lesser automatic control systems, it scores a significant mark only for the
third item in the above list.

The on-board computer does not need to plan because hand-coded
routines have been provided for all probable situations — analogous,
perhaps, to the elaborate, but essentially reflex, nervous system of an insect.
The reason for regarding the Apollo on-board system as sub-intelligent is
thus concerned with the nature of the internal model which it has of its
environment. More than a quarter of a century ago Craik [39] first called
attention to the crucial role in thought and perception of internal models.
The world of the Apollo computer is so simple and determinate that its
behaviour can be completely characterized by computationally simple
equations. These equations, which comprise the system’s ‘internal mode!’ in
Craik’s sense, capture the dynamics of all possible configurations of the
objects of its world, and supply all information needed about their interac-
tions and properties.

But consider the mission: not to go to the Moon and back, but the much
harder one of going down to the tobacconist and back. By contrast with the
space mission, the task environment is exceedingly complex and ‘messy’ and
the unexpected lurks at every point of the route (the stairs may be swept,
unswept, blocked ..., the front door may be open, shut, locked ..., the
weather may be bright, dull, wet, windy ... and so on). Alternatively, and
only a little less taxing (at least the environment does not contain other
autonomous beings to worry about), consider the mission of a Mars Rover
vehicle, such as that already envisaged by NASA [40] and by the space
section of the USSR Academy of Sciences (N. Zagoruiko, personal commu-
nication). Arising from the fact that it is not possible to pre-program
solutions to all problems which might arise while exploring an unknown
terrain, a specific ten-year programme of machine intelligence research is
regarded as a necessary preliminary condition for putting such operational
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vehicles into commission. Note that if such a vehicle is to handle all the tasks
of autonomous exploration, and assembly and use of instruments, which will
be demanded of it, then it must score seven out of seven on the criteria posed
earlier.

That achievement lies in the future. How do matters stand today with
regard to ‘working models’? Each of the seven capabilities listed can now be
found in one or another experimental system, and there are some systems
which exhibit many, or even most, of them. Unfortunately the most
interesting capability of all, central to the phenomenon of intelligence, is the
one which is still the least well understood, namely inductive generalization.
Yet significant progress has been made [11,31].

In summary, incomplete systems are becoming commonplace and com-
plete ‘working models’, at the most primitive level, now seem not very far
off. The likely technological lag before such systems might be upgraded to
near-human intellectual performance is a topic for separate consideration.

IMPLICATIONS AND FORECASTING

It would plainly be desirable to find some objective basis for predicting the
rate of development and social impact of machine intelligence. An objective
basis is lacking at present and it is only possible to record samples of
subjective opinion and to categorize lines of enquiry which more objective
studies might follow. Fig. 11.4 summarizes some of the results of an opinion
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Fig. 11.4 — Opinion poll on machine intelligence. Estimated number of years

before: , computing system exhibiting intelligence at adult human level;

————— , significant industrial spin-off; — - — - —, contributions to brain studies; - ----
-, contributions from brain studies to machine intelligence.

poll taken last year among sixty-seven British and American computer
scientists working in, or close to, the machine intelligence field.

In answer to a question not shown in Fig. 11.4, most considered that
attainment of the goals of machine intelligence would cause human intellec-
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tual and cultural processes to be enhanced rather than to atrophy. Of those
replying to a question on the risk of ultimate ‘takeover’ of human affairs by
intelligent machines, about half regarded it as ‘negligible’, and most of the
remainder as ‘substantial’ with a few voting for ‘overwhelming’.

A working party recently convened under the auspices of the Rocke-
feller Foundation at Villa Serbelloni, Lake Como, on June 11 to 15, 1972,
considered the gradations through which complex information systems
might evolve in the future, ranging from contemporary industrial control
systems, and ‘data look-up’ retrieval, to autonomous computer networks
developed for controlling urban functions (telephones, electricity distribu-
tion, sewage, traffic, police, banking, credit systems, insurance, schools,
hospitals, and so on). The backbone of such systems will develop anyway, by
straightforward elaboration of conventional computing technology, includ-
ing the integration of the various computational networks into total systems.
It seems likely that such systems will also ultimately incorporate auton-
omous planning and decision-taking capabilities, derived as ‘spin-off’ from
developments based on artificial intelligence in, for example, space and
oceanographic robotics. A danger could then arise of city dwellers becoming
dependent on systems which could no longer be fully understood or
controlled. Counter-measures to such dangers might include the introduc-
tion of auditing procedures for computer programs, research on program-
understanding programs, and system-understanding systems generally, and,
finally, the advent of programs to teach the users of intelligent systems.

On the other side of the balance sheet, the working party took prelimi-
nary note of several anticipated benefits. The mechanization of industrial
production has been associated in the past with the imposition of a deaden-
ing uniformity of design. Automated intelligence in the factory could offer
the possibility of restoring the diversity and the ‘one-off’ capability originally
associated with human craftmanship. Related to this is the introduction of
computer aids for the artist, composer, writer, architect and mathematician.
Even the ordinary hobbyist might be enabled to perform feats which would
today seem daunting or bizarre — building his own house, publishing his
own writings, for example. The possible effects on computer-aided edu-
cation have been stressed by others [42]. Advances in this area will be of
value not only to the young but also to older people as a means of acquiring
new skills.

The formulation of an outline scheme of topics, and the compilation of
relevant documents, represents an early stage of a study expected to occupy
a number of years. Technical developments which occur in the intervening
period will doubtless give such studies a firmer basis.
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Knowledge engineering (1973)

A widespread theme in artificial intelligence is an interest in problem-
solving mechanisms. One can relate this to automatic program-writing: will
computers ever be able to write their own programs to a significant extent?
The topic is beginning to enjoy a considerable vogue in America, where
there tend to be two directions of approach. On the one hand there is the
approach through computation theory, and on the other hand there is the
artificial intelligence approach via study of how knowledge can be rep-
resented and used in the machine. Signs of merging of approaches are
already apparent. A recent advance by Boyer & Moore, [1] working in
Professor Meltzer’s Department of Computational Logic at Edinburgh,
demonstrates automatic methods for proving LISP programs. Their pro-
gram, as well as writing new programs on its own account, uses generaliza-
tion and generates its own induction hypotheses — true elements of
‘knowledge engineering’.

THE KNOWLEDGE APPROACH

In the knowledge approach we distinguish three levels, as indicated in Table
12.1.

The lowest level is the one at which AI programmers are still struggling
today. The highest level of all, a long way from attainment, is a ‘knowledge
machine’ able to find out how to do things by reading books — how to play
better chess by reading books, how to build model aeroplanes by reading the
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Table 12.1 — Three levels at which task-specific knowledge can in principle

be got into the machine. The arrow indicates the desired extension of

technique for ‘hand-eye’ vision and assembly tasks

. Transfer (by pro-
grammer) of algor-

ithmic  knowledge
from book +pro-
grammer into pro-
gram

. Generation (by ma-
chine) of descrip-
tions and generation
(by machine) of ac-
tion-scheme se-
quences (plans), e.g.
to bridge gaps in
book knowledge

. Acquisition (by ma-
chine) of algorithmic
knowledge by read-

Chess

Program  executes
standard end-games
strategies  (Huber-
man [2], Tan [3])

Program uses given
knowledge plus si-
mulated playing ex-
perience to extend
end-game  theory
(i.e. generate end-
game strategies de
novo)

Program improves
its play by reading
chess books

Assembly

Program takes kit of
parts and makes mo-
del car (e.g. Michie
etal. [4])

Program uses in-
structions and dia-
grams to make mo-

Chemistry

Program interprets
mass spectrograms
(Feigenbaum et al.

(5D

Program  extends
theory of molecular
bond stability in light
of example identifi-
cations (Buchanan et
al. [6])

Program copes with
new families of com-
pound by looking up

ing books del car chemistry texts

written instructions and diagrams, how to fashion furniture by reading
cabinet-making manuals, how to interpret mass spectrograms by reading
chemistry textbooks, and so forth. The obstacles to their doing this are not
purely linguistic, but are to do with the need for machine ‘understanding’ of
the book’s subject-matter.

Level 3 clearly demands mastery of computational linguistics (and much
else besides). Terry Winograd’s success [7] at MIT with his ‘blocks world’,
and his computer program which discourses convincingly about this world in
plausible English, encourages the belief that ‘doing a Winograd’ for more
complex worlds, such as those of chess, hand-eye assembly, or chemistry,
will come within reach. What is very clear from his work is that linguistic
success can only be built on a thoroughly engineered knowledge system for
the domain concerned.

KNOWLEDGE ABOUT CHESS

To get the flavour of level-1 programming in chess, Dr Soei Tan in our
Department has recently transferred into program the knowledge about
king and pawn vs king endings which is contained in a few pages of text in the
classical chess books. It turns out that there is much more to transferring
such material into program than meets the eye. The main reason is that most
of the knowledge which ought to be in the book looks at first sight as though
it’s there, but turns out on closer scrutiny to be largely missing. The book, of
course, is written not for a machine but for an intelligent human reader, who
can be guaranteed to ‘bridge the gaps’ by referring to his own understanding
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of the problem. In the process of bridging the gaps for the computer, Tan
found that he had to extend the theory of King and pawn end-games, and
that level-2 problems, connected with abstraction and learning from exam-
ples, cannot be postponed if efficient level-1 processes are to be devised.
One of the first tasks given to the chess beginner is to master certain
elementary strategies for checkmate. Chapter 1 of Reuben Fine’s Basic
Chess Endings deals with (1) Qand K vs K, (2) Rand K vs K, (3)2B’sand K
vs K, (4) B, Kt and K vs K. This entire chapter occupies only six pages of
explanatory text and diagrams. Yet the problem of transferring just (2), (3),
and (4) — four pages of the book — into program sustained a three-year
PhD study by Barbara Huberman [2]. The difficulty is connected with the
fact that the human reader of Fine’s book brings to it a considerable prior
body of knowledge, while Huberman had to write her programs for a system
containing no pre-existing knowledge of any aspects of chess at all. The
connection between ease of transfer of knowledge from a book and the
possession of prior knowledge by the target system can be illustrated in an
extreme fashion by asking the reader to imagine tryingtolearnR and Kvs K
without even knowing the rules of chess armed only with Fig. 12.1 and the

Fig. 12.1 — The ending Rook and King against King.

following text from Capablanca): The principle is to drive the opposing King
to the last line on any side of the board.  In this position the power of the
Rook is demonstrated by the first move, R-R7, which immediately confines
the Black King to the last rank, and the mate is quickly accomplished by: 1
R-R7,K-K1;2 K-Kt2 ...

(The combined action of King and Rook is needed to arrive at a position
in which mate can be forced. The general principle for a beginner to follow is
to keep his King as much as possible on the same rank, or, as in this case, file,
as the opposing King. When, in this case, the King has been brought to the
sixth rank, it is better to place it, not on the same file, but on the one next to it
towards the centre.)

2 ...K-B1;3 K-B3, K-K1; 4 K-K4, K-0Q1; 5 K-QS, K-B1; 6 K-Q6 ...
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(Not K-B6, because then the Black King will go back to Q1 and it will take
much longer to mate. If now the King moves back to Q1, R-R8 mates at
once.)
6...K-Ktl; 7 R-QR7, K-R1; 8 K-B6, K-K1; 9 K-Kt6, K-R1; 10 R-B8
mate.

It has taken exactly ten moves to mate from the original position. On
move 5 Black could have played K-K1, and, according to principle, White
would have continued 6 K-Q6, K-B1 (the Black King will ultimately be
forced to move in front of the White King and be mated by R-R8), 7 K-K6,
K-Kt1; 8 K-B6, K-R1; 9 K-Kt6, K-Kt1; 10 R-R8 mate.

The problem of developing a super-teachable programming system in
which Huberman’s accomplishment would be, say, a three-day instead of a
three-year task shades into the problem of endowing a program with so
much prior understanding of chess that it would be capable of doing the
whole Huberman’s job for her — synthesizing strategies (2), (3), and (4) de
novo. R. Ross and I are starting to look at what might be involved in such a
feat, using a ‘search-memorize-generalize’ scheme described elsewhere [8].

KNOWLEDGE ABOUT ‘HAND-EYE’ ASSEMBLY

Similar issues are raised by work with ‘hand-eye’ robots, such as Edin-
burgh’s FREDDY. This project, under Dr R. M. Burstall’s supervision, has
reached the stage where the user can in a few hours transfer to the machine
his knowledge about how to recognize the parts of a construction kit and
how to assemble them to make, say, a toy car. At the end of this ‘teaching’
phase the robot is able to perform the desired assembly, using its TV ‘eye’
and mechanical ‘hand’, with fair reliability. Once again, further streamlining
of the man-machine process demands methods by which the machine can fill
in the gaps in what its instructor tells it. Mechanizing this gap-filling process
is of course a particular instance of the automatic programming problem. R.
J. Popplestone [9] is developing just such a system with reference to fairly
complex robot movements, for example fitting a rod into a socket, subject to
various constraints.

Experimental robotics, to which Robin Popplestone’s study belongs,
involves the wider international scene of Al in its relationship to technology.
The broad spectrum of this relationship was reviewed in the USA at the
recent ‘First National Conference on Remotely Manned Systems (RMSY’
which included an AI forum to consider such questions as: what kind of
advice can an Al researcher provide to the RMS designer? When should a
system designer expect to be able to use Al results? Are there likely to be
any software packages for other users coming out of Al laboratories? What
is the adaptability potential to other workers of high-level software such as
LISP or PLANNER? Should there be a field of applied Al that bridges the gap
between the Al laboratory and other engineering laboratories? And finally,
what relationship should there be between AI and other engineering
disciplines, for example control theory, material science, etc.?
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Martin Levine (McGill) and Meir Weinstein [10] (Cal Tech) have written
the following summing up of the forum’s outcome:

‘It seems that the field of artificial intelligence could be a rather
large source of support to other disciplines. It can support with
know-how particularly with regard to robotics, manipulators and
sensors. Al has developed and is developing new concepts in
software which could also be extended and used in other
disciplines.’

MACHINE-ORIENTED NOTATIONS

Associated with this new technology are certain scientific and philosophical
issues. I believe that we are seeing, not only in Al but in Computer Science
more generally, the emergence of new techniques for handling our internal
intellectual models of the world in symbolic forms. Among past revolutions
of this kind one might instance the invention of writing and the introduction
of algebra. Machine-oriented notations for describing our messy and com-
plex surroundings are now arising from pressures exerted by Al research for
more flexible programming languages: LISP, POP-2, PLANNER, SAIL, QA4,
CONNIVER, and others. Ultimately, perhaps in radically modified form,
these innovations will reach the market place, as has already occurred in the
case of POP-2. But the point of origination has been in almost every case
academic.

REFERENCES

[1] R. S. Boyer & J. S. Moore (1973) Proving theorems about LISP
functions Memo 60. University of Edinburgh: Department of Compu-
tational Logic.

[2] B.J. Huberman (1968) A program to play chess and games. Technical
Report no. CS 106. Stanford University: Computer Science
Department.

[3] S. T. Tan (1972) Representation of knowledge for very simple pawn
endings in chess. Research memorandum MIP-R-98. University of
Edinburgh: Department of Machine Intelligence.

[4] D. Michie, A. P. Ambler, H. G. Barrow, R. M. Burstall, R. J.
Popplestone & K. J. Turner (1973) Vision and manipulation as a
programming problem. Proc. First Conf. in Industrial Robot Techno-
logy, 185-9. Nottingham: University of Nottingham.

[5] E. A. Feigenbaum, B. G. Buchanan & J. Lederberg (1971) On
generality and problem solving: a case study using the DENDRAL
program. Machine Intelligence 6 (eds B. Meltzer & D. Michie),
165-90. Edinburgh: Edinburgh University Press.

[6] B. G. Buchanan, E. A. Feigenbaum & N. S. Sridharan (1972) Heuris-
tic theory formation: data interpretation and rule formation. Machine



Ch. 12] KNOWLEDGE ENGINEERING 155

Intelligence 7 (eds B. Meltzer & D. Michie), 167-90. Edinburgh:
Edinburgh University Press.

[7] T. Winograd (1971) Procedures as a representation for data in a
computer program for understanding natural langauge. MIT thesis,
reprinted in revised form as MAC-TR-84, MIT Project MAC; also available
as Understanding Natural Language, Edinburgh: Edinburgh Univer-
sity Press (1972).

[8] D. Michie (1971) Formation and execution of plans by machine.
Artificial Intelligence and Heuristic Programming (eds N. V. Findler &
B. Meltzer), 101-24. Edinburgh: Edinburgh University Press.

[9] R. J. Popplestone (1973) Solving equations involving rotations. Re-
search Memorandum MIP-R-99. University of Edinburgh: Depart-
ment of Machine Intelligence.

[10] M. D. Levine & M. Weinstein (1973) A review of the First National
Conference on Remotely Manned Systems (RMS), Exploration and
Operation in Space. Firbush News 3, 54-63. University of Edinburgh:
Department of Machine Intelligence.



13

Machine intelligence as technology
(1973)

From time to time the Hitachi Corporation and others in Japan proclaim the
goal of building intelligent robots. Their research, and similar projects
elsewhere, will contribute in the long run to a development of great
industrial novelty — the fully automated factory. In the USA the Rand
Corporation is even of the opinion that this is attainable in less than ten
years.

If the prevailing social and moral climate were like that of 1873, when all
new technology was regarded as an unqualified Good Thing, then predic-
tions of this kind would arouse optimistic excitement, coupled perhaps with
some rather jingoist reflections. After all, the United Kingdom could have
excellent chances of cornering a share of the world robotics market. But
British attitudes have changed since the days when Tennyson [1] wrote:

‘Men, my brothers, men the workers,
ever reaping something new:

That which they have done but earnest
of the things that they shall do.’

For Tennyson and his contemporaries the common-sense view prevailed
that technology is our living, and this view was coupled with idealistic beliefs

about inevitable progress towards general well-being:

‘... Forward, forward let us range,
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Let the great world spin for ever,
down the ringing grooves of change.’

(Tennyson’s poetic imagination outran his grasp of railway technology
which is based, of course, on raised tracks, not grooves!)

The twentieth century has seen these beliefs severely shaken. Congested
cities, polluted air, contaminated rivers, military devastation of large rural
areas— what has happened to the Victorian dream? The shock to those with
responsibility for science and technology has been substantial. In the United
Kingdom there are now those who argue first, that Britain’s best chance is to
identify an appropriate national life-style and live it to the exclusion of all
else; and second, that the appropriate role for a people rich in history but
poor in resources is to act as a cultural oasis for the world’s tourists.

Extremists might maintain that in order to sustain this role we should be
prepared even to relapse into a rustic economy and population size. I would
prefer to argue that national revival depends on grasping rather than
surrendering world leadership in one particular sector — the art of instruct-
ing computing systems how to do difficult things. Is the communication,
computation and control network of the future going to occupy itself at the
1973 level of programming technique? Alternatively will today’s laboratory
systems of machine learning and perception be built into the public facilities
available to the automation specialist?

Four computer scientists [2], from Stanford Research Institute and from
Lockheed, recently examined likely industrial consequences of machine
intelligence research, with results which make the second alternative look at
least plausible. They used the Delphi technique of technological forecasting.
A large and carefully designed battery of questions concerning future trends
was put to an international panel of experts. The replies were analysed and
summaries fed back to the experts, each of whom was asked for comments
on, and revision of, his earlier estimates. After the third re-cycling, an
additional questionnaire was employed to calibrate each individual’s degree
and direction of error in unrelated tasks of numerical estimation, and a self-
rating scheme was employed to assess his professional expertise over the
various sub-topics involved.

Table 13.1 summarizes some of the results. it will at once be noted that
one of the earliest products to reach prototype stage is expected to be what
the authors term ‘industrial robot’. They are using the phrase sloppily, for
industrial robots have been around for many years. What the authors had in
mind is rather vaguely indicated by the following passage taken from their
report:

‘The addition of simple visual and tactile sensors would significantly
broaden the application. For example, the General Motors Re-
search Lab successfully demonstrated a system which could mount
wheels on a hub, using visual techniques to align the wheel with the
studs.’

If the authors’ survey results can be criticized, it is on grounds of
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Table 13.1 — Summary of Delphi results, reproduced from Firschein,

Fischler, Coles, & Tenebaum (1973). This tabulation is given for its broad-

brush indication only. For explanation of the various concepts the original
paper should be consulted.

Median Median
prototype  commercial
Products date date

High potential significance

Automatic identification system 1976 1980
Automatic diagnostician 1977 1982
Industrial robot 1977 1980
Automated inquiry system 1978 1985
Personal biological model 1980 1985
Computer-controlled artificial organs 1980 1990
Robot tutor 1983 1988
Insightful economic model 1984 1990
Automated intelligence system 1985 1991
General factotum 2000 2010
Medium potential significance
Voice response order-taker 1978 1983
Insightful weather analysis system 1980 1985
Talking typewriter 1985 1992
Mobile robot 1985 1995
Automatic language translator 1987 1995
Computer arbiter 1988 1995
Computer psychiatrist 1990 2000
Robot chauffeur 1992 2000
Creation and valuation sysem 1994 2003
Low potential significance
Universal game player 1980 1985
Animal/machine symbiont 2000 2010

conservatism. The median prototype date given for ‘industrial robot’ as
defined by them is 1977. But Hitachi have already announced in Tokyo a
system which must be fairly close to qualifying. A computer—controlled
hand—eye device inspects moulds for concrete poles as they pass on the belt,
finds the bolts, confirms their location by tactile sensing and then tightens
the bolts with an impact wrench. Other protuberances are avoided, and the
task is performed with a consistency and efficiency which will make the
device cost-effective, it is claimed, relative to human labour. Hitachi also
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state that they expect the system ‘to find a wide field of application in other
industrial fields such as assembly and inspection processes’.

This emphasis on versatility is, of course, the central theme, and indeed
the entire justification, of the machine intelligence approach. The thrust of
such work is directed at the process of re-instruction. Most automatic
assembly machines, for example cannot be re-instructed at all, or at best
only within very narrow ranges of variation of the task. Consequently
wherever there are short runs, large and costly upheavals of re-tooling and
write-off occur. A year ago, re-instruction of an experimental programm-
able hand-eye machine was a matter of days for very simple tasks. By next
year we and others believe that this will have shrunk to a few hours. The trick
has to do with replacing as much as possible of the conventional step-by-step
programming by a process of of instructing by examples and outline
sketches, leaving the machine to fill in the rest. Thus teaching the Edinburgh
system [3] to recognize objects seen through the TV camera involves no
programming at all; the user merely shows a number of views of each object
associating in each case the view with the object’s name. This is preliminary
to the task of picking physical components out of heap, visually identifying
them and using them to assemble a specified object, say a toy car. It is
performed by the ‘hand-eye’ robot under the control of a computer program
in the following stages:

Instructional phase

(1) Individual parts are tossed onto the platform and the robot is told, for
each possible view of the object, its designation, how to pick it up, and what
to do with it (e.g. ‘turn it over’, or ‘put it exactly here in preparation for
assembly’).

Approximately five of these training views are needed for each designat-

ion (e.g. ‘car-body onsside’, ‘car-body on back’); of course it only needs to be
told once what to do with it.
(2) Starting with the parts laid out in the fixed position, the robot, working
blind, is guided through the assembly operation. The instructions developed
at this time to guide the robot constitute the assembly program; thenceforth
running the assembly program transforms the laid-out parts into the final
product.

Execution phase

(1) Someone dumps a pile of parts (perhaps with missing or extra parts)
onto the platform and starts the inspection and layout process (Fig. 13.1).
(2) The robot examines the platform and lays out any recognized parts for
assembly.

(3) Any unrecognizable pile of parts is pulled apart into its component parts
by a set of routines which can deal with arbitrary heaps of arbitrary parts.
(4) If all the parts for the assembly are found, extra parts are dumped in a
special location. If some parts are missing, the robot appeals for help.

(5) The assembly program is run (Figs 13.2-13.5). The above described
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Fig. 13.1 — Viewing platform and computer-controlled mechanical arms. The work-
bench used during assembly and the components of the toy car are also shown.

performance is based on an elaborate suite of programs which confer a fair
degree of versatility on the system — it can be taught a new assemply, say a
model ship, at a day’s notice. How far we still have to go in incorporating
‘teachability’ into software can be judged from the fact that a three-year-old
child can be taught a new assembly at the same level of complexity in five
minutes! The discovery of better design principles for ‘teachable’ program-
ming systems is a major goal of most research laboratories in the machine
intelligence field.

Will self-programming and ‘teachable’ systems be developed to a degree
sufficient to bring quite new behaviours within reach of automation? Will a
computer ever be able to make areal, as opposed to a toy, car, or (even more
difficult) to drive one?

The Delphi report does not envisage the possibility of a robot chauffeur
before 1992. On the other hand the introduction of computer-controlled
robot assistants on the automobile assembly line, complete with visual
sensing, tactile feedback, some higher-level planning of movements, and a
limited capability to receive English-language instructions from a human
supervisor is certainly not remote in time. It is of interest that at the
beginning of 1973 General Motors in America were devotingno R & D at all
to this topic. By the end of the year they had more than twenty research
roboticists working full time.

It does not take much imagination to predict that a not inconsiderable
shake-up and re-tooling of conventional assembly-line methods may ultima-
tely follow. New concepts in manufacture, which at present seem absurd,
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Fig. 13.2—FREDDY uses a crude vice to clamp a wheel while fitting in the axle. The
car body and another wheel can be seen in the background.
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Fig. 13.3 —Two wheels with axles are now in place, with two wheels still to be fitted.
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Fig. 13.4 — Having stabilised the incomplete assembly against a vertical surface,
FREDDY adjusts the third wheel.
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Fig. 13.5 — The assembly is complete.
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may become commonplace. One man, controlling a team of computer-
driven assembly machines, might be able to assemble whole cars as an act of
individual craftsmanship — instead of assembling one-thousandth of a car
every few seconds as at present. This image can be enlarged. We can
envisage the automobile craftsman being freed of the necessity to travel each
day to his robotic workshop. Just as the office worker in the era of the
universal computer network, so the factory worker may be able to ply his
trade at home via high-speed video links and the rest of the apparatus of tele-
operator technology. Some expert observers (Professor John McCarthy of
Stanford University is one of them [4]) foresee large-scale development
along this line in the 1980s.

These speculations, and the overall indications of Table 13.1, may seem
somewhat revolutionary, and it is of course fashionable to speak of the
computer revolution. Yet if we take as our criterion the idea of sudden
discontinuity then what we are witnessing is better described not as revolu-
tion, but rather as an extreme acceleration of an evolutionary trend as old as
civilization.

Since the earliest times man has been storing and processing information
in symbolic form, so as to predict and control his environment. J udging from
the extent of Maecenean inventories revealed by deciphered fragments of
Linear B, not to mention the vast bureaucratic book-keeping of the Roman
Empire, ancient peoples handled information of considerable complexity
with no mechanical aids beyond tally and stylus. Civilization is the growth,
typically occurring in sudden bursts alternating with phases of consolidation,
in the ‘machinery’ of information processing. On the one hand there is
abstract machinery ranging from the Egyptian architect’s vade mecum of
geometrical calculations and the Arabian notation and rules for arithmetic
to the whole imposing structure of modern applied mathematics. On the
other hand there is physical machinery such as parchment and quill in place
of stone and chisel and the development of printing presses, typewriters,
cameras, slide rules and calculating machines, culminating in the high-speed
digital computer. In this last species of machinery the two evolutionary
processes, abstract and concrete, or as we must now say software and
hardware, finally join.

But if something happens fast enough, does it matter whether it is
described as evolution or revolution, as expansion or explosion? The
present development of computer technology is faster by orders of magni-
tude than anything which has happened before. So if computing should be
classified as evolution, let us remember that it is an evolutionary process
undergoing very rapid acceleration, and that there is no corner of automa-
tion into which it will not penetrate. The pattern of penetration will of course
be determined by industry, but academic centres have a part to play,
particularly in the training of the new generation of engineers. There is a
peculiar belief that the academic mind is of so sensitive a nature that its
bloom can be corrupted by injudicious contact with industrial technolgy.
Samuel Johnson [5] took a different view. To him the academic cloister was
the really bad spot:
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‘Deign on the passing world to turn thine eyes,
And pause a while from letters to be wise;
There mark what ills the scholar’s life assail,
Toil, envy, want, the patron, and the jail.’

Without going all the way with Johnson, the machine intelligence worker
need not be averse from seeking a direct coupling between academic
research and industrial technology. Indeed, the nature of his subject is such
that this coupling will assert itself in the end whether he seeks it or not.
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Steps towards robot intelligence
(1985)

In 1972, the Science Research Council received a report from a panel set up
in the previous year to review long-range computing research. Among a
number of constructive and timely proposals the panel urged increased ‘use
of the robot as an analytical tool’. Although endorsed by Council, this report
was overtaken by events which need not concern us here. What will concern
us is the meaning of those words.

INSTRUMENTATION FOR MACHINE INTELLIGENCE

The panel was evidently saying that, along with the robot as technology,
there is a notion of the robot as instrumentation for scientific enquiry. But
enquiry into what? The answer I shall give is: enquiry into the design
principles of cognitive processes. One particular process will be singled out
because of its topicality, namely machine learning.

The Royal Institution very often mounts displays and exhibits from
outstanding academic and industrial laboratories, all devoted to the techno-
logical issue. In our country’s precarious situation, this issue gains urgency
with every year that passes. But by way of complementation I propose to
address another issue, namely the rationale of experimental robotics as a
branch of machine intelligence, with goals distinct from, although by no
means in isolation from, industrial robotics. The aim of such work is to build
and test operational theories of what is sometimes called the ‘recognise-act
cycle’. I draw strength from the knowledge that, in this field at least, today’s
science has a habit of becoming tomorrow’s technology. In particular, robot
technology is beginning to knock on the door of machine learning studies.
This is because the automation engineer requires of the machine, more than
anything else, that it be a teachable machine.
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NECESSITY FOR SENSORS

To exhibit the undeveloped state of teachability in present-day industrial
robots, consider the steps in teaching a Control 6R Research robot the trick
of describing a figure in the air.

The method is to use the typical facility of step-by-step key-pad program-
ming, followed by imprinting the trajectory in the machine memory. The
path can then be repeated indefinitely, moving (let us say) a paint-spray over
its prescribed course for each of a continuous sequence of replicate objects.
All is well until the unexpected happens. Perhaps one of the objects is
wrongly positioned, or missing, or the line stops. Regrettably, industrial
robots of this first generation are blind. They are also deaf, dumb, and
devoid of tactile sense. A level of teachability above that of mere rote
learning would be desirable. Not only this, sensors are needed — preferably
smart sensors. Without them the recognition part of the recognize-act cycle
cannot operate. Whether viewed from the stand-point of industrial machi-
nery or scientific equipment, it is in the interests of all concerned for both
sensors and effectors to be reasonably cheap.

For those who wish to experiment for themselves, the 6R robot des-
cribed can be purchased for about £2400. For the home hobbyist, or the
hard-up machine intelligence laboratory, the little 6E which can be
instructed by voice command can be got for about £800 and driven from a
personal micro such as the Apple II. A few hundred pounds more can cure
deafness. With a microphone and associated speech-recognition package,
voice instruction presents no difficulty. For the ambitious, a further few
hundred pounds will secure a TV camera complete with picture-input
programs for capturing and pre-processing frames of 256 X256 resolution.

MACHINE LEARNING OF RECOGNITION RULES

Many will already know of the pioneering work on image-processing by Dr
Michael Duff and his colleagues at University College London. W. K.
Taylor’s robot vision group is likewise part of this same initiative. At
Edinburgh we have been combining the parallel array principle of Duff’s
CLIP-4 machine with machine learning of recognition rules from examples.
To give a quick flavour of what it means to teach a machine strategies rather
than trajectories, consider the teaching of an Apple II a decision strategy for
the circumstances under which the robot should open its umbrella. § This toy
example can help clear up a point of terminology which otherwise will give
trouble later. The decision rule which is synthesised can be thought of as a
theory of some kind, in this case a theory of umbrella management. But it is
also a program. The Apple can execute it, or output it for another machine
or a human to execute. When executed it is like a program. When inspected,
analysed, or evaluated it is like a theory. In other words, theory and program
are words descriptive of one and the same object, the nuance being derived

t The computer displays on its screen hypothesised strategy rules to account for the example
decisions which it has so far been given (Fig. 14.1).
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from the purpose in mind. The point will assume importance when I later
discuss machine synthesised theories which, unlike our umbrella-manage-

ment theory, can take forms which cannot be inspected, analysed or
evaluated by people.

Weather Inside Soaked Decision Class
wet no yes DON'T-USE
dry — no DON'T-USE
— yes no DON'T-USE
wet no no USE

Decision Tree
Weather
dry: DON'T USE
blustery: DON'T USE
wet: Inside
true: DON'T USE
false: Soaked
true: DON'T USE
false: USE

Fig. 14.1 — The upper part shows the first four example-decisions of a training set
input to the machine. The symbol “—’ means not specified. The lower part shows a
machine-generated strategy, which is, in effect a program. Programming by example
is a process of inductive learning whereby examples are used to refine incrementally a
partial solution to a problem. The particular algorithm described in this Discourse is
called ID3 (Iterative Dichotomiser Three) QUINLAN 79 based on Hunt's Concept
Learning System HUNT, MARIN & STONE 66. There are two phases: 1. A
teaching phase, consisting of supplying examples in order; 2. An execution phase,
using the decision tree as a program that informs of the correct action for any
situation covered by the new rule.

ARTIFICIAL INTELLIGENCE

Returning to models of cognitive processes, the five questions listed in Fig.
14.2 exemplify foci of intense scientific activity. Any substantial artificial
intelligence laboratory today may be expected to have ready-to-use exemp-
lars of most of these categories of experimental program, categories absent
from the commercial computing world outside. The top half of Fig. 14.2
concerns a capability now being transferred, under the name ‘expert
systems’, from research laboratories into industrial organisations. To an
important extent this work has been found to require the use of inductive
learning as a means of speeding the acquisition of expert capability by the
machine partner. The lower two items of Fig. 14.2 are concerned with the
use of mechanised deduction, in some sense complementary to machine
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—> ® What expert SKILLS can be modelled by COMPUTER?

““heuristic programs”’

( @ What HEURISTIC MODELS can be induced from tu-
torial EXAMPLE DECISIONS?

“teachable programs”

® What HEURISTIC MODELS can be induced from

TRIAL-AND-ERROR explorations in the problem

space?
“learning programs’’

® What PROBLEM WORLDS can be modelled as SITUA-
TIONS, ACTIONS, and CAUSAL LAWS?
“’‘programs with common sense”’
@® What FORMAL LANGUAGES are appropriate for han-
L dling WORLD MODELS?

“logic programs”’

Fig. 14.2 — A classification of the kinds of questions posed by the study of robot

intelligence. The upper half is concerned with the acquisition of logical models of

decision-taking from data. The lower part is concerned with the software technology
for expressing models directly.

learning. Before leaving it, we should realise that mechanised deduction is
fundamental to the development of robots able not only to learn strategies
but also to reason out strategies for themselves. Instead of imperative
commands, the computer is told relevant facts about its world together with
rules of inference. The requisite new discipline of logic programming has
arisen from Robert Kowalski’s pioneering work at Edinburgh and was
subsequently developed by him and his colleagues and students at Imperial
College. Its embodiment in the programming language PROLOG has now
been adopted by Japanese authorities as a central plank of their recently
revealed national computing plan which has already been started.

ARE PATTERNS NECESSARY?

In the present context, inductive learning is concerned with the acquisition
of pattern-based strategies from examples. Perhaps patterns, then, are
necessary design ingredients for an effective decision engine?

In the philosophy of the mathematician or the theoretical physicist, the
time-cost of performing the calculations necessary to interpret and verify
formal descriptions tends to be ignored. In such a philosophy the answer to
the above question is given as ‘no’. In a classic paper published in 1950
Claude Shannon dramatised the point in regard to the design of a decision
engine for two-person zero-sum games, in the following terms:
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The unlimited intellects assumed in the theory of games... never
make a mistake and the smallest winning advantage is as good as
mate in one. A game between two such mental giants, Mr A and Mr
B, would proceed as follows. They sit down at the chessboard, draw
for colours, and then survey the pieces for a moment. Then either
(1) Mr A says ‘I resign’ or
(2) Mr B says ‘I resign’ or
(3) Mr A says ‘I offer a draw’ and Mr B says ‘I accept’.
According to Shannon’s estimate the lookahead rule of calculation
followed by the two mental giants would occupy a machine faster than any of

today’s supercomputers for more than 10%° years: sufficient for the physicist
or pure mathematician; not sufficient for the engineer.

“| offer a draw”

Fig. 14.3 — Unlimited intellects assumed in the theory of games, a branch of

mathematics, apply to a class of games exemplified by chess which has the following

properties: two-person; perfect information; no chance moves; zero-sum; finite.
There are approximately 10*° positions and 10'2° games of chess.

IS CALCULATION NECESSARY?

Is calculation then necessary, even if not sufficient, for an effective decision
engine? If this time we disregard memory-cost, then the answer is ‘no’.
Given enough patterns, calculation can virtually be dispensed with, as it
must be under acute time-constraints such as bicycling or piano playing, and
also of course when a Grandmaster plays lightning chess. Work at Carnegie-
Mellon University and at the University of Illinois has shown that the
number of patterns stored in a chess-master’s long-term memory lies
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between 10 000 and 100 000. This is well within the bounds of today’s rapid-
retrieval storage media. So in contrast to the time-cost for Shannon’s mental
giants, we can legitimately disregarded memory-cost even for quite complex
skills. Cheap computer memories have accordingly permitted the rise of the
new programming craft of ‘expert systems’ or ‘pattern directed inference
systems’ as they are sometimes called. This craft has roots in insights gained
from early artificial intelligence work of the 1960s, of which three particu-
larly relevant examples will be given, namely from rule-based adaptive
control, chess concept learning by machine, and perception and cooperation
in robots.

In all three cases a relatively small number of patterns was sufficient to
defuse otherwise intractable combinational explosions. The pole-balancing
system, based on 225 patterns, will be discussed. Here, a human subject is
required to learn how to move a cart so as to keep a pole balanced. The
following points are of importance:

(1) The role of patterns.

(2) Trial-and-error learning by machine.

(3) Sufficiency for the human of a heuristic model. Hiding the underlying
physical systems from the user is no impediment to his learning
performance.

In parallel with this study, the late Sir Eric Eastwood tackled exactly the
same problem for his Faraday lectures using modern adaptive control
methods. When we subsequently discovered each other’s existence we met,
exchanged film showings, and analysed the respective trade-offs involved in
the two approaches. The rule-based program BOXES scored in run-time
computation cost, resilience of learning to arbitrary changes in physical
parame:zrs of the task, and in the existence of a man-machine mode. But it
was more costly in the operation of its learning component. I learned more
from these discussions than from the project itself, and I value this oppor-
tunity to pay tribute to Sir Eric’s memory.

PRODUCTION-RULE PROGRAMMING

The control structure underlying the experiment in Fig. 14.4 is extremely
simple. It is today commonly called ‘production rule’ programming. The
fundamental idea is to separate the program into, on the one hand, a set of
facts descriptive of a modifiable situation and, on the other hand, a set of
rules for making modifications. This is illustrated in Fig. 14.5. In the case of
the pole and cart the ‘database’ contains simply the current status of each of
the four variables: position, velocity, angle, rate of change of angle. The
rules are if-then constructions of which the left-hand parts, or antecedents,
are conjuncts defined over these variables and the right-hand parts, or
consequents, are actions (either ‘rightwards’ or ‘leftwards’ for each case), as
below:

if cart is far left
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oo .

7

L R

Fig. 14.4 — The pole and cart problem. Chambers and Michie’s BOXES program
generated a rule-based controller. The controller’s task was to keep the pole
balanced and the cart on the track.

(Generalised) Production System

“Situation Map”

o4
Database Situation-action
rules
Situation: something that may or may not be satisfied in
the database
Action: some process that possibly changes the

database

Fig. 14.5 — Production-rule programming: a break with the past. The driver of a
rule-based system is the situation map, not the sequence.

and cart is hardly moving
and pole is hardly leaning
and pole is swinging to right
then do

rightwards
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In each cycle (20 per second in our case) one of the 225 rulesis selected by
pattern match and the corresponding action is executed.

ACQUISITION AND MODIFICATION OF PATTERNS

During machine learning, the BOXES rules were continually revised in their
right-hand parts, i.e. by re-setting the given action in the light of locally
accumulated experience — local, that is, to the region of state space
specified by the pattern part of the given rule. Modification of left-hand
parts, the antecedent patterns themselves, is also possible, and was the basis
of the teachable performance of the Edinburgh robot FREDDY. The skill
studied with this system was that of identifying by sight and touch the parts of
simple kits and manually assembling them. Some of the methods have
become classical, in particular the manipulation of internal descriptions in a
form nowadays called ‘semantic nets’; also the development by Rod Burstall
and Harry Barrow of fast algorithms for finding partial matches between one
such net and another. But FREDDY’s primitive algorithms for the induc-
tion itself have been superseded, for example, by decision-tree approaches
which we use in Edinburgh today. These stem from Ross Quinlan’s ID3
algorithm, in turn developed from Hunt’s CLS (Concept Learning System)
of the 1960s. Its task can be described as follows:

Given: a collection of positive and negative instances, where each
instance is the description of an object in terms of a fixed set
of attributes or properties

Produce: a decision tree for differentiating positive and negative
instances.

It would be interesting now to go back to the pole and cart and compare
on this hard task our present learning programs with the crude statistical
induction methods we employed then. We have now brought these pro-
grams to what we regard as a fairly high pitch, providing options for
sampling human as well as machine data-sources, and incorporating facili-
ties for handling attributes which present themselves as real-valued measur-
ements. In fairly complex recognition problems taken from chess they can
be made to give performance consistently higher than human. Moreover we
confirm Quinlan’s finding that, at relatively high levels of complexity,
simplistic use of these programs generates decision rules for which high
efficiency of machine execution is matched by their total opacity to human
comprehension. Recently, however, Shapiro and Niblett at Edinburgh have
succeeded in developing a man-machine style which we call ‘structured
induction’ and which results in humanly transparent decision rules. The
price paid to achieve this is prior expert scrutiny of the problem with the aim
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of partitioning it into a few major sub-problems, before the induction
program runs are commenced.

Fig. 14.6 shows the top-level rule induced in this structured style for
classifying the space of legal king-pawn-king positions into ‘won for white’
and ‘drawn’. This little semi-automated construction and its dependent sub-
theories has proved to be of interest to chess-masters as a replacement for
the fragmentary and flawed codifications found in the chess books. Not very
far up on the complexity scale lie levels beyond human capacity to acquire in
entirety, let alone to codify. Shapiro has induced a complete, human-
readable, machine-executable theory for a subset of the ending king and
rook against king and pawn for which complete human mastery is at best
marginal. Rather than illustrate what we mean by ‘concept learning’ from
such esoteric material I have elected to display an engaging tutorial example
from my Illinois colleague, Ryszard Michalski, shown in Fig. 14.7.

The same induction program which Michalski used for trains has also
successfully constructed diagnostic rules for diseases of the soy-bean, a
staple crop in the State of Illinois. Not only do these, when run on the
machine, out-perform professional pathologists: they also constitute an
improved classification scheme for human use. Michalski’s results thus
exactly parallel our ID3-based results in chess and those of our colleague
Ivan Bratko in the classification of lymphatic cancers. Applicability in
robotics seems inviting: in a class project at Illinois my students were able to
teach the robot to discriminate good, bad and unacceptable table settings,
using white plastic tableware set on dark cloth, just from showing examples
of these three categories.

THIRD-PARTY INTERFACE

I want to turn from this homely task to a curious problem. The task of the
shopfloor robot supervisor is already a responsible, and sometimes harass-
ing one. I do not know anyone connected with this trade who is not aware
that in course of time facilities for setting two robots to work together on
given tasks will be part of the industrial scene. Will the robots communicate
with each other by electronic signals which the human supervisor cannot
hear and could not interpret if he heard them? If so it takes little imagination
to see how rapidly the complexity of his task will escalate, assuming that we
are now firmly in the era of second-generation machines with smart sensors
and improved learning capabilities. The easiest way of providing what may
be called a ‘third-party interface’ is to insist on a literally audible signalling
convention. One could cite a nursery example to illustrate the idea. When a
large robot requires a blue box it emits a high-pitched squeak and for a red
box a lower-pitched one. Hearing this, the small robot pushes a box of
appropriate colour from the dispenser which lands within its coworker’s
reach. It could be called a ‘recognize-squeak’ cycle.

Perhaps the industrial safety rules of the future will lay down that
automation devices must talk to each other in this rather literal sense! But as
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Fig. 14.6 — Two-level decomposition by Shapiro and Niblett of the King-pawn-King

problem into six sub-problems, of which one (‘interfere’) is definable as a primitive

pattern, while each of the other five is decomposed further. Each of the five

compound concepts at level 1 was induced from files of examples and counter-

examples. Finally the top-level concept was induced in the same way in terms of the
six previously constructed sub-concepts (five pre-induced, one hand-coded).
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“TRAINS GOING EAST”

“TRAINS GOING WEST"

Fig. 14.7 — Larson-Michalski trains with rules of human and machine origin. The
following were the three simplest rules found by Larson and Michalski’s inductive
learning program: (i) if there is a triangle-containing car immediately followed by a
polygon-containing car then Eastbound else Westbound (polygons of course include
triangles); (i) if there is a short closed car then Eastbound else Westbound; and (iii)
if there are two cars, or if there is a jagged-top one then Westbound else Eastbound.
Of 70 human subjects many produced (iii) and some (ii). In addition the following
two were produced: if there are more than two kinds of freight, then Eastbound else
Westbound. Number of sides in the cargo (circle counts 1, triangle 3, etc) is a factor
of 60 if and only if the train is going West!

the content of messages becomes more complex, how are human and
machine partners to remain in adequate rapport? A much deeper study will
be needed than is yet being conducted of the nature and pre-conditions of
what is coming to be called ‘cognitive compatibility’.

TOWARDS A TECHNOLOGICAL BLACK HOLE?

In our work and in Quinlan’s, preliminary sightings have been made of a
potentially disturbing phenomenon already mentioned in the harmless
context of laboratory tests with chess. I refer to the possibly inscrutable
nature of products of computer induction when these products are control
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programs for domains of high complexity. Inscrutability is of no conse-
quence in some task environments. But it is of more than passing concern in
situations such as the control of nuclear power plants, air traffic control or

Lost 3-ply Experiments
(CDC Cyber 72 at Sydney University)
49 attributes (Mixture of 35 pattern based
4 low-level predicate
10 high-level predicate)
715 distinct instances
177 — node decision tree found in 34 seconds

Classification CPU time
method (msec)
Minimax search 285.0
. Specialised search 175
Using decision tree 34

Fig. 14.8 — Different ways of constructing a program to recognise the property ‘lost

in three-ply’ in King-Knight-King-Rook chess positions: 1. hand-coding the minimax

general search algorithm; 2. hand-construction of an expert system based on pattern-

directed search; 3. inductive synthesis of a recogniser from a training set of 715 cases

selected by the induction program from the full set of 24 million cases. Run-time costs
are compared.

the operation of military warning systems. The programs which control such
installations are today of exclusively human authorship. Yet anxiety is
already expressed concerning their lack of transparency to technical person-
nel at times of suspected malfunction. At some time the developers of these
systems will succumb to the lure of inductive and other synthesis techniques
at present under development in various laboratories. The evidence is
compelling that unless special methods are employed the products of
induction can be expected to be opaque to those who will depend upon them
at run time.

The economic inducement to prefer such products may sometimes be
startling, as suggested by Quinlan’s results in the accompanying table. Here
a five-fold gain in run-time efficiency was obtainable by use of machine-
made rules in preference to hand-made ones. Moreover hand synthesis took
man-months in contrast to a few minutes for machine-synthesis. The
eventual spread of such methods through the programming industry seems a
certainty.

It is important to understand the nature of the technological black hole
towards which we are headed. Let me spell it out:
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(1) Machines can now be used to generate super-efficient descriptions as
programs.

(2) These descriptions, although accurate and efficient when run on
machines, make no sense to people.

(3) Even with pre-learning technology, an inscrutable machine can be a
dangerous machine.

(4) It seems inescapable that during the coming decade the programming
industry will be transformed into a factory operation based partly on
automatic synthesis.

NEED FOR A ‘BRIDGE’ SCIENCE

Apart from the EEC, which has funded a preliminary study of this issue, the
centre of awareness appears to be Tokyo. In the 85-page report recently
released by the Japan Information Processing Development Centre the
diagram reproduced in Fig. 14.9 appears. This picture seems in itself to
provide an answer to the question: why has J apan decided to build her 8-year
computing plan around artificial intelligence? Stripped of its aura of mysti-
cism, the picture says that without a major Al component (represented in
the diagram by the central circle) the computing systems of the 1990s will
pass forever beyond human mental ken. The guarantee of cognitive compa-
tibility between man the sorcerer and the new apprentices is to be sought by
building the ‘bridge’ science of artificial intelligence. The task is to design
systems which can manipulate on the one hand models of the mentality,
requirements and limitations of the human user and on the other hand
models of brute force problem solvers of the fourth generation and beyond.
There can be little doubt that the same issue will raise its head in factory
automation. Hence it would be timely to revive the study of machine
intelligence in robotics.
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NOTE ADDED IN PROOF

Following on from the closing sentence of this text, which was delivered as a
Royal Institution Friday Evening Discourse on 26th March 1982, a resump-
tion of the FREDDY series of experiments in robot intelligence has since
been made possible by the generosity of the Westinghouse Corporation,
USA. At the time of writing FREDDY 3 can be taught to build simple
blocks-world constructions. Planning and learning capabilities are co-ordi-
nated via a PROLOG-oriented software base and include complex as-
sembly-line operations involving two or more co-operating robots.



Section 3 Mechanics of cognition

INTRODUCTORY NOTE TO SECTION 3

Biologists and engineers have always shared a dream that they can solve
each other’s problems. Under its spell in 1967 the distinguished experimen-
tal psychologist Richard Gregory moved to Edinburgh and set up his Bionics
Research Laboratory. A re-orientation was thereby imparted to our experi-
mental programming work which was, I believe, far-reaching. The closing
passage of the Edinburgh-Tokyo dialogue (Chapter 8) makes the point
specifically. Japan’s current ‘Fifth generation’ programme, diagrammati-
cally sketched in Figure 14.9 has recently endorsed a similar re-orientation.

When Gregory himself left the project in 1970 he said to me a little
gloomily that he no longer believed in bionics. As a subject, it had
disappointed expectations of serving as a two-way street. The contributions
of technology to biology, both as instrumentation and as intellectual models,
flood in daily. They are pervasive. But what animal devices have ever been
adopted by engineers with major industrial success?

I believe that Gregory’s over-reaction arose from looking for the
contributions of biology in the wrong place. The payoff to the engineer,
when it does accrue, lies in copying not the mechanisms of animals but the
methods and models of those who study them, not least those of Gregory
himself. Not that the humbler forms of life do not make quite direct
contributions, as in industries based on fermentation, and more recently in
bio-synthesis. But to the general scientific technologist with a problem, an
animal is just another, complicating, problem. A biologist on the other hand
may through his training have tricks quite new to the traditional engineer —
the use of scientific method, for example, to subdue complexity; or the habit
of allowing for human factors in the design of instrumentation. More
significantly, the biologist may have a factual or philosophical angle on the
engineer’s problem from which it can be shown that radical departure is
necessary from this or that traditional design dogma.

Chapter 15 considers such a case in the interpretation of scenes via
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computer-controlled sensors. A need is there discussed to combine map-like
representations and symbolic representations, as suggested by phenomena
of human visual thinking. Chapter 16 makes a more far-reaching foray with
the proposal that the development of information technology has been
consistently and almost fatally stunted by a philosophical strait-jacket from
the physical scientists. A Spencerian ‘bottom up’ basis, customary in
biological thought, must be substituted. Otherwise progress with machine
perception will continue to be slow.

A particularly disabling consequence of ignoring the biological design
principles of man’s problem-solving brain is addressed in Chapter 17.
Essentially a distinction is necessary between the phenomena of ‘under-
standing’ and of ‘skill’. The former carries high execution costs; this is why
the expert brain invokes the latter in its place whenever possible. Chapter 18
sketches a formal framework within which, it is hoped, information techno-
logists and cognitive scientists may be persuaded to live together. In Chapter
19 the section closes by reviewing some indications that cohabitation is
overdue.



15

Memory mechanisms and machine
learning (1974)*

The authors of this paper are almost wholly ignorant of natural, as opposed
to artificial, nervous systems. In machine intelligence our business is to
design and experiment with home-made nervous systems: experimental
computer programs. Unlike the systems studied by neurobiologists, our
artificial ones are transparent. We know and document everything which is
inside them, and so in principle we can explain their total behaviour.
Perhaps, then, they might be a source of models for the real nervous systems
which, however simple, remain distressingly opaque.

Building computer models of biological systems has become the vogue.
They come in two kinds, free-floating and anchored. To make free-floating
models, proceed as follows:

(1) Invent an arbitrary theory of how some observed system might work,
complete with reverberating circuits, feed-back loops, encoders and
decoders and anything else you like.

(2) Programiit.

(3) Play with it on the machine, adjusting parameters and patching, until
satisfied.

(4) Write up and go to (1).

If the theories which are implemented in this way have sufficient
aesthetic appeal then no other justification is required.

Now consider the other kind of model — ‘anchored’. Two anchorages
are possible:

Type-1 anchorage is a knowledge of the given nervous system’s micro-
structure and functional connections so detailed as to lead more or less
directly to the conjectured model. It may be doubted whether so firm an

T Written with Pat Ambler and Robert Ross, of the Department of Machine Intelligence,
University of Edinburgh.
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anchorage is possible in the present state of neurobiology, or is likely to be
for some time.

Nevertheless, we believe that programmed models can play a useful role
in the development of exact theories. In particular, they impose on any
candidate theory an important constraint, namely, that it be expressed
precisely. Implicit assumptions which might otherwise be concealed are
consequently made explicit and therefore susceptible to experimental inves-
tigation. To be really useful, however, a programmed model must be
capable of making verifiable predictions about the behaviour of the system
being modelled. Given a complex theory such predictions might only be
calculable if the theory is expressed as a computer program.

An interesting exercise in computer simulation is described in the
doctoral thesis of Clymer [1]. This work is based on the ‘mnemon’ construct
suggested by Young [2] as the principal mechanism for discrimination
learning in the octopus. Clymer’s program can produce, with a reasonable
degree of accuracy, learning curves similar to those obtained with real
animals. In addition, the program can simulate the effects of operations
which interfere with the upper lobe structures. Of greater interest is the fact
that the simulation has been used to make predictions about the effect on
performance of variations in the training regime. These predictions can be
tested experimentally.

Type-2 anchorage is the attempt at efficient engineering implementation of
the given behaviour without regard to biology at all. On the gross plane of
mechanical engineering, the development of the pump ultimately made it
possible to understand the working of the heart. In computer technology,
the development of computer vision may, or may not, ultimately help us to
understand biological visual systems.

To recapitulate, the three categories are: (1) free-floating; (2) biologi-
cally anchored; (3) technologically anchored. Whether or not the time is ripe
for successful application of computer models in any of these three categor-
ies is something on which only professionally qualified neurobiologists are
competent to pronounce. However, we find it easier to be dismissive about
(1) than about (2), and about (2) than about (3). Interestingly, the same
order of dismissibility has obtained historically in the study of bird flight,
where we can consider models of types (1), (2), and (3) as follows:

(1) Balloons: beautiful, but useless as models of bird flight.

(2) Artificial birds: too messy and difficult to be of practical help.

(3) Aeroplanes: highly influential. The interpretation of the fossil record of
extinct birds achieved by John Maynard Smith [3] was a direct consequence
of his employment during the war as an aircraft designer.

In the end something fit to be called machine intelligence theory will be
developed, pushed ahead by the pressures and needs of technologically
minded experimentalists. It may then at last become possible for neurobio-
logists with a foot in this new camp to ‘do a John Maynard Smith’ with simple
nervous systems.
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In this paper we exhibit a modest five-finger exercise under type (3). We
describe, in particular, a computer program which behaves on a task of
learning and discrimination in a way reminiscent of an animal. We explain
what is going on inside it to cause this behaviour, and in what waysit could be
extended to cause more complex and more ‘intelligent’ behaviour. The thing
to bear in mind is that both the robot device and the computer program
driving it were developed in the course of research done with a strictly non-
biological motivation. About six hours’ programming was subsequently
done in order to ‘dress it up’ in a biological-looking idiom. Thus we are
dealing with a genuine, if elementary, type (3) model.

MATERIALS AND METHODS

The experiment was based on a hierarchy of computer programs developed
over a number of years to form an integrated software system for tasks of
‘hand-eye’ assembly. The hardware and software systems have been des-
cribed elsewhere [4, 5]. A typical task might be the construction by the
computer-controlled robot of a toy car from a set of parts, as shown in Fig.
13.1. The programming aids have attained a rather high level of flexibility
and ease of use: the user can now instruct the system in a completely new
assembly task in the span of a day or two. This is done in part by directly
‘teaching’ the system the visual appearance of objects by offering examples
for inspection through the television camera. Elementary powers of form-
ing, learning and matching descriptions are thus incorporated. The com-
plete system is known locally as FREDDY.

As aresult of a reading of J. Z. Young’s Croonian Lecture [2], the idea
suggested itself of concocting a task of the kind used in studies of animal
behaviour. We settled on phenomena of discrimination learning and
transfer of learning between sensory modalities. A hypothetical animal,
Freddypus vulgaris, was defined which has two kinds of object in its
environment: inanimate objects, distinguished by being hard to the touch
and simple in shape; and food objects, distinguished by being soft to the
touch and having complex and irregular outlines. In our experiments hard
objects were made from wood and soft objects such as crabs, starfishes and
water beetle larvae from foam rubber (see Fig. 15.1). The task was to learn,
initially by tactile probing, which objects to put in the discard area and which
to carry off into the food area. With experience the system should start
performing the appropriate actions without any tactile probing on the basis
of visual inspection alone.

Our question then was the following: how quick and easy would it be to
set up a model of such simple behaviour by scooping out the necesary
software from the full FREDDY system and stitching it together into a
working model? One of us (P.A.) took this in hand, and at the expense of
only six hours’ work had a convincing Freddypus vulgaris fully operational.
The outline flow-diagram of the resulting program is shown in Fig. 15.2. Figs
15.3-15.6 summarize the behaviour of the program (illustrated in the
original presentation by a film) when presented with a number of objects of
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Fig. 15.1 — Examples of hard and soft objects.

the kinds shown in Fig. 15.1. Fig. 15.7 shows the results of fitting curves to
the outlines of objects.

WHAT MORALS ARE TO BE DRAWN

It is possible to hope that our precise knowledge of the data-structures and
algorithms inside a complex computer program should guide a search for
similar structures and processes in nervous systems. We think that this may
be naive, and it is probably regarded as naive by most people. At this early
stage the best we can hope for is help from computer models in approaching
one or two major issues at a rather high level of generality.

One such issue is that of direct representation versus symbolic represen-
tation of external reality, or (as we might rephrase it), maps versus
descriptions. An example of a map is a literal map, like those printed in the
AA book. An example of a description is the triangular table printed at the
end of the A A book giving inter-city distances, from which many of the main
features of the map of the UK can be reconstructed. Indeed, Gower has
developed a technique which achieves precisely this reconstruction more or
less successfully [6, 7].

What has this to do with the neural representation of the outside world
and with Freddypus vulgaris? Consider two questions:

(1) Are both categories of representation (‘maps’ and ‘descriptions’) used
in technological models?
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Fig. 15.2 — Outline flow-diagram of the Freddypus program.

(2) Are both categories of representation used in nervous systems, or only
one?

As far as question 1 is concerned, the answer is that both are used. A
rather extreme case of map-like representation is provided by recent work of
Baker on iterative arrays of sequential logic circuits [8]. Each circuit is in
effect a miniature computer, occupying a distinct cell of a 3-dimensional
array, and capable of receiving inputs from its neighbouring cells, and in
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Fig. 15.3 — Layout of objects at the start of the task.

Fig. 15.4 — Feeling an unknown object for hardness v. softness.
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Fig. 15.5 — Picking up an object.

Fig. 15.6 — The completed task.



192 MECHANICS OF COGNITION [Sec. 3

Fig. 15.7 — Examples of line drawings extracted by machine from TV views.

turn delivering to them the results of computations performed on these
inputs. Baker developed his computing system with a technological aim in
mind, namely, to make it quick and easy to compute predictions of the
trajectories of rigid bodies moving through space. He points out the
wastefulness of handling such simulations by conventional sequential com-
puting. He also points out that we have a powerful subjective impression
that our own predictions are computed map-wise, or as we should say once
we introduce the time dimension, by running a sort of cinematograph in the
head. Baker’s proposal, verified in trial computations on easy cases, is to
represent an object in 3-space by assigning 1 to each occupied cell of the
array and O elsewhere, and to run the cinematograph by appropriately
organizing the computation rules of his 3-dimensional array of automata.

Related to this, Sloman [9] gives as an example of what humans
sometimes call ‘visual thinking’ the problem illustrated in Fig. 15.8: what
will happen if we pull the A end up?
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A A

Fig. 15.8 — What will happen if we pull the A end up?

MAP-LIKE REPRESENTATIONS

Clearly, we do not determine this by formulating the problem and the
physics of pulley systems as expressions in some formal logical language,
from which we then compute the answer by deduction. Is there evidence in
the brain of direct map-like representation of dynamic events like this? At
the present state of knowledge there does not appear to be any such
evidence. However, at a more prosaic level Hubel and Wiesel have shown
that detectors sensitive to moving lines exist in the visual cortex of the cat
[10].

In the case of Freddypus there are representations of both kinds
interwoven: map-like co-ordinate representation for the viewing platform
‘in the large’; and a mixture of the two for constructing the visual descrip-
tions and matching one description with another ‘in the head’ as it were.

In the table-top world of Freddypus the positions of objects are specified
by means of a 3-dimensional co-ordinate system whose origin is at the centre
of the platform. The X and Y axes are parallel to the sides of the platform,
and the Z axis points vertically upwards. For each object various positional
data are calculated. Of these the most important is the point on the table
corresponding to the centroid of the object, since it is this point that is
actually used to specify the position of the object on the table.

DESCRIPTIONS

Fig. 15.9 shows the kind of data-structure used for description of objects ‘in
the small’. It is termed a ‘tree’. The root of the tree consists of a list of the
names ‘hard’ and ‘soft’, and associated with each name is a list of visual
descriptions of the objects so far encountered that have the respective tactile
property. A visual description consists of a ‘region’, which is formed from an
‘outline’ of the object and a ‘holeset’. Associated with each region are two
properties of it, namely its area and its compactness. At the next level of
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[‘hard’, "soft]

[object 1, object 2....] [object i, object ii...]

['region’. area. compactness] ['region’, area. compactness|
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[‘hole’. area. compactness] ['segment.....]

. < . nts, no. of internal corners,
[ outline’. 1O of segme
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>

[

['segment. angle. curvature. length]

Fig. 15.9 — Example of the type of data structure used in the description of objects.

description we consider ‘outline’ and ‘holeset’. Both these have a number of
associated properties and components. The components of ‘holeset’ are the
individual holes contained in the object, if any. Holes are described in terms
of line segments and have associated with them their area and compactness.
Outlines of a region are also described in terms of line segments.



Ch. 18] MEMORY MECHANISMS AND MACHINE LEARNING 195

Since such tree structures do not look in the least like starfishes, crabs,
bricks, etc., they belong to the symbolic category. How neurobiologists are
going to determine whether such a category exists in the world of neural
representations is not for us to say, but the question seems a valid one. The
material we have presented may perhaps help to call attention to an issue
concerning internal representations which Al people worry about already,
and which we suspect will sooner or later have to be tackled at the
neurobiological level.
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Machine models of perceptual and
intellectual skills (1979)

Figure 16.1 shows an unusual result obtained by drawing a square and asking

CHILD'S OWN COMMENTARY

‘There for stiff things’
‘For going up
and down’
*These are the side bits’

/

A B

Fig. 16.1 — Copies of a square drawn by a 3}-year-old girl. By asking her to indicate

on the original model the ‘stiff things’, things ‘going up and down’, and ‘side bits’, it

was ascertained that these phrases denoted the square’s corners, uprights, and
horizontals respectively.

a 33-year-old girl to copy it. Her first attempt is on the left. Her second
reproduced on the right, departs wildly from the first, and from anything
which the ordinary onlooker might have expected her to do. As will be
explained later the phenomenon reveals the normally hidden operation of a
particular way of compactly encoding percepts of external reality. The
species of symbolic description underlying the girl’s drawing is today routine
in work on computer vision. But without contact with artificial intelligence
techniques it is not easy to spot what this strange beetle-like representation
is saying about the class ‘square’, nor to empathize with its neat graphic
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encoding of the class’s defining properties and relations. Even less obvious,
but necessary to complete the insight, is the realization that the more
conventional drawing on the left is also not to be interpreted as an effort to
trace the retinal image out onto paper. Indeed it is thought to represent the
culmination of an even more complex project than the right-hand drawing:
more complex, because of the inclusion of an additional stage, namely
reconstruction, from the symbolic description, of something which (as the
adult would say) ‘looks like a square’. I shall return later to this mental skill
of drawing a square.

That our most distinctive quality is mental skill was recognized some
time ago when the taxonomists gave our species the name Homo sapiens.
That it is put together like other biological functions, as a large and
heterogeneous box of tricks, is a notion slower to gain general acceptance.
Explanatory models of man’s attributes taken from religion, art, and
literature still hold some sway, and the most biologically minded person can
on occasion find himself seeking special exemption for the cognitive attri-
bute, picturing himself perhaps as Michelangelo’s Adam. Propped on one
arm, he stretches the other towards his airborne Creator, to receive... what?
Not the spark of life surely, for Adam is already plainly, if somewhat
languidly, alive; but the spark of reason to set him above the beasts. Pure
Reason, Pure Thought, Pure Faith... all essence, no detail. Such attributes
are seen as bestowed from the top down, rather as mathematics — we are
told — received the integers. Yet biological attributes invariably come bya
different route, and they evidence evolution’s bottom up mode of construc-
tion in the rambling and complex architectures which confront every serious
investigator. The medieval scholar’s explanation of the effects of chewing
poppy seed: ‘... Quia est in eo Virtus dormitival’ gives place to the
pharmacist’s catalogue of soporific compounds and the pharmacologist’s
detailed maps of molecular structures and their neuronal interactions.

Already in the nineteenth century audacious voices were proposing that
attempts to account for the phenomena of cognition must tread just such a
path. In this Chapter I hope to indicate that a new and exceedingly forceful
model has come amongst us, derived from recent uses of computers in
complex problem domains, and that in so far as lessons can yet be read they
reinforce the bottom-up philosophy. Indeed those of us who are professio-
nally concerned to emulate advanced mental skills by machine could and
should have been quicker to appreciate this essentially biological perspec-
tive. Self-regulating systems of high complexity, whether animate or inani-
mate, are (it will be argued) best viewed in this way.

Priority for this appreciation of the matter seems to belong to the self-
taught English social philosopher Herbert Spencer. He was, as William
James put it, ‘the first to see in evolution an absolutely universal principle’
and he boldly applied it to cognitive phenomena among others. The
evolutionary principle as he conceived it proceeds by progressive individua-
tion. He describe this idea in Social Statics published in 1851:

Between creatures of the lowest type, and creatures of the highest,
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we similarly find the essential difference to be, that in the one the
vital actions are carried out by a few simple agents, whilst in the
other the vital actions are severally decomposed into their compo-
nent parts, and each of these parts has an agent to itself.

Spencer indeed intended the principle to be absolutely universal, and to
apply to tissues, organisms, species, minds, societies — presumably to
computing systems, too, had they existed in his day. Yet each discipline, it
seems, must painfully learn it all anew. The history of machine intelligence
research over the past ten years has consisted in a progressive abandonment
of sweeping uniform procedures for search, deduction, linguistic analysis,
and the like, in favour of a more Spencerian approach in which the
representation in machine memory of human knowledge in all its ad hoc
complexity is seen as critical.

It is significant that this methodological revolution was pushed forward
by the world’s leading institute of technology (at Cambridge, Massachu-
setts) and not by some centre of pure science. The re-orientation has indeed
been painful for many in a field populated largely by those trained in the
conspicuously non-Spencerian disciplines — the mathematical and physical
sciences. Particularly embarrassing to those who look for progtess in the
form of a succession of blinding flashes is the realization that the knowledge
sustaining a given skill — whether in visual perception, in medical diagnosis,
in automated chemistry, in game-playing or in mathematical reasoning —
reveals itself as typically vast in total bulk and highly individuated, to use
Spencer’s term, into a mosaic of interlocking sub-domains and sub-sub-
domains. The successful computer program turns out in each case to be the
one which, while preserving a degree of overall control, seeks to associate
with each separate part of the mosaic its own special package of local advice
and useful knowledge. Spencer’s scheme can be traced in the microcosm of
visual perception built by Waltz (1972) for the restricted but non-trivial task
of interpreting line-drawings of polyhedral scenes with shadows, as in Fig.
11.3, which illustrates the task, and Table 11.1 which shows a part of the
program’s internal catalogue of knowledge useful for that task. Table 11.2
compares the numbers of labellings of different kinds of vertex in a line
drawing which are possible before and after application of the constraints
derivable from this catalogue. Notice (1) how effectively even a little
knowledge can defuse a large combinatorial explosion, and (2) the complete
absence of ‘top-down’ knowledge in the form of conventional theories of
optics and mechanics. In macrocosm, the bottom-up philosophy has been
expanded by Minsky (1975) into an ambitious proposal as to how we might
endow a machine with a usable stock of knowledge about the world at large.
At an intermediate level Spencer’s characterization applies with wonderful
exactitude to Buchanan and Shortliffe’s knowledge-based program for
clinical bacteriology (Shortliffe 1976), to Buchanan, Feigenbaum, and
Lederberg’s DENDRAL program for mass spectroscopy (see Buchanan,
Smith, White, Gritter, Feigenbaum, Lederberg, and Djerassi 1977 for a
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very recent development) or indeed to every one of the as yet small cohort of
knowledge-based computer programs which can claim, within their specia-
lized areas of competence, to match human experts in complex domains.

Machine intelligence thus turns out to have the character more of biology
than of physics. Although we must always strive for the great unifying and
simplifying principles wherever they may be gained, we have to live with the
fact that there is such a thing in science as irreducible complexity. Elsewhere
I discuss quantitative measures of complexity in the context of intellectual
difficulty and of knowledge (Michie 1977).

Let us now try out the Spencerian scheme by interpreting his ‘creatures’
of higher or lower type as computer programs of the kind created in the
laboratory today in machine intelligence work, i.e. machine implemen-
tations of human skills. The format of the interpretation goes asin Fig. 16.2.

SPENCERIAN SCHEME MACHINE MODEL
ON HOW MANY
BY HOW MANY ‘SIMPLE PATTERN-DRIVEN
AGENTS’ ARE THE VITAL > RULES IS THE
ACTIONS CARRIED OUT? GIVEN SKILL BASED?
OF HOW HIGH A TYPE € > HOW DIFFICULT IS THE
IS THE CREATURE! GIVEN SKILL?

Fig. 16.2 — Interpretation of Spencer’s scheme of ‘progressive individuation’ in
terms of experimental computer programs developed to implement complex mental skills.

Among human skills I shall consider visual perception, bicycle riding,
clinical bacteriology, mass spectrometry, mental arithmetic, and chess. The
first of these, computer vision, has the farthest to go, yet the experimental
attempts have yielded some of the more interesting insights into the
Spencerian nature of the knowledge problem.

VISION

The existence of internally stored visual patterns is clear to anyone who
knows what it is to ‘see things’ in an apparently randomly patterned surface.
The following account is by Leonardo da Vinci:

If thou wilt look carefully at a wall spotted with stains, or at stones
variously mixed, thou may’st see in them similitudes of all sorts of
landscapes, or figures in all sorts of actions and infinite things which
thou may’st be able to bring into complete and good form.

It would seem that this harmless, and apparently pointless, phenomenon
reveals a mechanism of crucial utility when we want to see things which
really are there, as in Fig. 16.3 from R. L. Gregory (1970). The photograph
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Fig. 16.3 — At first sight ‘a wall spotted with stains’ (see text). This photograph of a
dalmation dog is from R. L. Gregory’s The intelligent eye. (Used with the permission
of the McGraw-Hill Book Company.)

might almost be of Leonardo’s ‘wall spotted with stains’, so that the eye’s
instant discovery of a Dalmatian dog suggests an internal library of dog-part
patterns from which the successful identification has been assembled. There
is no suggestion that such patterns are like Identikit parts, which take the
form of actual templates. On the contrary, Gregory and others tell us that
the evidence is for Helmholtz’ idea that percepts are reconstructed from
stored descriptions of a more generalized nature. The Helmholtz assump-
tion is that perception operates by evocation, a kind of triggering one might
say, of appropriate reconstructions from a vast stored treasure-house of
knowledge about how the world looks. A brutally direct test of the
assumption would be provided if a congenitally blind man were to have the
use of his eyes restored in later life. The assumption predicts that, lacking
any internal accumulation of perceptual models, he would at first be unable
to ‘see’ in any useful sense.

R. L. Gregory studied just such a case, in which the patient had had sight
conferred on him at the age of 51 by an operation of corneal grafting. At first
the man could make little of the images received through his eyes, except in
the case where he had prior knowledge through tactile experience. He read
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upper case block letters immediately on sight, but it took him time to learn
lower case letters. It turned out that at the blind school he had been given
raised letters on wooden blocks to learn by touch, but only upper case, not
lower case. Soon after he left hospital, writes Gregory, ‘we showed him a
simple lathe and he was very excited. We showed him it first in a glasscase, at
the science Museum in London, and then we opened the case. With the case
closed he was quite unable to say anything about it, except that the nearest
part might be a handle... but when he was allowed to touch it he closed his
eyes and placed his hand on it, when he immediately said with assurance that
it was a handle. He ran his hands eagerly over the rest of the lathe, with his
eyes tight shut for a minute or so; then he stood back a little, and staring at it
he said: “Now that I've felt it I can see.”’

Forty-eight hours after the corneal grafting operation, the patient saw a
London bus, a two-decker. Fig. 16.4 gives the ‘camera’s-eye view’ of such a

Fig. 16.4 — ‘Camera’s eye view’ of a London two-decker bus (London Transport).

bus. Compare with this the patient’s drawing, reproduced in Fig 16.5. Six

i
Fig. 16.5 — Patient’s drawing two days after the operation.

months later he produced Fig. 16.6, and after a further six months Fig. 16.7.
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Fig. 16.7 — Patient’s drawing after a year.

Note how experience has filled in the detail of what he is able to see, except
for the front of the bus which Gregory conjectures he would not have had
opportunities to explore with his hands.

These observations merely support the necessity of internal models
without saying anything about their structure.

Piaget’s school has accumulated instances of a rare and revealing
phenomenon which can be elicited from normal 3-5 year old children asked
to copy simple geometrical figures. Returning to Fig. 16.1, which was taken
from Hayes (1978), we see the phenomenon in unusually clear-cut and
striking form. The beetle-like object on the right does not look in the least
like the square which the small girl was asked to copy. But this is not because
she cannot make a ‘proper’ adult-type copy, as evidenced by her first
attempt, which is on the left. The child has in this case been induced to tell us
in her own words, as shown in the figure, just what she thinks she is doing. It
seems as though, as it were without noticing, she has on this occasion
omitted the final reconstruction phase and is symbolizing in a graphical
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language the descriptive structures with which she represents squares in
memory. Hayes introduces her observations in words which can hardly be
bettered as a statement of the role of internally stored patterns:

Work on machine perception in different laboratories has for some
time been converging on essentially the same format for represent-
ing visual scenes, according to which the scene is decomposed into
primitive elements which are then characterized by properties and
relations holding among the members of sub-sets of elements (see
Barrow and Popplestone 1971, Winston 1970). Representational
schemata formed in this way are often referred to as relational
structures...

This can here be exemplified by a generalized relational structure taken
from the Edinburgh robot work, reproduced in Fig. 15.9. She continues:

... The possibility suggests itself that some part of the human faculty
of visual recognition (which is immensely more powerful than any
machine system yet developed) may be based on similar processes
of decomposition into primitive features and re-aggregation of
these to form internal schemes.

and proposes that ‘the child presents a graphic representation of his concept
of what is perceived rather than attempting to copy the retinal image on to
paper.” A bizarre exercise on the theme ‘diamond’ is shown in Fig. 16.8,
accompanied by its interpretation in relational structure form. The more
complex structure required to interpret the earlier drawing of a square is
shown in Fig. 16.9.

In this chapter the word ‘pattern’ will appear from time to time. No more
is meant by it than a description, in the form of some collection of primitive
elements together with properties and relations defined on them. Could
some description-handling formalism be developed into an actual ‘seeing
machine’?

In 1966 R. L. Gregory and I chanced to meet in New York and we
planned a project to develop a machine capable of visual perception,
interpreting perception as extending to the actions and uses associated with
perceived objects. This robot project was ambitious — absurdly ambitious,
some felt. But thanks to generous sponsors and to the moral support and
hard work of some exceptionally gifted colleagues, it got a surprisingly long
way — at first base, while Gregory was still with us, sufficient to demonstrate
successful acquisition and matching of descriptive patterns, and eventually
far enough to be able to address questions like ‘How many stored patterns
does it take to “‘see” a simple world?’

In 1973 the work was discontinued (documentation of the project has
been given by Ambler, Barrow, Brown, Burstall and Popplestone, 1973).
Subsequently the National Engineering Laboratory, intrigued by the poss-
ible industrial uses of a seeing machine, came forward to enable a small-scale
recommencement of the work. Today we have a visual command language
for instructing a parallel array processor in the extraction and manipulation
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Fig. 16.8 — (a) a square; (b) a diamond; (c) a diamond; (d) interpretation of (c) as a
relational structure.
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Fig. 16.9 — Symbolic representation of a square as a relational structure, following
the child’s graphical representation shown in Fig. 16.1.
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of descriptive primitives. Execution times of the order of a millisecond seem
attainable for the simpler tasks (Armstrong & Jelinek 1977), and solutions
have been found for the problem of programming higher-level descriptions
in parallel mode.

After this dip into visual perception to set a mental frame, we shall turn
to other domains. But first a digression is in order on the subject of top-down
versus bottom-up theories in science."

TOP-DOWN AND BOTTOM-UP

The house of science has always had two levels. Upstairs live the great
explanatory theories, which proceed top-down from the highest level of
abstraction and show with great conciseness how particular consequences
can be derived. In the basement are the servants’ quarters, the abode of
various compilations and catalogues of useful know-how. In general these
latter, the bottom-up representations, are expected to keep themselves to
themselves, except when called to serve some particular need — to mend or
make a chair, to cook a meal, to run a message. Very occasionally some
servant-scholar arises — an Aristotle, a Bacon, or a Spencer — and we have
an explanatory annotation on the bottom-up trade, arguing that it, too, has
its unifying principles. Upstairs people have always smiled indulgently at
such quaintness — except in one very exceptional circumstance, which has
to do with the introduction of mechanical aids, regarded as being by their
very nature downstairs property. In his Life of Marcellus, Plutarch tells us of
the reactions of Plato, the earliest recorded exponent of the top-down
mystique, on learning that two mathematical colleagues had been so
engaged:

Eudoxus and Archytas had been the first originators of this far-
famed and highly-prized art of mechanics, which they employed as
an elegant illustration of geometrical truths, and as a means of
sustaining experimentally, to the satisfaction of the senses, conclu-
sions too intricate for proof by words and diagrams... But what with
Plato’s indignation at it, and his invectives against it as the mere
corruption and annihilation of the one good of geometry — which
was thus shamefully turning its back upon the unembodied objects
of pure intelligence to recur to sensation, and to ask help... from
matter; so it was that mechanics came to be separated from
geometry, and, repudiated and neglected by philosophers, took its
place as a military art.

Developments in programming the digital computer, so as to invade
territory which could not otherwise be easily penetrated by the human

"These terms clash with a similar but distinct use by Arbib (1976). Since he is in print first, I
should by rights give way. But as yet I have found no satisfactory alternatives to ‘top-down’ and
‘bottom-up’ for the categories which were already revolving in my mind before I came upon his
paper: ‘intensive’ and ‘extensive’ seem to hit it off in some contexts, and they will also be given
some trial runs here.
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intellect, have revived the issue rather forcibly and have at the same time
removed the last ground for Platonic indignation. A startling recent instance
which Plato would have found hard to dismiss is the recent triumph of Appel
& Haken (1976) over the celebrated four-colour problem using some 10 000
hours of processor time on a powerful computer. The authors of the
computer-aided proof believe that the problem, although simple to express
— namely that every map drawn on a plane or a sphere can be coloured using
only four colours in such a way that no two same-coloured regions share a
boundary — is intrinsically ‘bitty’ and that no elegant Platonic demon-
stration ever will be, or ever could be, discovered.

An essential feature of their proof is a catalogue of some 1800 sub-maps
which are ‘unavoidable’ in the sense that any map whatsoever must contain
at least one member of this catalogue. The authors do not believe that the
size of the catalogue is open to substantial reduction. If they are right, then a
truly top-down theory in the form of a concise demonstration of the
theorem’s truth may simply not exist.

The special function of a top-down or ‘intensive’ representation is to give
us the ‘Ahal’ feeling — the sensation that we have understood something. A
bottom-up ‘extensive’ representation is more like a manual of how to do
something. Because this distinction was not fully grasped, some of the early
computer approaches to complex problem domains (by ‘early’ I do not
necessarily mean anything earlier than about ten years ago) were pointed
firmly in the wrong direction. Bitter experience in language-translation, in
computer game-playing, and in other areas had to teach us that you cannot
implement a skill simply by translating into a computer program the
corresponding intensive theory.

Consider bicycle-riding. The intensive theory is all there in Newtonian
physics. John Brakewell, however, of the Aeronautics and Astrophysics
Laboratory at Stanford University recently abandoned the attempt to
program a computer for this particular task. Increasingly we see that in
machine intelligence work one glance at biology is worth at least two glances
at established computer science and perhaps a hundred and two at mathe-
matical physics. After all, we already knew, or should have done, that skill
(as opposed to understanding) is not acquired in this way. Children become
language-users without taking a course in theoretical linguistics, they
become chess-players without first studying game theory, and they ride
bicycles — and circus seals balance poles — in complete innocence of
Newtonian statics and dynamics.

A QUESTION OF BALANCE

Pole-balancing was the subject of one of the earliest ‘bottom-up’ exper-
iments to be done in machine intelligence, little more than ten years ago. It is
marginally possible (but not very economical) to control an inverted
pendulum by computer program using the classical theory, as shown by
Eastwood in the mid-1960s. He illustrated his Faraday lectures with an
adaptive computer program able to control a pole balanced on a motor-
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driven cart, as in Fig. 14.2. Meanwhile Chambers and I had independently

developed a program for the same task based on an elementary bottom-up
representation depicted in Fig. 16.10.
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Fig. 16.10 — The state space (for clarity omitting the fourth, i.e. 6 dimension)
divided into ‘boxes’ with an independent automation in each box and a ‘leader’ supervising.

Each local region of the four-dimensional state-space defined by the
axes: position, velocity, angle, rate of change of angle, is supervised by a
separate computational process (a ‘demon’, to use the now-fashionable term
originally coined by Oliver Selfridge in 1959) which accumulates its own
private store of knowledge useful for that particular region. Fig. 16.11 shows
a specimen ‘learning’ run. When it was all over I had the pleasure of
illuminating discussions with Eric Eastwood in which we compared the two
approaches. The BOXES program, as we called it, exemplified Spencer’s
scheme with a crudity and literalness redeemed by its demonstrated effecti-
veness on a hard task.

The program comprised 225 pattern-based rules, which could have been
halved by exploiting symmetries. It could be used in a man-machine co-
operation option in which at each time-slice the light-pen was interrogated
for a control signal from the human partner. The human’s signal was
adopted whenever there was one: otherwise the needed decision was
retrieved from the appropriate ‘box’ among the 225 boxes covering the state-
space. In this way a human ‘tutor’ could feed his own skill into the machine in



208 MECHANICS OF COGNITION [Sec. 3

Mo W
o S G S

Merit (min)
=)

] 1 1 1 1 1 ]
0 10 20 30 40 50 60 70

Total learning time (h)

S W

Fig. 16.11 — The pole-and-cart system, set up for pure trial-and-error learning. The
lower curve shows a smoothed average (‘merit’) of the time-until-crash, plotted
against the total accumulated learning time.

reinforcement of the program’s self-learning. Actually neither partner was
carried by the other since the task of skill-acquisition proved to be extremely
taxing for the unaided human, and transfer of skill undoubtedly proceeded
in both directions. Some regions of the space exhibit markedly counter-
intuitive features, as when the cart is wandering dangerously near to the
‘precipice’ at the end of the track. In a proportion of cases, according to the
values of pole angle and angular velocity, the solution is to drive initially
towards the precipice, so as to impart a swing of the pole away from it. Only
then is it safe to direct the motor away from the danger area, ‘chasing the
pole’ with proper control over its angle.

The BOXES program was one of the earliest confirmations of what Allen
Newell and his school had already been saying, namely that the most natural
machine representation of human skill is the production system, as such
organized collections of pattern-based rules are known these days. Newell
and his colleagues made the further conjecture, documented by a growing
experimental corpus, some of it derived from machine intelligence work,
that the same skills are similarly implemented in the brain. Table 16.1 gives
some figures for a few skills which have been intensively studied in man or
implemented to a high level of performance on the machine. The DENDRAL
and MYCIN programs, within their restricted domains of scientific know-
how, have now attained peformance levels comparable to that of highly
trained human professionals. DENDRAL, moreover, manifests at a sophisti-
cated level the capabilities both of taking instruction and of improving its
repertoire autonomously. These were both mentioned at a primitive level in
the case of pole-balancing. The lesson is already clear that bottom-up
representations of knowledge are forced upon the designer if his system is to
lend itself to the incremental acquisition of new knowledge. Note that the
number of rules underlying these two applied science skills is about 400 in
the two cases. To obtain an exact picture of the range of expertise thus
implemented, the original literature should be consulted. The expertise is
wide enough to be useful in a competitive professional context. I now pass to
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Table 16.1 — Some contrasts between the two kinds of theory from the standpoint of machine
models of mental skills. The figures indicating the numbers of rules used to implement various
skills must not be interpreted as indicating that there is more knowledge in Grandmaster chess
than, say, in clinical pathology. DENDRAL and MYCIN each cover only a small fraction of the

total problem domain as yet.

Skill

Top-down (intensive)
theories (suitable for
understanding; lend
themselves to com-
puter implementation

Bottom-up  (exten-
sive) theories (suitable
basis for skill; lend
themselves to com-
puter implementation

No. of pattern
based rules in im-
plemented system.

as algorithms). as catalogues of pat-
tern-based rules).

Seeing a scene Geometry and optics. Incremental catalogue 10
First-ever vision pro- of visual patterns.
gram, Roberts, early Simple scenes of sha-
1960s. dowed polyhedra,

Waltz, early 1970s.

Balancing a pole Mechanics,  control Incremental catalogue 225
theory.  Eastwood, of pattern-based rules.
mid-1960s. Michie and Chambers

mid-1960s.

Identifying  organic Topology, combina- Incremental catalogue c. 400

compounds from mass torics, physics. of pattern-based rules.

spectra DENDRAL program
of Lederberg, Feigen-
baum, and Buchanan.

Identifying  bacteria NONE Incremental catalogue c. 400

from laboratory tests of pattern-based rules.

on blood and urine MYCIN program of

Buchanan and Short-
liffe.

Calculating-prodigy =~ Peano’s axioms with Alexander  Aitken, ?

definitions and infer-
ence rules.

arithmetic studied by Hunter,
1962, used pattern-
based rules.
Chess-masters,  stu-
died by Binet, de
Groot, Chase and Si-
mon, Nievergelt, use
pattern-based rules.

Zermelo-Borel-von
Neumann iterated mi-
nimax algorithm.
Tournament programs
— with heuristic trim-
mings. Master skill not
yet attained.

Grandmaster chess 30 000 v. approx.

a skill which in today’s world must be judged non-useful in the extreme,
namely mental arithmetic.

PRODIGIOUS CALCULATIONS

The world has a false belief about calculating prodigies, namely that they
calculate prodigiously.

They would of course need to calculate prodigiously if they had built
their skill from some intensive theory of arithmetic; in the extreme case let
us imagine some theory such as Peano’s axioms together with a sufficient set
of rules of inference for their use! Such a theory would be, in McCarthy &
Hayes’s (1969) terminology, ‘epistemologically adequate’; even for a pro-
digy speeded up by a factor so great as to compress the history of the
universe into a few seconds it would not be ‘heuristically adequate’. If, as is
generally but mistakenly supposed, calculating prodigies relied solely on the
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more effective and less concise apparatus which we all learned at school, the
calculation required for, say, squaring a four-digit number would be formi-
dable enough. But it turns out that this mental skill is no different from the
others and indeed constitutes another refutation of the Pure Thought
fallacy. The greatest calculating prodigy ever recorded was Alexander
Aitken, who held the chair of Mathematics at Edinburgh until his death. He
was the subject of a careful study by the psychologist I. M. L. Hunter (1962)
who discovered that Aitken’s extraordinary.capabilities did not include any
special aptitude at calculation itself. Aitken’s powers turned out to be
generated from a vast internal catalogue of pattern-based rules about the
natural number system, which he invoked during the first few seconds after
each problem was put. He used this phase to set up a calculative plan, and it
was in this first phase that all his special ability was concentrated. While
executing the plan he proceeded no faster or slower than anyone else — in
other words by machine standards at a snail’s pace. So much, however, does
phase 1 dominate in importance that there is no facetiousness in saying that
machine simulation of Aitken’s skill would not be easy, even with the aid of
the best libraries of numerical routines in the world. The challenge would lie
in building a program so ‘knowledgeable’ as to be able rapidly to react to
each new input problem by the marshalling and invocation of just the right
combination of special methods. The following illustrations of his virtuosity,
with illuminating comments by Hunter, give us an intriguing glimpse of the
Aitken production system at work.

Here is Problem 6 of a series in which he was asked to supply an
introspective and explanatory account:

Decimalise 1/851. ‘The instant observation was that 851 is 23
times 37. I use this fact as follows. 1/37 is 0.027027027027... and so
on repeated. This I divided mentally by 23 [23 into 0.027 is 0.001
with remainder 4]. In a flash I can see that 23 into 4027 is 175 with
remainder 2, and into 2027 is 88 with remainder 3, and into 3027 is
131 with remainder 14, and even into 14,027 is 609 with remainder
20. Anso on like that. Also before I ever start this, I know how far it
is necessary to go in this manner before reaching the end of the
recurring period: for 1/37 recurs at 3 places, 1/23 recurs at twenty-
two places, the lowest common multiple of 3 and 22 is 66, whence I
know that there is a recurring period of 66 places.’

On this and many other such records Hunter comments in terms
strikingly reminiscent of those used by de Groot (1965) in his study of the
power of the chess-master to apprehend a chess position at a glance:

A number is apprehended as a multiplicity of numerical attributes
and, so to speak, as bristling with signalling properties. This
apprehending is inmediate, simultaneous, and often autonomous.

Hunter later makes the explicit connection to chess skill:

... with this thinker, as with many people, 12 is the immediate



Ch. 16] MACHINE MODELS OF PERCEPTUAL AND INTELLECTUAL SKILLS 211

product of 3 and 4: but unlike most people, the transition from ‘9
times 12,345’ to ‘111,105’ is also immediate for this thinker. Con-
sider also his ‘simply seeing in one go’ the number 1961 as 37 times
53, and 44 squared plus 5 squared, and 40 squared plus 19 squared.
Other leaps concern procedural judgments, that is, diagnosing what
method is best to use in calculation. These high-level procedural
diagnoses derive from a breadth of past experience which is fully
comparable to (and possibly in excess of) that which lies behind the
so-called position sense of the chess master...

SKILL IN CHESS

Nowhere is the Pure Thought fallacy more firmly rooted than in popular
ideas about chess. Chess-masters are also (quite falsely) believed to calcu-
late prodigiously, executing essentially the Zermelo-Borel-von Neumann
top-down theory which suggests that one should try to look ahead along all
possible paths to the end of the game. A detective story written by Jacques
Futrelle around the turn of the century is reviewed by Julian Symons (in
Bloody Murder, 1974):

... Professor Augustus S. F. X. Van Dusen (Futrelle’s hero-
detective) is introduced to us when he refers contemptuously to
chess, saying that a thorough knowledge of the rules of logic is all
that is necessary to become a master at the game, and that he could
‘take a few hours of competent instruction and defeat a man who
has devoted his life to it’. A game is arranged between the Professor
and the world champion, Tschaikowsky. After a morning spent
with an American chess-master in learning the moves, the Professor
plays the game. At the fifth move Tschaikowsky stops smiling, and
after the fourteenth, when Van Dusen says ‘Mate in fifteen moves’,
the world champion exclaims: ‘Mon Dieu!’ (he is not one of those
Russians who knows no language but his own) and adds: ‘You are
not a man: you are a brain — a machine — a thinking machine’.

What is wrong with this story?

Two facts are in combination destructive of the credentials of Professor
Augustus Van Dusen.

1. Grandmasters do not on the average calculate more than ordinary
players. In a classic monograph de Groot (1965) showed that 6-7 half-moves
ahead tends to be the limit, with a total of perhaps about 30 positions
considered on the lookahead tree. The great Richard Reti dramatized the
true pattern-based nature of Grandmasterly skill when he was asked how
many moves ahead he looked in tournament play. ‘One..." he replied, ‘the
right one!” This must of course be almost literally applicable when a
Grandmaster plays lightning chess, and it is sobering to reflect that when
Bobby Fischer plays lightning the quality of play looks substantially better
than expert chess: it looks like Master chess.
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2. The current ranking U.S. chess program CHESS 4.6 when running on
the CDC Cyber 176 computer examines of the order of half a million
lookahead positions when choosing each move. By exploiting this stupen-
dous advantage of brute-force calculation it is able to perform at approxima-
tely ‘expert’ level, with Grandmaster play, based as it is on subtle apprecia-
tion of positional values, still seemingly unattainable.

To incorporate the Grandmaster’s accumulation of chess knowledge an
edifice of pattern-based rules will need to be built brick by brick, just as has
been done for chemical knowledge in the DENDRAL program over the
fifteen years since Joshua Lederberg initiated the work. To know whether
such a project for chess is possible (leaving aside whether it is desirable) we
require an estimate of how many such patterns form the basis of Grandmas-
ter skill.

Independent estimates (Simon & Gilmartin 1973; Nievergelt 1977)
suggest a figure between 10 000 and 100 000. This is about a hundred times
the number involved in knowledge systems such as the MYCIN system for
clinical bacteriology which took no more than a couple of man-years to
construct. The conclusion would seem to be that a Grandmaster chess
project, although doubtless strenuous and time-consuming, would not
necessarily be resistant to a determined assault. To point up the difference in
heuristic adequacy between a brick-by-brick representation — which could
ultimately come to occupy 10'? bits or more of computer memory — and a
‘top-down’ representation of great compactness, let it be stated that the
second already exists (referred to above as the Zermelo-Borel-von Neu-
mann theory), is well known to constitute a complete theoretical solution to
the problem, and need occupy no more than 10°-10* bits of store nor
consume more than a few programmer-hours to write. It would, however, as
pointed out by Claude Shannon (1950) take of the order of 10% years’
continuous running on a super-fast machine to select a move. Contem-
plation of this beautiful theory certainly gives us the ‘Aha!’ feeling about
finite two-person zero-sum games with perfect information and without
chance moves. It tells us little if anything about the nature of Grandmasterly
mental skill. Study of brick-by-brick implementations engineered in the
spirit of the modern trend of experimental epistemology might, just conceiv-
ably, tell us a very great deal.

CONCLUDING REMARKS

Whether the insights obtained from machine models by students of cogni-
tion will prove to be sparse or abundant, the process of harvesting them
cannot begin until the first large lessons have been truly learned. These are:

1. Compact, algorithmic, intensive ‘top-down’ theories form the basis of
understanding; that and that alone constitutes their essential purpose.

2. Their use as the basis of skill only makes sense for tasks of low
complexity — as, to take an extreme example, the extraction of the square
root, for which Newton’s tour-de-force of concision is also a widely used
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machine representation. The fact that all tasks attempted by machine were
until recent times of low complexity in this sense, blinded the first generation
of Al workers to the essential unworkability of such representations for
tasks of high complexity.

3. For complex tasks the attempt to create skilled programs as transcrip-
tions of intensive theories runs foul of the ‘combinatorial explosion’. For
such tasks, skill must, for every computing device whether protoplasmic or
electronic, be built as a ‘bottom-up’ creation in which (to recall once more
Herbert Spencer’s words) ‘the vital actions are severally decomposed into
their component parts, and each of these parts has an agent to itself’.
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lecture in this general area (published in 1979 by the Clarendon Press, in
Scientific Models and Man).

Ifind, therefore, that I have two debts to acknowledge. The first is to the
Board itself and to its Chairman, Sir Isaiah Berlin. The second is to Sir James
Lighthill for the impetus to analyse the theoretical error underlying his
unexpected irruption into my field.
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High-road and low-road programs
(1981)

Consider a class of computing problem for which all sufficiently short
programs are too slow and all sufficiently fast programs are too large [1].
Most non-standard problems of this kind were left strictly alone for the first
twenty years or so of the computing era. There were two good reasons. First,
the above definition rules out both the algorithmic and the database type of
solution. Second, in a pinch, a human expert could usually be found who was
able at least to compute acceptable approximations — for transport schedul-
ing, job-shop allocation, inventory optimisation, or whatever large combin-
atorial domain might happen to be involved.

Let us now place problem-solving by machine in the more precise mental
context of evaluating two particular kinds of finite function, namely:

s: Situations — Actions, and
t: Situations X Actions — Situations.

These expressions say that s maps from a set of situations (state-descrip-
tions) to a set of actions, and that ¢ maps from a set of situation-action pairs
to a set of situations. The function symbol s can be thought of as standing for
‘strategy’ and ¢ as standing for ‘transform’. To evaluate s is to answer the
question: ‘What to do in this situation?’. To evaluate ¢ corresponds to: ‘If in
this situation such-and-such were done, what situation would be the imme-
diate result?’.

If the problem-domain were bicycling, we could probably construct a
serviceable lookup table of s from a frame-by-frame examination of filmed
records of bicyclists in action. But ¢t would certainly be too large for such an
approach. The only way to predict the next frame of a filmed sequence
would be by numerically computing ¢ using a Newtonian physics model of
the bicycle, its rider and the terrain.

Machine representations corresponding to s and ¢ are often called
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heuristic and causal, respectively. Note that they model different things.
The first models a problem-solving skill but says nothing about the problem-
domain. The second models the domain including its causality, but in itself
says nothing about how to solve problems in it.

The causal model partakes of the essence of the traditional sciences, such
as physics. The school physics text has much to say about the tension in a
string suspending bananas from the ceiling, about the string’s breaking point
under stress, the force added if a monkey of stated weight were to hang from
a boat-hook of given mass and dimensions having inserted its tip into the
bunch,*and so forth. How the monkey can get the bananas is left as an
exercise for the reader, or the monkey.

Whenit has been possible to couple causal models with various kinds and
combinations of search, mathematical programming and analytic methods,
then evaluation of ¢ has been taken as the basis for ‘high road’ procedures for
evaluating s. In ‘low road’ representations s may be represented directly in
machine memory as a set of (pattern— advice) rules overseen by some more
or less simple control structure. A recent pattern-directed heuristic model
used for industrial monitoring and control provides for default fall-back into
a (computationally costly) causal-analytic model [2]. The system thus
‘understands’ the domain in which its skill is exercised. The pattern-based
skill itself is, however, sufficiently highly tuned to short-circuit, except in
rare situations, the need to refer back to that understanding.

The distinction here spelled out corresponds roughly to that made by
Rouse and Hunt between S-rules and T-rules in the context of computer-
aided fault-diagnosis in complex machinery [3], for example, in automo-
biles. Their diagram, reproduced here (Fig.17.1), is simple but
illuminating.

The s versus ¢ distinction has nothing whatsoever to do with the strange
but widespread notion that problem-solving representations built from
causal models are necessarily error-free, proved so by their implementers,
and thus in some important sense ‘sound’, while heuristic models are by their
nature tainted with unbounded and unquantifiable error. In actuality formal
proofs of correctness are no less obtainable for heuristic models [4, 5] than
for models of other kinds, provided that the domain is such as to sustain
precise mathematical reasoning at all. The only problem-solving device yet
to achieve a good and versatile record (the expert brain) has been shown to
proceed at ‘run-time’ overwhelmingly by the low road. Moreover, know-
ledge engineers are beginning to find in one domain after another that
almost all the skill comes from the S-rules and almost all the implement-
ational and run-time costs from the T-rules.

Perhaps this discovery should not have taken people by surprise in quite
the way it seems to have done. After all it had already been noted that when
a Fischer or a Karpov plays lightning chess (S-rules only, no time for
anything else) he can still hold his own against an ordinary Master who is
allowed all the time in the world for search and reasoning.

In real-world domains no more complex than chess, insistence on ‘high
road only’ has usually led to solutions which are
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Fig. 17.1 — Overall structure of the model used by Rouse and Hunt. There are
really two models, so arranged that (as in the system of Pao ef al.) the system’s
‘science’ acts as default for its ‘craft’. Compare Fig. 4.7 of Chapter 4, where
‘interpretative models’ and ‘predictive models’ correspond respectively to the
familiar patterns’ and ‘structural information’ of the present Figure.

— opaque to the user, and
— unbelievably costly at run time.

Someone says: ‘I need to build an expert problem-solver, but I don’t buy
heuristic production-rule models. How do I know that they are correct, or
with proved error bounds?’.

He could equally say: ‘I need to make an omelet, but I don’t buy eggs.
How do I know that they are not addled?’. The answer can only be: ‘Get
your eggs certificated; or at the very least buy from a reliable farm. If you
don’t want to do that, then you’ll have to lay them yourself’.
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Measuring the knowledge-content of
expert programs (1982)

The theory of what computers cannot ever do, sometimes referred to as
intractable problems, can be used to define a class of ‘semi-tractable’
problems. Such problems are intractable to programs of standard form but
accessible to heuristically-based programs. Restriction of the latter to
human bounds of storage and calculation yields a subset of semi-tractable
problems which we term ‘reducible’. This property will be used to explicate
an informal notion familiar to problem solvers, namely the subjective
difficulty of a problem domain.

INTRACTABLE PROBLEMS

In recent years, certain problems have been show to be intrinsically
intractable. Although known to be solvable in finite time, they will never be
solved in the life-time of our planet, regardless of how computer technology
may develop, how clever people become, or how many resources are
committed to the project. Knuth [1] cites an example of Meyer and
Stockmeyer where the problem is to decide whether statements expressed in
a restricted logical language about the whole numbers are true or false.
Sample statements from the easy end of the spectrum are to the effect that
every pair of numbers two or more apart has at least one number in between,
or that every non-empty set of numbers has a smallest element.

It was already known that the truth-value of any well formed statement
of this language can be determined in a finite number of steps. Meyer and
Stockmeyer envisaged evaluation of each input statement by an electrical
network, this being the design for fastest evaluation. They proved that for
input statements of 617 symbols or longer every such network must use at
least 10'2° components. This number is much greater than the number of
protons and neutrons in the observable Universe.
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SEMI-TRACTABLE PROBLEMS

Translation of this type of result into algorithmic computation on a sequen-
tial digital machine yields the conclusion that every space-minimal represen-
tation of such an algorithm (as a shortest program) is time-infeasible and
every time-minimal representation (as a giant look-up table) is space-
infeasible and every store-time compromise between the two is either time-
infeasible or space-infeasible or both. The sting is in the tail italicised to bring
out a distinction between genuinely intractable problems, which will never
be solved, and a special kind of problem for which I have elsewhere used the
term ‘semi-hard’ [2] but have subsequently adopted ‘semi-tractable’. Algor-
ithmic solution on a sequential machine of problems in this latter class has
the property that every space-mimimal representation (as a shortest pro-
gram) is time-infeasible and every time-minimal representation (as a giant
look-up table) is space-infeasible yet representations exist which are both
time-feasible and space-feasible.

Solutions for semi-tractable problems can thus be feasibly implemented,
but only by exploiting the store-time trade-off. Feasible solutions to such
problems require additional store for incorporation of heuristics into the
program. When the latter take a human-oriented form which we recognise
as domain-specific knowledge we have a program of a kind generally
referred to as knowledge-based, or expert [3]. In knowledge-intensive
domains such as medical diagnosis, chess or mathematical reasoning, the
human advantage does not rest on superior ‘hardware’. Informational
measurements on the transactions involved in cognition suggest that
although the human achievement is strong, the equipment is relatively weak
[4,5]. A semi-tractable problem, feasibly computable by heuristically based
programs on fast machines, may or may not be humanly solvable. For
human-solvability the problem must possess a further property of reducibi-
lity. This is illustrated in Fig. 18.1 for three hypothetical functions, one
intractable and two semi-tractable. Of these last two, one is reducible and
the other not. Semi-tractable sub-domains can be found within intractable
domains, for example, mass spectroscopy and chess. Within these semi-
tractable sub-domains lie reducible sub-sub-domains.

Gregory Chaitin [6], in an outline of 10 years of mathematical work by
Solomonoff, Kolmogorov and himself, uses ‘complexity’ for a certain
property of a sequence of binary digits. His usage is not related in any simple
way to the ‘complexity-theory’ connotation of the same word. We shall
accordingly introduce prefixes and rename Chaitin’s quantity ‘a-com-
plexity’. To understand Chaitin’s sense, first fix on some abstract computing
machine. Then for each given binary sequence ask the question ‘What is the
shortest sequence which, when run as a program on the said machine, will
reproduce the original sequence?’ The length of this shortest representation is
the original sequence’s a-complexity. The ratio of the first to the second
length measures the sequence’s absolute compressibility. If we restrict
ourselves to sufficiently long sequences, as explained in Chaitin’s outline,
the choice of machine can be disregarded. In essence we are considering a



Ch. 18] MEASURING THE KNOWLEDGE-CONTENT OF EXPERT PROGRAMS 221

3

._.

<

3
1

%

Evaluation time (binary
discriminations)

—_
<
=]

L

10 10 10 10%
A A A
Memory space (bits)

Fig. 18.1 — Store-time trade-off curves for hypothetical finite functions f, g and A.
Each has the same information-content (10°° bits) and the same «-complexity (104
bits). Time-feasibility (B) and space-feasibility limits for machines have somewhat
arbitrarily been placed at 10! time-bits and 10'5 store-bits, respectively. Time-
feasibility for human evaluation of the same functions is set at 10* time-bits indicated
by B’ and space-feasibility at 10! store-bits. The hatched rectangle is the ‘zone of
feasibility’, through which curves f and g pass. Only f passes through the cross-
hatched ‘zone of human feasibility’. The five upward arrows at the base-line mark,
respectively: the a-complexity of f, g and h; the p’-complexity of f; the B’-complexity
of g; the p’-complexity of &; the information content of f, g and h. fis semi-tractable;
it is also reducible, since its B’-complexity is less than the human store-bound. This
property offers, without guaranteeing, the possibility of human mastery of-f as a
problem-solving domain. g is also semi-tractable, but not reducible. A is intractable,
and a fortiori not reducible. A useful quantity to keep in mind is the maximum bit-
rate of human mental calculation, usually taken to be equivalent to about 20 binary
discriminations per second. In setting time-feasibility equal to 10!! we assume the
availability of machines capable of calculating ten million times faster than the brain,
say 200 million binary discriminations per second. On this basis it takes the same
length of time to wait for a machine to execute 10! binary discriminations as it does
for a human solver to execute 10*.

property intrinsic to the sequences themselves, a property of ‘randomness’.
A random sequence has an «-complexity not materially less than its own
length — no compressed representation exists.

INFORMATION-CONTENT OF A FUNCTION

Suppose that the original sequence is a Shannon-minimal encoding of the
extensional form of a finite function f: X — Y, i.e. of a look-up table of pairs
(x1,¥1)> (x2,2), (x3,3), ..., (xn, yn) Where N is the size of f's domain. For
sufficiently large X, information theory allows us to equate the length of this
sequence in bits to the information-content of f, calculated as:
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N
I = —2 log, p(y,)

where p(y,) is the frequency with which the value y; occurs as a right-hand
element in f’s function-table. The formula sums over the entire sequence the
individual ‘surprisals’ [8] of successive symbol-occurrences in the sequence,
and is equivalent to the more familiar-looking

NXx = Zl p(Oy) logz p(y;)

The latter first derives the average surprisal per symbol-occurrence in the
message by summing over the complete alphabet of M symbols, and then
multiplies by the sequence-length N to get the total information-content of
the sequence.

DIGRESSION ON INFORMATION

The theory of information has classically been concerned with infinite
sequences and their steady-state properties. Objection may consequently be
raised that the information-content of finite messages is not well defined in
the theory. Steady-state problems, however, represent a particular speciali-
sation of a formalism which has a more general interpretation. We exploit
this generality by using the surprisals associated with successive symbols of a
message as the central concept. Of each symbol in turn we ask:

‘How surprised would a rational receiver be on receipt of this next
symbol?’

‘Rational’ is here used in the sense of the ‘rational belief’ of Bayesian
probability (see reference [9]), and surprisal is defined as — log, (p;) for the
ith symbol, where p; is its prediction-probability. This scheme in effect
parameterises relevant properties of source, message and receiver in such a
way that any behavioural properties of source and receiver whatsoever,
whether prediction be statistically or logically based, can be postulated. It
makes no difference whether messages are finite or infinite. The basic
information expression can always in principle be computed to yield the
expected information-content of the next symbol to be received, as

information (source, symbol-string-received-so-far, receiver).

The last argument-place is reserved for a specification of the receiver’s
computational capability and degree of access to the values of the other two
arguments. The condition for zero expected information is perfect predic-
tion: namely, access is total and computational capability is complete. The
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last argument can be ‘frozen’ in the manner of Schoenfinkel (POP-2 ‘partial
application’ [10]) to some given value, to create an information function of
two arguments specialised to some particular receiver. Thus, corresponding
to receivers 1, 2, 3, ... we create function-procedures information,,
information,, informations, ..., all of which may give different answers to
any given information problem. Some of these functions will correspond to
Shannon’s first-order, second-order, etc. information-measures, but others
will not, being responsive to logical as well as to statistical regularities of the
message. This treatment has the merit of removing obscurity from such
questions as: ‘How much information is conveyed by receipt of the Nth digit
of the decimal expansion of n?’. There is a reminiscence here of Good’s [11]
notion of ‘dynamic probability’.

a-COMPLEXITY OF A FUNCTION

Another interesting property of f is its a-complexity L,(f) in a natural
extension of the Chaitin sense: the length in binary digits of a minimal
program for computing f. Solomonoff [7] relates the compression achieved
when L /I is small to the notion of an explanatory theory in science. He
likens the original series of binary digits to a scientist’s observations and the
program to a theory which enables him to ‘understand’ them. Using a form
of Occam’s razor, he says that if different programs p,, p,, ps, ... all
reproduce the original sequence, then we should take the shortest as the
preferred explanatory theory. The shorter the program, the more compre-
hensible and elegant the theory. a-complexity can thus be seen as a measure
of the extent to which the given sequence can be given a scientific
description.

p-COMPLEXITY OF A FUNCTION

But explanation is not the only use of a theory. There is also its use for
prediction and control. This brings in the idea of applying it, either by
running it ‘in the head’ or on a computing machine. When measured against
the criterion of actual computation a snag appears in Solomonoff’s scheme.
For explanation we do indeed want the shortest program, but operationally
we want something quite different, namely the shortest program able in the
worst case to evaluate f(x) within a user-acceptable number of steps. In the
context of machine computation we denote this bound by the symbol g and
define f’s B-complexity as the length of the operationally minimal program.
To explicate an operational interpretation of Solomonoff’s requirement to
the effect that the user must be able to make mental application of the theory
in addition to simply understanding it or running it on the machine, we
replace B with a parameter specialised in its numerical range to the rates of
calculation possible for the brain rather than to those of computers. For this
we use the symbol B’ and in place of Solomonoff’s rule we substitute an
ordering of alternative programs based on their p’-complexities rather than
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their B-complexities or their a-complexities. We again apply Occam’s razor
to theories of f, by selecting the shortest of these alternative programs.

Once we leave a-complexity where running time is no object, informat-
ional and structural properties of the machine on which the programs are to
be run are needed for fully specifying B-complexities. This is so whether we
are concerned with abstract machines or with practically implemented
electronic hardware or with biologically implemented neuronal ‘hardware’.
In an adequately general formulation, specification of a finite function’s B-
complexity is a function of three arguments, thus

B-complexity: FXSXB — N+,

where F'is the class of finite functions, Sis the class of machine-specifications
and B is the class of possible time-limits for the decoding computation. If we
allow unrestricted computation time and restrict F to functions requiring
sufficiently long programs, the S argument can be ignored. Then for
functions defined over sufficiently large domains we have

a-complexity: F — N,

as in the Kolmogorov-Chaitin scheme.

If we choose from B a bound to calculation-length appropriate to human
solvers working to humanly acceptable waiting times, and specialise Sto an s
with information-processing properties similar to those of the human brain,
then as a convenient explication of the intrinsic difficulty of a problem to a
human we have

B’-complexity: F — N*.

To achieve mastery of the evaluation of some f, a human must pack a certain
amount of material into his head. The B’-complexity of fsets a lower bound
to this amount.

If we choose from B a bound to calculation-length appropriate to a high-
speed machine working to a humanly acceptable waiting time, and specialise
S to some physically realisable s;, where s; might for example be the Cray-1
supercomputer, then we have

Bi-complexity: F — N*.

In general we speak loosely of a given f’s B-complexity, having in mind some
general class of ‘fast machines of the day’ for order-of-magnitude decisions
concerning tractability.

Returning to Solomonoff’s search for models of scientific theories, it
seems that different theories, and different parts of the same theory, are
developed in science to perform different services.

(1) A purely explanatory theory, uncontaminated with the necessity for its
use for prediction, does indeed have its length low-bounded by f’s «-
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complexity as Solomonoff proposes. The smaller this is, the simpler in
general for a human brain to comprehend.

(2) A theory which a scientist may wish to test using high-speed compu-
tation has length bounded by f's p-complexity.

(3) A theory which is to be applied to test cases ‘in the head’ is not to be
assessed either on a-complexity or B-complexity, but on f’s B’-com-
plexity. The smaller this is, the simpler the theory which can be found
for a human brain to apply for prediction.

COMPREHENSION VERSUS PREDICTION

To exemplify these ideas, consider the following series of observations: (19,
true), (199, true), (1999, true), (19999, false), (199999, true), (1999999,
true), (19999999, true). Here is a theory, of “primeness”, to explain them:

f(n) is true if n is greater than 1 and if for all m greater than 1 and less
than n, m does not divide n; otherwise f(n) is false.

The above is clearly satisfactory as an explanation, or ‘comprehension
theory’. As a ‘prediction theory’ it is a fiasco. This is immediately discovered
if one interprets it as a program and tries some numerically large inputs.
Suppose that we try the program on f(x) where x = 212 -1, a 39-digit
decimal number. Even at the rate of one million divisions per second it will
take about 2000 years to discover the smaller of x’s two factors, a 17-digit
number. In 1970, however, Brillhart and Morrison performed the factorisa-
tion at the expense of only about 13 hours of computer time using, in Knuth’s
words, ‘a combination of sophisticated methods, representing a culmination
of mathematical developments which began about 160 years earlier’.

Now suppose that they had embodied enough of this mathematical
knowledge in the routines and data-structures themselves to make the
operation fully automatic, rather than the machine-aided paper-and-pencil
approach which they in fact followed. Such a program would represent a
formidable accomplishment in machine intelligence. It would also constitute
a theory of primes quite different in nature from the simple ‘explanatory’
program given earlier. Essentially the distinction corresponds to the antith-
esis set up by McCarthy and Hayes [12]: an epistemologically adequate
representation of a problem-domain contains all the facts logically required
for solving all solvable problems of that domain; a heuristically adequate
representation contains everything required for solving these problems
within practical resource-bounds. A natural further step, implicit in our
notion of reducibility, is to separate out cognitively adequate representations
as a special case of those which are heuristically adequate. A problem-
domain is reducible if and only if it has a cognitively adequate representation.
Equivalently it is reducible if and only if its B’-complexity is less than the
quantity of human memory which can be loaded with such material in a
life-time.
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We have considered above one epistemologically and one heuristically
adequate representation of the prime-tester function. A similar pair for
chess would be the total look-ahead algorithm of Borel and von Neumann
on the one hand, and, on the other, the program to play faultlessly which
chess programmers would like to write, but will never be able to test if chess
turns out to belong to the intractable category. Note that this would
correspond to the case that chess, which has high a-compressibility (see
earlier), turns out to have low B-compressibility. To give an intuitive flavour
of what property of a problem-domain is denoted by its B-compressibility,
we can informally equate it to the ratio of its size to the terseness with which
a feasibly computable solution-strategy can be specified for the domain. It is
convenient to measure the amount of processing not in seconds but in units
which are independent of the intrinsic speeds of different devices. For this
reason in Fig. 18.1, we express B in terms of the number of binary discrimi-
nations performed in the course of evaluating f. In a practical context, the
user will choose B as the product of the worst-case acceptable waiting time
and the known speed in bits per second of the evaluation device. The idea
then is that of a minimal heuristically adequate program, i.e., the shortest
program capable of B-evaluating f for every argument in its domain. This
shortest length is f’'s B-complexity as earlier defined.

To recapitulate, a-complexity measures how difficult a domain is ‘in
principle’, i.e., how much memory would be required by a solver allotted an
arbitrarily large solving time. B-complexity is expressive of a problem’s
practical machine difficulty, and measures the memory needed if the given
device is to complete every evaluation at the expense of no more than B
binary discriminations. B'-complexity is expressive of a problem’s difficulty
to the human solver.

Having fixed on a value for B, we can say that if the B-complexity of f is
larger than the bit-content of any feasible store (function 4 in Fig. 18.1),
then the problem is B-intractable: if this is so under any reasonable choice of
B then no heuristically adequate representation can exist and the problem is
intractable without qualification. As earlier implied, the possibility is open
that chess is intractable. We can, however, be sure that chess is at least B’-
intractable. A negligibly small proportion of all positions in master games
can claim master consensus as to whether they are game-theoretically won,
drawn or lost.

KNOWLEDGE AND ADVICE

For a problem such as chess, compact solution algorithms exist, yet heuristic
adequacy can only be attained by increasing the occupancy of store by large
factors. What does this additional material consist of? The general answer is
‘heuristics’, remembering that a theorem, too, can be used as a heuristic. A
heuristic is any addition to store which increases the total quantity of
realisable information about f. A useful heuristic is one for which (assuming
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all f-evaluations in X to have equal utilities) the increase of realisable
information exceeds the increase of store-occupancy. If it is the other way
round, then the heuristic is in this localised context worse than useless.

If the heuristic rules, patterns, descriptions, etc. take certain special
forms which are humanly recognisable and usable as concepts, then we call
these structures advice [2]. In this style the store is strictly partitioned (as in
Fig. 18.2) into a fixed algorithmic part and an incremental advisory part,

©
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Fig. 18.2 — Relations among various kinds of mathematical and computational

objects. Abstract objects are ringed, concrete are boxed. A and T denote two

contrasted abstract representations of the function f, namely as an evaluation
algorithm and as a function table {(ordered set of pairs), respectively.

plus a small part consisting of fixed control routines which make the advice
accessible to the algorithmic part. ‘Advice’ is thus a special category of
heuristic.

The role of heuristics is to facilitate the operation of the original naive
algorithm in such a way as to increase the system’s total realisable infor-
mation about f, i.e., the information content of that part of f which is B-
evaluable by the system. When and only when the facilitating heuristics take
the form of advice, then realisable information may be referred to as a
program’s knowledge about f. It corresponds to a special case of the
program’s ability to answer questions of the form ‘What is the value of f(x)?".
Note that question-answering ability cannot in general be identified with
knowledge. A billion-entry database, or a Martian, or a number-crunching
super-computer might all perform impressively as information sources:
none of these would qualify as a knowledge source. ‘Knowledge’ is thus a
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special kind of information. Heuristics increase an expert program’s realis-
able information content. Advice increases its knowledge content. How can
we measure this?

COST-BENEFIT OF PROGRAM COMPONENTS

The realisable information contained in a given program can be measured in
information bits, as follows.

Consider the partial function f, corresponding to that subset of f which is
p-evaluable by the given program running on the given machine. f, is thus
defined for a ‘realisable’ subset X, of f's domain. How much information is
required to specify f,? Following our earlier reasoning it is

K= - Z log, p(f(x)) bits

xeXk

plus the information associated with the N ‘Yes/No’ decisions involved in the
selection of this particular subset X out of X.

Writing L for the store-cost of the program in binary digits we have a
benefit-to-cost ratio K/L. We call this the program’s computational advan-
tage. For some purposes the logarithm of this ratio, D = log,o K — log;oL, is
convenient. We call it the program’s penetration, and note that the measure
of a good heuristic is that it increases this quantity.

The main use of the theory is not for comparing cost-benefit measure-
ments on whole programs with similar measurements performed on other
whole programs. The pay-off comes from detailed examination of the fine
structure of a given program’s heuristic part — this rule versus that, this table
versus the other, this heuristic versus none at all. How do we do this?

A body of advice has its proper values Kz and Lp determined by
measuring K and L without the advice loaded and again with it loaded and
doing the appropriate subtractions, according to the relations:

K = KA+KB+KC
L=L,+Lg+Le

The subscripts A, B and C stand for ‘algorithm’, ‘body of advice’ and
‘control’, respectively. Incremental gains in Kz and Ly associated with
additions to B can be measured in the same way. The validity of the
assumption of additivity and independence underlying the above-described
procedure may be criticised. Thus the goodness of a heuristic may be
annulled, or even reversed in sign, by the presence in store of certain other
heuristics. The prevalence and magnitude of such interactions will vary from
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one domain to another. An approximating assumption of this sort has to be
approached empirically, as with the treatment of ‘weights of evidence’ in the
Turing-Good [9] Bayesian calculus of uncertain inference and also the zero-
interaction assumption implicit in various procedures in the Fisherian
analysis of variance.

LEARNING

Refinements for which there is not space here allow the economics of
knowledge-acquisition (learning) also to be monitored. Learning indices are
defined in terms of gain in penetration relative to costs of learning. In
Watterberg and Segre [13] this finer analysis showed that a particular rote-
learning mechanism was ceasing to be cost-effective for larger dictionary
sizes. Such warning signals, which could not have been obtained without an
appropriate measurement method, can be used to prompt program impro-
vements — for example, by introducing rote-learning into key subroutines
as well as into the main program, or augmenting rote-advice with conceptua-
lised knowledge in the form of descriptions, pattern-based rules or useful
lemmas.

Advice Theory is intended as a measurement tool for the information
engineer. It stands or falls by application to practical knowledge-based
programs for domains so complex that human brains hitherto have consti-
tuted the only available evaluation mechanisms. Machine representations of
chess end-game knowledge are under study for initial validation of this
formalism. With its use a comparative cost-benefit accountancy was recently
performed on the inductive learning and execution by machine of variant
operational theories of the king-pawn-king ending in chess [14].
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Automating the synthesis of expertise
(1984)

Automating the construction of machine-interpretable knowledge-bases is
one of the immediate next moves in the emerging technology of infor-
mation. Feasibility of computer induction of new knowledge from examples
has been shown in more than one laboratory. Can we generate knowledge-
based programs that are automatically guaranteed analysable and execu-
table by machine and human brain alike?

INDUCTIVE LEARNING

A number of computer programs have been developed which ‘learn’ by
generating rules from examples, i.e. by induction (see Michalski & Chi-
lausky [1]; Quinlan [2,3]; Shapiro & Niblett [4]; Paterson & Niblett [5]; and
papers in Michalski, Carbonell & Mitchell [6]).

As a result of a long sustained interest in machine learning [7], our
Edinburgh group has recently become a practised computer induction shop,
along with I. Bratko’s Artificial Intelligence division of the Josef Stefan
Institute, Yugoslavia, R. S. Michalski’s group in the University of Illinois,
and J. R. Quinlan’s laboratory in the New South Wales Institute for Science
and Technology, Sydney. We can now routinely synthesize machine-execu-
table descriptions (in the form of PASCAL, FORTRAN, PROLOG or C
programs) for classification tasks too complex for human experts either to
program, to verbalize complete strategies for, or even reliably to perform.
According to the style adopted, the machine-generated descriptions can be
made to take either ‘Martian’ or human form. In the second case, in spite of
its synthetic origin, we call a machine-made description a concept-expres-
sion. A recently-developed programming technique [8] has added the
following capability: when a machine-made concept is ‘run’ on a trial case,
the system .not only classifies the case but also displays an explanatory
narrative in intelligible English as to how it arrived at the classification —
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something that cannot always be done by the possessor of the equivalent
human-made concept. This is a help both to the end-user and to the
knowledge engineer.

A brief description of methods and principles used by one of the
Edinburgh learning programs, ACLS, is given below. The program is a
development from Quinlan’s ID3, in turn derived from Hunt, Marin and
Stone’s CLS (Concept Learning System) [9]. A commercially enhanced
version of ACLS has also been described by R. McLaren [10].

ACLS (ANALOGUE CONCEPT LEARNING SYSTEM)

A ‘training set’ of examples of classifications within a chosen field is
presented to ACLS as a list of records. All fields of the record except the last
are entered with the values of those attributes considered by the user to be
relevant to the classification task. These are known as ‘primitive attributes’.
The last field is entered with the name of the decision class to which the
record is to be assigned (e.g. CIRCLE, ELLIPSE, TRIANGLE, SQUARE, POLY-
GON, OTHER; or MALIGNANT, BENIGN, IMAGINARY; or ALLOWED, DISAL-
LOWED, SPECIAL-CASE; or just TRUE, FALSE).

From these example records ACLS derives a classification rule in the
form of a decision tree, branching according to values of the attributes
situated at the nodes. ACLS also generates a PASCAL conditional expres-
sion logically equivalent to the decision tree, and this PASCAL code can be
run to classify new test examples. Whenever a new example is found which
refutes the current rule, ACLS can be asked to restructure the rule so as to
accommodate the new case, and to display, store or output it as before.

The set of attributes should be chosen by an expert in the given problem
domain to be sufficient for classifying the data. In choosing the set of
attributes the maxims: if in doubt, put it in . Any attribute which is in reality
redundant will be set to one side by ACLS and not included in the tree (and
corresponding PASCAL code) which it generates.

It is not necessary that the expert should be armed with a clear mental
picture of the rule which he himself uses when performing the given task.

His role is simply to structure the problem into sub-problems, to supply
the list of primitives and to act as an oracle by assigning example data to what
he considers to be their correct classes. ACLS observes his behaviour as a
classifier, and from this constructs the simplest rule it can, using the
primitives supplied, which will assign the same example data to the same
classes as he does. As the training set grows with the addition of fresh
examples, so the ACLS-synthesized rule grows more sophisticated. As it
does so it tends to approximate to a form on which the expert may comment:
‘That looks like the way that I think I probably do it’.

The expert is thus enabled to transfer to the machine a judgemental rule
which he already had in his head but has not explicitly formulated.

We list below four closely related questions under investigation with the
aid of ACLS and similar programs:
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(1) the possibility that a learning program, such as the one described above,
can be used to extend the mental grasp of the human user;

(2) the use of the machine-synthesized programs as instructional or refer-
ence texts;

(3) numerical measurement of the knowledge (see later) contained in
machine-synthesized programs;

(4) development of human-intelligible concept description languages as
mandatory vehicles for output from induction systems.

For a number of reasons, chess is specially qualified as a test domain for
experiments of this kind. However, in order to confirm the generality of
observed results, after basic work has been done in this measurable ‘test-
tube’ world, ACLS-type programs can be used to investigate knowledge
enhancement in the domain of school algebra, robot vision, industrial
engineering, fault diagnosis, chemistry, etc. A general idea of how ‘pro-
gramming by examples’ is done is given in a recent paper by Shapiro &
Michie [8].

KNOWLEDGE MEASUREMENT

Tests using an information theory approach to measure the knowledge-
content of machine-produced (synthetic) programs are under way in Edin-
burgh [11,12] and Illinois [13]. Relevant theoretical work has also been
conducted at Stanford [14].

Use is made of machine-oriented definitions, such as the ‘knowledge-
content’ of a program, ‘computational advantage’, ‘penetration’, ‘grasp’,
and rate of knowledge acquisition, ‘Difficulty’ of a problem can also be
expressed within the same numerical calculus. The current objective is to
build the measurement system referred to above into rule-synthesis pro-
grams. Induction programs will then be enabled not only to produce rules
which can be executed by machine but at the same time will be able to give
the user a quantitative evaluation of each rule as it is synthesized — in terms
both of its information content and of its anticipated suitability as a human-
usable concept. This style of proceeding can be exemplified from recent
work of Shapiro [15]. Shapiro’s synthetic rules combined a reasonable
approximation to machine optimality with brain feasibility. No general
guarantee can be given that the two goals can be combined in any particular
case. Moreover, from the point of view of brain feasibility, the problem of
program transparency has been found to have some surprising twists.

SUPER-PROGRAMS

Recent results have shown that programs constructed by systems such as
Quinlan’s ID3 can be, in one sense, ‘super-programs’ and at the same time
quite incomprehensible to people. By a super-program we mean one that is
at least twice as efficient in terms of execution cost as the best which could be
written by a programmer. For an example we turn back to Chapter 14.
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Fig. 14.8 shows the execution costs on a CDC Cyber 72 for three
different programs written to solve the same difficult problem. The first
implements a standard algorithmic approach. The second was the fastest
pattern-coded solution which J. R. Quinlan, the author of ID3 and also an
outstanding programmer, could achieve after many months of work. About
two months of these were expended on finding an adequate set of primitive
descriptors for the problem. The third was a machine-generated program,
produced by ID3 itself, equipped with the file of primitive descriptors and a
complete file of example data. ID3 running on the Cyber 72 generated this
decision-tree program in 34 seconds. The ID3-synthesized program clearly
qualifies as a super-program (see Fig. 14.8). Further and perhaps alarm-
ingly, however hard they try, chess experts cannot understand it. Even
though it constitutes a complete and correct description, it does not qualify
as a concept expression.

Work triggered by this observation has shown the reason, which lies in
the way the decision tree generated by ID3 (or the corresponding PASCAL
expression) is structured. We have therefore developed a method known as
‘structured induction’. This is a hierarchical approach in the sense that the
rules, or concept-expressions, generated by the program using the original
primitive attributes themselves become the primitives for the next pass
through the data (see Shapiro and Niblett [4]). Shapiro subsequently applied
the approach to the ending:

king and pawn versus king and rook (pawn on a7).

This work generated a complete and self-documenting classifier for a space
of over 200000 positions, using some 350 expert-supplied examples. Since
human experts are unfortunately not self-documenting, no codified classifi-
cation theory of the domain previously existed. The classifier thus consti-
tutes an original if miniscule contribution to end-game theory.

The method described constrains the output of the inductive generator
to take the form of decision structures which people can recognize as
concepts. The constraints have been embodied in the syntax of a rule
language CDL (Concept Description Language 1), for which a compiler is
operational on the VAX-750. A new version, is under development which
enables the user to define ‘fuzzy’ as well as strictly logical building blocks for
his synthetic concept.

A KNOWLEDGE REFINERY

Expert systems have commercial promise. A system of over 2000 rules
called R1 is used at Digital Equipment Corporation for configuring com-
puter systems to customers needs (see McDermott [16]). It already outper-
forms their best technical salesmen. But in knowledge refining and synthe-
sis, the focus is not on the product which expert systems were originally
designed to deliver, namely interactive advice in conversation with a client,
but on the unexpected by-product, the finished knowledge-base itself.
Expert system languages and induction systems can be used:
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to get knowledge into the machine;
to test it;

to debug it;

to fill gaps;

to extend it;

to modify it.

Finally the knowledge can be put back into the human world in
unrecognizably improved shape. This important phenomenon was shown by
Bratko to be generalisable across different knowledge domains using one
and the same computer induction program. In the differential diagnosis of
lymphatic cancers Bratko successfully used an Edinburgh learning program
derived from Ross Quinlan’s ID3 to generate an improved classificatory
scheme for this category of malignant disease. The Edinburgh program had
been developed by Shapiro and Niblett [4] using the domain of chess.
Strategies for chess end-games were conveyed by examples. The resulting
correct and complete theory of king and pawn against king is itself of interest
to chess masters. Bratko then used the same program, in collaboration with
clinical oncologists, to construct a diagnostic scheme for the lymphatic
cancers. In this experiment, with help only in extracting data from medical
case histories, Bratko was able to perform as if he were a clinical expert,
although knowing nothing about medicine [17].

REQUIREMENTS FOR A REFINERY
What are the necessary ingredients for knowledge refining?

(1) Knowledge-engineering software able to make inferences from data
supplied, and to retrace and display the lines of reasoning.

(2) Induction modules able to generate rules from examples.

(3) A good software development environment, e.g. UNIX or
INTERLISP.

(4) Trained knowledge engineers familiar with the above tools.

(5) One or more experts. Even with inductive knowledge generation
automated to the limit of current technique, an expert is still needed to
choose the repertoire of primitive measurements or attributes to eva-
luate as relevant to the given problem domain, and to assist the
knowledge engineer in the task of decomposing the domain into sub-
problems, sub-sub-problems, etc. This top-down analysis is the heart of
the structured method of induction referred to earlier.

Originally designed to deliver interactive advice, it now appears that
expert systems have a by-product which is in the long term more important
— the finished knowledge-base itself. A concluding example may be useful,
taken from a recent study by Mozetic, Bratko, & Lavrac [18].

Using the logic programming language PROLOG, the authors collabor-
ated with senior clinical cardiologists at the Ljubljana University Medical
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School. The Yugoslav group applied a generalisation of the ‘easy inverse’
method [19] to the machine construction of a complete and ultra-reliable
diagnostic scheme for multiple arrhythmias and their relation to the ECG
wave form. The new knowledge, although small in extent, is sufficient to
have a use in teaching and as a reference text for the specialist (see next
chapter).

COMPUTERS AS CO-AUTHORS
To recapitulate, expert systems can be used:

to get knowledge into the machine;
to test it;

to debug it;

to fill gaps;

to extend it;

to modify it;

and finally
to put the knowledge back into human hands in an improved form.

Thus, the possibility now exists of superseding (as the automobile has
superseded the horse) a craft which has been in existence for thousands of
years — namely, the writing of manuals and texts on how to do things.
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Section 4 Al and society

INTRODUCTORY NOTE TO SECTION 4

Every student of society is at the same time its creature. Margaret Mead’s
Growing up in Samoa, it is said, can be more easily understood by someone
acquainted with Greenwich Village in the 1920’s than by a resident of the
South Seas.

The essay reproduced here as Chapter 20 has no claim to special
dispensation. Yet reading it nearly 20 years later I found little to revise.
There is, however, a great deal which can today be amplified. In particular
the coming knowledge revolution, indicated with rather vague waves of the
hand in this Chapter, is given technological substance in the immediately
following ‘Towards a knowledge accelerator’.

Many of the accomplishments and tactical approaches introduced into
the world by machine intelligence are new. In aspiration and strategic thrust,
however, they are as old as mankind’s recorded culture. A year or two ago
the University of Illinois honoured me with an opportunity to spread myself
on the subject of ‘Machine Intelligence: the first 2400 years’. I have used my
write-up of what I said on that occasion to round off this book.
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Computer — servant or master (1968)

It used to be possible to sweep the social challenge of computers under the
carpet, with the dismissive phrase ‘high-speed morons’. Today, however,
computers play draughts at a good club standard, solve difficult problems in
logic, compose dull but passable music, outperform librarians in the relevant
retrieval of certain classes of document, translate Russian into useful dog-
English, and perform many other exacting tasks of a non-numerical nature.
Clearly if we are to bolster our self-respect as humans in face of the new wave
of machine accomplishments we may have to find some other way of doing it
than by talking about morons.

INTELLIGENCE

My own research as a scientist is concerned with teaching computers not to
be morons, and with attempts to find general rules for doing this. I am fairly
optimistic, if that is the right word, about the rate of progress in our own and
in other similar laboratories elsewhere, in Britain and abroad. I qualify the
word ‘optimistic’ because many people view the objectives of such work with
deep unease. If informed that in a decade or two the first intelligent
machines will be in our midst, their dominant feeling would not be one of
optimism, but rather of gloom and anxiety. I shall leave to a later stage the
discussion of whether there is justification for these fears — de-humaniza-
tion of life, mass redundancy among brainworkers, suffocation of man by
surplus leisure, computer-aided snoopers and ‘thought-police’ — and con-
sider first in more detail what is meant by the concept of intelligence in a
machine.

TURING’S TEST

The problem of testing a machine to see whether it is intelligent was first
discussed by the great British logician and computer pioneer, Alan Turing,
who died in the early 1950s. It was from my personal association with Turing
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during the war and the early post-war years that I acquired my interest in the
possibilities of using digital computers to simulate some of the higher mental
functions that we call ‘thinking’. Turing proposed the following test. The
machine was to be placed on one side of a screen and a human examiner on
the other side. Conversation between man and machine was permitted
through the medium of a teleprinter. If after an hour or two’s type-written
conversation the machine had managed to fool the examiner into thinking
that he had been conversing with a human being, then according to Turing
the machine’s claim to intelligence should be conceded.

There was undoubtedly an excellent idea here, and one which foresha-
dowed the modern trend towards ‘conversational computing’. Unfortuna-
tely Turing’s test, in its original form, has been refuted by an ingenious
conversational computer program called DOCTOR written by Joe Weizen-
baum of Massachusetts Institute of Technology. I reproduce below a
fragment of a conversation with DOCTOR.

HOW DO YOU DO. I AM THE DOCTOR. PLEASE SITDOWN AT THE TYPEWRITER
AND TELL ME YOUR PROBLEM

I wish I had my baggage

CAN YOU ELABORATE ON THAT?

I am not quite clear as to what sort of elaboration is wanted
DO YOU BELIEVE IT NORMAL TO BE NOT QUITE CLEAR AS TO WHAT SORT OF
ELABORATION IS WANTED?

Yes, quite normal

I UNDERSTAND

I have lost my baggage

YOU SAY YOU HAVE LOST YOUR BAGGAGE

I feel lost without it

DO YOU OFTEN FEEL LOST WITHOUT IT?

No, this is the first time

WHY NOT?

Because I normally do not lose my things

WHAT OTHER REASONS MIGHT THERE BE?

My mother trained me not to lose things

TELL ME MORE ABOUT YOUR FAMILY

I have lost my baggage

DID YOUR PARENTS EVER LOSE YOU?

At first sight this has an air of (slightly scatty) plausibility. In reality it is a
trick — the same trick as most of us employ when keeping a conversation
going, perhaps at a cocktail party, while our mind is elsewhere. Instead of
attending to the sense of our companion’s remarks we merely pick up key
words (e.g. ‘mother’) to which we reply with stock phrases (e.g. ‘Tell me
more about your family’). If really stuck, we merely play back our com-
panion’s last remark with some suitable trimming.

This is essentially how DOCTOR works. Its success as measured by
Turing’s test is impressive. Patients in Massachussetts General Infirmary
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were allowed to converse with the program, after being warned that a
computer, not a doctor, was at the other end of the line. 60 per cent of them
subsequently rejected this information and insisted that they had been in
communication with a flesh-and-blood doctor — ‘No machine could under-
stand me that well’.

So Turing’s test has to be refined if it is going to be useful in the way
intended. Perhaps we should insist that the machine should fool Nobel
Prize-winning scientists rather than hospital patients, or alternatively per-
haps we should direct attention to whether the examiners feel that they have
been having an intelligent conversation. To apply these definitions, they do
not need to be philosophically watertight. Machine intelligence is not an
exercise in philosophy but an engineering project.

One side of this engineering project is concerned with defining and
implementing the separate components of mental aptitude — such capabili-
ties as trial-and-error learning, pattern-recognition, generalization from
individual instances, deductive and inductive reasoning, problem-solving
and linguistic skill. Somehow these different capabilities, each represented
in the computer by a different program, have got to be integrated together so
that they function as an organized whole. We have some ideas about how
this co-ordination of computer programs might be achieved, but these are
still rather primitive and will not be discussed here. What I shall do is to take
one of the constituent capabilities as the subject of a brief digression, before
considering some of the social and psychological apprehensions which are
voiced concerning the development of intelligence in computers.

LEARNING

The mental capability which I shall single out is trial-and-error learning. This
is the simplest and lowest form of learning, in which the learner proceeds
entirely ad hoc. He says to himself merely: ‘Have I been in this situation
before? If so, what did I do? What were the consequences of my action? If
satisfactory, I shall choose the same action again. Otherwise I shall try
something else’.

Note that no generalization from experience is involved. Situations are
separately assessed in the light of past experience, without attempting to link
them together into meaningful categories according to higher-level con-
siderations. The surprising thing about pure trial-and-error learning is how
far a computer system can get using this trick alone, without venturing into
the realm of generalization. Samuel’s famous computer program for playing
checkers (draughts) was able to train itself to a passable amateur level with a
system of pure trial and error (Samuel called it ‘rote-learning’), even before
its standard of play was further improved by the addition of a learning-by-
generalization component. The program asked itself: ‘Have I been in this
checkers position before? If so, what move did I make? What were the
consequences ...?" etc. Some years ago I extracted much spare-time
amusement from constructing a trial-and-error machine out of matchboxes,
whose task was to learn to play tic-tac-toe (noughts and crosses). More
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recently with the help of my colleague R. A. Chambers I have developed a
computer version, and this has been tested on a difficult problem which on
the face of it does not look in the least like a game.

POLE AND CART

The task is to learn to control an unstable physical system which I shall call
the ‘Donaldson system’, after the Cambridge physiologist who first used it in
studies of machine learning. A motor-driven cart is free to run on a straight
track of limited length, and balanced on it is a pole pivoted at the base which
is free to fall down either left or rght along the line of the track. The motor is
controlled by a single switch which determines at each instant whether the
motor’s force shall be applied in the left or the right direction. The task is to
manipulate the switch so as to keep the cart running backwards and forwards
along the track without either running off the end or dropping the pole. This
task has obvious similarities to one which most of us attempted, with
eventual success, during childhood — namely learning to ride a bicycle.
Inevitably the child learns by sheer trial and error to begin with.

Our computer program does in fact learn to master the Donaldson
system — without utilizing any special knowledge about it or being ‘taught’
by any human or mechanical mentor. The program is no more, and no less,
designed to tackle a pole and cart than to learn to guide a car round a closed
track or to monitor and control some simple industrial process. In this it
illustrates a property which is a ‘must’ for any component of an intelligent
computing system — task-independent capability. The striking feature of
the human brain is not so much any outstanding performance at any
particular task but rather its ability to make a useful, even if fumbling
attempt at almost any task.

COOPERATION

An option in the program allows the human user to intervene and perform
the control task himself, and a further option permits program and user to
work on problems cooperatively, each benefiting from the other’s trials and
errors. I believe that this type of cooperative interaction between intelligent
user and intelligent machine will come more and more to the forefront, and
indeed will set the pattern in the future.

When thinking recently about the subject of particular mental capabili-
ties, of which trial-and-error learning is just one example, I amused myself
by copying out the late Ludwig Wittgenstein’s list of what he called
‘language games’ and measuring each item against the present state of the
art in machine intelligence. I reproduce his list below.

Giving orders and obeying them.
Describing the appearance of an object, or giving its measurements.
Constructing an object from a description (a drawing).
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Reporting an event.

Speculating about an event.

Forming and testing an hypothesis.
Presenting the results of an experiment in tables and diagrams.
Making up a story and reading it.
Play-acting.

Singing catches.

Guessing riddles.

Making a joke — telling it.

Solving a problem in practical arithmetic.
Translating from one language into another.
Asking, thanking, cursing, greeting, praying.

Now let us run through the list again. Giving orders and obeying them
has been a routine function of computing systems for many years. Describ-
ing the appearance of an object, or giving its measurements, is a difficult task
facing those engaged on ‘hand-eye’ computer projects. For a machine to
inspect an object with a mechanical ‘eye’ and manipulate it with a mechani-
cal ‘hand’ the first step must be to form a description from the visual image.
Constructing an object from a description (e.g. building a tower from a
photograph of a tower) is among the most difficult long-term goals of hand-
eye projects — such as Marvin Minsky’s at MIT and John McCarthy’s at
Stanford, USA. Reporting an event is beyond present technique. Again
synthesis of a description from primary sense-data is the first step. The
second is use of the synthesized description to generate appropriate lan-
guage text. Speculating about an event is even further beyond present
technique. Forming and testing a hypothesis is a process under active
current study. Presenting the results of an experiment in tables and diagrams
is a routine operation of contemporary computer programs for survey
analysis. Making up a story is beyond present technique, although reading it
from printed text is now marginally feasible. Play-acting would require a
great extension to the arts of robotics: as for singing catches, humming the
tunes is easy to program, but singing intelligibly is not. Guessing riddles is
under active current study, but making a joke is very far beyond present
technique. Solving a problem in practical arithmetic presents no difficulty
even to primitive computer systems. Translating from one language into
another is just attaining marginal feasibility by commercial criteria. Asking,
thanking, cursing, greeting, praying are activities which express emotions,
attitudes, desires, sympathies. It is meaningless to talk of them except on the
basis of consciousness and self-consciousness in the intelligent system
concerned. Many workers in machine intelligence believe that success on a
really significant scale will hinge on the degree to which machine-represen-
tations of these phenomena can be devised — at least to the degree of
permitting the machine to form some sort of internal logical model not only
of the external world but also of itself in relation to that world.

Who is to be master? 1 am inclined to regard the dilemma ‘Computer:
servant or master’ as a false one. To clear the ground for what I have to say
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under this heading, let me first sketch a division of tasks into three
categories.

(1) Tasks suitable for humans alone. This category is concerned with value,
i.e. what sort of result do we want to see? For example, what weather do we
want, irrespective of problems of prediction. Or what rate of road deaths
relative to motorists’ convenience are we prepared to tolerate?

(2) Tasks suitable for computers alone. These tasks are those of compli-
cated detail and ‘tactical’ decisions: for example prediction of weather, or
control of a city’s traffic light system. The case of traffic lights has a special
point of interest in the present context; the citizen seems prepared quite
happily to accept this form of computer interference in his life, even though
he may express great alarm over other forms. The implication is, I think,
that the emotions of doubt and opposition to the computer revolution do not
in reality hinge on a matter of principle — that control by machine is a bad
thing. On the contrary it seems to be a matter of the appropriateness or
otherwise of computer control in the given case. As applied to traffic lights,
the sheer inhuman equitableness of computer control has a positive appeal. I
believe that something similar is involved in the popularity among school-
children of computer programming as opposed to Latin. With programming
there is no conceivable vulnerability to possible biases or prejudices of the
teacher. The entire proof of the pudding is (if I may be allowed to mix a
rather sticky metaphor) in the running of it on the machine.

(3) Tasks suitable for cooperation. These are tasks which are either too
difficult at present for either partner to do alone or are in some way
intrinsically suitable for conversational computing. In the second category I
would place the use of a console connected to a conversational computing
system as a ‘home tutor’ whereby the user can be steered through courses
and subjects of study of his own choosing. It is not always easy, once one has
taken the plunge into conversational computing, to distinguish between a
program to help you do something and one to teach you to do it.

In this category of intrinsically conversational uses is the ‘question-
answering’ facility which will one day become available as a service. Not
only schools, hospitals and commercial firms but also the ordinary house-
holder will be able to tap information and problem-solving power from a
national computing grid with the same ease and immediacy as that with
which he now draws on central supplies of gas, water and electricity. Along
with question-answering services, which will allow us to enquire about
restaurants in our locality or politics in Paraguay, will come the games
opponent, the puzzle-setter, the quiz-master. An increasing demand upon
computer systems will be for aid in coping in a stimulating way with the
growing burden of leisure.

HELPERS AND HOBBIES

For many years only the rich will be able to install terminals in their private
homes, but I have no doubt that the coming decade will see public telephone
boxes up-graded to include a keyboard terminal connected to the computing
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grid, and it is well within the reach of foreseeable software technology to
offer services which will tempt ordinary people to place their coins in the
slot.

Will the computer ‘take over’? In the world of information-handling of
course the computer will take over. The questions is will it take over as
servant or master? To this one must reply: not as servant nor master, but as
tutor, as secretary, as playmate, as research assistant. None of these in their
human embodiments is a servant or a master; each is better described as a
helper. The lessons of experience with computers do not support the idea
that brain workers will be thrown out of employment by the machine. The
indications are that as soon as brain workers learn to use the new facilities
their work will be enlarged and enriched by the new possibilities which
become available to them. The working week will, of course, continue to
shorten in advanced countries as productivity rises, but this is a question of
technological progress in general, and not specifically a consequence of
computers. Whether the increase of leisure time is felt as a burden or a joy
will depend on the means available for developing spare-time activities
which can exercise and challenge man’s varied capabilities.

It is my confident prediction that computer-aided self-instruction in
science, history and the arts will have become a consuming hobby of large
sectors of the population by the turn of this century. As for fears sometimes
expressed that by then Big Brother will be able to watch us over the
computational grid, or that our superiors or our neighbours may be able
secretly to tap our dossiers kept on the universal electronic file, these fears
can be dismissed. It is easier to devise ‘unpickable locks’ in a computing
system than in the world of bank vaults and safes.

THE CONVERSATIONAL TERMINAL

The present fears of computers represent nothing new. When the first
passenger-carrying railway services were opened, eminent medical men
warned that if the human frame were transported at these speeds, fatal
haemorrhages and seizures would be caused. There is a good parallel here.
Imagine framing the question ‘Railway train: horse or rider’. The answer, of
course, is ‘Neither horse nor rider but travel assistant’. As soon as people
discovered this, their fears of rail travel disappeared. When computer
terminals can offer a useful coin-in-the-slot service, the citizen will, I
believe, cease to regard the computer as an alien monster or a ruthless
competitor. Instead, the conversational terminal of the future will be
welcomed for what it will do to enlarge daily life — as planning assistant, as
budgeting assistant, and above all as a novel and challenging type of
conversational companion.
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Towards a knowledge accelerator
(1986)

In the last century it was demonstrated in the numerical domain by Babbage
and others that calculating machines make possible the discovery and
tabulation of large bodies of factual (as opposed to conceptualized) know-
ledge. Today it is becoming apparent that computing techniques developed
in expert systems work can be harnessed to a similar purpose for non-
numerical domains, including those which extend beyond the codifying
power of the unaided expert intellect. It is moreover possible semi-automat-
ically to render the new material into conceptualized form. Computer chess
studied as a branch of artificial intelligence has a central role to play.

INTRODUCTION

Recent findings in a number of laboratories have shown the feasibility of
machine-aided synthesis of bodies of knowledge far exceeding in quality and
extent any formulations achievable by unaided specialists.

The foregoing statement implies a rather far-reaching possibility,
namely that the construction with automatic aids of new knowledge is
destined to become a mass-production or manufacturing industry. In the
same way that the manufactured articles of the nineteenth century in the first
Industrial Revolution took the form of physical objects of use to consumers,
now we have the demonstrated feasibility in the laboratory of automating
the construction of a new range of commodities, namely, bodies of know-
ledge which did not pre-exist and in general case could not have pre-existed.

The power of the human specialist to execute knowledge which he
already has is impressive. But his power to codify it is quite extraordinarily
limited, far more limited than was expected. As a result (see Figs 21.1,21.2
and 21.3) the knowledge engineering profession during its first decade went
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KNOWLEDGE ENGINEER'S Machine
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Fig. 21.1 — Old style transfer of know-how from expert brain to machine memory

proceeds via the expert’s articulation. There is evidence that this channel, corres-

ponding to Feigenbaum’s ‘bottleneck problem of applied AI’, narrows to non-
existence with increasing task-complexity.

the wrong way about the knowledge-acquisition task and is only now making
a course correction and turning to computer induction of expertise from
examples.

We look to the development of the new induction-assisted craft at three
levels.

Level 1

At the first level the process is essentially one of extraction and tabulation of
expertise which already exists coded in certain human brains. That in itself is
novel and commercially promising. A laboratory example is discussed by
Alen Shapiro and myself elsewhere (ref. [8] of Chapter 19).

Level 2

Beyond that lies the possibility of automatically constructing new codifica-
tions of knowledge which are then accepted and used by the human
professional, but which did not pre-exist in human brains and hence
constitute genuine de novo synthesis. An example due to Bratko and his co-
workers (Mozetic, Bratko, & Lavrac, 1983) is discussed later.

Level 3
Finally, automation can in principle be extended to the synthesis of new
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Fig.21.2 — Map showing a hypothesized ‘North-West Passage’ through which
know-how could in principle be communicated from expert to machine.

knowledge which not only did not pre-exist but could not have pre-existed;
that is to say, knowledge which a brain could not possibly synthesize but can
assimilate and use if synthesized by some other agency.

AN HISTORICAL PARALLEL

A parallel in the history of technology is the synthesis early in the nineteenth
century of organic chemical compounds. Many of the same barriers — some
of them mental barriers — as exist now to the automated synthesis of
knowledge, existed then to the proposition of automated synthesis of
organic compounds. For example the only urea that had ever existed was
synthesized in living cells. Most of the chemists of the day were persuaded by
the more mystically-minded biologists that this situation was eternal, and
that it was unreasonable to expect synthesis by artificial means to be feasible
for the carbon compounds. These were the sacred preserve of cellular
anabolism, dependent on some vital force.

When, in 1828, urea was synthesized in the laboratory, it was initially
synthesized in very small quantities, much too small to be of industrial
interest. The amounts were sufficient, however, to upset the principle that
organic compounds lay out of reach of technology. Within a fairly short
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Fig. 21.3 — Confirmation is provided by the routine use in the author’s laboratory of

inductive expert system generators. Under instruction, the expert operates the

induction cycle himself, inspecting on the screen, and correcting by applying

remedial examples, successive versions of each induced rule. The outer cycle
represents feed-back from tests of the rule-base in the field.

period the synthesis of urea was a mass production industry for fertilizer in
agriculture. In the chemical industry, even to the present day, there is still
large-scale reliance on extractive methods — insulin until recently came into
that category — where it is a matter of extracting a compound already
synthesized by some biological agency. This is analogous to extracting
knowledge from a domain specialist and recodifying it in machine memory,
regardless of whether he is already articulately aware of the knowledge. If he
is not aware, then extraction can still be achieved by rule-induction meth-
ods, as recently demonstrated by Shapiro (1983). If he is aware, then rule
induction may even so offer higher extractive effectiveness.

The chemical industry today relies not only on extractive processes, but
also on the synthesis of compounds already synthesized biologically. Moving
on to the post-war years of this century we find a third category: the synthesis
on an almost overwhelming scale of a vast variety of new organic compounds
which have never been synthesized by biological systems, never could be
synthesized by any known biological system, but nevertheless are accepted
by human tissues (as exploited for example in the pharmaceutical industry)
as useful new products. A case can be made that all these phases, difficulties,
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and opportunities which technology has passed through in the case of the

chemical industry are beginning to be re-enacted in the computer-based
knowledge industry.

INVERTING COMPUTATIONS

Provided that a problem domain can be exhausted by a tabulation of, shall
we say, a mere billion or ten billion entries, as in the case of the chemical task
of mapping mass spectral patterns onto molecular structures, then instead of
despairing because the function that we would like to compute is effectively
intractable, one cansay: I am only interested for the moment in a subdomain
of ten million elements and, although the function is adverse to compute, it
may have an easy inverse — its inverse may be of low computational
complexity.

Such functions have been called trap-door functions, because one can go
through one way, but one cannot easily go through the other way. When that
is the case, then there is a cure. Imagine that somebody has pointed out a
straightforward algorithm to go from mass spectra to molecular structures
or, if you like from chess endgame positions to game-theoretic values. Old
style (processor intensive), the user inputs his questions into the question-
answering machine, and since the algorithm is correct and complete and
must terminate, eventually the user gets an answer. The trouble is that it
comes after an unacceptable delay.

Instead he can now proceed as follows. The first step is to specify the
space of answers: we are going to start from answers and work back to
questions. The next requirement is an exhaustive generator, which from that
specification will generate an answer and from that generate the next answer
and so on until it has enumerated the complete answer space. Now we need a
routine which embodies the hypothesised computation. In the case of mass
spectroscopy, the inverse computation takes the form of simulating the
action of the mass spectrometer, which given a molecular structure, beams
electrons at it to break it down into fragments, weighs the fragments and
forms a statistical histogram (mass spectrum) of those fragments according
to abundancy and ion weight.

Deriving for each answer the linked question, an insertion routine puts
the newly-discovered question-answer pair into the giant incremental dic-
tionary, but does its indexing on the question rather than the answer. Hence
this manufactured mountain of factual knowledge can be put into the field as
an indestructible, everlasting, fast, cheap question-answering machine, to
which the user can input questions and immediately get the answers by look-
up. That whole process has been routine in a number of laboratories
studying aspects of computer chess for at least the last fifteen years. The first
person to do it was Thomas Strohlein, who constructed a data-base for the
King-Rook-King-Knight end-game for his doctorate in Munich in 1970.

It follows from the prevalence of hard combinatorial problems in
industry — scheduling problems, allocation problems, sequencing prob-
lems, optimization problems of all kinds — that whereever trap-door
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functions exist, the industry will move in with large memory techniques.
What do these techniques buy? In terms of artificial intelligence nothing at
all. Interest from an Al point of view begins when the need is found to free
up some of this mountainous storage space by compacting part of the
tabulated material into description form. New facts can then be tabulated
and found room for in the memory and generalized in turn. Thus the
information-base is by degrees converted into a description-base subject to
human-like constraints. Even in terms of sheer brute-force manufacture of
knowledge at ground level, the pre-conceptualized level, it is a technology
which will become part of our lives. When automated compression from
look-up form into conceptual form has been made routine, the technology
will become part of our culture.

AN AI EXAMPLE

Is there any way of using the same trick — the easy inverse trick — for
proceeding in an Al style from the start? In order to do that, one would be
dealing, not with irreducible facts and atomic queries, but with descriptions
— concept-expressions in fact. The question space would be a space of
concept-expressions and the answer space a space of concept-expressions.
Bratko’s work at Ljubljana illustrates these notions. The customer require-
ment is for a program which will take descriptions of electrocardiogram
traces and generate diagnostic descriptions of heart disorders. There are
automated systems in the market-place which do that after a fashion. I say
‘after a fashion’ because of limitations in reliability and accuracy of ECG
interpretation based on purely statistical, as opposed to concept-based,
models. The commercial systems implement statistical decision functions
which do not embody anything which could be called cardiological know-
ledge. In general the first-rate cardiologist can outperform them. Instead of
operating at the superficial level of direct statistical association between
cardiac arrhythmias and ECG wave form Bratko decided to deal with the
cardiac arrhythmias as an enumerable set of descriptions. He and his co-
workers generated descriptions on the machine of all the possible arrhyth-
mias, subject to the physiological constraints. These constraints say which
arrhythmias can physiologically coexist with which others. Moreover in
building this catalogue of physiologically possible arrhythmias Bratko’s
program goes through a qualitative model of the heart, constructing for each
arrhythmia a prediction of what the ECG should look like, expressed
qualitatively as a PROLOG description (see Fig. 21.4).

Notice that it is a true example of the easy inverse trick. The adverse
function is the one that maps from ECG to arrhythmia diagnosis. However,
all the computing goes in the reverse direction. Bratko’s program uses a
deep model, in some sense a causal model, of the biological system that is
generating the ECG traces. Were it not for the physiological constraints, the
enumeration task would blow up — the number of mathematical combi-
nations goes up exceedingly fast. Fortunately the constraints dampen the
combinatorial .explosion, which levels out at approximately 580 different
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“shallow” cardiac ECG
knowledge arrhythmias |~ descriptions
“deep” heart _ physiological model of

knowledge disorders constraints the heart

Fig. 21.4 — Program-synthesized rule-base for ECG interpretation exemplifies the
difference between modelling an intuitive skill (‘shallow’ knowledge of ECG-
arrhythmia associations) and modelling the causal and physical properties of the
corresponding domain (‘deep’ knowledge of the heart’s functioning and of the
physiological constraints on the co-occurrence of different arrhythmias). By exhaus-
tive enumeration of the physiologically possible arrhythmias and logical reconstruc-
tion from each of a corresponding ECG description, the program was able to
generate ‘shallow’ from ‘deep’ knowledge.

multiple arrhythmias. The reason why the diagnosis of the multiple arrhyth-
mias is of importance is that even a medical student has little difficulty in
relating an ECG to a simple arrhythmia since there is only one specific defect
of the heart — some transmission pathway is blocked or some generator
which should be generating pulses is not, or is in the wrong site. But in the
presence of multiple arrhythmias, the description of the waveforms cannot
in any way be obtained by simple-minded summing or averaging or other
way of combining the descriptions that belong to the individual constituent
arrhythmias.

This machine-synthesized catalogue can give useful service in either
direction, either as a diagnostic catalogue to be looked up in the machine (or
on paper), or the other way round, going from arrhythmias to ECG
characteristics. It is the second mode that is now in use in that particular
hospital, namely as a teaching aid.

Here is a path that could lead to a substantial systematic automated
manufacture of new knowledge. Not all of that cardiological knowledge
catalogue was known to cardiologists. The head cardiologist was initially
sceptical. Bratko put him to the test by using the machine knowledge-base to
generate unusual and complex cases. In some of these the cardiologist
stumbled, mainly through overlooking secondary possibilities. This work is
the first recorded case of automated construction of new conceptualizations
on other than an extractive basis. It was not done by collecting or inductively
extracting diagnostic rules from existing human diagnosticians. The diag-
nostic rules were synthesized de novo.

The senior author of the work, Dr Ivan Bratko, has for many years been
one of the world’s leading contributors to the study of computer chess from
the artificial intelligence point of view. It has been said that chess is the
Drosophila melanogaster of AI. The reference is to the pioneers of the
chromosome theory of heredity who bred fruit-flies in the laboratory rather
than chickens or cows. It must have been a relief to the early geneticists
when the results of the work found practical applications. It is gratifying to
record the start of a similar migration of technique today.
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Machine intelligence:
the first 2400 years

The field known by its practitioners as Al has attracted attention of a kind
usually associated with great novelty. Moreover many people, among whom
I include myself, believe that artificial intelligence is about to re-shape our
world. So it may seem surprising if I assert that Alis not the youngest but the
oldest of mankind’s systematic studies.

The modern mind has been conditioned, partly by Dr Kuhn with his
revolutions and paradigms and partly by the media. We expect a scientific
technology to jump suddenly into our ken, and then to advance in a series of
paroxysms called breakthroughs. But the story of machine intelligence has
not been at all like this. Over a traceable span of 2400 years Al has been the
slow plodder, and possibly owes the world an apology for taking such an
unconscionable time arriving. But as will emerge from my narrative there
have been retarding circumstances, including ignorant opposition — not
from the lowest minds of each age but from the most cultivated.

The story begins with the attitudes expressed by Socrates to the inven-
tion of writing. To us writing stands forth as the first necessary device to be
placed in AI’s box of mind-enhancers, the key to the rest. Socrates saw it
differently. Speaking in Plato’s Phaedrus of one of Egypt’s junior gods, by
the name of Thoth, he says:

Among his inventions were number and calculation and geometry
and astronomy, not to speak of various draughts (i.e. checkers) and
dice, and, above all, writing.

Thoth goes to the arch-god Ammon and declares: ‘Here is an accomplish-
ment, my lord the king, which will improve both the wisdom and the
memory of the Egyptians’. Ammon replies that, on the contrary, writing is
an inferior substitute for memory and understanding. “Those who acquire
it’, he says, ‘will cease to exercise their memory and become forgetful; they
will rely on writing to bring things to their remembrance by external signs
instead of on their own internal resources.’

This argument has re-appeared in many contexts, most recently in
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connection with today’s hand-held calculators. But Ammon’s next point is
more subtle, and goes to the heart of our topic, namely the nature of
knowledge when predicated of an interacting pair of systems when one of
them is a person and the other is an inanimate device, in this case a book. ‘As
for wisdom’, says Ammon about book-users, ‘your pupils will have the
reputation for it without the reality: they will receive a quantity of inform-
ation without proper instruction, and in consequence be thought very
knowledgeable when they are for the most part quite ignorant’. Ammon’s
crushing finale is: ‘And because they are filled with the conceit of wisdom
instead of real wisdom they will be a burden to society’.

The objection here is concerned with the simulation of knowledge by the
possessor of a rapid-access source. Precisely because the distinction can be
blurred between possessing a sufficiently fast knowledge-source and actually
possessing the knowledge, we see Ammon’s point as not only subtle but also
topical. To Ammon the distinction is critical. Herbert Simon’s contrasting
view, hatched in 1955, is expressed in a passage published in 1971:

The change in information processing techniques demands a funda-
mental change in the meaning attached to the familiar verb ‘to
know’. In the common culture, ‘t0o know’ meant to have stored in
one’s memory in a way that facilitates recall when appropriate. By
metaphoric extension, ‘knowing’ might include having access to a
file or book containing information, with the skill necessary for
using it. In the scientific culture the whole emphasis in knowing
shifts from the storage or actual physical possession of information
to the process of using or having access to it.

Note that Simon’s position paves the way for a philosophy of knowledge
in which both members of a man-machine partnership can be allowed to
‘know’ things, jointly with, and in some cases independently of, each other,
or even — as explained in previous chapters — to create and codify new
knowledge for joint use. It is interesting that Socrates goes on to scourge the
passive technology of books for failure to be precisely the kinds of products
which today’s Al scientists are striving for, notably knowledge-bearing
devices able to explain their own contents. Socrates is particularly, and
rightly, scornful of books in this regard: ‘... if you ask them what they mean
by anything they simply return the same answer over and over again.’

I want now to move a few years on from Socrates and to look over the
shoulder of Aristotle as he struggles to pin down a different but related
ambiguity in the meaning of the word to know, concerned not so much with
whether information is retrieved from an internal or an external store but
rather with whether retrieval is effectively instantaneous.

Aristotle’s study of knowing and inferring, the Posterior Analytics, starts
briskly and provocatively: ‘All instruction given or received by way of
argument proceeds from pre-existent knowledge’. If some of us at the start
of the 1960’s had marked, learned and inwardly digested this passage, that
decade’s unfulfilled quest for knowledge-free mechanisms as the key to
machine intelligence might have been shortened. Not that we do not need
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these mechanisms of general-purpose search and general-purpose deductive
inference. We do need them, and derivatives of what was invented then can
be discerned in the workings of Prolog and other computer languages of the
1980’s. What we do not need is the Platonic fancy that in these pure forms
lies all that is required for a machine to receive instruction by way of
argument. Aristotle was right. There is an additional requirement, namely
for the cognitive agent to be first loaded with relevant knowledge.

Obvious now, this insight was far from obvious in 1970, when bold spirits
at MIT announced the knowledge approach and began to push it down the
reluctant throats of the rest of us. Now that the dust has settled, one of the
most elegant worked examples still remains: David Waltz’ program for
interpreting pictures such as that of Fig. 16.2, i.e. shadowed scenes formed
by varied and partially occluding polyhedra resting on a plane landscape.
The problem posed by the line drawing in that Figure is: how can a machine
identify the solid bodies represented by the draughtsman, and thus in a sense
understand the picture? Clearly it must somehow associate every face, edge
and vertex with its proper body, while avoiding hypothesized associations
which contradict the facts of three-space and the conventions of projection
onto two-space. The Aristotelian answer must be in terms of ‘pre-existent
knowledge’, whatever that phrase might mean in terms of interpreting such
drawings. We shall approach the meaning conferred by Waltz’ program by
first digressing back to Aristotle and the notion of pre-existent knowledge.

Aristotle categorizes the notion under two headings, namely facts about
individual objects (qualified knowledge) and facts about classes (unquali-
fied). An example he gives of the first is that ‘this figure inscribed in the
semicircle’ is a triangle. His example of the second is that the angles of every
triangle are equal to two right angles. He now poses the problem: can a
student who knows the second fact, about triangies in general, be said
already to know its truth in relation to every particular triangle, including
one suddenly shown him which he has never seen before?

Aristotle realises that before the knowledge becomes complete, some
computation must be done. First the student has to run a mental recognition
routine (to use today’s language) so as to know that this object is a triangle.
Then he must apply his rule about triangles so as to infer that this one too has
angles equal to two right angles. Aristotle holds back from Herbert Simon’s
usage, which credits the student with already having knowledge of the
properties of this particular triangle provided that when asked about it he
can mobilise the answer with sufficient immediacy. Instead Aristotle sits
with one foot on either side of the fence and says of the student: ‘Before he
was led on to recognition or before he actually drew a conclusion, we should
perhaps say that in a manner he knew, in a manner not’. If Aristotle had
taken just one more step he might have formed the suspicion that the chains
of mental calculation demanded by some tests of student knowledge could
be infeasible for the examinee to complete, even in a lifetime, such as for
example the primeness or otherwise of some 40-digit integer suddenly
shown him. If in such a case Aristotle were to discard the equivocation ‘in a
sense he knew’, he would step over the threshold which Simon crossed in
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1955 and of which much of the AI world has still to become aware. This
threshold separates the world of unbounded rationality shared by philoso-
phers, mathematicians and physical scientists, and the world of bounded
rationality meaning the term very strictly to mean brain-bounded rationa-
lity. We must come to terms with the laws of brain-bounded rationality if we
are to understand anything at all about knowledge, whether realised in
people or in machines.

With this in mind let the reader now turn back to Chapter 16 for the
meaning given to the word by Waltz’ program. Knowledge here takes the
form of a catalogue of classes of vertex, in Table 16.1 of that Chapter,
labelled accordng to a line-labelling scheme embodying certain elementary
facts of optics and geometry: unqualified knowledge, in Aristotle’s termino-
logy. The immediately following Table shows the respective sizes of the
combinatorial spaces which must be searched under two alternative
assumptions.

Alternative 1 says that the cognitive agent (let us suppose some visually
naive student) has no knowledge of the above-mentioned elementary facts,
but only of a rule for deciding whether a given allocation of labels to local
features is globally legal. If asked to say, by analogy with Aristotle’s triangle
test, whether a given drawing does or does not depict a physically possible
arrangement of polyhedra, the only strategy open to him is that of ‘generate
and test’. During the student’s execution of this laborious phase, Aristotle
has to say that in a manner he knows, in a manner not. Unfortunately from
the standpoint of this method the computational complexity of even simple
line drawings is intractably large. For the drawing shown in Chapter 16 the
student could not possibly complete a generate-and-test strategy within a
life-time. So Aristotle would presumably not in this case say ‘in a manner he
knew’. Like the rest of us he might rather conclude that the student did not
know at all, and never would know unless he were to abort the attempt to
answer the question and take more knowledge on board.

Is promptness in supplying good answers, then, the only credential
required to support a claim to knowledge, even when the claim is advanced
on behalf of a machine? Not so. Certain structural criteria must additionally
be met if the machine’s answers are to accredit a claim that it ‘knows’.
Suppose that one were to run on a supercomputer the naive generate-and-
test algorithm for Waltz’ pictures, regularly obtaining correct answers in less
than a second. Many a bystander, including even from the ranks of Al,
might be tempted to say of each answer: ‘In a manner the machine knew . . .’
— so0 long as no-one asked it: ‘But how do you know?’. An answer such as ‘I
generate and test, but I do it very fast’ would, one supposes, fail to satisfy
most examiners.

A brain or a computer program gives solutions to problems in a given
domain on the basis of some stored complex of relevant procedures,
methods and facts. For a person knowledgeable about the domain to credit
another agent with knowledge, as opposed to mere problem-solving ability,
the stored operational descriptions employed by the two parties must satisfy
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some minimal matching relation. More particularly, description A and
description B must show a level of match not only in what they DENOTE
(they must give the same answers to the same questions) but also in what
they CONNOTE (the two descriptive complexes must be essentially
similar).

A more detailed basis can be found in Chapter 18 for analysing what is
and what is not knowledge in a machine. Here we simply point out that
customary usage of the term ‘knowledge-based’ includes the requirement
for such a system that it be able to explain the process by which a conclusion
was reached. Moreover this process must be such as to support the
generation of explanatory comments which match the user’s way of thinking
about the problem. Plainly Alternative 1 cannot be made the basis of a
knowledge-based system at all, but only of a super-clever black box.

Alternative 2 says that the cognitive agent has in memory the facts concern-
ing labelling constraints and physical possibility and uses them to confine the
amount of generate-and-test to what can be quickly accomplished by even so
sluggish a calculating engine as the brain. If the agent, whether machine or
student, then answers promptly and correctly then it seems reasonable to say
‘In a manner he knew’, even though Student (2) strictly speaking has no
more initial information about the answer than Student (1): both have all
that is needed (in principle) to answer the question. What has changed in the
transition from 1 to 2 is not the information-content concerning the answer
but the amount of information which the brain can mobilise about its value
at short notice. In a neo-Aristotelian system of definitions we might call this
latter quantity the knowledge-content of the stored materials. Notice that
when operating under Alternative 2 the supercomputer’s reply (this time,
one supposes in a fraction of a nanosecond) can reasonably be credited to
knowledge. The machine this time observes a regime of brain-bounded
rationality in the selection of facts and representations held in memory.
Hence its explanatory trace is intelligible to any equally informed user
imprisoned in the same bounds.

The phrase ‘bounded rationality’ is from Herbert Simon’s introduction
to the first section of his book ‘Models of Thought’ in which his papers
published before the year 1979 are collected. By way of a definition suited to
my theme we can say that Al is

THE COMPUTATIONAL MODELLING OF
BRAIN-BOUNDED RATIONALITY

MODELLING BRAIN-BOUNDED RATIONALITY

The elaboration of Simon’s ‘bounded’ may seem needless, since Simon
plainly refers to the bounds imposed by various information-processing
limitations of the brain, in particular the size of short-term memory and the
speed of sequential operations. But it is necessary to distinguish between
Simon’s boundedness and that of computational physicists and computer
people susceptible to their way of thinking, who prefer to model a rationality
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bounded only by hardware technology and the constraints of solid-state
physics. I made earlier mention of circumstances which have retarded the
development of an effective science of AI. I mentioned resistance from
other disciplines. A greater retardant, though, has been neglect even by
some Al practitioners of Simon’s qualification concerning the brain’s
boundedness, and the inescapable consequences of this for the forms which
the modellers must follow. Yet the Nobel Prize awarded to Simon in 1979
was for his use in the mid-1950s of precisely this qualification to demolish the
models of von Neumann and Morgenstern, which were based on the
unbounded rationality of an imaginary being, Economic Man. In the key
paper of 1956, Rational Choice and the Structure of the Environment, we
find:

A comparative examination of the models of adaptive behaviour
employed in psychology (e.g. learning theories) and of the models
of rational behaviour employed in economics shows that in almost
all respects the latter postulate a much greater complexity in the
choice mechanisms, and a much larger capacity in the organism for
obtaining information and performing computations than do the
former. Moreover, in the limited range of situations where the
predictions of the two theories have been compared ..., the
learning theories appear to account for the observed behaviour
rather better than do the theories of rational behaviour.

Yet realization has come only slowly that the potent historical example set
by the physical and mathematical sciences is the worst possible example for
AL Artificial intelligence must build its models around the very same
peculiar shapes and constraints of brain-bounded cognition which the
physical scientists seek so rigorously to exclude. To make the exhortation
more specific, I have set out in Table 22.1some of these peculiar constraints.

Table 22.1 — Some information-processing parameters of the human
brain. Estimation and other errors can be taken to be around 30 per cent

1. Rate of information transmission along

any input or output channel 30 bits per second
2. Maximum amount of information explicitly

storable by the age of 50 10" bits
3. Number of mental discriminations per second

during intellectual work 18
4. Number of addreses which can be held in

short-term memory 7

Between the time of Socrates and that of Aristotle we find the first
machine builders. As already related in Chapter 16, the mathematicians
Eudoxus and Archytas enjoy a double priority, in the first place for devising
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mechanical aids to reasoning and in the second place for provoking the first
of the succession of eminent counter-blasts which have punctuated Al
history. These two employed their art, in Plutarch’s words, ‘as a means of
sustaining experimentally, to the satisfaction of the senses, conclusions too
intricate for proof by words and diagrams’, much to the annoyance of Plato
at their meddlesome encroachment on the preserve of pure thought.

I shall not follow the further progress of special-purpose computing
engines, which continued long into the Roman era and included such
elaborate wonders as complete clockwork simulators of the solar system.
Rather, in keeping with my chosen Aristotelian emphasis, only that strand
will be traced which bears on the inductive side, on the synthesis of
generalities from particulars, discovery of new concepts, and machine
learning.

How does one get knowledge from a knowledgeable human source, i.e.
an expert, into a computer? Two ways are open:

(1) let the expert tell his rules of thought and rules of thumb to a program-
mer who then codes up what he has been told;

(2) let the expert teach the machine by showing, that is by feeding it pre-
classified examples of expert decisions.

In the case of (2) the machine must have the power of inducing rules from
examples; it must be able to generalize. Table 22.2 shows the results of an

Table 22.2 — Expert system generated exclusively from examples com-
pared with hand-crafted variants (from'Chilausky, Jacobsen, and Michalski
1976, Proc. VI Internat. Symp. on Multi-Variable Logic, Utah). The AQ11
induction procedure was coded in the PL1 programming language

AQIllinPL1 120K bytes of program space
SOY-BEAN DATA: 19 diseases
35 descriptors (domain sizes 2-7)
307 cases (descriptor sets with
confirmed diagnosis)

Test set: 376 new cases
>99% accurate diagnosis with
machine runs machine rules
using rules of 83% accuracy with Jacobsen’s
different origins rules

93% accuracy with interactively
improved rule




262 Al AND SOCIETY [Sec. 4

early experiment conducted by Ryzsard Michalski and colleagues at the
University of Illinois on how to build a machine diagnostician of soy-bean
diseases.

By this and by much careful follow-up work Michalski decisively estab-
lished that method (1) is not as effective as might be hoped, and is also rather
costly, while (2) is not only cheap but also effective by the highest standards.
A feature of special interest in view of the brain-bounded nature of human
rationality is that Michalski’s machine-synthesised rules are intelligible to
the soy-bean experts and also mentally executable by them. In spite of their
largely synthetic origin, these products could reasonably be called concept-
expressions. This demonstration must rank as a highly significant milestone
in the practical modelling of brain-bounded rationality.

Let us go back in time to the first milestone along the trail of machine
concept formation. We find it in 13th Century Spain. Here was made what
Martin Gardner has described in his book Logic machines and diagrams as

... the earliest attempt in the history of formal logic to employ
geometrical diagrams for the purpose of discovering non-mathema-
tical truths, and the first attempt to use a mechanical device — a
kind of primitive logic machine — to facilitate the operation of a
logic system.

The tale of Ramon Lull’s long, tempestuous, and almost unbelievable
career, and of his cognitive contrivances, is enjoyably told in Gardner’s
book. Lull’s fundamental idea was the generation of new and complex
concepts by mechanical assortment and recombination of pre-existing
simpler ones. This he accomplished by elaborate systems of concentric
spinning disks. Around the edges of the disks could be inscribed the names
of component concepts from which more complex multiple conjunctions
were generated. For the less intellectual audiences, perhaps for site visits to
his theological laboratory (one of whose products was a set of 100 sample
sermons generated by his spinning disks), he prepared some simplified
popular versions. But in Martin Gardner’s words ‘the method reaches its
climax in a varicolored metal device called the figura universalis which has
no less than fourteen concentric circles! The mind reels’, Gardner con-
cludes, ‘at the number and complexity of topics that can be explored by this
fantastic instrument.’

Lull’s influence in exciting the minds of his own and succeeding gene-
rations was immense, both pro and contra. Four hundred years later, as a
lampoon on Lull and his method Jonathan Swift describes in Gulliver’s
Travels a generate-and-test treatise-writing machine. The professor in
charge reminded Gulliver that

everyone knew how laborious the usual method is of attaining to
arts and sciences; whereas by his contrivance the most ignorant
person at a reasonable charge, and with a little bodily labour, may
write books in philosophy, poetry, politicks, law, mathematicks and
theology, without the least assistance from genius or study.
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On the other side of the Lullian controversy, Leibnitz was much taken by
Lull’s combinatorial machines, and employed similar methods exhaustively
to crank out formulas of propositional logic which were then checked for
validity, on the generate-and-test principle. His own faith in what might be
accomplished through machine-style symbol processing was astonishing:

If one could find characteristics or signs for expressing all our
thoughts as clearly and exactly as arithmetic expresses lines, we
could in all subjects, in as far as they are amenable to reasoning,
accomplish what is done in arithmetic and geometry.

Commenting on this passage, the British logician John Shepherdson writes:
‘His full programme would have embraced not only pure and applied
mathematics but also grammar, law, politics, physiology, theology, the art
of discovery etc. He was rather optimistic about the time it would take:

I'think that a few selected men could finish the matter in five years.
It would take them only two however to work out by an infallible
calculus the doctrines most useful for life, those of morality and
metaphysics.’

Three hundred years before recognition of the notion of the intrinsic
complexity of computations, whether mental or otherwise, Leibnitz exhibits
in its most florid form the nonsense into which the neglect of such bounds can
still lead the Al enthusiast. The kind of neglect assailed in 1955 by Simon had
even earlier been satirised by Claude Shannon in the context of the theory of
games applied to chess. Shannon’s point was not that grandmaster chess, or
even move-perfect chess, was unimplementable, for that would be over-
dogmatic. His point was that this goal, as with Leibnitz’ more grandiose
enterprise, needs more than a sound mechanisation of in-principle solu-
tions. It needs what today we call the ‘knowledge approach’, for which both
Shannon and his great contemporary Alan Turing made specific, prescient,
and largely neglected proposals.

Turing created, in the intellectual sense, the concept of the universal
machine. In design and implementation, however, the chapter was opened a
century earlier, by Charles Babbage. He in turn was undoubtedly inspired
by the ‘universal machine’ idea implicit in Leibnitz’ great knowledge
project. Itis noteworthy that Babbage, as passionately devoted to the aim of
machine intelligence as Leibnitz, was also Leibnitz’ great admirer and
champion. Babbage was largely instrumental in gaining acceptance of
Leibnitz’ ‘d’s to replace Newton’s ‘dots’ in the teaching and practice of the
calculus in England. He also showed a campaigning zeal to compel accep-
tance of the feasibility of machine intelligence by effecting some dramatic
demonstration. As with Shannon and Turing in a later age, his mind was
drawn to the game of chess, for which he advanced proposals for formalizing
principles of play.

Certain writings of Turing, in particular the unpublished Lecture of 1947
to the London Mathematical Society (‘The Automatic Computing Engine’,
typescript in King’s College Library, Cambridge), have not received atten-



264 Al AND SOCIETY [Sec. 4

tion — understandably since they have yet to acquire relevance in relation to
the more immediate and obvious developments of his main work. The multi-
billion-dollar industry set to dominate the century’s closing years traces
directly from the Universal Turing Machine (UTM) formalism of his 1937
paper. Andrew Hodge’s biography provides a good route-map of develop-
ments already become so dazzling as to eclipse from view the more
speculative themes. It was these themes, however, which Turing perceived
as the wave of the ultimate future. In the UTM the rest of the world saw a
formal model for a revolutionary concept: programmability. To its author
this was the obvious part. What Turing saw as the revolutionary part was the
concept of self-programmability. Since not everyone outside the ranks of Al
is aware of this, I close with a pertinent passage from the 1947 Lecture:

Let us suppose that we have set up a machine with certain initial
instruction tables, so constructed that these tables might on oc-
casion, if good reason arose, modify those tables. One can imagine
that after the machine had been in operation for some time, the
instructions would have been altered out of recognition, but
nevertheless still be such that one would have to admit that the
machine was still doing very worthwhile calculations. Possibly it
might still be getting results of the type desired when the machine
was first set up, but in a much more efficient manner. In such a case
one would have to admit that the progress of the machine had not
been foreseen when its original instructions were put in. It would be
like a pupil who had learnt much from his master, but had added
much more by his own work. When this happens I feel that one is
obliged to regard the machine as showing intelligence.

The passage ends on a note of expectation, robbed of fulfilment by his early
death:

As soon as one can provide a reasonably large memory capacity it
should be possible to begin to experiment on these lines.

Turing died in 1954. A. L. Samuel was then just beginning to take over
from Christopher Strachey the programming groundwork for experiment-
ing with the game of checkers, and to embark on some compelling illus-
trations of thé idea of table-modifying tables. A year or two later, as
described in Chapter 1, my own impatience to experiment had me immersed
in glass beads and matchboxes. Learning of this, Strachey visited me. Might
I not, he enquired gently, advance with greater speed by the use of more
modern equipment? Strachey and I were soon to collaborate in a Govern-
ment initiative led by Lord Halsbury to implement certain thoughts at that
time new to Whitehall, namely that

— computation is a subject of scientific study, on a par with physics,
chemistry, biology etc;

— scientific study requires enablement;

— enablement has to include the provision of appropriate equipment.
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Extraordinary as it may seem today, none of these propositions was seen as
in the least self-evident. Each had to be buttressed in detail and argued
through. In 1964 on commission from the nascent Science Research Council
I conducted a poll in British Universities of some hundred under-40
computer scientists. I asked respondents to rank different subdivisions of
computing according to estimated importance and personal interest. It is
interesting to recall that even at that early stage the two topics which
dominated the replies were the man-machine interface and machine
intelligence.

In these and other ways it came about that Britain’s part in the first 2400
years was re-animated. A selective sample of the activity which ensued has
contributed some of the subject matter of this book.
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