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notes of the course, Artificial
‘the University of BEdinburgh in the academic
f of the Department of Artificial Intelligence.
surse was introductory, requiring mo previous
nter Science (The "2" is a code meaning "not
The course attracted students from: psychology;
pollosophy; computer-sciences lllﬂu-luumluﬁntblr
It has now run for two years.
e | a new and multi-disciplinary course, like AI, is very
ven though we put a lot of work into it, we are still conscious
ed for improvement, especially in the teaching of programming
science and arts students. By binding our notes into this
‘we hope both to promote feedback and perhaps save others scme
The notes have, however, not been edited for a wider audience
and still contain parochial references.
~ Rather than attempt a broad survey of the field we have tried to

show how AI programs are built. This was done by taking a series of
tasks; proposing and discussing ways of modelling them; then extending
and debugging these models. Students eventually tried this for them-
selves in their projects. A lot of emphasis was placed on the acquisi-
tion of skills e.g. programming, writing robot cperators; writing a
context free grammar; line labelling polyhedral scenss etc. Genaral
hmmaﬁlngﬂmﬁlm:mhdmmmﬂﬂu
subject, Most discussion of these issues took place in class dis-
cussions and student presentations and so is not recorded in the notes.
These notes are divided into five sections: Representation of
Enowledge; Matural Language; Visual Percepticn; Learning; and Pro-
e g. Page numbers are consecutive within sections and each has
an appropriate prefix (e.g. RK39). The lectures weére not given in

this order. In particular the Representation of Knowledge and Pro-
ing lectures were closely integrated. The actual sequence of
is given in Appendix 2.
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e two years the course has been running, a tremendous
of people have had a hand in it. We would like to thank the
demonstrators; ‘tutors; project supervisors; lecturers
« without whom it would not have been possible.
Although it is not possible to mention everyone, we would like to
out: Peter Buneman, the criginal organiser; Colin McArthur
and Rosemary Robinson, who kept LOGO running; Aarcn Sloman, our
external examiner; and last but certainly not least, the secretaries:

Jean, both Margarets, Peggy and Eleanor, who tirelessly produced this
huge volume of notes.
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mm: "Find the fule by which figurs A has been
changed to make figure B. Apply the rule to figure C.
Select the resulting figure from figures 1 to 5."
uestd ask
Can you do it?
Is intelligence needed?
Could we explain to somecne how to do it?
Could we write an instruction bocklet?
Would it be intelligent if a machine could do it?
If it could do some such tasks, but not all?
I':I..n'l:m:l_.z
Consider the original instructions.
Focus on the imprecise parts of the instructions.
Finding rule - creative act?
Applying rule - probably straightforward.
wmtm-muﬂnmm.
Finding the Rule
mmml-hnlnd'hthh-d'thmtmu
to some description of A and produce a description of B.
1. Make a description of A.
2. Make a description of B.
3. Compare descriptions to find what must be done to one
to produce the other.
4. Use English for descriptions.



Aty ETRS
le 1 :
A is "A rectangle with a triangle on its perimeter®
B is "A rectangle with a triangle inside it"
Rule is change "on its perimeter” to "inside it"
C T C is "Arch with a sguare on its perimeter”

«"« applying rule, answer should be
"Arch with a square inside it"
and indeed answer 3 is just this.
Debugging Rule Pinder - Symbolic descriptions
But suppose we had described B as
*"A triangle inside a rectangle"
or "A rectangle surrounding a triangle"
this simple rule would not be found,
We need scme unique form for the description of a figure.
®.9. [inside triangle rectanglel
Where

1. We drop all superflucus words e.g. "a" and limit
ourselves to tha objects mentioned (triangle,
rectangle) and the relationship between them
{inside) . .

2, We decide always to replace all descriptions using
"outside", "surrounding® etc. with the equivalent
description using "inside",

3. The objects are put in some fixed (but arbitrary)
order. In our case the inside object (triangle)
always comes first.

The description [inside triangle rectangle] will be called a
symbolic description. The first word (inside) is sometimes
callad the predicate and the remainder (triangle, rectangle)
its arguments. The square brackets are currently just for
punctuation. However, when we come to represent these
symbolic descriptions in the computer we will see that the
brackets are part of the syntax of the data-structure called
lists.

Descriptions in example 1 become

A lon triangle rectanglel

B [inside triangle rectangle]

rule change "on" to “inside"

¢ [en sguare arch]

New description [inside sguare arch]
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e Debugging - More complete descriptions
: _ ‘Let us try this on another example:
”g P daee :
: il § £
Al Al |@
! 2 gt = & s
@= |®]|O]|a

Descriptions A [inside trianglel triangle2l

; we must distinguish different objects
e B %
'f Rule: delete everything?

! It would be a good idea to add a list of objects in the figure
to our description, or we will not be sble to separate answers 2, 4
and 5, It would also be a good idea to allow several relationships
in a description.

So our general description becomes:
[objects in the figurel [relationships in the figure]
Try example again
A : (trienglel triangle?] [inside trianglel triangle2]
B : [ctriangle2]
Bule: remove "inside" object and any relationships it is
involved in
€ : lcircle square]l [inside square circlel
Bew description: [circlel
Which answer figure is this a description of?
‘Even more Debugging - Similarity descriptions
When we gave the triangle in figure B the same name as one of the
trisngles in figure A we were begging the question. Why are these
 two triangles matched? Ans. because the similarity between them is
most direct.

But suppose that the answer O was not available but u

was, as in
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Then we might extract the rule: "Remove outside object and blow up
inside object by a factor of 2"

i.e. There are 2 different correspondences between objects in figure
A and figure B. From each correspondence we get a different rule,
vielding a different answer. We must therefore distinguish objects in
figure A from objects in figure B and then make any correspondences
explicie.

Thus the descriptions become:

A ¢ [ crianglel triangle2] [ inside trianglel triangle2]

B 't [ trianglel ]

Similarity 1 : [ Sim triangle? triangle3d direct] Ffor example 2
Similarity 2 : [ Sim trianglel triangled [scale 2]] for example 3
means thede 2 objects are identical if we apply thTis transformation to
the first.

Making the Rule Precise

Each of the correspondences between objects in Figure A and

Figure B gives rise to a different rule.

Can we now be more precise in our definition of a rule?

One thing a rule must do is to say which objects in Figure A

correspond to objects in Figure B, and which objects in Figure A

are just removed. For imstance in our previous example the

rules must say!

rule 1. [ Remove trianglel ] [ Macch triangle? triangle3 1

rule 2. [ Remove triangle2 ] [ Match triamglel triangle3 ]
Remove Part

Consider the first rule.

[ Remove trianglel ] really means, remove "trianglel" from the
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list of objects in the description of ﬂl‘lirll A Wm any

relationships it is involved in.

But of course trianglel is not mentioned in the description of

Figure C, so how will we know which object to remove from the

description?

We will have to give sufficient information to identify the object

in Figure C which corresponds to trianglel in Pigure A, namely

"square". Why do trianglel and square correspond?

Ans. they both bear similar relationships to the other objects

in their figures i.e. they are both "inside" the other object.

So if we say what relationships the object to be removed takes

part in, this should be sufficient information to identify the

correct object in figure C,

Some arbitrary names which will be
associated with trianglel etc. when
apply the rule

[ Bemove x [ inside x ¥ 1]
Hatch Part
[ Mateh triangle2 triangle} ) means replace triangle? by
triangled in the list of objects in the description of Figure A
and replace all relations iovolving triangle? with the relations
involving triangle3.
To make this a rule that can be applied to Figure C we will again
have to replace trianglel, triangle3 ete, with some arbitrary name
which can be associated with any object.
We will have to add the relations that triangle2 is imvolved in
g0 that the appropriate association is made.
We will have to add the relations that triangled is involved in
8o that we knmow what relationships the "new" object is to have.
We will also have to say what transformation must be applied to
triangle2 to make it into triangle 3.
So the rule becomes:

[ Match 1 [ ingide %y ] nil direce ]

S P e

instruction Joint name relations relations transformations
. to "match" of both of yin of y in to be applied
2 "___“_ objects Figure A Figure B

Does this rule totally describe changes?




Previous Examples Revisited

" The rule in example 3 is now
[ Remove y [ inside x y 1]

[ Match x [ inside x y 1' nil [ scale 2 1'1
Does the rule totally describe changes?

Let us try to formalize the rule in example 1.

Our descriptions are now:
A ¢ [ trianglel rectanglel ] [ on triamglel rectanglel ]
B : [ triangle? rectangle? ] [ inside triangle2 rectangle2 ]
€ 1 [ squarel arch ] [ on squarel arch ]
Correspondences are :

[ Sim trianglel trisngle? direct]

[ Sim rectanglel rectangle? direct ]
Ehe riule is :

[Match x [onxy ] [ insidexy ] direct |

{Macchy Tonxy ]l [ insideyx 3 ] direct )

Debugging Rule - Add Part

Let us try this in another example.
Example 4 - S—

O @ [C

a O (= O

We see that as well as Remove rules we need Addition rules,
[ Add object [ relations it is in involved in in Figure B 1]

An English Recipe

Are we now in a position to give a precise recipe for doing geometric
analogy problems? Comsider the task of finding the rule given the
symbolic descriptions of figures A and B and similarities between
objects in them.

i.e. given:

& description of figure A in the form

[ objects in figure A 1 [ relationships between objects in
figure A ]

a degeription of figure B in the form

[ objects in figure B ] [ relationships between objects in
figure B ]

and various similarities in the form
[ 8im objA objB transformation 1,
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't & symbolic description of 5 rule which l::mﬁu- m A into
jure B. ik
~ Suppose that there is at most one simi
object in Figures A and B,

we can form a different rule
similarity descriptions {wa
rule firge

laricy description for each

If not then as in examples 2 Iﬂ-ﬁ

for each legal combination of

might want to make the "most likely"

and see if this produces one of the alte

We can now describe how to make the rule descriptio
Each similarity description, e.g.,

[ sim obja objB  transformation ]

is used in turn to form a "Match" description.

Let objA-relns be those relationships in the description of figure A

which involve objA. Similarly for objB-relns. Then the Match
description formed is

[ Match . obja

rnative answers),
n -

objA-relns objB-relns transformation ]
Hext we generate a Previously unused, arbitrary

use it to replace objA and objB wherever
We then delete x from the lists of
figures A and B,

When this process i finished we look at
the descriptions of figures A and B,

in the description of 4 we form a "Remgve" description, If objA-reln
is defined as before the form of this description is

[ Remove obja objA-reln ]

As before we can Teplace

Dame, say x, and
they Previously appeared.
objects in the descriptions of

the lists of objects in
For each object, ebjA, left

objA wherever it occurs
unused arbitrary name, say y.

Similarly for each object, objs,

with some pPreviously

left in the description of Figure B
we form an "Add" deseription of the form

[ Add  objB  objB-reln ]

and replace objB with, say, = throughout .,

Finally, we put the "Matches", "Removes" and
; the rule,

* Exercise 1.1

L Try-to write an English recipe for the
: " description to the description of figu
j._n! the answer figure,

"Adds" together to form

task of applying the rule

re C,to form the description
What are the difficulties?



Eulogy on uters
We have made instructions more and more precise - how do we know

when to stop? Ang. when we can express instructions in form of
4 computer program that works.
How close are we to that?
Can we represent description of figures and rules in computer?
Ans. Yes, using list data-structures, We will see how in
programming lectures,
Can we automatically form descriptions of figures from, gay, input
from a T.V. camera?
Ans. Yes - this problem will be addressed in the lectures on visusl
perception. The impatient can read the recommended paper by
Evans (see below)
Can we write a computer program which can carry out the English
recipe described in the last section? i.e. form the descriptions
of the rule given the descriptions of the figures.
Ans. Yes - using simple list manipulation programs - breaking
down = copying and building up lists.
Can we automatically apply rules to description of figures?
Ans. Yes - but rather harder list manipulation involving pattern
matching.

Recommended Reading
T.G.Evans "A Heuristic Program to solve Geometric Analogy

Problems". Spring J.5.C.C., April 1964,

These lectures were based on Evans' work but are not an exact

description of it.
also section 1.1 of
Minsky, M. and Pagert,5. "Artificial Intelligence Progress

Report". Al Memo Wo. 252, MIT. January 1972,
Exercises
l.2.
A ¢

l ol +

| —
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(a) Repeat 2(a), (b) and*(c) with the above figure.
(b) m-fim'lﬂhﬂhlnf 9

TO

What goes wrong when we try to apply the description of the rule to
the description of D? How might we amend the rule description so

., that it applies to the description of D and produces a description
of E? E

oT

r

[Discussion point - Does the new kind of rule description create

problems for the rule-finding and rule-applying recipes?]
S '

Discuss briefly the statement

"Since a computer program can now do analogy problems it makes
RO sense Lo use them on human intelligence tests."
& 1.5.
Design a geometric analogy problem which the recipes we have been
building could mot cope with. Explain why they could not cope.

If possible suggest ways of amending the recipes to deal with the
nev situation.



4th October, 1975.
AB/3.

THE MISSIONARIES AND CANNIBALS PROBLEM

(The Problem)

Three missionaries and three cannibals seek to cross a river from
the left bank to the right bank. A boat is available which will hold

two people and which can be navigated by any combinstion of missionaries
and cannibals involving one or two people. . If the missionaries on either
bank of the river are outnumbered ar any time by cannibals, the cannibals
will indulge in their anthropophagic tendencies and do away with the
missionaries., When the boat is moored at a bank, it is counted
of the bank for these purposes.

as part

Find the simplest schedule of crossings that will permit all the
missionaries and cannibals to cross the river safely.
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HISSIONARIES AND CANNIBALS PROBLEM

(The Approach)

Introduction L
Consider M and C problem presented im handout.
Do it yourself and note the following points:
l. More precise statement of problem in terms of initial and
goal states and legal moves.
2. Description of States e.g, :: BOAT / M C

3. Descriptions of Moves e.g. m & missionary and a
cannibal from left to right,
4. Search Tree, &.j.

b 4

/ MC

% ¢ ¢ BOAT /

X

5. Solution as path of tree and/or sequence of moves.
6. Find solution by exploring tree.

oz

7. '"Depth first search" of real missionary and cannibal,
8. Advantages of planning in advance.
Precise Recipe
Can we design & “precise recipe” for finding a solution to this

problem? In order te guarantee the precision of our recipe let us aim
at making it a computer program from the start. Let us weaken the task
initially, to that of writing a computer program that will merely check
our solution, and then develop it into a program which finds the solution
ingelf. On the way we will introduce numerous ideas about pProgramming
and problem solving.



-----

.mlhmlﬁltﬂ:ﬂlﬂﬂuﬂﬁu!l
hrm %ﬂ”ﬂ Iwﬁ as static structures, for instance lists, and represent
the move-maker as a procedure to manipulate these lists,

e.g. States represent gg BOAT / : as

a list called leftbank = ([M M C C BOAT]
a list called rightbank = [M CJ
Moves represent "move a missionary and a cannibal from left to right" in
two parts.
Part 1 as a list of things to be moves, i.e. [M C BOAT)called
the "movelist",
Part 2 as a program to transfer these things from one bank to
the other, called the Move-left-to-right procedure.
E.g. To Move-left-to-right the movelist
Make new lefrbank, old leftbank without the movelist
Make new rightbank, old rightbank with the movelist.
end,

(Note the boat is moved automatically by including it in movelist.)
Solution Checker

If we could turn our English version of the move=left-to-right procedure
into a computer program, together with a move-right-to-left procedure, and
if we could make leftbank and rightbank take their initial values then we
could use the computer to check potential solutions

i.e. we need procedure

To Start-Missionary-and-Cannibal

Make leftbank be (M M M C C C BOAT)

Make rightbank be the empty list

end.
In order to be able to do these things, we are going to learn something
about programming which is the subject of the next lesture.
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The Missionaries and Cannibals Problem
e et e

(Building the program)

A Solution Checking Program

Armed with our knowledge of programming we can pow try to make our
recipe for a solution checker more precise.

Leftbank and Rightbank will be variables. Their values at any one
time will be the current states of the left and right banks. These
variables cannot be local to any of our procedures or their values would
be lost when the procedures were exited. Therefore we will not declare
them as new and they will become global variables, i.e. always sccessible.

The procedures translate fairly directly.

i.e.

TO MOVELTOR  'MOVELIST

10 MAKE 'LEFTBANK WITHOUT :MOVELIST :LEFTBANK
20 MAKE 'RIGHTBANK WITH :MOVELIST :RIGHTBANK
END

similarly
TO MOVERTOL 'MOVELIST
10 MAKE 'RIGHTBANK WITHOUT :MOVELIST :RIGHTBANK
20 MAKE 'LEPTBANE WITH :MOVELIST tLEFTBANE
END

TO STARTMANDC
10 MAKE "LEFTBANK [M M M C'C C BOAT)

20 MAKE 'RIGHTBANK [ ]
END

It is necessary to define the subprocedures WITH and WITHOUT. WITH
is relatively easy, but WITHOUT is much harder and needs concepts we have
not yet introduced, so we delay consideration of it until later in the
course.

Let us also define a procedure to tell us the current state.
Otherwise we will find it difficult to remember how we are doing.

El TO PRINTSTATE
10 PRINTLEFTBANK
20 PRINTRIGHTRANK



TO PRINTLEFTBANK
10 TYPE 'LEFTBANK
20 TYPE SPACE

30 TIPE "Is

40 TYPE SPACE

50 TYPE :LEFTBANK
60 TYPE ML

TO PRINTRIGHTBANK
10 TYPE '"RIGHTBANE
20 TYPE SPACE
30 TYPE "1s5
40 TYFE SPACE
50 TYPE :RIGHTRANE
60 TYPE NL
ERD
Exercises
2.1 PRINTLEFTBANK and PRINTRICHTBANE are very similar. Can you write
a procedure with one imput which can do the work of both?
2.2 These procedures are provided on the library MANDC1 (Do LIB “MANDC1).
Try solving the M & C problem, at the terminal, using them,
Solution Checking
Using the procedures introduced, we can try solving the problem

"by hand", but using the computer to keep track of where we are. We
use the procedures STARTMANDC , MOVELTOR, MOVERTOL and PRINTSTATE. For
example,

1: STARTHARDC

1: PRINTSTATE

LEFTBANK 15 (M M M C C C BOAT)=e— starting position
RIGHTBANE IS [ )

1:MOVELTOR [M C BOAT]
tPRINTSTATE

LEFTBANK IS (MM C C]
RIGHTBARE IS [M C BOAT)

1:MOVERTOL (M _BOAT)

1:PRINTSTATE
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LEFTBANE IS [M M C C M BOAT) = idw i
RIGHTBANKE IS [C) T

1:MOVELTOR [M C BOAT)

RIGHTBANK 15 [C M C BOAT] “*—

1: STARTMANDC — start over again
1:MOVELTOR [C ¢ my‘__\
1:PRINTSTATE

LEFTBANK IS [M M M C)
RIGHTBANK 15 [C ¢ BOAT]

try a different first move

APPLYMOVE

It seeme a bit clumsy to have to specify MOVELTOR or MOVERTOL each
time, and also unnecessary. The computer itself ought to be able te

figure out which way to move next. How? Suppose, for instance, we are
in this situarion:

L:PRINTSTATE
.

LEFTBANK IS [M C BOATI
RIGHTBANE IS [M C M C)

‘which way should we move next? Obviously, since the boat is on the
LEFTBANK, we have to MOVELTOR.
S0 if we could get the computer to see which bank the boat is o1,

then we ought to be able to write a single procedure APPLYMOVE which can
decide to MOVELTOR or MOVERTOL as appropriate.

Writing APPLYMOVE

We now try to write the procedure APPLYMOVE. Like MOVELTOR and
MOVERTOL it rakes a single input, a list of what is to be moved across
the river. Let us call it MOVELIST, so we can type in
. 1:TO_APPLYMOVE “MOVELIST
€ do we want APPLYMOVE to do? Well, if the BOAT {s at LEFTBANK,
it to MOVELTOR the MOVELIST and that's all, so we type:

8:10 IF AMONGO “BOAT :LEFTBANK THEN MOVELTOR :MOVELIST AND STO

Froimae neamadionn B2 S

|
1:PRINTSTATE \
after these moves Missionary I
LEFTBANE IS [M C M) on rightbank gets eaten

=

.

b
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We need a procedure called AMONGO whose arguments are an item and a list of
items, vhich looks to see whether the item appears in the list. If it
does, the procedure returns TRUE; if not, FALSE:

“BOAT [M M C BOAT] + &

AMONGQ
TRUE 4%—_
S50 we have:
1:PRINT AMONGQ 'BOAT [M M C BOAT)
TRUE
1:PRINT AMONGQ “CAT [BOY GIRL CAT DOG)
TRUE
1:PRINT AMONGQ 15 [21 12 212
FALSE
L:PRINT AMONGQ FIRST [MAN HUMAN CHILD] [CHIMPANZEE MAN ELEPHANT]
TRUE

In programming lectures we will see how to write AMONGQ
Go back to writing APPLYMOVE
4:20 IF AMONGQ “BOAT :RIGHTBANK THEN MOVERTOL :MOVELIST AND STOP
and that's it:
&:ERD
How, if we SHOW APPLYMOVE, we have
TO APPLYMOVE “ MOVELIST
10 IF AMONGG ‘BOAT :LEFTBANK THEN MOVELTOR :MOVELIST AND STOP
20 IF AMONGQ ‘BOAT :RIGHTBANK THEN MOVERTOL :MOVELIST AND STOP
END
That locks O K, 8o let us try using it in our instructions to the computer:
1 :STARTMANDC
1:PRINTSTATE

LEFTBANK IS [M M M C C C BOAT]
RIGHTBANK IS5 [ ]

1:APPLYHMOVE [C BOAT]

1:PRINTSTATE

LEFTBANK 15 [M M M C €]
RIGHTBANK IS [C BOAT]




L E

e B
lr- i TeEl
MMM CCC BOAT) -
L [C © BOAT)
15 (M M M C)
BANK IS [C C BOAT] [
interaction R

M with APPLYMOVE we still have to do a lot of umunry mi?
m not write a simple program that knows that we want tn
~ then specify a sequence of moves, with a PRINTSTATE to be done after each?
Let's try:

TO MANDC

10 STARTMANDC

20 MAKEMOVES

END

TO MAKEMOVES
10 REQUESTAMOVE
20 APPLYMOVE IT
30 MAKEMOVES
END
‘where we use

TO REQUESTAMOVE

IT returns the result of line 10

10 PRINTSTATE This line reads in a
20 PRINT [TYPE A MOVELISTI movelist and makes a
90 GETLIST . list out of it

40 IF AMONGQ “BOAT IT THEN RETURN 1T  which is then returned
50 PRINT [YOU FORGOT THE BOAT , DUMMY : TRY AGAIN]
60 REQUESTAMOVE

- Em

al .l:'_‘tﬂ.‘.' naReE =
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This makes things much easier. For example:
1:MANDC

LEFTBANE IS (M M M € € € BOAT]
RIGHTBANK IS [ ]

[TYPE A MOVELIST]
DATA:C C BOAT

LEFTBANK IS [M M M €]
RIGHTRBANK IS5 [C C BOAT]

[TYPE A MOVELIST]
DATA:C BOAT

LEFTBANE IS [M M M © € BOAT]
RIGHTBANK IS [C]

[TYPE & MOVELIST]
DATA:C C

[YOU FORGOT THE BOAT , DUMMY :TRY AGAIN]

LEFTBANE IS (M M M € C BOAT]
RIGHTBANK IS ([C]

[TYFE A MOVELIST]
DATA:C C BOAT

LEFTEANK IS [M M Ml
RIGHTBANK IS [C C € BOAT]

Towards an MAC solver

Although so far we have been doing all the problem solving, remember
that cur goal is to write a LOGO program that can solve the M&C problem

by itself. We try gradually working towards such a program.
Backup
We have TO MAKEMOVES

10 REQUESTAMOVE
20 APPLYMOVE 1T
30 MAKEMOVES
END



But what happens if we make a mistake? We have to start again
from the beginning. It would be nice to be able to "backup", i.=s. to
reverse the last move and try again. We recognise that we are really

searching a tree

e s Initial state
HOVE = [C BOAT) MOVE = [C C BOAT]
LEM'IHHHEC]} LEFTBANE = [M M M €]
RIGHTBANE = [C BOAT] RIGHTBANE = [C C BOAT]

HOVE = [C BOAT]

i‘mrm- [M MM C C BOAT)
RIGHTBANE = [C]

Suppose we decide that we are in a blind alley and we want to
"backup" and try again?

try again

We must remember the previous states!®
TRYMOVES

Change MAKEMOVES so that instead of just applying the move at step
‘20 it also explores all the consequences of applying the move. i.e. it

further moves. If these consequences are not to our liking we can
to terminate step 20 and go on with step 30 which ctries alternacive



i.e. current state

-
e i
Al 3
T
R | L
CUrTent move — i alternative moves (step 30)

consequences (Stap 20)

nsures present context of
TRYMOVES is not sullied
by EXPLOREASTATE.

totally explores consequences
TO TRYMOVES f current move
oREQUESTAMOVE P ¥ = ey
—_— EXPLOREASTATE :LEFTBANK :RIGHTBANK IT

30 TRYMOVES

2 \
previous state is restored

requests another move

TO EXPLOREASTATE <LEFTBANK -RIGHTBANK “MOVELIST
50 APPLYMOVE :MOVELIST
100 TRYMOVES
END
makes move

makes consequent moves

TO MANDC

10 STARTHANDC
——3 20 TRYMOVES

END

REQUESTAMOVE

How do we tell the program we have made a mistake and wish rto backup?
One answer, just say "backup" when it asks for our next move, i.e. after
REQUESTAMOVE .



T0 REQUESTAMOVE
10 PRINTSTATE
——= 20 PRINT [TYPE A MOVE OR BACKUP]

30 GETLIST

—= 40 IF EITHER AMONGQ BOAT IT
OR EQUALQ IT [BACKUF]

THEX RESULT IT

50 PRINT [YOU FORGOT THE BOAT , DUMMY: TRY AGAIN)

60 REQUESTAMOVE
END

How do we make use of this information when we get it? By altering
TRYMOVES so that it does not continue if it is told to backup.

TO TRYMOVES
10 REQUESTAMOVE
—= 20 IF EQUALQ IT [BACKUP) THEN STOP

ELSE EXPLOREASTATE :LEFTBANK :RIGHTBANK IT

30 TRYMOVES
END

Now try on computer.

1:MANDC

LEFTBANK I5 [M M M C C C BOAT]
RIGHTBANK IS5 [ ]

[TYPE A MOVE OR BACKUP)
DATA:C_C _BOAT - ——————————

LEFTBARE IS [M M M C] }
-——.,

RIGHTBANE IS5 [C C BOAT)

[TYPE A MOVE OR BACEUP]

DATA:C BOAT  wep—

LEFIBANE 15 IHHHEEM’I‘]i
RIGHTBANE IS [C]

[TYPE A MOVE OR BACKUP]
DATA:M C BOAT -t

]"‘"' INITIAL NODE

FIRST MOVE

gives a NEW NODE2

SECOND MOVE from there

gives a NEW NODE3

THIRD MOVE
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LEFTBANK 15 [M M C) '}

; } W gives a state where
RIGHTBANK I57[C M'C BOAT) vl g
[TYPE A MOVE OR BACKUP)
DATA:MACKIP @ e

LEFTBANK 15 [M M M € C BOAT] ) § ,
RIGHTBANK 1S [C] Rl it

L&,

[TYPE A MOVE OR BACKUP]
DATA:M BOAT  —sf— : and try a differknt move

LEFTBANK IS (MM C C
RIGHTBANE 1S [C M BOAT]

Checking for solution

In exploring a new state we ought at least to notice when we have
solved the problem. This is easily done, by adding a new lipe (line
80) to EXPLOREASTATE:
TO EXPLOREASTATE #LEFTBANK “RIGHTBANK “MOVELIST
50 APPLYMOVE :MOVELIST
— 80 IF SUCCEEDEDQ THEN PRINT “SUCCESS AND QUIT
100 TRYMOVES
END
Here we have assumed the existence of a predicate SUCCEEDED( which
outputs TRUE when the M&C problem is solved. How could we write such
a4 predicate? One simple way ie to notice that there is somebody on
the "LEFTBANK until the problem is solved, so we could check for that
condition:
TO SUCCEEDEDG
10 RESULT EMPTYQ :LEFTBANK
END

Checking for camnibalism

In a similar way we can arrange for EXPLOREASTATE ro chack
the cannibalism condition is violated. Adding an appropriate
toe EXPLOREASTATE is straightforward:

A0
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TO EXPLOREASTATE “LEFTBANE “RIGHTBANK MOVELIST =

50 APPLYMOVE :MOVELIST "3 RS aud
———5= 60 IF MISSIONARIESEATENQ THEN STOP b2l oxm
80 IF SUCCEEDEDQ THEN PRINT ‘SUCCESS AND QUIT dhean
o coT

END

But then we have to spell out the predicate MISSIONARTESEATENG. Well
for a start, missionaries get eaten if they get esten sither on the
LEFTBANK or on the RIGHTBANK, so if we invent & subsidiary predicate
MEATENQ that worries only about one bank at a time then we can write
TO MISSIONARIESEATENQ
10 RESULT EITHER MEATENQ :LEFTBANK OR MEATENQ :RIGHTBANK
END
So under what conditions do the missionaries on a bank get eaten?
Clearly if there are more cannibals there than missionaries. But this
méans that we need to be able to count the number of missionaries (or
cannibals) on a bank. How do we do this? By our favourite trick of
simply supposing a suitable procedure to exist, and then worrying about
how to define it later.
So let us assume that we have available a procedure NUMBEROF which
takes two drguments, dn item ‘and'd lisr of items, ‘and returns the number
of times the item oceurs in the list:

 KUMBEROF
ZCow, [HORSE' COW DOG COW SHEET HORSE RABBIT) —¥ P

‘PEIJF ie in several ways analogous to AMORG(, but whereas AMONGQ
perely tells whether or not an item occurs at all, NUMBEROF tells how

—

it oceurs:

1:PRINT NUMBEROF “COW [HORSE COW DOG COW SHEEP RABBIT]
__—'—'—_-l-ﬂ—_-_.__._._
2

1:PRINT “M [M C M BOAT]
2

1:PRINT NUMBEROF “M [C C C)
(4]

fiow we can write MEATENQ. The condition that there are more




But this can't be quite right, since when the number of missionaries is
zero it doesn't matter how many cannibals there are. In other '
there have to be some missiomaries present if any are to be eaten.
This gives us:

Exercise 2.3 Add all the changes made so far to the file MANDCL.

line 60 of EXPLOREASTATE print out an informative message, perhaps:
—p 60 IF MISSIONARIESEATENQ THEN PRINT [MISSIONARIES EATEN,

GRTRQ (NUMBEROF C :BANK) (NUMBEROF M :BANK)

TO MEANTENQ "BANK

10 BOTH GRTRQ (NUMBEROF ~C:BANK) (NUMBEROF "M tBANK)
ANDALSO GRTRQ (NUMBEROF “M fBANK) O

END

Try running MANDC, You may find it more helpful to make

MOVE REJECTED]

Generating applicable moves

By now the program is doing all the work except for the actual
selection of moves, so the last step is to have it do this as well.

How can it? What basis is there for choosing moves? One way is
to simply let it try all the possible moves in turn. This is perfectly
reasonable, since there are only five of them. So let us begin by
meking sure that some list contains all five of these possible moves:

TO STARTMANDC
10 MAKE <LEFTBANK [M M M C C C BOAT]
20 MAKE “RIGHTBANK [ )]

g 40 MAKE POSSIBLEMOVESL[IC C BOAT] [C BOAT] [M C BOAT]

[M M BOAT] [M BOATI]
END

Then in EXPLOREASTATE, we replace the line telling it to TRYHOVES
typed in by us, by a line telling it to TRYALL :POSSIBLEMOVES (see line
100 = below). And how should it TRYALL? Simply by trying one at a

time:.

TO TRYALL “SETOFMOVES

10 IF EMPTYQ :SETOFMOVES THEN STOP

20 EXPLOREASTATE :LEFTBANE :RIGHTBANK FIRST :SETOFMOVES
30 TRYALL BUTFIRST :SETOFMOVES :
END



tmrﬁng-:mm because if the program does try all possible moves
without meeting success, it will indeed have failed.)

There is only one snag left now which is that not all moves are
necessarily applicable to a particular state. For example, if we hawve
LEFTBANK IS [M C BOAT] then it is impossible to move two cannibals across'
What should we do sbout this? One possibility would be to modify TRYALL
so that it tries only applicable moves, but it seems simpler to add a
further test to EXPLOREASTATE, but this time before the move:

TO EXPLOREASTATE “LEFTBANK “RIGHTBANK ~MOVELIST
=3 40 IF NOT APPLICABLEQ :MOVELIST THEN STOP

50 APPLYMOVE :MOVELIST

60 IF MISSIONARIESEATENG THEN STOP

80 IF SUCCEEDEDQ THEN PRINT “SUCCESS AND QUIT
=3 100 TRYALL :POSSIBLEMOVES

What decides whether a move is applicable? Clearly there must be
at least as many missionaries on the bank as are specified in the move,
and similarly for cannibals:

TO APPLICABLEQ /MOVE
10 BOTH LESSEQUALQ (NUMBER OF “M :MOVE) (NUMBEROF  FROMSIDE)
ANDALSO LESSEQUALQ (NUMBEROF 'C :MOVE) (NUMBEROF T FROMSIDE)
END
FROMSIDE is a function which returns the bank which the BOAT will be
leaving from, Could you write it?

Looping
Try above procedure out acting as devils advocate
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{:Lmn-munc::cmﬂ
sRIGHTRANE = [ 1

[C C BOATI

:LEFTBANK = [M M M C]
:RIGHTBANK = [C © BOAT]

[c C BOAT]

{:m-muucccmﬂ
i ato. sRIGHTBANK = [ ]
We are in a loop!

We could avoid this particular loop by ensuring that we do not im=
mediately reverse a step we have just made. Unfortunately there are
more subtle loops.

State A

several moves
in between

-.,-'

/ State A again

Bote that, if we have & solution with repeated states then we can
modify it to get n'-inplur solution without repeated states. Therefore
a solution with repeated states is not the simplest solution, which is
what is required,

To avoid loops we need to keep track of which states we have seen
before and avoid repeatedly exploring them. How shall we do this?

As always, the appropriate changes to EXPLOREASTATE are easy to make.
We just need to reject a state if we have seen it before (line 70 - see
below), but if on the other hand it is a genuinely new state then we must
record the fact that we have seen it (line 90):

T0 EXPLOREASTATE “LEFTBANK ‘RICHTBANK “MOVELIST
&0 IF NOT APPLICABLEQ :MOVELIST THEN STOP
30 AFPLYMOVE :MOVELIST
60 IF MISSIONARIESEATENQ THEN STOP
—% 70 IF SEENSTATEBEFORE(Q THEN STOP
- 80 IF SUCCEEDEDQ THEN PRINT SUCCESS AND QUIT




90 RECORDNEWSTATE
100 TRYALL :POSSIBLEMOVES
END
How are we to remember which states we have seen bafcre? Une way
would be to keep a list of all the LEFTBANKs and RIGHTBANKs we have seen,
and then when we have a possibly new state, check whather we have sésn
this particular combination before. But that would be a bit complicated,
and we can simplify it in two ways:
{a) We don't need to record both the LEFTBANKs and the RIGHTBANKs,
pince given one we know what the other must be.
e.g. Aif LEFTBANK is [M C BOAT] then we know that the
RIGHTBANK must be [M C M C]
S0 it would be sufficient to remember just, say, the LEFTBANKs.
(b) We still must be careful over what it is about the LEFTBANEs
that we remember. Suppose that we have previously seen a LEFTEARK
of [M C BOAT], and that it is now [C M BOAT] then they are really
the same LEFTBANK even though they are not "equal™:
1:PRINT EQUALQ (M C BOAT) [C M BOAT]
FALSE
What is really important about the LEFTBANK is the number of
missionaries and cannibals (and boat) there, not the crder in which they
appear in the list. ‘This suggests remembering the LEFTBANE as a group
of three numbers:
{number-of-boat-on-lefcbank, number-of-missionaries-on
leftbank, number—of-cannibals-on-leftbank). .
$o that, for example,
[M C BOAT] corresponds to [ 1 1 1 ]

one boat one missionary ome cannibal
Let us defing a procedure to construct these triples:
TO STATETRIPLE
10 << NUMBEROF BOAT :LEFTBANK funny list brackets £<...3>
NUMBEROF “# :LEFTBANK allow elements to be results
NUMBEROF “C  :LEFTBANK >> of progedure calls.



S0 that we have, for example:

L:PRINTSTATE

LEFTBANK IS [M M M) :
RIGHTBANK IS [C C C BOAT]

4

' [§ - ST L
1:PRIN? STATETRIPLE sl o

Lo 3 o ] -
erEe Tl omL 4k wlis
If we have a list STATESEEN which ‘holds all the state triples we

have seen, it is easy to write our procedures to examine or update it:
T0 SEENSTATEBEFOREQ W g

10 RESULT AMONGQ STATETRIPLE :mrg_gqn
END

TO RECORDNEWSTATE
10 MAKE “STATESEEN PIRSTPUT STATETRIPLE :STATESEEN
END
And we should remember to start STATESEEN off with the initial LEFTBANK
TO STARTHMARDC
10 MAKE “LEFTBANK [M M M C C C BOAT]
20 MAKE “RIGHTBANK [ )
— - 30 MAKE “STATESEEN [ [ 1 3 3 1]
40 MAKE “POSSIBLEMOVES [[C C BOAT] [C BOAT] [M C BOAT]
[M M BOAT] [M BOATI]
Exercise 2.4 Make these addivions and try using them. As before, you will
find it more helpful if lime 70 of EXPLOREASTATE prints out an appropri-
ate message.
Try it You can get a demonstration of this way of solving the problem
from LIB “MANDC2. The procedure used to print out what is happening
is called PEXPLOREASTATE. Have a look at it, and compare it with gh.“ ,
version of EXPLOREASTATE given above.
Exercises 2.5 Edit STARTMANDC and change the order of POSSIBLEMOVES .
Describe the effect this has. :
2.6 The représéntation of states by LEFTBANK and RIGHT: __ \
is-rédundant, iModify ‘the ™ & C p:n;fﬂ 5o that only LEFTBANK 1‘.1
expliciely teprésented. o '
* 2.7 The "STATETRIPLES" weé invented to record states
reached,. suggest an alternative way of representing states.
M & C program so that it uses this representation.

il
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MISSIONARIES AND CANNIBALS PROBLEM

(Search Techniques)

Analysis of Search Strategy
We can represent all possible sequences of moves in the missionaries and

cannibals problem by a ctree
initial state

applicable moves
arranged in order, with

first choice on lefr.

-
——
Y

Search Tree
>
unﬂihilinli
ooours )
:
'

We can regard the program as growing some of this tree as it runs, and
In what order does it grow the tree?

thus exploring it.

ﬁrﬂ strategy?

What was our



Simulation of Search

This is called depth first search. That is we keep going down,taking
the lefe-most branch at every choice point,until we have to backup.
Then we go back one place and take the next choice.

Simplest Solutions
Unfortunately this does not necessarily give us the simplest solution.

_ simplest
solution
first
solution
found
goal state

Non-simplest solutiom
found

goal state

We may find a complicated soluticn on the left-hand side, before a simple
oneé on the right-hand side. We could search the whole tree then choose
the simplest solution from among &1l the solutions found. Alternatively
we could explore all solutioms in parallel so that the first found was
bound te be the simplest.



Breadth First Search

Suppose that simplest means the smallest number of moves, then we can
advance each branch of the tree one step, then go back and do it again.
This is called breadth first search. If our definition of simplest
was & bit more subtle, the search would not be so easy, but we could
still do basically the same thing.

Exercise 2.8

How would you implement the M & C program, so that it did a breadth first
search?

Guidance

The search tree for the M & C problem is fairly small, and we are able
to find a solution by a brute force search (straight down, keep to the
left). Hany search trees in AT problems are very large (e.g. draughts)
‘and programs to search them need to be guided, if they are not to become
bogged down. Typically one would want to choose the most promising
locking move, at any choice point, instead of choosing the next one on
some fixed list. One might want to temporarily stop exploring some
particular state and move on to another, while reserving the right to
come back.



"intelligent" search
strategy

Graph Traverser

Many Al programs can be regarded as iovolving some search through a
search tree. These trees are typically large (especially if the
problem domain is not well understood) and the search through cpe
needs to be guided if the program is not to become bogged down.
Attempts have been made to write general purpose tree searching
programs which only need to be fed particular details about the state
descriptions and legal mowes. Having such a program available makes
it easier to formalise problems like the missionaries and cannibals.
This is important when it comes to designing a program to solve
problems from their verbal statement., One such general search program
is the Graph Traverser of Doran and Michie (see recommended reading).
Their program searches graphs instead of trees. The difference is

slight. In a tree if we have two identical states on different branches
wa . record them separately, in a graph we use one node to record them both.
When we say we are searching a graph, rather than a tree, we imply that
the test for looping is built-in to our program.

A Tree A Graph

4 -
identical the states
dtates identified
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~ Evaluation Functions

The Graph Traverser provides a general mechanism for guiding search.

The user is expected to provide a procedure which takes a state and
calculates a numerical score which measures how close the pressnt state
is to the goal state. Such a procedure is called a Heuristic Evaluationm
Function. The graph traverser always chooses to explore next the
unexplored state with the highest score,

Exercise 2.9

Write an evaluation function for the missionaries and cannibals problem.
Exercise 2,10

The "Eight-Puzzle" is played on the 3 x 3 tray illustrated below:

TS
SR
& 1 -7 1 8

Mounted in the tray are eight 1 x 1 square pieces, which are free to slide
left, right, up or down into an empty square. The standard position is
illustrated in which the centre square is empty and the numbers are arranged
in numerical order. The puzzle is played by initializing the pieces in
some other order snd then trying to get them back into the standard position,
(a) Explain how a course of play can be represented as a search
through a tree or graph.
(b)  How'would this representation help you to design a computer
program to solve eight—puzzle problems?
{e) Suppose you were writing such a program. How could you
represent in LOGO: states of the tray and moves. Explain
in English (or LOGO) how you would apply moves to states to
produce new states.
Recommended Reading
Doran, J. 'An Approach to Problem Solving' Machine Intelligence 1,
Edinburgh University Press, pp. 105-23.




8 M & C was a toy problem. For instance the search tree
‘and we did not need to exercise much intelligence in
& (once we had arrived at the formal representation). We
mtion to a problem area, where it is perhaps easier to
‘represent the problem as searching a tree, but where the search
L midable problems.
~ The problem area is draughts.
- Can we give a precise recipe for playing a good game of draughts?
Complete Analysis’ (aid fhe sedrch tres M
One way to guarantee to play a good game would be to analyse com—
plmiy the game i.e. explore once and for all all the possible games.
Maybe this is possible using modern high speed computers? Let us draw
8 picture of such a complete analysis

initial board position

all first players moves

all second players

y
N\
\
E loae
Search Tree
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It has been estimated that this tree contains m nodes . If we

make the (very optimistic) assumption ‘that we can consider 3 nodes per
millimicrosecond then it would take Ioﬂ centuries to explore the whole

tree. Clearly this is out of the question! {Regardless of how we

search the tree, depth first, breadth first, ate.)
M T gﬂ" &%

An alternative to searching the whole tree is to search some way
ahead, whenever we have a cholce, to mﬂmu the best choice

rojginy @ W Yo 1o

In order to analyse completely the |
to assign some value to the l.'.ll.il.'l.ll nﬂn {:pm-l:ﬁlr

draws or losses).

To fix thinking let us decide to award a mmerical score to each
terminal position
a win for 1st player gets the biggest positive number

a lose for lst player gets the biggest negative number
a draw gets zero

we must be able
were all wins,

other scores will be in between as we decide.
Mini-Maxing

Having fixed scores of terminal positions how do we analyse board?
(Assume 1st player to choose throughout. )

celearly chooses
this one A

dr— lst player moves

+10 =2 -8

+i

-



-2
Is A best move?

No! because 2nd player can be sssumed to take -2 branch to maximise his
chances, so B for instance, would be better. In fact C is best because
ind player can take +3 branch at best.

Can we formalise this

best choice

work
backwards

We can carry out the process to any depth. This technique is called
mini-maxing.
Choocsing the Secre

How do we decide what score to give a board position?

Could we decide in advance on & score for each individual position?
No! Too many -lﬂw.

We must use some high level classifization of board positions e.g.
look for features,

What is a feature?
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Whe has the most pieces?
Is anybody in a position to fork?

E anybody in a position to gain a king?
Who controls centre?

We can look for features and award points for each e.g. so many for
each potential king, etc.

Then add up all points to get total score for board Advantages for
lst player scored positive, advantages for 2nd player scored negative,

How do we decide relative values between different features?
Usually by experimentation and practice. Therefore it is useful to be
able to adjust relative values easily.
Ans. Score each feature separately, without regard to relative valuse

then weight each score before adding them together

i.e. Total Score = w x3s. +

fl 1 L L L ﬂn : ‘n
weight X&tun
score

Look Ahead
Mhnhéu-bﬂm_;hdnlmt ;
Factors (a) 1limited capacity of ﬂl:llini'. (Number of nodes
increases exponentially with depth means that we

can typically only search 3=4 moves deep. Phenomena
<alled Combinatorial Explosion.)

(b) Principle of hot pursuit. i.e. we want to pursue
longer those branches that are not stable. For
instance if the next move is & jump, keep looking
unless we are nearly exceeding the capacity of machine.

{e) Close down those branches that cannot be any good

etec. black fork




N B.g. A s bl oo

&—=<3nnot be less than lﬁl;”.: “—

10 cannot be more than 5

can be ignsred
gEcause score of
C cannot now beat
score of B.

This refinement is called %-P search.

Exercise 3.1 Consider the following lock-shead tree, where the scores
for the terminal positions have been filled im. Using the mini-max
procedure determine which move the first player should make.

&5 =17 +7 +2 +90 +30 +10 -3 =2 =31 #100 +J0 *3 +5 +2 +7



Samuel's checkers (American for draughts) program, which is based
on these principles, beats all but the very best players. Chess playing
programs have also been written along the same lines. Here the situatiocn
is not so healthy. They can play only as well as the best amsteurs,
There is no hope of a radical improvement of their performance. Their
play can only be improved by searching deeper or increasing the effort
involved in calculating the score of a position. Both of these lmvelve
an increase in the time spent choosing moves, and the existing programs
already use all the time allocated to them under tournament rules.

The whole area of chess playing programs is currently undergoing a
revolution. New techniques are being explored. For imstance, using
high level descriptions of board positions to carry out a strategic
search,before unpacking this into a more detailed, deep, but narrow
search. For a good account of the problems of the old approach and
some of the new techniques, see the paper by Berliner.

Recommendéd Reading

Samuel, A.L. 'Some Studies in Machine Learning using the Game of Checkers'
in Computers and Thought (eds. Peigenbaum,F.A. and Feldman, J.)
McGraw-Hill, 1963.

If this area particularly interests you, see

Berliner, H. 'Some Mecessary Conditionms of a Master Chess Program'
Proceedings of the 3rd LJCAI, p.77-85, Stanford, 1973.

| |
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The General Problem Solver

o fai ; have constructed or discussed computational models for
fcular tasks (I.Q. tests, Miss's Canns' problem and draughts), but
g have the ability to solve problems in a wide variety of domains,
ng areas they have not encountered before. What does this
g 1 "prublu solving ability consist of? Can we construct a program
; #ﬂ this capability? 1In the late fifties - early sixties a lot of
pgy was devoted to this guestion, the most famous program being the
F‘Mu Problem Solver® (or G.P.S. for short) of Newsll, Simon & Shaw.
" Naturally it is necessary to explain a particular problem to G.F.5.
This iz done by giving descriptions of the initial and goal states of
the world (called cbjects) and pperators to transform these objects.
Thus just as in the Miss' and Canns' problem , G.P.S5. has to search for
a sequence of operators which transform the initial object into the final
cbject., To help it with this search G.P.5. must also be given a pro-
cedure for finding differences between cbjects and a way of relating
thesa differences to operators relevant to reducing such differences.
" The central contribution of G.P.S. is a general search technigue called
means-ends analysis.
Means-End Analysis
To see what this is consider the problem of getting from my home
in Bdinburgh to Trafalgar Bquare, London. G.P.5. would go through a
process of reasoning like the following.

"My Eh end is to transform "me at home" into "me in Trafalgar
Sguare®. The first task is to compare these two states and find the
rmf I find the differepnce to be one of location. The means

I have of reducing differences of location are opsrators like "walk"®
'—' or "travel by train". Some operators, like "walk", can be rejected as
infeasible, but "travel by train® is feasible, so my next task is to
. apply this operator to the initial state, "me at home". Unfortunately
the cperator will not apply immediately becauss the conditions are not
.~ pight - I &m not at the scation. So I set up a new subgoal to trans-—

] '_r_._""ﬂ at home" into "me at the station". Again the difference is

. of location and again I find the "travel®™ operators. 1 can reject

8 infeasible (I am lazy) and "go by tzain" as a potml:.tuli loop




and select "go by taxi". This cannct be applied because the conditions

are wrong - the taxi driver does not know I need him. The difference
is one of information, so I look for an cperator which can reduce dif-
ferences of information and find the communication operators like "use
the telephone™ ....sessscecsss .

This kind of analysis can be carried on to any required depth and
will eventually produce a plan consisting of a seguence of operators.
Methods

Means-ends analysis is embodied in GPS as a series of procedures
called methods. These are usually explained by the following flowcharts.
Method 1
Goal: Transform cbject A into object B.

Match A to B Subgoal:
to find | o Reduce D
difference D

|nuna ,L!M.l
88 Fail

Method 2
Goal: Reduce difference D between object A and cbiject B.

Search for operator HDI _qm
relavant to reducing {preliminary)

Fail T_t.'__gl'_ for another ratorxr

Method 3
Goal: Apply operator Q to ocbject A.

] Match condition Subgoal: Subgoal :
of Qto Ato find | D Reduce D A' Apply @ to A’
Lﬂiffirﬂm:a D

lm ifﬂl J{ falil
Fall Fail

[
produce result B 3 hiase

nll
—— SUCCEES

G.P.5. can achieve goals of three different types:
kg Transforming one object ints ancther.
2 Reducing a difference.

3. Applyling an operator.
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inu the appropriate methods to achieve these subgoals, '“M
ll“ can call itsalf and the others in a highly recursive way.
Exarcise 4.1 Using the above flowcharts, trace the behaviour of G.P.8.
on the Trafalgar Square example.
Defining the Problem

How can we describe a problem tc G.P.5.7 We must choose a way of
describing states of the world. A good way might be lists of symbolic
descriptions like:

[[At me home] [Near me telephone! [Has me £29])
We must also tell it what cperators are available, what preconditions
they have and how to apply them to one cbject to produce another., Fer
instance, we could describe the cperator "go by train" as Ll

"provided the cbject &&ntains [At me stationl)

form a new object by deleting [At me stationl)

and adding [At me station2]."” {in a suitable

procedural form of course)
Unfortunately this is not all, we must also give G.P.5. a procedurs for
picking the most significant differences between cbjects. e.g. location
is the most significant difference between the initial state above and
[[At me Trafalgar Sguare]]. Then it must be able to use these differences
to extract relevant operators. This is usually done by feeding G.P.5. a
difference, operator table. '

ﬁ sperator | walk train taxi phona table write|

e.q.

A cross in a square indicates that the operator Iin this column is useful for
reducing the difference in this row. These differences must aleoc be ordered
by the difficulty of reducing them. The most difficult is always selected
&8 the most significant between cbjects and there is a check to see that we
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m:mtarm“nhudd.tﬂuunﬂu:lmu an easier one.

G.P.5. also requires us to supply a procedure for tasting the
feasibility of an operator in some particular situation. For instance,
we might reject "walk" if the differences in location is more than a
mila, or reject "write a letter”, if the demand for information exchange
is pressing. This feasibility test is a hack anabling us to include
ad-hoc, unsystematized knowledge which supplements the distance, operator
cable. If we succeeded in systematizing this knowledge we might prefer
to include it in the table

€.9.
location difference
tn wildk walk taxi train plane
0-1 X
1 =10 X
1o - 100
> 100 X

This is rather a lot of information to have to give for a particular
problem and the question arizes as to whether G.F.5. succesds as a general
problem solver. We will return to this later..

The Search

When G.P.S. is set loose on a problem it gets involved in a compli-
cated series of recursive calls to the three methods. It is useful to
have a neat way of describing the search behaviour. We present such a
way here.,

Another description for the G.P.S5. search strategy is problem re-
duction. Problem reduction is the strategy of exchanging your current
goal for a series of simpler subgoals and then exchanging these for even
gimpler subgoals, until all the subgoals are trivial. Problem reduction
searches can always be represented as And-Or Search Trees. These Are
like ordinary search trees except that the subnodes of a particular node
can be grouped into And Bundles.

e.9.




The two C's are another. The
is that subgoals Bl, BZ and B3 together establish A, and
1 joals Cl and C2 together establish A :

ﬁ_ Iﬂrﬂh for a solution to the "Trafalgar Square” example can be
illustrated by the following And-Or Ssarch Tree. This tree is searched
in a depth first manner.

Transform
"me at home® into
"me at Trafalgar Sguars”

Reduce Diffearance Transform
of "location" "me at King's Crosa"
inte “me at T.85."
-
rl\
s Mmethod 2 f b
Apply Operator
"go by train to
"me at home"™
Hoethod 3
Transform Apply Operator
"me at home" into "go by train" to
"me at station" "me at station"
-
™ _ a— method 1
e Ty
Reduce Difference
of "location"

*Exercise 4.2 Explain how the look-ahead tree used in draughts can be
regarded as a type of And-Or Search Tree.
Pgychological Validity

G.F.8. was claimed to be not only a genaral problem solwver, but also

to have psychological walidity, i.e., it was supposed to solve problems
in a similar way to humans. Bow could we test this claim? Pirst we
have to choose a level to make the comparison. For instance, at a very
basic level, that of the excitation of neurcones and currents passing



mmm:uﬂnmgmmqwmym
’ mlﬂ ﬂn problem the similarity can be trivial. w,*_ l- oan=
tribution was to define an intermediate level of m!ﬂ,m:nf the
programs running in each. Even this is not quite right. I-}Edm .
clearly be silly to claim that people are programmed in LOGO q;_f.ﬂwmu
computer language. What Newell does claim is that peopie are programmed
in some language and that the G.P.S. program is similar to the human
program but in a different language. Just as a programmer will often
claim that some ALGOL program, say, is similar to some FORTRAN program.
This level of comparison is called the Information Processing Level.

This claim is tested by comparing the trace of both programs. The
G.P.5. trace is easy to cbtain, by getting the program to print cut
messages as it proceeds. The human trace is obtained by getting the
subject to "think (and write) aloud" while he is doing the problem.

The result is tape recorded and is called a protocol. Newell et al
claim that this protocel is not introspection but behaviour.

However, the traces still cannot be compared directly, since the
computer trace is not in English. Instead the human Is assumed to be
m:mmmm—mhunmmudmmlhu-
amined for evidence as to EP—M-——-— The computer and

mhmm-uﬁtnhmmmlrumqmmu-
in the same way. EESE T )

How successful was this attempt at psychological liﬂhtiﬂn"l' In
the example in the reccmmended reading the correlation was fairly good.
There are, however, some aspects of behaviour which G.P.S. finds dif-
ficult to simulate
i.e. :

{a) The program makes no distinction between searches conducted
in memory and searches conducted in the world. e.g. between remember-
ing a telephone number or looking it up in the directory.

{b) The program does not handls meta-remarks (i.2. reflections
about the task) like "this is difficult” or "I am lost" etc

(e} Subjects sometimes handle similar goals in parallel, which
the program could not do. &#.g. The subject might consider, andreject,
several modes of transport (alrcraft, ship, hovercraft]}, at a stroke,
whereas the program would have to consider each possipility individually.

(d) Subjects sometimes indulge in & more complex kind of back-up
than the depth-first search which G.P.5. is capable of. e.g. When plan-
ning how to get from King's Cross to Trafalgar Square, realizing you will

el e 0 SR
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encugh money for a taxi unless you decide to walk from home to
: o Y e
y after all.
Conclusions
- TR P e
As a general problem soclver, G.P.S5. was not an ungualified success.

Wiy
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“It's main shortcoming was the tremendous amcunt of information I'.'Ill.;t had
to be input about each particular problem and the small contribution
made by G.P.5. Few pecple in Al now believe that it is possible to
construct a general problem solver, which does make a large contribution,
and the effort is now directed to building systems with expertise in
areas of commonsense reasoning (like visuwal perception). The role of
G.P.8. is now filled by new, high-level, programming languages (like
COMNIVER and PLANNER), which we will hear more about later. Judged as
4 programming language G.P.5.'s shortcoming is that information about
particular problems has to be fed in in a highly stylized, awkward way.
Some of the applications of G.P.5. seem rather forced. Newall et al
have now dropped G.P.5. in favour of a type of programming language
called Production Systems, which we will discuss in the lectures on
learning. The new high-level programming languages are designed to
make the programming of task specific information easier.

Despite it"'s shortcomings, G.P.5. has baen highly influential in
AI. Many of the ideas embodied in it have been adopted in later pro-
grams. SBometimes to better effect. For instance, compare G.P.5.
differences with the Geometric Analogy problem rules, which really
describe differences between figure descriptions.
Exercises 4.3 Suppose you were trying to get G.P.5. to solve the
missionaries and cannibals problem. What would you choose as the
cbjects, cperators and differences?

*4.4 We can express each of the G.P.5. methods as a LOGO
procedura. For instance, method 1, for transforming one object into
i< ancther, can be written:

TO TRANSFORM R “B

10 HEW [D Al]

20 MAKE “D FINDDIFF :A :B

30 IF EQ :D ‘NONE THEN mEsuLT “SUCCESS
40 MAKE 'Al REDUCEDIFF :D :A

50 IF EQ :Al “FAIL THEN RESULT “FAIL
60 THANSFORM :Al :B

END
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Express the other two methods as LOGO procedures (Hint: Method 2
is more difficult becauss of thea loop. Make a list of all relevant
operators then work down this). Each of the methods call sub-proced-
ures, like FINDDIFF. Write thess using CALLUSER, then run your program
on the ' "Trafalgar Square": example.

#§.5 There is a deep bug in the G.P.S. flowcharts assoclated
with back-up. What is it?

Recommended Reading

Mewell,A. and Simon, H.A. 'G.P.S., A program that simulates human
thought' in Computers and Thought (eds. Feigenbaum,E.A. and Feldman,J.}
pp.279-93, 1963, McGraw-Hill.

If you are particularly interested in the computer gimulation of
human behaviour {i.e. in information processing models) then another
good reference is: .

Mewell, A., GSimon, H.A. and 5haw,J.C. ‘Elements of a Theory of
Human Problem Solving' in Readings in the Psychology of Cognition
{eds. Anderson and Austel) - available in the library.
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The Problem
Suppose we had a robot janitor, looking after a suite of rooms.

We want to give him a series of tasks to perform each day, then leave
him to it. We dc not want to have to give him a separate program for
@very conceivable task. FRather we would like to give him a few basic
programs (called operators), and have him put them together into a big
program to perform whatever task we give him. The task will uspally
be explained, by giving a description of the.desired state of the Lo

Example - Col LWt

Suppose the current state of one of the rooms is

Initial Room A
-
b b 2 !
]
robot __ !

H--thtukthunuth-hmnh-putmthumm. i1.@.:

Final Room A

_—

| 172737
r .
; ,;\ robot




1|
-available two cperators

"-. i go from =ns place to another
_-]' ji.nl.n push something from one place to another

‘Be might devise the plan:
1. go to box 2
2. push it to box 1
3. go to box 3
4. push it to box 1
It will be no use him just performing various operations at randcm,
until he chances upon some cuombination that works. This would take
far too long, and might rause irrevocable harm to the rooms. Rather
he must form a plan. To form a plan he must perform a G.P.5. like
means/ends analysis i.e. Find tha difference between his current
description of the rooms, and the description of the desired stats,
then pick an operator relevant to reducing that difference. This
implies that he must know scmething about his basic operators, for
instance, under what conditions they can be run, and what their effects
are.
Automatic Programming

This problem is analogous to the problem of getting computers to
write their own procedures. i.e. instead of writing a procedurs to do
a task, we would like to be able to specify the task, and have a computer
program put together its existing procedures into a procedure to achieve
this task. Thie is called Automatic Programming. The operators here
will be the procedures that have already been written. The task will
be described by making statements about the values various variables,
should have, before and after the procedure is run.
Example - Reversing s List

Given the procedurses EMPTYQ, MOT, FIRST,; BUTFIRST and FIRSTEUT,
write a procedure to reverse & list.

We might explain the task by giving some example input/output pairs
s.g. input is [A B C D]

output is (D c B Al
or by giving a mathematical definition of REVERSE
#.g. REVERSE of [] i1s []
otherwise
REVERSE of :LIST is LASTPUT (FIRST :LIST)REVERSE BUTPIRST ,LIST)




Work is going on in both domains, robot planning and automatic pre-
gramming and thers has been useful interaction between the fields. We
will be mainly concerned with the former in these lectures., The work
on robot planning has tended to concentrate on searching for, so called,
simple plans. i.e. a sequence of operators, as irn the collecting boxes
example. On the other hand, people in automatic programming have been
unableto ignore the need for conditionals, loops and recursion, as in our
list reversing example. Consequently thay have made less progress (this
work is still in its infancy), but results in this demain should have
repercussions in robot planning, since plans for everyday tasks need
conditionals, loops and recursion too, as the following example shows.
Example - Cigarette Lighting

To light-a-cigarettas

Put cigarette in your mouth

get a flame

hold flame against end of cigarette

inhale until cigarette lights

end

To get-a=-flame

If you have matches then

Take a match out of box

Strike match against box repeatedly, until it lights
~ else ask somecne else for a light
-



Each of the lines with "until™ in them, imply repsating some action until

some predicate is true i.=. looping. Compare the use of WHILE in the
list reversing example p RK.50.

Dﬂsnribing the task

How can we describe the task of "collecting thres boxes” to a computer
program? Answer - by giving a symbolic description of the initial state
of the room, and the final goal.

e.9.

Initial state [AT ROBOT Al [AT BOX1 B] [AT BOX2 C]

[AT BOX3 D]
Final Goal [aT pox1 ?x] [AT BOX2 7X] [AT BOX3 7X]

A, B, C and D are constants rapresenting places. ?X is a wariable which
may be assigned a place as its value during the construction of the plan.
In what follows it will not always be passible to say, in advance, which
variables are to be assigned valuss (denoted 'X) and which are to be
raplaced by their values (denoted :X). We will therefore drop the
prefixes ' and :, and write ?X instead. When the inference system
meats 7K, it will first check to see whether X has been assigned a value.
If X has & value, 7?X will mean :X, else, Lif X has no value, ?X will mean
o This facility is pot implemented in LOGO at present. (PFek. 1976)

When we search for a plan we will need to represent intermediate
gtates. These can also be represented as a sat of facts. MNote that
a fact, like [AT ROBOT A), may be true at one time and false at another.
We can deal with this in at least two ways:

{a) We can give esach fact an extra argument, stating at what time

or in what situation, the fact 1ls true

a.g.
]
Siind : [AT ROBOT A 11
[AT ROBOT C 2]
{ [AT ROBOT A INITIALLY]
situa- =
e { [AT roBOT C (DO [GO A C] INITIALL¥]]

(called the sitovation calculus)



nce of databases each one labelled with a
tially (logically) the same, but (b) is more sug-
? designing an efficient computer program to do
: it here.

we will really need when we are searching for a plan
of databases, but & search tree of databases, where

Jﬁ% A II\I] \

[DO [PUSH BOX1 8 €] (DO [6O A B) I ) Je—ineormediate state

[ -] Ymid

Final te

Clearly simple times will not do to label these states (why?),
use sitpations.

W must

the ators

hmnmmmww-mmmwwmu? It is
Basy to represent the two cperators mhnl:whunxtuy"mﬂ"yuh:
from % to y* utm?:ﬂlmtmﬂﬂ?!l, but in order to construct
'm.l- plans we most alss know.
{a) when the operators can be applied

(b) what effect they have on databases

‘We deal with (a) first. 1In our planning model we must say what

the database ll:#thlﬂfﬂ!lﬁﬂpltltﬂttﬂh!lﬁllﬂlhlltﬂit.
» for the robot to go from x to ¥, he must first be at x.

can say that [AT RoBOT 7x) is a precondition of (GO 7X 7¥] i.e,

T

Vple



 7%) must be true in a database (s, say) before we can apply
GO? ' 7¥] to produce a new database, [Do [0 ?X ?¥] 5]. Similarly the
 preconditions of [PUSH 72 7X 7¥]) are [AT ROBOT 7X] and [AT 72 7X1.
Thus sach operator will have associated with it a pattern called its
pracondition, and this precondition must be true in a database if the
cparator is to apply to it.

We now turn to (b), representing the effects of the oparator.

These are represantad in our planning model by instructions about how to
modify a database when an operator is applied to it. For instance,

when robot goes from x to y, we should delete the Fact [AT ROBOT ?X] and
add the fact [AT ROBOT ?¥]. &imilarly when the robot pushes z from x
to y, we should delete [AT ROBOT ?X] and [AT 7?2 7X] and add [AT ROBOT 7Yl
and [AT 72 ?¥].

In general most facts remain true when an operator is applied. =2.9.
the pictures stay on the wall, when I pour the tea. {explosions are a
notable excepticn). <Therafore it is most convenient to list what old
facts become false (or unknown) and what new facts become true. So #ach
operator has associated with it two patterns, called the add and delete
lists. The new database is formed by taking the old database and fiest
subtracting the delete list, then adding the add list.

The Frame Problem(s)

Unfortunately, representing the effects of an operator is not as easy
as this. The problems are collectively referred to as the frame problem
(The name comes from an esarly proposad solution to them). We discuss
these problems in the order of thelr increasing difficulty.

The first problem we have already dealt with, namely, we overcome
the tedium of listing all the facts which remain true, when an operator
is applied, by only mentioning (in the delete list) thoss which becoms
false (or unknown).

The second problem is one of computational efficiency. In a real-
istie planning situation, any one of the databases will be very large,
containing perhaps thousands of facts. The search tree similarly may
contain thousands of databases, sach of which will be very similar.
Storing all these facts in the computer will use up lots of space.

Every time a new database is created we will have to spend lots of
computer time copying facts into it. The soclution is to store only
the initial database and the add and delete lists every time an cperator
is applied. To decide whether a fact is true in a database we apply

UPRIRPR— =] |




tlmrﬂngm:mmhmlchmuwstm{tmmunuy,
and cannot be changed by available cperators) and adding line 5.

5 If fact always true then true.

{b) checking if the fact was in the precondition of the last

q-nhr.mmuuitmthuwhmtﬂuthmmm-mthnu
delated since.

i.a,

35 Else if the fact is in the precondition of the last cperator
then trus.

mummmthumuummnhmmumnmm
calculus formalism, mmmwwmmuum.

mmtml-hmmtmmmulﬂuumm,
thatﬂudfm-afuwlmnyhmmhththumh
by simple add and delete lists.
later.

namely,

represaentad
We delay further discussion of it until
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ROBOT FORMATION 2
(Making Plans)

Collecting Boxes Again

We now turn our attention to how to actually make a plan given a
description of the task and the operators. We will work through the
"collecting three boxes" sxample in detail,

Tha Initial state is

[AT RoBOT A] (AT BoX1 B] (AT BOX2 C] [AT BOX3 DI
mlﬂt:l.lltltlll

The Final state must satisfy the pattarn

[aT Boxl 7x1 [AT BOX2 7X] [AT BON3 7X)
mmmmmmummmm
Cperator Table

] T 1
Operator Preconditions | Delete List |  Add List !
[eo 7 ?¥] [aT roBOoT 7X] |[AT ROBOT ?X) [aT roBOT ?¥]
[pPUsSH 72 ?X ?¥) [aT 7?2 7X] { (AT ROBOT ?X] [aT moBOT 7¥)
Immnl [T 72 7% (AT 72 771
I l

The plan we will build up is:
[Go A c] (pusE Box2 c B] [Go B D] [PUSE BOX3 D B)
As we build this plan up, we will need to refer to the intermediate states,

8o it will ba helpful to define them now. They are defined by the follow-
ing diagram.



Planned State Sequence

5l = [aT roBoT Al (AT BOX1 B] [AT BOXZ ¢] [AT BOX3 DI

[eo &€l

g2 = [aT roBoT c] [AT BOX1 Bl [AT BOXZ C] M'lnm D]

[pUSH m"' ""’n:

§3 = | (ar RoBOT B] (AT BOXI B) (AT BoX2 B] [AT BOX3 D] |

[Go .n_!_ ‘e Iwrs
v =

54 = [ar roBOT D] [AT BOX1 B) meummnl

(ross sox3 0 81

—
§5 = | [AT roBOT B] [AT BOX1 B] [AT BOX2 B) [AT BOX3 BJ

°r

The Plan

At each stage of building the plan we consider the current state and
plan, and the goals we have still to achieve. Initially we are in state
S, with the goal (AT Poxl ?x] (AT BOX2 7x] [AT BOX3 7K] and no plan.
Our first step is to see whether we can satisfy this goal in the current
state. We can satisfy [AT BOXl 7X] by assigning B to 7X. This leaves
us with the goal [AT BOX2 B] [AT BOX3 B] which is not satisfied in 5.
and becomes our first difference. We concentrate on trying to achieve
one of the facts, say the first [AT BOX2 B], and look for a means of
reducing the difference. A means would be any cperator, that contains
in its add list, a pattern which matches [AT BOXZ B]. The only suzh
cperator is [PUSH ?Z ?X ?¥], which contains [AT 72 ?¥]. We assign BOX2
to ¥Z and B to ?Y, and decide to try to apply [PUSH BOX2 ?X Bl. But
for an cperator to be applicable to a state, its preconditions must be
satisfied, so we must check [AT BoX2 ?x] [AT ROBOT ?X] in §,- We can
satisfy (AT BOX2 ?X] if we assign C to ?X, but then [AT ROBOT €1 is not
true and becomes cur second difference. Again we look for an cperator
with a matching pattern in its add list, and first find [GO = 7¥] with
pattern [AT ROBOT ?¥]. We match C to ¥, and try to apply [Go 7x cl.
The preconditions of the operator are satisfied in 51‘ if we aseign A to
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are satisfied and we apply it to
 Create state S;+ Similarly the preconditions of [Puss BOX2 C B] are
(#atisfied so we apply it to create state 5.

hmmhftw.ttht}utnko!mhiwhw
current state 33- This

of [AT BOXZ B].
hm-mnpth-lhuv-umtbyul
ment of the plan togather with a note abeut

MMt of Plan

Current Plan
[PusH mox2 »x Bl
[PUSH BOXZ ¢ B

[AT BOX3 B], in the
nd-m-iq:vu-ymuummthln:himt

ting the stages of develop-
the reason for the change .

Reason for Change
to achieve [AT BOX2 B]

to make precondition match
[AT BOX2 C]

to achieve [AT ROBOT o]
to make precondition match
[AT RoBOT AJ

'lhuuinp-ratnucmmuhmu-dtnal hnpmduu.slmd the first
goal is achieved.

Sy 1is now uged for checking preconditions.

[Go 7x ¢l [ruUsH BOXZ C B)
leo A ] [ruseE Box2 c B]

lGo & ¢l I[pusy BOX2 c B]

to achieve [AT Box3 B]

[PUSHE BOX3 7% B]

(60 A ©] (pusH Box2 ¢ 8] to make preconditien match
[Puss pox3 p Bl [AT BOX3 D]

[co ac) (PusH BOX2 C B)
fco »x ) [PUSH BOX3 D m]
o A o) [PusE BOX2 C B]

to achieve [AT ROBOT D)

to make precondition match
(6o B D) [PusH Box3 D 8] [AT roBOT B)

The remaining 2 operators can now be applied to produce

55 and the second
goal is achieved,

Beazch

The process of making a plan described above really invelwves search,
‘At any stage there may be several
and [AT ROBOT 7X1)

order.

preconditions or goals (e.g. [AT 22 %]
remaining to be satisfied and we must attempt them in

There may alsoc be sewveral operators applicable (e.g. GO and
#), and these must be attempted in scme order. 1n each case we have

A to use the order in which they appear in our operator table.
. This order was carefully chosen. We never had to remake a choice.

“Sould have got stuck in all the normal ways. We might have got in a



loop. Wa might have got into a situation where no operator was applic-
‘able. We might have produced a non-cptimal plan. We could recover
from these situations by remaking one of our choices.

Hote that the search space was not as big as it would have been if
we had just tried putting together operators in random order. For
instance every attempted plan must include the PUSH operator. The
search tree is made smaller by the use of G.P.5. like means/ends analyeis.

*Exearcise 5.1

Think of a non-optimal plan for the collecting three boxes example.
At what points must we exercise different choices to get this plan rathar
than the previocus cne?
Protection

Mote that all the conjuncts of the final goal must be simultanecusly
true at the end and all the preconditions of an operator must be true just
befors the operator is applied. Unfortunately, a goal, once achieved,
can be deleted later by the effect of a subseguent operator. In our ex-
ample [AT BOX1 B] was true initially, but it could have been inadvertantly
deleted, during the course of achieving [AT BOX2 B) or [AT BOX3 B).
e.9. Suppose we have reached the state

L[]
ét E'n

The robot must go to D to collect Box3d., Suppose it (stupidly) tried
to get there by applying, [PUSH BOX1 B D). The resulting situation
would bae

{'%D
robot

[AT BOX1 B] would be deleted - a retrograde step.




. How can we prevent this happening? We could insist that PUSH be nat
.# to achieve goals like [AT ROBOT Dl. Unfortunately there ars situat-
in which we prefer PUSH to GO, e.g., Achieve [AT ROBOT D] [AT BOXL DIl.
In any case this is an example of a wider problem - how not to destroy an
achieved goal during the achievement of a subsequent cne. People sometimes
have trouble with this, e.g. "How can you take your car te the garage, than
come home but leave it there?”.

Another solution is to protect achieved goals and preconditions, until
they are no longer needed, i.e., mark them in some way and arrange that any
operator, which tries to delete a marked fact, is not incorporated in the
plan. Thus once we had achieved [AT CAR GARAGE], no operator which deleted
this would be considered, and we would have to go home by bus, Of course
when we have achieved [SERVICED CAR), this mark would be removed.

Etacking Boxes

We now further debug our plan formation recipe, by considering a new
example. We will consider a robot with a single ability, he can stack

and unstack boxes. We will express this by a single operator [MOVE 7X 7Y 72),
which means “"move box X from place ¥ to place Z". A place can be another box
or the floor. In our very simple world all boxes are assumed to be the same
Size, 80 in order for the operator to be applicable, place Z must be "clear® -
that is, if it is a box there must be no other boxes on it. To simplify
matters further, we will assume that there is always room on the flsor, by
asserting that the floor is always "clear". To make box X sasier to manip-
ulate we will further insist that it must be "clear™ before it can be moved.
We can sum all this up by the following table and diagrams.

perator Table

Cperator Preconditions Dalete List Add List

k:ln'l ™ Y 7zl [DIFF ?x 72] [om 7% ?¥1 [on 7% #2)

[DIPF 7Y 72) [CLEAR 7Z] [CLEAR 7¥]
[ow »x 7v] [CLEAR FLOCR]
[CLEAR ?X]

[CLEAR ?7Z]




Y Z

Note [CLEAR FLOOR] is needed in the Add List because it is inadvertantly
deleted in case (iii). This begins to show the inadequacy of add and
delete lists for dealing with the effects of cperators.

A _Three Box Problem
Congider the problem defined by the following diagram.
Initial Statm, 5

L A
Final State
c B
A B c
FLOOR FLOOR

We can describe the initial state by
[ow ¢ A) (o A FLOOR] [ON B FLOCR]
[cLEar c] [CLEAR B] [CLEAR FLOOR)
[pIFF A B] [DIFF B C] etec.

We can describe the final goal by
[on A B] [ON B C)

Suppose wa decide to work on [ON A B] first. We pick the only
relevant application of an operator [MOVE A 7Y B]. We can satisfy all
but one of the preconditions of this by choosing ¥ to be FLOOR. We are
left with the precondition [CLEAR A]. The only relevant operator ap-
plication for reducing this is [MOVE ?X A 7Z], and the preconditions of
this are all satisfied if we let X be C and Z be FLOOR, so the plan is
now

[MoVE C A FLOOR] [MOVE A FLOOR B]

— | — m— —
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So we protect [ON A B] and proceed with proving [ON B C]. The only
relevant operator application is [MOVE B FLOOR CJ]. Unfortunately a
precondition of this is [CLEAR B) and the achievement of this would undo
[ow A B], which is protected.

This difficulty arises because we tried to achieve the 2 goals in-
dependently with 2 plans, and then put these plans one after the other
i.m;

[MOVE C A FLOOR] [MOVE A FLOOR B
followed by [MOVE B FLOOR C]
Iu!utth-?qnﬂ:intm“ﬂﬂuixplmhlﬂmhinmm in
order to achieve both goals at the same time. {Trying the plans in
reverse order results in a similar difficulty). 5o we try inserting
the new operator [MOVE B FLOOR C] in different places in the previous
pl;ln- It turns cut that the sequence

[MOVE € A FLOOR] (MOVE B FLOOR C) [MOVE A FLOOR BI
works.

Exercise 5.2
Consider the problem defined by the following diagram.

Initial Final
State State

jide

E A

al Give a description of the initial state
bl Give a description of the final goal
€l Give a plan using the MOVE operator
Draw a diagram of the planned state sequence
e Show how your plan could have been discovered by a planning



program, by listing the stages of its dﬂa-lwtjgivug
reasons for each change.

Exercise 5.3

Design a set of robot operators, which will enable the robot to turn
a light switch on.

i.e. Starting from the initial stats

A

achieve the goal [STATUS SWITCH ON]

Describe the initial state with the facts:

[AT ROBOT Al [AT BOXL B] [AT sWITCH C]

[sTaTuS SWITCH oFF] [ON ROBOT FLOOR] [TYPE BOX1 BOX]
Give the robot the 2 operators GO and PUSH described earlier. In addition,
give him an operator [TURNON 7X], which is applicable provided that X, the
ewitch, is initially off, the robot is standing on a box and the box, robot
and switch are at the same place. This cperator changes the status of the
awitch from off to on. To get on the box the robot will need an additicnal
operator [CLIMBON ?X], which is applicable provided X is a box, the robot is
initially on the floor and both are at ths same place. You will nead to
alter PUSH so that it can only push boxes, and both GO and PUSH to make sure
the robot is on the floor before they are applied.

a) Describe the four operators by drawing an Operator Table giving
their preconditions, delete lists and add lists.

bl Describs a plan for achieving the task and draw a planned state
sequence diagram.




Mlmthwmuﬂﬂlwlﬂﬂnhnhmtﬂmm
choices.
i.8. we have to chooss
&) Which unachieved goal or preconditicn (hersafter, collectively
called subgcals) to work on next.
b) m&fmtmthhmnmwnmmm
againat.
e} Which relevant opesrator to try to apply.
mmm"dwm-hdlrmn—uﬁm
a) go into a loop
b) mtmnhrmmtunlnﬂmmtﬂm-nhﬂl.
€) Find a non-optimal plan.
it is cbwviocualy of mmmummmmr.
mmlmmmmxllummnmummtum
plan to collect three boxes.

Curzent Databass

(AT ROBOT A] [AT BONL B [aT BOX2 c] [AT BOX3 D]

Surrent Subgoals
[AT BOX2 7X] [AT ROBOT 7X1/[AT BOX1 B] [AT BOX2 B] [AT BOX3 B]
Current Plan o

[PUSH BOXZ 7?X B)

The top line is a description of the current (and initial) state. The
_nmdnnlultlﬂumimquhmmummuhmmh
hnﬂaihﬂ; rhl!gnlllmﬂt-:.i.ntn!thltm.r.mnﬂﬂml
.Ipu.: The underlined goal has already been satisfisd. We are work-
Euth-mtm.tﬁrlnﬂl] The bottom line lists the partial

ﬂnmummmnmtmmnn The operator is point-




ing, ﬁﬁlliﬂhhﬂdﬂm, at the goal it is meant to achieve. It
is pointing with a double headed arrow, at its preconditions.
To continue with building up the plan we must choose one of these

preconditions to work on next. If we choose to work on [AT ROBOT 7x)
- next, something silly happens. [AT ROBOT ?X] is matched against

[AT ROBOT Al i.e. A is assigned to X. We next try to satisfy [AT BOXZ Al,
Even If we are very sensible (or lucky) with the remaining cholces, we are
now bound to ge't a non-dptimal plan. e.g. [GO ROBOT c] [PUSH BOXZ C Al
[PusH BOX2 A B] ... etc. What kind of control Ilﬂ]‘ll.l'l.:l..l would choose to

work on [AT BOX2 ?X] first?

""" The area 1s still controversial, but ohe method is to arrange the
subgoals into a hierarchy, according to how difficult they are to satisfy,
and always work on the hardest subgoal first (c.f. G.P.5. ordering of
differences and difficulty of goals). According to this method
[AT BOX2 7X] is tackled before [AT ROBOT ?x%] because it is morse difficult
tnqitlhuxtn.plmthlnthtmbntmnplu-. At the top of the
hierarchy are the subgoals which are impossible to change, unless they are
already true, i.e., thosé like [TYPE 7X BOX] and [AT SWITCH ?X], which no
available operator can effact.

A hierarchy for the "switch on the light" example iz given belaow

top [TYPE ?X ?¥] 5
[AT swITcH 7x%)]
[sTaTUs 7X OM]
[ow roBOT 7X]
[aT BOX 7x]
bottom “[aT ROBOT 7X)

At present, these hierarchies have to be provided by the human programmer
for each new domain. Work is procesding on the problem of having the
planning program work them ocut for itself, by examining the cperators
which achieve each subgoal.

If we correctly choose [AT BOX2 ?X] and satisfy it by assigning C to
X, we must then work on [AT ROBOT C]. Since this fact is not in the data-
base, we must find a relevant cperator to apply. Both GO and PUSH have
patterns in their add lists of the form [AT ROBOT 7Y], so both are relevant.
We can choose either but would clearly prefer GO. ° Choosing PUSH would lead
to a non-optimal plan. '




How can we express or characterize our preference, in order to get a

general solution to the problem? MNotice that if one choice of operator

‘works, we do not need to try another. This is different from the situ

H:l.m with subgoals, where all subgoals need to be satisfied for a

m-!‘ul conclusion. So the sensible choice is to choose the sasiest
‘operator first. The easiest operator means the one with the easiest

. preconditions. We can see that GO is easier than PUSH, since the

Praconditions of GO are a subset of thosa of PUSH.
Macro ators

It is pﬁuih.ll for our robot to indulge in an elementary form of
learning, by remembering the plans he constructs. In effect a plan,
properly remembered becomes a new ability, i.e., a new operator (some-
times called a macro operator). Froperly remembered here means, of
course, not only remembering the sequence of operators which constituts
the plan, but also working cut under what conditions the plan can be
applied and what its effects are, iL.e., we need to know the preconditions,
add list and delete list of tha new oparator. These can all be worked
out (at the cost of some book-keeping) by studying the derivation of the
plan. The preconditions of the new operator are just the subgoals which
were not achieved by an operator, but by direct reference to the initial
Btate. The add and delete lists can bes worked out by comparing the
initial and final state.

To be useful these macro-operators must be generalized, before they
are stored as new operators. For instance, if we were remembering the plan
to switch on the light we would not want to insist that it be BOXl we climb
onts - any box would do. Similarly the precise places involved are not of
' 8t. In practice the operators are generalized before the precon-
ition and, add and delete lists are worked out, but the same principles

Even with generalization the macro operators are still susceptible to

. changes in the initial situation. Suppose that the initial state
switch on light example were:

m:ﬂm c
3 [1]




‘like the robot to be able to adapt the plan
(co 7pl ?p2] [PusE 7B ?P2 7P3] [CLIMBON 7B] [TURMON 78]
and only use the last 3 operators. Otherwise it might pick up BOX1 and
take that to the switch. Therefore the plan is stored in a triangular
table, with the preconditions and effects of each operator stored separ-
ately. This is explained in the reference. The details are not im-
portant. Using this the robet is able to execute subplans of the plan.
He is also able to recover to a certain extent when the plan goes wrong
during execution. (Eee last section on executing plans).

Great care must be exercised over the formation of macro operators.
Properly used the robot can be taught how to achieve a complex task that
it previocusly found too difficult. Suppose that the search tree of a
uﬂ:i.-mlarquthltrhnrnhuteunutﬂndiplminlmmmh
length of time (an all too frequent occurrence). By giving it a judicious
training sequence of simpler tasks, the robot can ba made to learn just those
macro-operators he needs to sclve the original task. Let loose on it again
he quickly finds a short plan consisting of these macro-operators. However,
if we allow the robot to form macro-operators for every task he performs,
he quickly becomes bogged down with hundreds of operators with lang pre-
conditions and add and delete lists. The search trees of all tasks become
too large for him to find any plans. Getting the robot to decide for him-
self what is worth keeping, and what is not, is along way off.

Exercise 5.4

From a macro operator called [COLLECT ?B ?PL ?P2 7P3) for collecting
2 boxes. Look at the operator table for GO and PUSH to decide what the
preconditions, add list and delete list of the new operator ,COLLECT, should
be.

The Frame Problem re-visited

We now return to the most serious aspect of the Frame problem - that
the effects of an operator may be more subtle than can be represented by
simple add and delete lists. For instance, we may have to refer to the
previcus state before we can be sure precisely what to add or delete
2.9

(L) How much tea is left in the pot after we have poured one cup?

{11) pushing one box, may change the position of ancther if they
are jolned by a rod or rope or one is on top of another.



We can think up situations in which the contents of the add and delets
s depends on an arbitrary amount of deduction. If this deduction is
- onally expensive to perform, e.g. an explosion, or if we have
Anformation about the previous state, then we may be unable to
the effect of an operator. We may resort to:
{a)  predicting nothing
(b} predicting the "most likely" event and being prepared to be
contradicted

() adding or deleting laws instead of facts

(a) performing the operation and cbserving the result.
Can you think of circumstances under which you would resort to
ch of the above possibilities? Can you think of any other possibilities?
The plan formation program we discussed in these lectures modelled the
@ffects of operators using the add and delete lists. So it was not able
to handle these more subtle effects. What modifications to it are reguired,
-'-lﬂuhlth-#thunmtuummumhumm—mmm“mtu
ﬁquﬂumumt:-nm-uumquum.
‘Executing Plans (anithe Qualification Problem)
!fthnplmmrﬂbntjuitﬂr is to make are ever to be put to use,
there must be a procedure assoclated with each operator, which will
‘actually perform the cperation, e.g.,, really make the robot go from a to
b Such a procedure is called the operators action routine. We must
';ﬁm1 to distinguish the oparator from the action routine. The
tor, with its preconditions, and add and delete lists, is only a

of the action routine, just as our databases are models of states
the real world.
- Because our planning program is only a model, it is liable to go
h- due to unforesesn difficulties. For instance, we may make a plan
to America, by driving to the airport by car, catching the 3.00 p.m.

b8 etc., only to find that the car runs cut of petrol halfway or the
rpli 83 crew are on strike. This problem is called the gualification
: Again the problem has been foolishly named after a possible

3 “ ‘though not one that was ever sariously proposed. The solution
¢ could hedge ones plans about with various qualifications,
to do if you ran out of petrol etc. This may be possible
# worlds, but it is a well known platitude that one “can't
thing” for mere realistic situations. MNote alsc that we
e pl.m with conditionals to handle gqualifications.

.



e - The solution to this problem would seem to be, that oneé would want to
write qualifications into the plan to deal with the most likely difficult-
ies, but that, more importantly, the action routines must have the capacity
to fail and pass control back to the planning program, together with a
message about what went wrong. Unfortunately, how to provide a measure
of what is "most likely" and, how to decide what has "gone wrong" with a
plan, are not well understood at the moment.
Coda

Several A.I. groups have written robot plan formation programs. The
best known program is prebably 5.T.R.I.P.S. - the Stanford Research
Institute Problem-Solver. This program is used by SHAKEY, the Stanford
Research Institute robot, to fomrm plans for the tasks he is given. You
can read more about the program, and possible extensions of it, in the

Reference

Pikes,R.E.; Hart,P.E. and Nilsson,N.J. “Some New Directions in Robot
Froblem Solving”, in Machine Intelligence 7, eds. Meltzer, B., and
Michie, D., p405-430 E.U.P. 1972,




b = 't Sentence Geperation

m for studying computsr processing of natural langusge

L) understanding language;

(2) understanding intelligence (language as the window into the mind);
(3) natural language would be a very desirable way to comsunicate
with computers and would 'democratise' computer use;

(4) it 1s interesting.

How we understand and respond to sentences is very mystericus, and
‘dntrospection is little help,

Computer studies of language involve linguistics (generative grammar),
loglc (logical langusges as & possible unambiguous atandard way of
m-!.ng meening of natural languages) and computer science (compiling
techniques and data representation).

2. The ingult progras
70 ELEMENT 'N 'L QESWT

1§ IP :N=1 THEN RETERN PIRST :L
ELEMENT (:N-1) (BUTFIRST :L)

mnth element of L

2§ MAKE 1n(e.xm ((COUNT 2L)-1))41

g ELEMENT :% :L

‘Chooses a randos element of L

[ WIA] '

#HI.! CHOOSEANY 'L

A random element of L, & 1ist of command names

"X
| SPACE ARD TYPE :X

8 4ts argument preceded by a space

T 'GET AND OUT 'LOST

§ %GO AND OUT 'JUMP AND OUT *IN AND OUT 'THE AND OUT 'LAKE



1
END

TO MISNAME 2
¢ OUT "FILTHY AND OUT 'BBAST
END

OUT 'ROTTEN AND OUT ‘*SWINE

TO MISNAMB
1¢ DOANY [MISNAME! MISNAMEZ]
END

TO INSULT

1@ SUGGEST AND OUT 'YOU AND MISHAME
2¢ PRINT WL

END

3. The ipsult grammar

insult -> puggest 'you misname

puggest -> 'get 'loat

suggeat => 'go "jump in 'the 'lake

misname - 'retten "awins

mignems -> 'filthy 'beast

A gontext-free grammar is m set of production rules, made from
non-terminal symbols (naming phrases) and terminal svmbols (quoted words).

Each production rule consists of a non-terminal (on the left) and &
list of terminals and/or non-terminals (on the right).

There is a gtarting symbol (here it is imsult).

You can think of the grammer in two ways
(1) An inductive defimition
"filthy "beast is & misname
"rotten "swine ia & misgname
tgo "jump 'in "the 'lake is a suggest
'get 'lost is a suggest
A guggest followed by 'you followed by & miasnsme is an insult.
(11) As a recipe for generating sentences
To generate an insult generate a suggest then 'you then & misname
To generate a suggest generate 'get them '"lcat
or To generate & suggest gemerate 'go then '"jump then 'in then 'the
then 'laeke
To generate & misname, atc.

A
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gige 1.3 Write a gramsar to produce at least 100 ingults in any
i language you choose, (try to manage with less than 100
production rules).

4. MNumber gremmar
i ump => "one
ump -> 'two
ump => "nine
uspteen => 'ten
umpteen -» "aleven

umptesn = 'minstesn

umpty ~> 'twenty

umpty =* "ninety

upto99 <> ump

uptod9 > umpteen

uptod9 -> umpty

uptod9 -> umpty ump

umphus -3 ump 'hundred

upto999 - uptod9

upto999 -> umphum

upto999 > umphum 'and uptody
(* means & hard exercise, ** means a mini-project)
Exercise 1.4a Continue by defining upto999993,
‘Brercize 1.4b Do it in French or German or Gaelic or whatever.
g '.4c Program the random generation for upte39%9 (you can pretend

3 to B don't exist to avoid tedium), :
1,44 Write a program to take a number expresssd as a list of
v digits and print its name.
gige 1.4e Adapt 1.4d to write a teaching progras which gemerates
liste of digits at random, generates the English and
French (or language X) name gimultancousiy prints one,
asks the usar for the other and teils hism if he is right.
is 1.4 We could represent the grammar by

quote one][ump quote two),..[ump quote nine ]
L qlllﬁil t“- e
quote twenty] ..
) ump ][ upto99 umpteen][uptesa umpty m.}

]



el

m.q

mnction to generate random number names from this
5 tion of the grammar instend of the repregsentation by
W m:nm functions we used befora,
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* Generating Blocks World Sentences

A world rather simpler and less disturbing than our own, &lthough
a trifle dull, is the Blocks World,

TI

green
D
green

L e

b red red
s R R T A T e T T TR R

%" There are four square blocks A,B,C,D
i of fixed pige 2 units for A,B,C and 4 units for D

of fixed coleur red or green
of variable position (x,y) denoting mid-point of base
&g+ A hea x=3, y=0
B has =10, y=2

_There are relaticns between any blocks a and b

1 1
8 is $o the left of b if x + /2 sige + [2 size, <x,
8 is tp the right of b if b is to the left of a

ais on b if y‘uybﬂ:l“b
and a is not to the left of b

and a is not to the right of b.
2.1 Define sbove similarly. (But what exaetly does gbove mean
in Bnglish? Does it mean anything
Hnﬂtly?:i

£ blo

Agsertions There is & green block to the left of the big block.
The small green block is on & red block.

The block to the left of the small green block iz to
the right of the big green block,

Quegtions Is & small block to the left of a green block?
Is a block to the right of a red block & gresn block?

b %‘ﬂﬁhg grammar will genarate these and similar sentences:



prep =» 'to the 'left 'of

sentence => gegertion I . B

sentence -> quagtion
(clnounphr means qlaui‘ﬂiﬁ ‘Iil!'hl; uwwm W‘pﬂﬂnd}

Exercise 2.2a

Exercise 2.2b
“Exercige 2.2¢

“Exercige 2.2d

[ J.Il.‘ l.:

Try to find ﬂ- ltmnt lntmu generated by thia

grammar (not just lies, stupid sentences).

444 rules to generate sach of the following kinds of sentence:
What is on the small red block?

The big block is green.

A block between the small red block and the big block is green.
Make up a grammar for recipes in cockery books (add a pound

of sugar, mix in a spoonful of flour, bake slowly), If you
try oooking your random recipas you will discover that
somantics without semanties is nothing but & pain in the gut.

3.  Btructure of gentences
A sentence 1ike 'the small green block is on & red block' has a
syntactic structure: here is a way of shewing 1t

[ [ the [[ema11][[green][b100k]]]] 1 [[on][a[[red][b10ck]11]]]

or as a tree

prep = "to "the 'right 'of I
nounphr =* noun e.g. block
nounphr -> adj nounphr ®.g. big block ’
nounphr -> nounphr qualif 8.8« block on a red block

qualif => prep clnounphr 8.8+ on & red block B
eloounphr -> 'a nounphr 9«f« & rTed block I
clnounphr - 'the nounphr ®.8s the block on a green block
assertion -> 'there 'is ' nounphr 8.8, there is a green block l
assertion -> clnounphr 'is qualif @.8. a red block is on a red block
question -» "is clnounphr qualif @.g. 12 a red block on a red b.lot’

B R —



is ¥

on

small

green  block rod block
It does pot have the structure

[ [ the [sma11]][[green][[blocklis on] [alred]]] biock]

» [block is on] and [& red] are not grammatical entities (phrases).

f’nm block] - nounphr

{‘Mll green block] - nounphr

[the small green block] - clnounphr
y I%lnﬂ:] = noun

Itlﬂ. bludk] - nounphr

{a red block] - clnounphr

We could easily make the generating program type out an indication of
the structure by making each procedure like nounphr print cut its own
befors it starts, mo that we get

QUALTF PREF on CLNOUNPHR s NOUNPHR ADJ red NOUNPHR NOUN block
detorially as a tree

QUALTF
.--"'"'.' "“'-..‘
PREP f
a,n B Hm%
.l.;.‘.I.I IUJ'IPEE
red I'ﬂ[m
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or [[red dlock][on a green block]]]

Intuitively these memn the same so the syntectic ambiguity is harmless.
But 'green block to the left of the big bhlock on a red block' could mean

[[green block to the left of the big block] on & red block]
which is B in the picture of section 1
or it could mean
[gresn block[to the left of the big block on & red block]]
and thers is mo big block on a red block. This im semantic ambiguity.

Exercise 2.3 Check that the grammar really will gensrate theas two
readings of 'gresn block to the left of the big block on a
red block' and draw their trees as above.

e YE

e il

g |

il
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Natural Language = 33 Parsing

[ Some problems about context free grammarsi-
( remesber that a grammar describes a set of sentences, just &3 "the
even numbers mot divisible by 5' describes a set of mumbers)

Problem 1 (Gemeration) Given a gramsar, list the set of sentences
it describes.

Problem 2 (Parsing) Given m sentence and & grammar test whether
the sentence is ome of those described by the grammar.

Problem 3 (Induction) Given & set of sentences meke up & grammar
which describes them.

Problem 4 [I[tﬂ.vtlm] Given two grammars do they deacribe tha
same pet of sentences.

What do you think is the order of difficulty of these?

The parsing problem is the one which interests us mexi. For
example, doea the grammar of the last lecture produce these sentencea?

(a) There is & small block on & red block
(b) Is & red block on & red block on a red block?
(¢) A greem block is there on the red block

Mors important, what structure if any does it attritute to them?
Is this structure unique?
24 & [ @ h o

Here is an easy grammar G, starting symbol P (using lower case instead of ')

FP->aPQ (p1)
P->aQ (p2)
Q->cQ (a1)
Q=>1b (Q2)

Does cca come from it? How about ab or mach?

Try generating the sentences of G systematically.

When you have gemerated even part of a sentence you can sese
whether it could bs cea by comparing the terminal symbols (&,b,c) st
the front.

B/
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P
P
n/ N\ /;//\ii
T aQ

aFQ
Ho good . . No good No good

So coa doss not come from the grammar .

104l e =

How about ab?

+ Tete
sa?ag 2eFQQ s833
No geood No good No gzood
i P
P/\Pz I"I/\PE
aFPQ @ aPQ a g
asFQQ aaQQ aePQQaadq acyg
No good No good No good No good No good

Continue this systematically. Can you generate ab?

Exercise 3.1 Try to systematically generate sentences from the mbove
grammar to get aschh,

3. A parsing program for this grammar

Our convention will be that each phrase has & parsing procedure yhich is
given m atring to parse and returns the remainder of that atring after
removing the phrase it is looking for; but if it fails to find it them
it returns 'FAIL. We will write a collection of procedures for the
grammar just given.

TAKEOFF/
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'rnmr Just tries to remove & given word from a string of worda.
P tries P! and if that doesn't work P2, Similarly Q tries Q! and 4f
that dossn't work Q2. P! takes off ', if the result {s O.K. it
removea a P, and if still 0.K. it removes a Q.

%o takeoff 'word 'string
Af emptyq tstring then result 'FATL
Af not (:wordsf :string) then result 'FAIL
result bff :atring

end

2.8, takeoff '.IIL B ﬂ] = i'j E}
takeoff 'D[A B €] = 'FATL

o OK 'x
not (s='"FAIL)
end
to P 'atring (remove a P from front or fail)
new 'stringrem (remainder string)
make 'stringrem P1 :string (remove a P1)
Af OK :stringrem thep result :stringrem
muke 'stringrem P2 :string {otherwise remove a P2)
iAf K :stringrem then result :stringrem
result 'FAIL (P2 didn't work either)
end
o Q 'string
as P but using Q1 and Q2
end
Examples Q[C B A A] -> [a 4], Q[a B] -5 vramw, »[a B C 4] =5 [e 4]
to P1 'string (remove 'A P Q)

make 'string takeoff 'A istring (takeoff 'A if possible)

if not OK :string then result 'FAIL (PAIL if couldn't take off 'A)

make 'string P :atring

Af not OK :string then result 'PAIL (FAIL if eouldn't take off P)

make 'piring Q istring

result satring (result is remainder or FATL)
&nd

Xo P2 'string (remove 'A Q)
make 'string takeoff 'A :string
Af not OK rstring them result "FAIL
make 'string Q :string
result :string

end



Exercime 3.2

Write out some of the procedures needed to parse numbers
with the number grammar given previcusly (not for all the
productiona, just enmough to get the idea). Try your

proceduren on the machine if you have time.
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The program which we gave in section 3 has three disadvantages

- (1) (practical) it is rather long, each produstion needing a

substantial procedure
(2) (theoretical) 1t will scmetimes fail to find a perse when

one exista.
To understand (2) consider the gramsar, starting with R,
R->aQd
Q=>b
Q=>be

Trying this on [& b ¢] using a program like that of section 3
wa get function callmi=-

Bla b 4] =3 []
Rifa b d] > []
Qb 4] -> [a]
Qi 4] =» [a]
But on [a b ¢ ]
Rla b o d] =3 PAIL
Rila b o a] =» FAIL
gl e d] =5 [a 4]
Qb e ] =» [e 4]

whereas Q2[b e 4] =5 [4] which eventually maken P aunceed,

(3)  (tisoreticai)” it gess into én infinite recursion if glvan
productions of the form P -> P... . But this is not fatal
because it is always possible to rewrite a grommar so as to
avoid such productions.

Disadvantage (2) suggests that we define a function P' which takes

& string as argument and produces n pet of gtrings as result (the empty
@et now corresponds to FATL).

Disadvantage (1) suggests that we go further in search of
brevity and define a function P" which takes a get of strings as
argument and produces a aet of strings ms result. To be clearer
suppese F 12 & symbol in the grammar.

‘Let P be a set of atrings - all strings generable from F.
~ Let P's where 5 is a string be the set of all strings t such that s=pt
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Let P"8 where S is u met of strings be the set of all strings t auch
that s=pt for some string s in 5 and some string p in §,

We will now write a program for the grammar of section 3 with a
function P" for each aymbol P (we Just call it P, not P", in LOGO).
We have corresponding fume tions, from assts of atrings to mets of
strings, for each production, Far terminal symbols we define &
special function takeoff which takes & word and a et of atrings to a
aet of strings,

For each production we simply do the functions corresponding to
its components in sequence. For each non-termingl symbol we do the
function for each of itas productions and join up the result. We
start the whole process on a set whose only element is the given
atring and expect as result a get whose only element iz the empty
atring (i.e. nothing remains when a P ig removed from the front,)

We represent both strings and sets by lists (oconfusing, but that is
all LOGO offers),

Here is the program, followed by acme oxamplen (we call the
functions PP and QQ because P is already used for PRINT)

Xo takeoff 'word '"strings

1 new ‘string

26 if emptyq :strings then result []

3 make 'string ¢ iatrings and make 'strings bf tatringa
4_95 AL emptyq :string then result takeofs tword tstrings

5¢ if svords=f tatring then result fput (bf tatring) (takeoff sword :
atrings)

6f result taksoff swowg tatrings
end
Lo FP '"atrings
18 if emptyq ‘strings then result []
2f result join P1 istrings P2 istrings
and
o Q 'strings
18 Af emptyq :etrings then result H
28 result Join @1 tatrings Q2 tatrings
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I result QQ FP tekeoff 'a :etrings
%o P2 'strings

1 result QO takeoff 'a +strings

end

1o Q1 'strings

1 result Q@ takeoff 'c istrings

end

to Q2 'atrings

18 result takeoff 'b tatringa
and

%o parse 'string

I# new 'strings

2ff make 'strings PP << istring »>

36 if (count ietrings)= # then result 'nogood

4% if (count :strings)> | them result fput 'ambiguous tatrings
50 Aif not emptyq f sstrings then result fput 'toolong f :strings
6¢ result 'good

gnd

Example

takeoff 'a [[a b c]] => [[b e]]

takeort 'a [[d ¢]] =5 []

takeoff "a [[a bellad a][d 0” -3 [[h c][d l]]
P2[[a b a][aat® e]] -> [[a]]

Pil[a b allaat b e]] -> [[e]]

PF[[.:, b d][nn L he]] - fId]El”
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Hat = 4: Tranglation

We have written random gensrator programs for insults and for
sentences about blocks, also a parser for m b ¢ sentences, The parser
Juat said whether & string of words h-lnngii to the grammar; cen we
go further and produce n "meaning' for & sentence? (What is a
meaning? Good question.) let us try, &s & very simple exsmple, to
get the actual number from a mumber name. °We #ill use '<(...)> for
"the meaning of ...", and we will mhwu which the meaning
of a string depends on the meanings of -:Lga;;mn by writing
*quations, one alongside emch production, Viegag:t e

-' " lay Slans

ump ~> ‘on lampd=t

-> 'two €(ump)r=2 Shaai
A (recp L L e L AN
A Ew s . . = e 8 -~
umptoen -» ! ten <(umptesn)>=10 (#asies

i rait  BiILGee R fivmnitad

umpty => "twenty “(ampty}>=20 . e
upto99 > ump <(upto29)s=<{ump)>
uptod9 -» umptean <{uptod9)>=<{umpteen)?®
upte39 -» umpty <(upte99)r=<(umpty)>
upted9 > umpty ump <(upto99)r=<( umpty)>+<{ump) >
umphum > ump ‘hundred  <(umphun)>=<(ump)>*100
upto999 -> uptody <{upto999)>=<(upto99)>
upted99 =» umphun <(upto999) >=<(umphun)>

upto999 -> umphun 'and upto99 {{uptoggﬂ}}:{[myhun:l}+({uptu'9‘l]:|)

anple
[one] 1 uap <([one])s=1
[twenty] 1s umpty <[ twenty])>=20

[twenty one] is upto99 <([twanty one | )>=<( [ twenty ])3+<( [one ])v=20+ 1221

Hotice that we use the syntax symbols, ump ete. as variable
names in the equations standing for any string of that mtactic class,
If a production involved more than cne ccourreance, @.g8. P = a @ b Q,
we would have to use subseripts, e.g. {{I’}>-...<{ﬂ1}>..-<(Q2}>... .

This/
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way of specifying meaning goes rather naturslly with the
ion of context free grammar. Such grammars and our meaning
uations are restrictive but, as you will see, we can axtend their
! s 8till using the same basic ideas.
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. A trapslation program

To program a translater instead of a parser, we need to have

which handle not just remainder ‘strings but also mesnings.

n a string of words will produce a string of meanings,

rather than just one meaning. We can think of the tramslation

, as teking words off the fromt of the word string and putting meanings
n the back of the meaning string. Thus an (intermediate) gtate of

translation consists of a string of meanings (ita left) and a

. g of words (its right).

Consider the mtates produced in translating 'two hundred and

+ pavan', with the rules used to obtain them.

Left (meaning string) Right (word string)
[1 [two hundred and twenty seven)
[2] [hundred and twenty seven)
[200] [and twenty seven]
[200] [twenty seven)
[200 20] [seven]
[200 20 7] []
M¢ [200 27] []
Cupto999/3  [227] []

ﬁmnﬁ;mtmu.mwmmuﬂm“qw
. atring of words on the right.

We want to use the same technique as our second parsing program,
#d by using states instead of just strings of words. So our
tion functions will all take a get of states as argument and

‘produce a get of states &s result. They are

- meaningof word -> meaning:
E-uh- an individual word to its meaning or WOMEATILSZ if 1% ko aoasz.

tate meaning-string word-atring -=» atate

w
'

i a state represented by a list of the two.

sgins word state => T
wm if the right of the state begins with the word, false

Hm-lo
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newstate word state! =» atateZ
only used if state! begins with the word.
Removes this word from the right and puts its meaning (if any)
on the back of the left. -

takeoff word state-set! -=> state-set2 ;
for each state in state-set! which begins with the word, remove
the word from the right and get a new state with the meaning of

the word on the back of 'thiklgft, — -
example: if meaningof 'twe = 2 .
tghoff Yewo ﬁ‘hﬁ[i*]- [two w]
[[1 2] [three four] - '

s SBATE a3 eale ¥ pigs
We neesd some way of Wﬂhﬂﬁﬂl with each
production. Conaider ¥ '

uptods -> umpty wmp  <(uptosd)> = ’Iﬁﬁb ¥ j:t‘m}a-

e T |

Aﬂar“hmuﬂadthiapnduﬂinﬂdmmthnlﬁrmﬂm
functions we should have & set of states each of whose left ia
[veves x y) where x is the meaning of the umpty part and y is the
meaning of the ump part. We need to add these two together to pro-
duce a state with x+y on the end instead. A general function
dosemantic will do all this for any semantic operation, not just
addition.

nargs function-name -> N Number of arguments (1 or 2)
dosemantic! function-name state -> atate-set
function-nams names an arbitrary semantic function.
This is spplied to the last slement of the left of the state
and the result replaces it (or if nargs gives 2 to the last
two elements and the result replaces them). 4 set
consisting of just this state is produced, unless the regult
of applying the given function was FATL when the empty smet is
produced (production was sementically m::-pliuhlﬂ.

exampla: dosemantic! 'sum mkatate [1 2 3] [four five)
-5 [[1 5] [four five]]

dogemantia function-name state-set! =-> state-setl
doan dogemantic! to sach state of atate-set! and collects
together all the results,

Here then are the general producedures for writing franslater
prmmﬂ-

— e | —— —



state 'left 'right
sult << 1left iright »

%o begins 'word 'state

26 make 'right £ bf :state

3 if emptyq :right then result false
48 if :word=f :right then result true
5¢ result Talse

‘%o newstate ‘word ‘state
1 pew 'left 'right 'meaning
20 make 'left f :state and make *right f bf :state
~ 3f make 'meaning meaningof iword
49 ir :mﬁu—'mm 1left (b sright)
50 result mkstate (lastput meaning :left) (bf :right)
end

o takeoff 'word 'states
1% new "state
2f if emptyq :states then result []
!ﬁ | '"ptate f istates and m "states bf ratates
46 if begins rword :state then result fput (newstate :word :state) (
takeoff :word :states)
58 result (takeoff :word :states)

end

1o dosemantic! 'fn 'atate

1f new ‘laft 'right 'fnresult

2ff make 'loft T :state and make 'right T bf :state

3% if t=nargs :fn then m 'faresult apply :fn (last :left)

35 if '=nargs :fn then m "left bl zleft

4f if 2-nargs :fn then m 'fnresult apply :fn (last bl :left) (last :

left)

45 if 2=nargs :fn then m 'left bl bl :left

5@ if :fnresult='fail then result []

6f result << mkatate (lastput :fnresult :left) :right >
end

%o dosemantic 'fn 'astates

1P new 'state

E’H eopiyg istatea then result []

3¢ result join (dosemantic! :fn f :states) (dosemantic :fn bf :states)
end
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To use the procedures defined mbove to tremslate a particular
grammar with particular meaning specification, we need to write some more
procedures corresponding to the rules of that grammar. Below are the
procedures for the number name grammar up to 99. The final procedura
test! tries upte99 on a given string of words, putting a full stop at
the end and ensuring that cnly final states which have devoured all the
ptring upto the stop are printed. (The basic procedures are in my
file NLTRANS and the ones below are in NLNUMTRANS.)

Exercigse 4.1 Try to work out on paper in m the computation
produced by tﬂﬂ j% . I'Iut procedures are

ealled with what arguments? _qfinn' t do all the details.)
Exercise 4.2 Write the i:mnpﬂlimw;hdn.np to 99.

ATy SeEpes
Number £ at

1o meaningof 'word
1 if :word='one then result !
2@ if sword='two then result 2
3 if iwords'twenty them result 2/
Qﬁ reault "nomeaning

&nd

%o nargs 'fn
¢ if :fne'sum then result 2
26 if :fn.'timesi@f then result 1
3 break

end

to ump ‘states
i@ join ump! rstates ump2 :states

end

fo ump! 'states
1@ takeoff 'one :states

£nd

to ump? 'states
lﬁ takeoff "two tatates

end
to/

L




'atateas
'ten :atates

'states
istatea

ty! 'atates
I takeoff 'twenty :states

. 'states
P join join join upto99! :states upto992 :states upto993 :states
‘upto994 :atates

up 0992 'states
w ) umpteen :states

 upto993 'states
16 umpty :states
Ca

* "states

1P dosemantic 'sum ump umpty istates

- t1 'wordstring

i p takeoff '"stop upto99 << mkatate [] (1put 'astop iwordstring) »>
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i EME/S
. Languspes — 5@ Conversations about blocks
DroEch phranes LTANS g 10 Be

et us try to use our translation program on simple sentences about the
ilocks world, the sentences generated by the grammar we gave earlier. It
jascnable to take the phrases to have the following meaning:-

phr - &' sat of blocka

} - 8 property of blocks
- a relation between blocka
- no meaning, just a printing effect

*,. How should we represent theas meanings in our program? The most
itraightforward way is:-

. set of blocks - set of blocks
. property of blocks - pat of blocks with that property
relation between blocka - set of pairs of blocks in that relation

a8 usual we use LOGO liata for sets, and we use words to name blocks.

block - [aBCD]

red - [ac]

emall - [aB ]

amall red blook - [A]

left - [[a ¢][& p]lc D]]

left of red block - [4]
big block left of red block - []

W ‘can manufacture these meanings with three main semantic functions:i-

;__-,- ;X8 Y8 = list of all elements oconrring in both the lista
B X5 and Y8 (intersection)

DOREL :XYS :¥YS - XYS is a list of pairs. The result is the list
of firat slementa of those pairs whose second
elsment im in ¥3.

— ]
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= 4f the list X3 has exactly one element then result is
X3; otherwise prints a grumble.

Por example DOPROP[A B c][B & D] = [A B]
poren[[A ¢][® p][c p])[e 2] = [B <)

Now we write down the meanings of phrases as before:-

simpnounphr -> noun <{noun)»
simpnounphr -> adj simpnounphr doprop<(adj)><(simpnounphr)>
nounphr -> simpnounphr qualif doprop<(qualif)><(simpnounphr)>
nounphr -> simpnounphr <( simpnounphr)>
qualif -> prep clnounphr dorel<(prep)><(clnounphr)>
elnounphr -» 'a nounphr <(nounphr)»
elnounphr > 'the nounphr unique<(nounphr)>
asgertion -> 'there 'is 'a nounphr if emptyq<(nounphr)> then p 'liar
2lpe p 'esorract
Arsartion —» clnoanpic 'te miaddi if emptyq doprop<(qualif)}><(elnounphr)

then p 'liar glge p 'correct
question -> 'is clnounphr qualif AL emptyy doprop<(qualif)><(clnounphr)>
Shen p 'yea else p 'no
Here then is the program, using takeoff and dosemantic ss above.
Naive blocks program

MEANINGOP 'W

IF :W='ELOCK THEN RESUL nncn}
IF 3W='BIC THEN RESULT

IF :W='SMALL THEN n c]

g :::m% nmr?Puc] [fnng]'[fn ]]]
RESULT *NOMBANIN

CRITL e8RS
oy
FEE
g

TO MEMBERQ 'X 'XS
1 IF EMPTYQ :XS THEN RESULT PALSE
20 IF (F 1XS)=:X THEN RESULT TRUE
3% RESULT MEMBERQ :X BF :XS
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o
XS THEN RESULT [] .
RQ F :XS :YS THEN RESULT FPUT (F :XS) (DOPROP BF :X5 :73)
‘DOPROP BF :X3 :Y3

" 1m Im
.oF 1Te 113

TR rm
WUI‘II]E;-ITHEEEULT 115
im'r :X5)= § THEN RESULT 'FAIL

| P "AMBIGUOUS AND QUIT

EMPTY 'IS

OFF '"BLOCE :STATES

"0 ADJ 'STATES

il JOIN JOIN JOIN TAKEOFF 'BIG 1STATES TAKEOFF 'SMALL :STATES TAKBOFF
. 'RED :STATES TAKEOFF 'GREEN :STATES

PREP YSTATES

JOIN JOIN FREP! :STATES PREF2 :STATES FREP3 sSTATES

0 PREP! 'STATES

Ip TAKEOFF 'ON :STATES

REP2 'STATES

 TAKEOFF 'OF TAKEOFF 'LEFT TAKEOPF 'THE TAKEOFF 'T0 :STATES

0 PHEPY 'STATES
1) TAKEOFF 'OF TAKEOFF 'RICHT TAXEOFF 'THE TAKEOFF 'TO :STATES

0 SIMPNOUNPHR 'STATES
i JOIN SIMPNOUNPHR! :STATES SIMPNOUNPHRZ :STATES

) SIMPROUNPHR1 "STATES
HOUN :STATES

MPNOUNPHR2 'STATES
DOSEMANTIC 'DOPROP STMPNOUNPHR ADJ :STATES

é
|
|

STATES
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) QUALIF 'STATES
DOSEMANTIC 'DOREL CLNOUNPHE PREP :STATES

TO CLNOUNPHR *'STATES
1 JOIN CLNOUNPHR! :STATES CLNOUNPHRZ :9TATES
END

TO CLNOUNPHR1 'STATES
1§ NOUNPHR TAKEOFF 'A 3STATES
BND

TO CLNOUNPHR2 'STATES
1§ DOSEMANTIC 'UNIQUE NOUNPHR TAKEOFF 'THE $STATES
END

TO ASSERTION 'STATES _
14 JOIN ASSERTION! :STATES ASSERTIONZ :STATES
END

TC ASSERTION1 'STATES

1§ DOSEMANTIC 'TESTEMPTY NOUNPHR TAKBOFP 'A TAKEOFF 'IS TAKEOFF 'THERE

tSTATES
END

T0 IONZ2 'STATES
&mu*mmm*mm:&m

TO QUESTION 'STATES
' DOSEMANTIC 'ANSWEREMPTY QUALIF CLNOUNPHR TAKEOFF 'IS :STATES
END

TO SENTENCE 'STATES
nlg JOIN ASSERTION :STATES QUESTION :STATES

To use this translater we need a main function which makes a set
containing just one state from a given list of words, applies & given
phrase function to this set of states, them prints the meaning part of
each resulting state (there should only be one unless the phrase ias

ambiguous)
TO DO "PHRASE 'WS

1 APPLY 3 €< €< [] sws >3 »
2@ MAPLIST IT F EACH]
END

For example we should get

DO "NOUNPHR [SMALL RED BLOCK]
[ e (result)
D0 'SENTENCE [THERE IS A BIG BLOCK ON A BLOCK]

NONE result)




W, o
contd.

approgch: translstion to fumctions

program in the last ssction is rather inflexible. Suppose we want
- ah the world by moving, or 4l ting,some block, We have to adjust
the meanings of all the words affected: ‘'om, "left, 'right, 'Ted, ‘"grem. -
o & conversstion with commanda 1ike [Put the red block on the Big block] '
'%'- be hard to impicvont. We can get over this by having a separate
1d model and computing the meanings of words like 'on when we encounter
them, using this model. The model can be changed; it cen also be
displayed to give nom-verbal output,

The world model can be just a list of pairs, each & block name and a
-} description as followa®* colour, dimension, x-coordinate,
p-coordinate. Far the world we had bafore:=
[[a [rED 2 2 0]]

B [orEEN 2 5_2]]

C [RED 2 5 0]]

D [GREBN 4 11 0]]]

We can write basic functions colef, dimef, xof, yof which take the

name of a block and give ita colour, dimension, z-coordinate and
y-coordinate in the current world.

Now we can program a meaning function for each word in a natursl way.
Lot us use the neme Pxye for the meaning function associated with the word
4
INE.

fblock -» liat of blocks (i.e. their names)
fred block -» truthvalue
flon block block -> truthvalue

and 8o on
i 2 5 o115 [ommm & o]
pokup 'x 'xys

 .xys=[] then type :x ond p 'motfound and quit

1 :t-ff:mig%wfbff txys

% lookup .x (bf txys

ad (finds the y corresponding to x in the list of x-y-pairs xys)

= ' 4o xof 'b
okup b tworld 1@ £ bf bf lookup :b :world
end



iy
r bf bf bf lookup :b iworld

]

1 ii_j:._&.mnrf th, xof th ete, now depend on the state of the world. We
lazily made this a global .variable instead of passing it to sach fumction

"

as n parnmeter,) " A ;

J!hlnck
T8 maplist sworld £
m— ] o i Fl

to fie b ¥ J.%ﬁmi b
(dimof :b)32 {colof tb)="red
3&1

+ 1 ‘b th
‘ﬁﬁ (dim .am 1“ ;:r 1b)="green
and ey

4o fon 'b1 ‘b2
8 if mt“:rucf tb1)=lyor :b&]:{d.t-ur 1b2) result false
20 if either(fleft ib) :b2)(@right b1 :b2 result false .
reatlt true sarin ) &
end = = 4] enn’ 5)
_E left 'bi 'b2 SRR N -8
- 1 5 :

m (xof :b1)e(dimor :b1) <= Emnr:ﬁ] s B
io fright 'b1 'b2 ¢ Sodrmerih cnoles MF eiin e taald o
left b2 :b! ity ity BT nie

‘Fﬂ_ A

to meaningof 'w :
14 ir :w-'i:lo-nk then result 'Pblock
28 if :w="big then result 'Phbig
ete.

end

1 il

Now we have to rewrite DOPROP and DOREL to cope with a function name as
first argument instead of a list, But wait, how do we handle qualif?

qualif->prep clnounphr

Its meaning ia a property of blocks but we cannot eéasily produce a
LOGO function to represent this property, We will just have to use :
Iiat as we did before, so DOPROP must accept lidm as wall as function names.

dopropl function-nams or apt-of=-bl u;ku} n-t—nf—hlu&;—h-hﬁf-hlmﬁ
dorel function-nsme sst-of-blocks->set-of-blocks

Lo doprop 'prop ‘ya
1@ if listq :prop regult olddoprop :prop 'ys
20 if apply :p iyn) then result fput (f :ys) Hopm;l tprop (bf :ys))
doprop :prop (bf .yn}
end subaet of ya which have :pruplrty}
olddoprep is doprop of last mtiﬂn]
tof




finds all x in xs which are related to some y in ya)

erl 'x 'rel 'wa
AL emptyq iys result []
FAF spply :rel x (f :ys) then result {<:xd>
$1tar! sx :rel (bf :ys
~ (€€:x>> if x related to some y in ys, else emptylist)

these redefinitions our program should work as before but more
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ory gnd time contexts

‘all our sentences abtout blocks have referred to a single state of
+ the present one. Let us try to extend our system to discusa the
‘s @iving the blocks world a history. This brings up the important ides
in! preting a phrase in a context, in our case a time context. Other
would be place ( come here') or speaker ('I killed Cock Robin').

Lot us simply take 'Monday 'Tuesday ... ms the times, and define the
s history as a set of day-world pairs. If we use the notation I-H’
bbreviate [X Y] for remdability we have as a possitle history

MONT 1-:[1u>[m 220) m>[orEmy 25 2]

b c->[RED 2 5 0]  p->[cREEN 4 11 0]]

UESDAY->[A-{RED 2 5 4] B->[cREEN 2 5 2]

c-{m®Dp 2 5 0] p->[crERN 4 11 0])

WEDRESDAY->[ ot

much happened between Monday and Tuesday except that the red block
'I.bn left of a red block was put on the smai. green block,)

We almo need to know what day it is today, =ay THURSDAY

S0 global variables HISTORY and TODAY desoribe our model (they can be
#6% up by a procedure MAKEHISTORY corresponding to our previous MAKEWORLD)

If we want to Jmow what the world was like on Monday
LOOKUP 'MONDAY :HISTORY will tell us, and
CEUF -TODAY .MISTORY gives us the news.

What sort of mentences should we have? How abeut:-
The block which was to the left of a red block on Monday is cn a block
- On Wedneaday the block which was to the left of the blosk which was on
biock on Monday on Tuesday was to the right of the block whish was on
-3 block on Thuraday.
fims the big blook been on a small block?

The point is that we can't evaluate

on & big block

find which blocks it desoribes until we know which day we are talking
So when we translate such a phrase we cannot pass on a list of
‘the result, as we did previously.



‘be & m‘n of u-ta of lists ,,. , that is a tree structure, using markers
0BT (object), PROP (property,, REL (relation), UNIQUE (to handle 'the).

The tipa of the tree can be the names of semantic functions @BLOCK, @RED, L
eta, o

The phrase [RED BLOCK ON A BIG BIOCK] would give the tree

ral

LS
I / Tock

T
e s

This would be represented by lists thus
(proP [REL dox [w1que [proP gBIc [08s gEvock]]]] [Prop grED [oBr gEnock]]]

We could alsc allow such deseriptions to have nmmt- of
blocks, which we hawe already evaluated.

Such trees are sasily constructed by functioms makecbject etoy thus

to mkobj ix Yo mkprop ipr x>
T8 <<lob) x> 1@ <<'prop ipr ixd
and £nd

similarly for mkrel and mkunique.

How we need a function to evaluate degeriptiona for a given day and produce
& list of blecks., I% oan use our previous functions DOPROP, DOREL and
UNIQUE, thus

to eval "desorip 'day
new 'world
2 'world leckup tday :hiatory
if wordq rdesorip then result tdescrip (e.g. Poig)
if 'objef sawseraip thep result apply second :descrip
if 'prop=f 1desorip then result doprop
eval second idescrip iday)
eval third :descrip rday
if 'rel=f idescrip then result dorel
eval second :descrip :day)
eval third idesecrip tday

it/




1:&1' the day supplied,
tive,

=2 noun

=> ad) simpnounphr

phr -> sispnounphr qualif

nounphr -> simpnounphr tqualif

f => prep clnounphr

if => 'which 'was qualif 'on

'day

=» 'a nounphr

-» 'the nounphr

=> 'there 'is 'a nounphr

= 'on dar 'there 'was
'a nounphr

on <> 'ia elnounphr qualif

=> 'has clnounphr 'been
qualif

=> assertion

-» quastion

moe => 'today 'is day

-

rip fhen result unique
(ewel second idesnrip rday)

li.2. set of blocks, aiready svaluated)

d 5 f bf, third =7 bf br)

and dorel which make reference to tworld will have tha right
ﬂr work in, since it is set up as a local variable and made to be the
Bval just calls itself recursively to
subtreea (think of it as solving subproblems of evaluation),

l Here then is the semantic specification for blocks with refersnce to
The new productions are marked with an aateriak.
cation as LOGO procedures is tedious but straightforward.
& production which does not know what day it is makes a description;
) _ﬁiuh is given a day evaluates descriptiona.

Coding the
Notice

mkob3<(noun)>

skprop<(adj)>
mkprop<(qualif)><(simpnounphr)>
<(aimpnounphr)>

mkprop<(tqualif) 4 simpnounphr)>
mkrel{(prep)><(c.nounphr)>
eval<(qualif)><(day)>

<(nounphr)>

mkunique<(nounphr)>

not emptyq(eval<(nounphr)> today)
not emptyq(eval<(nounphr)><(day)>)

exerciae
axercise

Af <(assertion)> then p 'correct slss p 'liar
if <(question)> then p 'yes slse p 'no
m 'today<,

in the ssmantios of queationa.

s Hand simulate in outline the mctien of the eval procedure on the

ption tree given above and dmy MONDAY, using the history given at

LOGO procedures for the new productions, using those for the 'More
kible program' of section 5.2 as prototypes.
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Ts is at least one of them narrower than the one which i told you to pick up?

YES, THE RED CUBE.

B, is it supported?

YES, BY THE TABLE.

9. can the table pick up blocks?

HO, } . ]

10, can a pyramid be supported by a block?

YES

11, can a pyramid support a pyramid?

I DON*T KNOW,

12, stack up two pyramids.

I CAN'T.

135. the blue pyramid is mine,

I UNDERSTAND,

14. i own all blocks which are not red, but i
supports a pyramid,

I UNDERSTAND,

15, do i own the box?

NO. |

16, do i own anything in the box?

YES, TWO THINGS: THE BLUE BLOCK AND THE ELUE PYRAMID. 41

7. will you plemse stack up both of the red blocks and sither a green cube
or a pyramid?

0K,

18. which cube is sitting on tha table?

THE LARGE GREEN ONE WHICH SUFPORTS THE RED FYRAMID.

19, ia thers a large blook behind & pyramid?

YES, THREE OF THEM: A LARGE RED ONE, A LARGE GREEN CURE AND THE BLUE ONE.

20, put a small one onto the green cube which supports a pyramid,

0K

27. put tha littlest pyramid on top of it.

OK.

22. how many things are on top of green cubea?

I'M NOT SURE WHAT YOU MEAN BY "“ON TOP OF" IN THE PHRASE "ON TOP OF GREEN

CURES™

DO TOU MEAN:

! = DIRECTLY ON THE SURFACE

2 - ANYWHERE ON TOF OF?

2%, had you touched mny pyramid before you put the gresen ons on tha
littla cuba?

YES/

e s, i | —  — | —
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- h‘i
you pick it up?
WAS STACKING UP THE RED CUBE, A LARGE RED BLOCK AND:A LARGE GREEN

. did you do that?
CLEAR OFF THE RED CUBE,
why did you clear off that cube?
PUT IT ON A LARGE GREEN CUBE.
why did you do that?
STACK UP THE RED CUBE, A LARCE RED BLOCK AND A LARGE GREEN CUBE,
why did you do that?
AUSE YOU ASKED ME 10.
how did you do 1t?
PUTTING A LARGE RED BLOCK ON THE TABLE; THEN LETTING GO OF IT; THEN
ITTING A LARGE GREEN CUBE ON IT; THEN LEPTING GO OF THAT CUBB; THEN
TING THE RED CUBE ON THAT CUBE; THEN LETTING GO OF THAT CUBE,
!. how many objects d1d you touch while you were doing 1t7
OUR OF THEM,
f« what did the red cube support before you started to clesr-it off?
i GREEN PYRAMID, ;
= there were five blocks to the left of the box thenm.
), ONLY FOUR OF THEM: THE RED CUBE, TO LARGE GREEN CUBES AND A LARGE RED
4. put the blue pyramid on the block in the box.
5. is there anything which is bigger than every pyramid but is not ss wide
‘as the thing that supports it?
e steeple
BRY, T DON'T KNOW THE WORD “STEEPLE®,
. & "steeple" is a stack which contains two green cubes and a pyramid,

INDERSTAND.

%. are there any steeples now?

3. bulld one.

R ball the biggeat block "superblock",



'BY “IT", T ASSUME YOU MEAN THE SUPERBLOCK,
I CAN'T EXPLAIN A NON-EXISTENT EVENT,

43. is there anything to the right of the red pyramid?
YES, FOUR THINGS: THE BOX, THE RED CUBE, THE BLUE PYRAMID AND THE BLOCK
44, thank Fyou.
YOU'RE WELCOME!

2+ Semantice - some remarks .

a, Our LOGO program computes a set (list) of blocks when it is unsure
which one is meant e.g. [green block] gives 1ist {8 D], Winograd
in his Planner system chooses one of the blocks and uses s 'back
track' facility in Planner to go back and repeat with the next
block, We can't do this in LOGO, but computing the list seems
about as good.,

b, Winograd actually oreates some Planner program and then runs it,
We juast run existing program. His Planner program looks rather
like sentences in logic. For example:

A red cube which supports & pyramid

GOAL (IS ?X! BLOCK))

GOAL (COLOR-OF ?X! RED))
GOAL (EQUIDIMENSIONAL 7X1))
GOAL (IS X2 FYRAMID)

GOAL (SUPPORT 7X1 7X2))

This is more sophisticated than our description trees in the final
LOGO program, :

c. Even the dictionary of word meanings has the names of proceduras
in 1t. (Similarly in our LOGO program MEANINGOF 'ON is &
procedure name ‘BON)

d. Notiee the complexity of a word like 'tie. Sentence ? 'Grasp
the pyramid' is ambiguous, but '"Grasp the red pyramid' is O0.K.
since the model world only has ome red pyramid. In sentence 5§
'What iz the pyramid supported by?' there is no embiguity, since
a particular pyramid has just been mentioned; here the
ambiguity is resolved by syntactic context not by reference to
the model. Our LOGO program could not do this unleas we made
procedures like NOUNFHE store the meaning and the corresponding
input string or tree,

3./
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"
i -

pe the complexity of the ayntax Winograd can handle compared

h our 1ittle LOGO one. Oura with only & few kinds of phrasea
: atill a bit hard to keep in cne's head. If we simply
!iLr-ntud 199 more kinds of phreses we would get in a muddle,

% To aveid & very big context free grammar with lots of arbitrary
names of phrase classes Winograd usea 'Systemic Grammar', dus to
‘Halliday (he dossn't regard the choice as erucial, just hﬂpm}
Thers are just four basic kind of phrase

Clause 'Is it red?', 'it 1s on the table’,

‘on which he sat'
Noun group 'A big man', "the man in a hurry', 'cars'
Preposition group ‘'On top of the table', 'with', 'in

the iron maak' i
Verb group 'lives', 'will have been living',

'to be kisasd"'

~ But emch of these is subdivided (into subspecies and subspecies as
& biologist would say). The subdivisions are characterised by
features, DETERMINED, MASWLINE, SINGULAR, ANTMATE, TRANSITIVE,
INTERROGATIVE, etc, So instead of a clase '

MASCSINGCLNOUNPHRASE (:1!)

~we might have NOUN GROUP with features MASCULINE, SINGULAR, CLOSED.
This makes it sasy to ensurs that subject and verb agres in number
without writing separate procedure rules for each case (in Fremch
they must alsoc agres in gender). We can also ensure more easily
that verbs like 'loves' get ANIMATE subjects. Notige, too, that
one would expect the pemantica of "lovea' to be different

- mpoording to whether the object is animste or not, 'John loves

. Mary' implies that John is in love, but 'John loves ice-cream',
dosan't,

The subdivisions of CL AUSE are very complicated (mee extract
from Winograd's book 'Understanding Natural Language' pas. 48,49).
lr:u thia dosa not exhaust the matter becauss we aan alac make
distinotions based on transitivity/intransitivity.

ﬂuo;nd writes his parser in & special langusge PROGRAMMAR. This
j.l not all that different from LOGO but is specially designed for
For example we do not need to memtion the string 5 all

For example the grammar



(PDEFINE SENTENCE
(((PARSE ¥P) WIL PAIL)
((PARSE VP) PAIL PAIL RETURN)))

(POEFINE WP
(((PARSE DETERMINER) NIL PAIL)
((PARSE NOUN) RETURN PAIL)))

(PDEFTNE VP

(({PARSE VERB) NTL PATL)

((13q H TRANSITIVE) NIL INTRANS)
((PARSE NP) RETURN NIL)

INTRANS
((ISQ H INTRANSITIVE) RETURN PATL)
In the second line above (PARSE NP) has two 'directions’ NIL and PATL
after 1t., It usea the first if it succeeds, the mecond if it doean't,

(PARSE VP) has a third direction EETURN, which is used if it succeeds and
there is not more string laft,

NIL means go onto mext instructien.

FATL means output a fail and restore string to the previous one (like
CHECK),

HETURN outputs a result, after attaching the new nofde to the parse
tree (rather like TRY).
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ote a LOGO program to accept sentences about the blocks I'brld and
primitive responses to them, But the model to which the
referred was put in as a collection of liste described in LOGO.
not the result of our conversation. This might be a fair
- representation of a system which answers questions about & scene it sees
Mlﬂomuﬁrnmamtmwﬂnhﬂrﬁfhtllihdrlina
:m-. But often we derive our knowledge from mentencea: ‘'RHead
passage and anawer the questions below' as the school books say,
hnmd to represent an incomplets model im & way that is emsy to add

g or change. The list representation was specific (it knew just whers
ﬂmﬂd.u was), not too easy to change and needed special LOGO code for

pta like ON. An alternative to lists+procedures is facts+inferemce

|
rules,
2. Memory

- The program must store some information about the blocks world, for
_ instance "The block is red"., We adopt the same method ms we used in the
~ goemetric analogy problema and the making of structural descriptions, and
- for the same reasons i,e, we use aymbolic descriptions.

- We could choose say [RED BLOCK] or [COLOUR BLOCK RED]. The latter
~ will be most versatile, for instance if we wanted to anaswer the question
"What is the colour of the block?".

Typically we will want to atore a large collsction of such fects
the computer. As a first approximation we can imagine a list of
! v T

[[cotovr sLock REp] [BELONGS BLOCK ME] [BIG BOCK]
[oN HLOCK! BLOGK] seeves ]
Such a collection of facts is usually called a database.

How would the program use this database to answer the question "Ts
8 Block célodred red?", Pirat it would have to analyse the sentence
nd build up the desoription [OOLOUR BLOGK RED]. Then it would call:



QI.2
0@ [COLOUR BLOCK RED] :DATABASE 1

and print "yes" or "no" as the result of this call was "trus" or "false" ' .
(should it be "no" or "do not know"?).

i oF

The problem of building up descriptions from the English input has

" = )
been the subject of our natural language lectures.

TRy ; 1 r walei
: o -k il rnes

3. Orgenising the Database soliasravaon oo T a1 e #1000
Unfortunately the number of facts that have to'bs stored in most mon=
trivial domains, ia very large. Searching down a Jdong list as AMONGQ
does take m long time, It is rather ms if one was searching for a book =
in the library by looking at-every book. - fur solution to this problem i
similar to the library's - we index the database. Vardous indering o
systems are used to organise databases, ‘We have mede 4 pystem available
in L0CO (available through BORROWFILE or LIBRARY as 'EOMIF! *INFERENCE). =
You can add a fact to the database with the command ASSERT e

#.g ASSERT [COLOUR BLOCK RED)
ASSERT [BIG BLOCK]

To decide whether a fact is present we have provided the test

function 18Q, . " : &t
i.e. 159 [COLOUR BHLOCK RED] = v o latereal
correaponds to : piin B i -

AMONGQ [COLOUR BLOCK RED] :DATABASE .
4. Blooks ¥orld B ;

Let us f111 the database with some facts mbout a little world
consisting of two blocks, both red, one big and one light {weight). We
must choose proper names for the blocks, say block! and block?, The
procedure SETUPWORLD will set this up for us.. % 5 +




are o little difficult to read so Just
sacription problem we can rdpresent them as & het=
Ara vuiml:r called semantic networks, relational

LIGHT

we ask the question "What colour is ELOCK1™. What do we

hmhm Mﬂwmﬂdlmfnrufmtufmrm:
0K ?7] in the database, where 77 is wim-mrm.

‘@8 its result whatever ?? turns out to be (in this case RED).

!l have already met something in LOGO which plays & similar rnll

7 '.-ﬂ.rnmoﬂnﬂ.lhh 8.8s "COL., We will use thl:un mtntinn here

- write [COLOUR BLOCK '0OL]. Originally COL will be unassigned, but
 the course of answering the question it will be apsigned a VALUE,

ﬁhmm So we need a procedure say FINDANY, which takes [COL]

[covovm BLOCK! 'M]umtauﬂntmumunmlt.

ﬁt- procedure will have to compare [m BLOCK1 '0OL] llﬂ.nrt

n the database locking for one which matches. ;

, [coLotr m.oCK!' RED]. Matching [COLOUR BLOCK! 'COL] against e fact

e of checking that the first and second items of the fact are

OUR and BLOCK respectively and the assigning the third ites to 'COL

.8, MAKE 'COL 'RED). FINDANY will then return a list containing just
: a8 1ts result.

arly "What is coloursd red?" could be translated into
[*oBy] [coLour '0BT RED]

just "Wh" questions (Which ...?, What ...?, Who ...?, How ...%;
eed to use varianbles, We might ask "Is enything red?", This
11y translates into
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ﬂim:-mmumrmumunmoutnm o
" [COLOR 1087 RED] (assigning the appropriate item to '0BJ in the procses)s .
iy 1% ey

7.  Conjunotions =y 1n whem
Suppose we ask "Is there something light and red? or "What is light

and red?™, We clearly want these to succesd if both [LIGHT '0BJ] and
[coLouR *0BY RED] match with facts in the database and 'OBJ is assigned
Lhe same item in both matohes.

We will want both ISQ and FINDANY to take a list of descripticns as
input, They will take the first description, [LIGHT '0BJ] and compare
it with faots from the database, until they find one that matchea (e.g.
[L16HT BLOCK2]) OBJ ‘#ill be assigned the value BLOVK2, It will not do. -+
to continue the process by locking for scmething to match with
[COLOUR '©BY RED], because OB may be assigned some other valus tham. | .
HLOCK2, Rather the database must now be searched for something to matoh |
with [COLOUR BLOCK2 RED], i.e, having found a value for OBJ, we replace 411 .
remaining ccocurrences of X by this value, We slgnify thia to the
mﬂmmwﬁttmnqm-:nrmuwmmmh
to hm.vﬂm. lﬂlwlminfmtufwmrhhhil 'mh '
raplaced by ltl value, i.e, we write

13Q [[L1cET w][m 10BJ RED]]
vnoaNy [o8r] [[Licar *oBr] [conovr s0BT RED]]

To sum up . ; i ®

i
Tw Die
: el

'mmﬂmuluﬂﬂlaﬂiﬂhtuhmkmdnm“n
the match, called an unbound variable.
10BJECT means OBJECT is a wariable which is to be replaced by the
value of 'OBJECT, called a bound variable, e’
OEJCCT meana OBJECT is a m that stands for itself, like RED,
HLOCK2 or COLOUR, bal

°. Islluge gtz
If ISQ and FINDANY are working properly they should fail to find &

ocbject which is both big and light. AN B _'.ﬂl:ll’-f
1.0, 15Q [[B10 *oR7BCT] [LIcET :0BTECT]] rautt
should return FALSE, (FINDANY returna [ ]) &
rz

1t/
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If we had written:

18q [[e1c *omsEer] [LreEr 'osrEcr]]

‘then 15Q would have returned TRUE by assigning first BLOCK! to OBJECT then
" th_m. ¢ . : ]

Vhat we do with this output of PALSE when we get it depends on our
~conventions about the database. If we assume that the database has
complete knowledge of the domain and that any fact not stored is false,
then we will print "no", « On the other hand, if we admit the possibility
that there may be things it does not know, then we may either print "I do
not know" or try to show that no big things are light so that we can
print "no".

Either of these conventions can be useful in different circumatances.
¥We should always be clear which we intend.

9. Search
Suppose we had asked "Is anything red and light?™

t.e. 15Q [coLour *oss rED] [LIcHT :x]]

There is a good chance that the initial comparison of [covour '0BY RED]
with facts in the database would have mssigned BLOCK! to 'ORJ. Since
[LIOHT BLOCK!] is met in the database, ISQ would have returned false

unlesa it was able to "back up", undo its sssignment of BLOCK! to "OBJ and
asaign BLOCEZ instead. Thus I5Q and FINDANY must be prepared to search
for assigmments to the variables which simultsneously satiafy all the
desoriptions. With a lot of conjunctions and a lot of variables in the
input, I8Q and FINDANY may have to do & lot of searching before they suc-
csed (or fail)., We can represent these searches by & search tree.

el [coLour *0BT RED] | g goal
[L1cmT 20B7]

operator

[conour BLOCGK1 RED] [coLoUR BLOCKZ RED]

: aubgoal
[Trrom mocxi]] [ [L1gur mm]f/
f [LIGET BLOCK2]
failure
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8 of the tree are goals or descriptions to be matched. The . Nt
or operators are facts from the database,

0. pom | d
; il
There may be several alternative assignments which lead to success.

Both ISQ and FINDANY are satisfied with the first successful asaignment

they find, but there are occasions when we are interested in all the

successful sssignments. Por instance, suppose we ask "Which things are

red 7. We would expect the answer "BLOCK! and HLOCK2"., A procedure

FINDALL is provided in LOGO. 1Its syntar is similar to PINDANY except

that it returns a list of all successful assignments. '

e.g. FINDALL [THING][cOLOUR *THING RED]
returns [[BLock1] [ALock2]]
N.B, not [BLOCK! BLOCK2] for a reascn which will soon be clear.

. Many Varisbles
Some questicns may involve using several variables. For inatance _

suppose we ask "What colour is the big object?™. We would probably
translate this into

FINpANY [cow] [[B16 roms] [coLour :0Br 'con]]
which would return [RED]. _
In the process BLOCK! would be assigned to OBJ and RED to COL,

Unly the value of COL is returned as the result of FINDANY, because
[cOL] was given ms its first input. If we wanted the value of OB as
well, for instance in answer to the question "What is the big object and
what colour is it7", we would write

FINDANY [oBT coL] [[are *oBr] [conour :0By *con])
The result would be Em m].

This explains why we have been uaing lists for the firat input and
the output of FINDANY and FINDALL,

FINDALL can also find the valuss of ssveral variablea. Conaider
the question "What are all the objects and their colours?, This
translates into

FINDALL [08r con] [[conour 'oBr 'coL]]
The/




the result of FINDALL is a list of listas.

|te FINDANY in terms of ISQ. (i.e. assume ISQ is
MNY 1s not.)

Mt the above picture as a procedure which makes & series of
assertions in a database.

R N8 ™0 ARCH1

" gmmimmmx]

ate.

Exercige 1.3  Translate the following questions into procedure calls
- which could access the database set up by ARCH!.

Is A lying?

What is lying?

What is to the left of C?

What is to the right of B?

What things sre supporting A?

What ia the arch constructed from?
What are the supporta of the arch?

How many things are supporting A7
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8o far the knowledge in our database has been simple facts or
assertions, Not all knowledge is of this type. Some kmowledge is in
the form of lawa like "All big things are heavy" (pecple often use very
rough generalisations)., With this law and the fact that block! is blg
we should be mble to answer the question "Is block! heavy? in the
affirmative., Perhaps the simplest way to ensure this would be to have
a procedure which monitored all new additions to the database, When-
ever a fact of the form [BIG 'X] was asserted this procedurs would
deduce [HEAVY 1X] and add this to the database. We can add such &
procedure to our world model using the procedure ASSERT. Let us edit the
procedure SETUPWORLD and add line

15 ASSERT [MPLIES [BIc 'x] [HEAVY :X]]

You should read this law "The fact that X is big implies the fact
that X is heavy". The first description [BIG 'X] is called the
antecedent and the second [HEAVY :X] s called thé gconsegquent. The
procedure works by matching the antecedent :élinnt all incoming assertions.
If a match succeeds the procedure asserts the consequent, replacing any
varisbles with their assigned values, Such a procedurs is sometimes
called an "Antecedent Theorem", an "If asserted method" or a "Demon" and
the kind of deduction 1t does is variously called "Forwards deduction”,
"Forwards chaining”, "Bottom up reasoning" or "Hypothesea driven
deduction”®,

We should be sure to add such "demons" before asserting any facts,
because it will only deduce consequences of faocts asserted after it
itself has been asserted. Thus when line 40, which is

40 ASSERT [BIG RLOCK!]

is executed, our demon will set to work and ASSERT [HEAVY ELOCK1].
(If line 40 were line 13, our demon would do mothing.)

How if we ask
15Q [HEAVY BLOCK!]

we will ge the result TRUE.




Unfortunately it is not always convenient to draw all possible
psonclusions from the things we assart, Typically an already large data-
base will become cluttered with facts we may never need to kmow. Imagine,
for instance, what would happen to our database if every time we asserted
[HmaN X], we deduced [HAS X HEART], [HAS X HEAD], [HaS x matr], [Eas x
LUNG] ete. Any new assertion would lead to an explosion of deductions,
the database would become so full that we would find it increasingly hard
to retrieve facts.

The situation is worse because some demons lead to a call of them-
selves, Conaider "Every human has a human mother®, If we asserted
[HUMAN JANE1] we would deduce and assert [MOTHER JANE2 MUM1] and
[FumAN MUM1] where MUM1 was & new constant, This would lead to & new
deduction [HUMAN MUM2] and so ad infinitum. Clearly some laws nead to
ba kept for use only when nesded,

3. Pupctions :

In the previcus exsmple we cheated a bit., Each application of the
law "Bvery human has a human mother", introduces a new constant, (e.g.
MIM1, MUM2, ,... ote.). But we have not yet discussed & mechanism for
introducing new constanta, We now correct thiam omimsion.

A firet approximation might be to include & new constant in the
atatement of the laws

e.g. [IMPLIES [HUMAN 'x] [Rumaw wum]]
[nerres [Aoman 'x] [MoTHER X MUM]]

Thia would woerk for the first application of the law to say
[FMAN JANE] producing [HUMAN MUM] ana [MOTHER JANE MUM], but the second
application (to [HUMAN MUM]) would produce [HUMAN MuM] and [MOTHER MUM
MM] which would be silly. Clearly the new constant should depend on
the partiocular value of X at the time the law is callaed. The device we
introduce to deal with this problem is to represent the naw cocnatant by
something like an explieit LOGO procedure call using the funotion name
MUMOF and taking 1X ms argument, So MUM! will be represented by

[MoMoF JANE]
and MUM2 by
[momor [wmMor Jawg]]

The/
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law "Bvery human has a human mother can mow be represented as
~ [oeuss (s rx] [max Doxor :x]]]
together with
[meer1es [mowan 'x] [moraEr [MoMor :x]]]

Bxercise Represent the law "Every humsn has & head",

4. Backwards Deduction
What we need is a law which will only be invoked when it is needed
to answer some question.

#.2. when we ask ISQ [HEAVY BLOCK!] it changes the question to
130 [BIC BLOCK!] which returns true, But [HEAVY BLOCK!] is
hgver asserted. =

In LOGO we store such a law by typing
assErt [rorwFer [mBavy 'x] [Br¢ sx]] _
Remd this law "Po infer that X ia heavy, deduce that X is big".

15Q [HEAVY BLOCK1] first checks to see if [HEAVY BLOCK1] is in the
datebase. If not it them checks in a datsbase of laws to ses if any
are relevant. This means matching the consequent of the law against the
current goal (e.g. [HEAVY 'X] sgainst [HEAVY BLOCK1]).  Then the
current goal is replaced by the antecedent of the law (With any assigned
variables replaced by their values), e.g. I5Q [HEAVY BLOCK1] is replaced
by 18q [B16 BLOCK1].

Such laws are variously called "Consequent theorema" of "If needed
methods", and the kind of deductions they do are called "Backwards
deduction”, "Backwards chaining”, "Top down reasoning” or "goal directed
deduction”.

We will want to allow the antecedent of cur "TOINFER" laws to
econaist of several descriptions

e.g. [TomnrEr [METAL 'x] [EBAVY :x] [covour :x GREY]]
This will cause no problems since ISQ eftc. can handle conjunctions
#—.‘m'i

Search Again

B

Just as it was possible to make the wrong assignments to variables
to back up, it is possible to apply the wrong law and have to
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!
70 SETUPWORLD
10 ABASE
1% ASSERT [TOINFER Emrr BIG :!m]fr
15 ASSERT [Meran sTHING 1]
20 ASSERT mmm BLOCK 1 m
%0 ASSERT | COLOUR 'RED

40 ASSERT |BIG BLOCK!
ngulsm LIGHT BLOCK2]

If we ask
15q [HBAVY HLOCK!]

in ocur current INFERENCE mh&-.ﬂ.ﬂt law "all metal things are heavy"
dﬂhmﬂﬂu‘tuﬂﬂﬂﬂhﬂﬂﬁfmmﬂ This will fail,

anumwmmumtiufnl,mmupmmdtnhutup
and try the second law.

1

We can represent the search by a tree

i.e.

[ToInFER [HEAVY 'THING] Iﬁlﬁ (TaT a]] Nrornrm [EEAVY 'maING] [316 sTHING]]

METAL BLOCK! ¢ BLOCK1]
T : [B1c BLOCK1]
failure
}

 — |
The arcs can now represent laws or facts from the database.

Even these TOINFER laws do not prevent explosions. For instance,
suppose we added ths law:

[rornrer [on 'x 'x] [ow sx *¥] [oN ¥ 12]]

correaponding to that if one block is on top of another and a third ia
on top of that, then tha top block im on top of tha bottom block.
Buppose we now ask

15Q [oW BLOCK1 BLOCK2]
Since this is not in the database the law will be invoked and

150/
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"15Q [[ow Brockt '¥) [oN +Y BLOCK2]]
will be called.
This will call
18Q [[ow Brockt 'v1] [ow sx1 '¥] [oW +Y BLOCK2]]
‘and so, ad infinitum.

6. Predicate Caloulus
Those of you familiar with predicate caloculus will find sll this
rather familiar. In fact this is a procedural version of a subset of

predicate caleulus. For that reason you will sometimes see programs
like thie referred to as "Inference aystems™ or "Theorem provera".

7. Logicsl Arguments
We can geot the program to parform most of the logical deducticna
that you find in the literature. For instance consider

411 Fumans are Fallible
Turing is human
Socrates is human

Socrates is Greek
Who is & fallible Greek?

tranalate this into

ASSERT [TOINPER [PALLIBLE *X] [HmmMAN :x]]
ASSERT [HUMAN TURING]

ASSERT [HUMAN SOCRATES]

ASSERT [GREEK SOCRATES]

FInoany [x] [[Pazrisie 'x) [orEEx :x]]

to get [SOCRATES].

Tou try this withs

‘2:1 All men are mortal

Socrates is & man
Ia Soerates mortal?

We have met a very limited clasa of entities in this simple
iptive langusnge, i.e. just:

Physical/
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1 objects like block!, block?
ies like red
- Relations betwsen them like colour, big

Assertions like [COLOUR BLOCK! RED]

Laws 1ike [IMPLIES [BI¢ 'x] [HBAVY :X]] L

To conduct reascnable conversation we will have to represent:
places; times; events; actions; substancea, eto,

2.2 (&) Using the LOGO inference system translate each of the following
sentences into a procedure call corresponding to its meaning:
The Pope is good
John Wayne ia good
John Wayne is courageous
Anyone who is good and couragecus is a hero

Who is & hero?

(b) Suppose the translations of the sentences sbove the line were
used to set up a database and the translation of the sentence
below the line were used to interrogate that database, [Iraw
the search tree of t'at interrogation.

2.3 If X is a parent of Y and Z is & sister of X then Z is an aunt of ¥,
If X is a parent of Y and X is an aunt of Z then Y is & cousin of Z.

A mother or a father is a parent
Mary is the mother of John
Fred is the father of Jane
Mary is the sister of Fred

Dajgy is the wife of Fred
Who is the cousin of Jane?

Draw the search tree of the above,.
2.4 What additional laws do you need to enswer "Who is the aunt of John?"
2.5

Using the LOGD INFERENCE aystem:

(a)/

g, - -
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Give a partial symbolic description of the above drawing of
a face sufficient to answer "yea"™ to the following questions,
by direct database lookup:

le the mouth in the lower portion of the face?
Is the left aye in the upper portion of the face?
Is the nose in the centre of the face?

In addition represent the lawa that:

Anything in the centre of the face is also in the middle portion.

Anything in the middle portion of something is always sbove
anything in the lower portion,

Anything in the upper portion of something is always above any-
thing in the middle portion.

Hepresent the question:

Ts the nose above the mouth?
Draw the complete pearch tree of its interrogation of the databtase.

In addition represent the law:

To infer that x is above y show that x is above z and = is above y.
and the question:

Is the mouth above the nose?

Iraw scme of the search tree of thias interrogation. What
problem arises? How might it be overcome?

Does your sclution involve changing the LOGO INFERENCE syatem?

Regommended Reading

Raphael, B, 'A Computer Program which 'Understanda"'. AFIPS Conference
MM- Part 1, 1964, PR« 5T7-89,

Sussman, G.J., Winograd, T., Charniak, E., "Micro Planner Refarencs

Manual", MIT 1972,  (Read lightly, not attempting to

learn Microplanner.
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The inference system consists of a number of procedures availsble as
a file in NEWLOGO, It provides facilities for making a database,
retrieving from it and doing forward and backward inferenca.

2, Eatterns

A pattern is a list of pattern elements or patterns,

A pattern element is either

(1) A constant, i.e. a word or number
(2) a quoted variable, i.e. & quote followed by & variable name
(3) A colon variable, i.e. B colon followed by & variahle name.

Examples of patterns:- [LIKES JOE '.F'DQD]
[LIKEs JoE 'xx]
[NEAR "XX :CURRENT]
[L1KES JOE [DAUGHTEROF 1xX]]
[[L1xes JoB 'xx] [AVAILABLE :xx]]

A pattern is simple if ite first is a pattern element, otherwise it is
compound., Compound patterns are underatood as conjunctions,
Example: all but the last pattern sbove are simple.

3« Procedures ,
Notation: Pat-pattern, T-truthvalue, L-list, Ll=list of lists,
V1-1list of variables.

CLEARDATABASE = Clesra the databaas,

A33ERT aimple-pat = Adds pattern to database,
any colon variables take
their current values,

Example - ASSERT [COLOUR  RED :08J]
I15Q Pat => T ~ Tests whether pattern
matches one in database,
A guoted variable ig
assigned a value by the
matching if possibla. Colen
variables take their current

values/
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values whether sssigned by

15 JARR o by makohibnge - New uil
values are gvailable after I5Q
1s finished. For a compound
pattern each component is
matched in succession, depth
first.

Example - 13Q [[B16 *xx] [BAD :xx]]

FINDARY V1 Pat => L - The pattern is utn:hnd..- @ut
the database; result is the
list of subsequent values of
the variables named in V1.

Exasple - FINDANY [xx] [B1c 'xx]

FINDALL V1 Pat -> L1 = Like FINDANY, but finds all
poaaible ways of matching the
pattern with the database;
result is the list of all
poseible lists of subsequent
values of the variambles named
in V1.

4. Rules
ASSERT can alsc be used with a rule as argument.

Bulea use antecedents and consequents, which are aimple patterns.
Thers are two kinda of rules:-

[IMPLIES antecedent consequent]

- subsesquently, when any pattern which matches the
antecedent is ssserted the consequent is also
asserted (with the then current values of the
variables, including assignments to varisble
while matching the antecedent).

Example - ASSERT [TMPLIES [sTupmwr 'x] [IwpusTRIOUS :X])

[TOINFER consequent antscedent! antecedent? ,..]
= whenever the system tries to match some pattern
of the same form as the conssquent it can
instead try to match the pattern(s) defined by
the antecedent(s) (all of them conjunctively).

Example/
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- assErt [roInFER [MAN 'x] [MALE :x] [FMaw :x]]
'5'=f.=-.--.-- s No colon variables in the consequent of a TOINFER mule,

2. Variables occurring in the rules must not elash with any
variables that appear in nom-rule patterns. Adopt &
convention like X,Y,2 only for rule-variables,

Negation

X In a compound pattern anv component after the first may be negated by
[wor [...]].

‘Bxample 15Q [[RED 'x] [Nor [sMars :x]]].

6. Using the avetem
{a) Access the system from NEWLOGO® by
LIBRARY 'ECMI@! 'INFERENCE
or BORROWFILE 'ECMIf! 'INFERENCE (like GETFILE)
(b) Do CLEARDATABASE to initialise the system first of all.

(e) If variable THINKALOUD is TRUE (default value) the system printa
a commentary on its search., Make false to prevent this,

(4) Like other variables, varisbles in patterns are best declared NEW
in procedures which use them,

(®) The svstem is extremsly sensitive to the order in which it tries
TOINFER-rules. Rules msserted first are tried last, so assert
the simplest rules last. Search is depth first, so beware of
infinite recuraion.

. 3
To get NEWLOGO in BMAS initially
sommand: APPENDLIB (ECMIFS, NEWLOGLB)
ad: COPYLOGO (to make your AT2LOGO files available)
ifter call it with command: NEWLOGO.




A I Y. 1 18 November 1973
1975/76 Ml b

STRUCTURAL DESCRIFTTIONS

TASK: How could we get a sensible descriptiom of Eigure A?

Rl
*
RS
J * +R7
R2+ R3+ h Riy+ “R&

Figure A

We would prefer "a chair near a table" to
"s yertical rectangles and 2 horizomtal rectangles”.

Let us look sgain at the process of achieving a symbolic description of

a picture we went through in the analogy lectures.

a) We need to achieve uniformity of predicates.
If several descriptions are possible, 2.§.
"a rriangle inside a square”
"s square surrounding a triangle”
we arbitrarily chose a predicate, say, "inside" and then stick
to it, to enable rigorous comparison between descriptions.

b) To avoid ambiguity, we express the elements involved in the
relationship in a fixed order. [inside triamgle square] must
be distinguished systematically from [inside square trianglel.

c) We ignore superfluous words such as "with", "a", e,

d) In cases where we have two objects of the same shape, we
distinguish them in the cbvious way:-

trianglel , trianglel

&) We list the objects in the figure, explicitly, and our descriptions
take the form

<set of objects in figure> <set of relatiomships in figure>



Hl convenience we.abbreviate "rectangle" to "R".

‘The set of ubjw?tl in the figure is [R1 R2 R3 R4 R5 R6 R7].
We could describe the spatial relationship between Rl and K2 using "above",
"below", "under" or "on". "On" includes the idea of touching and suits our
purposes best, Thusi=-

[on R1 R2] [on R1 R3) [on RS R&4] [on RS RG] [om R7 RS]
We capture the different orientations thus:~

[standing R2Z] [standing R3] [standing R4] [standing R6] [standing R71
[lying R1] [lying R5]

Rather a lot of expressions are accumuilating and we have not yet expressed half
the things we need to say about the picture. We need ways of making it easier
te see what is going on. Motice the threefold mention of Rl = three facts
about Rl have been asserted. We have a way of grouping references to the same
object by creating a node to represent the object and using directed arrows to
represent the relationships it has with other objects.

= (1)

on on

&) |

The third fact about Rl [lying R1] tells us about a property of Rl rather than
how it is related to other objects. We treat properties as one-place relation—
ghips, in that the descriptions of the property is attached to an arc hanging
the node

stand
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There are two interesting consequences of this representation.

1. The objects from two clusters by virtue of their relations, Vie:-
group 1 [R1 R2 R3]
group'2 [R4 RS R6 RT]

2. We can readily see patterns of relations

"s lying object on 2 standing objects" is a pattern which
oceurs in each cluster, and suggests a derived predicate:-
"is supported by"

How does the first point, the grouping of objects, help us in our taski Let
us proceed with the business of adding relations to our network e.g. B2 is ic
the left of R}; R6 is to the right of R4, We choose, arbitrarily, "leftof”
as the canonical predicate and insert.

(&)

leftof
@ --_‘_——____.l_:ﬂ'_ﬁ-i
leftof @
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more convenient to group relations

- -

lefrof

(¥
5 lafrof ‘,"} " 6 ! @ ¥
i
\‘ LY ok IIII|. ..r'
1 e

- """'!.. i

T

‘\h e
[leftof groupl group 2] [leftof R2 R3) [lefrof R4 R6T
fr““"
But we need a way to refer to a ; and what do we mean by this
t_t-
dotted circle anyway? We make explicif the relatiomship "one-part-is"

lefrof

oneqpart-is

MORE ABOUT RELATIONS

1. Consider again the problem of choosing predicates.
(inside triangle rectangle] has no intrinsic superiority over
[outside rectangle trianglel. We could introduce explicitly the
fact that the two are equivalent by using two arrows each time the

relationship occurred in the metworki=



Alternatively, and more economically, we can provide this information once
and for all in the form of a rule about inverses,

Inverse rule: if objl inside obj2 then obj2 outside objl. More gemerally,
if one relation RELLl is the inverse of another relation RELZ then if
[geL1 oBJ1 0BJ2] then (RELZ OBJZ oOBM1).

Some relations like next to or near are symmetrical and can be represented

by a two=-way arrow

(=)

which would be equivalent to asserting both [near A B] & [near B Al.

How about the relationship between R7 and R6 in the task picture?

We have [on R7 R5] and [on RS R6], and "on"™ is & particular kind of
relation which is transitive. We could have a transitive rule of the
form:=

If objectl on objectl, and object2 on objectd, then objectl on objectl,
Again, more generally,

if a relation REL]l is transitive then
if [REL1 0OBJ1 OBJ2] and [REL1 OBJ2 OBJ3] then [REL1 OBJ1 0BJ3].

However, we cannot pursue this indefinitely for some relations, otherwise
we could prove, say, that everything is near everything else. "Being
pear to" seems to include the idea of "distance away from" relative to

some activity i.e. near enough to be affected by.

In network terms, we have traversed two directed arrows in order to
get [on R7 R6); in both cases, the directed arrow had the label "on".
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In the same way, two successive arrows labelled "father-of" could give
us "grandfather-of". We need not restrict ourselves to successive

arrows having the same label. Thus "aunt=of" could be "mother—of"

followed by "sister—of".

Problems arise in assigning predicates.
q

a) Recall "is-supported-by" in the task figure, derived [rom
grouping "one lying rectangle on two standing rectangles”.

But what about 1

b) Consider "leftof" and "above" in the following:=

| e | e | [
=1 e 1 [ 1
leftof above agbove & leftof T

¢) The cube is rightof the arch in the picture, but in the real world
scene which this represents, the cube is on the leftof the archway.
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, :_' a matter of frame of reference in terms of which the relations
‘are defined. The cube is to the left of the archway as seen from the

‘point of view of someone in the right-hand part of our picture.

POINT OF VIEW
Consider the task figure again.

All the relations used in the description make an assumption about the
figure VIZ that we are looking at & side view of some scene and that for

example points in the top part of the picture correspond to higher points
in the scene than do those in the lower part of the picture.

| Now lat us assume that the picture represents an aerial view of some scene.
. What happens to our description?

€« e

pacrallel to
parallel to



s (a) We have some symmetric relatioms and the same general
some tramsitive relatioms rules already developed
some inverse relations for these will hold.

(b) A crucially important set of remarks

How difficult was it for you to see the picture as an serial
view? The familiar arrangement of parts triggers concepts we
already have i.,e, evokes the labels "table” and "chair" for
groupl and group? respectively; i.e. imposes the viewpoint.

We see the 3 rectangles Rl, R2 and B3 as a table. Parts take
their names from the wholes they are seen to beloog to, 2.8
Rl becomes "table-top”. No such ready interpretation emerges
for an aerial view.

We find that a global decision such as viewpolnt assignment
can determine which predicates will be included in the description.

An example of this is shown in the Beider-Simmel film.

Sometimes there are two equally strong possible interpretations
= the so called miml figures which abound in the psychological
literature have just thu property e.g. the Rubin figure which can
be seen sometimes as a vase and sometimes as two faces; or Boring's
figure which can be seen as & young girl or am old woman.

This is the kind of consideration we will be going imto in
depth in the perception lectures to come.



Fubin figure .

Boring figure




Structural desoriptions (2)

We try out cur method of forming structural descriptions on some
standard displays used by Gestalt psychologists.

‘1. CGrouping

Exarmple a, Consider this display of 5 vertical lines.

a 2 3 LI
f

Our description might look like thisi-
Good)  Gimedp oG Gl iy

We could put in "parallel-to", But since each line is parallel to every

other line, such a tag would only load up our description without providing

any evidence for grouping. Similarly properties like "vertical” and "straight"
would cccur sttached to every node and would not affect our bias to form

groups on the basis of & shared relation "near" as follows:-

group 1 : line 2 snd line 3 (abbreviate L2 & L3)
group 2 : Lk and L5
group 3 t Ll

Exarple b, lNow we add b lines to our display to geti-

[




Again three groups fall out quite naturally on the tasis of closed ringe of
links, thusi=

ona=p

naar

near

one=-parc=is

Notice how lines 2 and 3 have changed allegiance, and now belong to different

groups. The nodes in groups 1 & 2 formed closed rings.

To keep the skeleton
of our description clear, we will not follow through the details of adding

features like "parallel-to" and "at-righc-sngles=to", necessary to provide the

basis for identifying groups 1 and 2 as rectangles.

Inatead wea look at
Example ¢ .

This yields the following:-

connacts

connacts

L L

copnecta



£irst blush, we might seem to be back to situation (a) with the same three
groups. However by noticing the collinearity of the hanging lines 6 & 8, 7 & 9,
‘812, 11 & 13, we form a conceptual "closure” of the shape thusi-

collinear

How wa are in situation (b). Indeed, if we had a description of the rectangles
in (b) stored awvay, we could imagine that £inding the hook e (L6=L1=L7) could
invoke the stored description or model of & rectangle i.e. trigger the expsctacion
of a rectangle, and lead to an active search for the rast of the rectangle. More
of this in the perception lectures.

Notice, however, that there is a bug in our recipe.

Since we have granted our system the ability to notice collinearity in situation (c),
we should have noticed the collinear linmes in sitvation (b). And when we allow
this, we find that because this ralation involves only some nodes, it seriously

affects our grouping.

The description of situation (b) should have been

collinear



There
is more than one way of extracting groups from this network. We need to have

.ﬁrﬂ can no longer claim that two groups f£all ocut maturally.

s way of ordering our grouping criceria, For example, if there are two
possible closed tings to which any one node can belong, then choose the ring
formed by relations of the same gort, or as nearly the same BOrt &s possibla.

So in our example, 6-1=7-2 are linked by a ring of "connects” and ia
preferred as a group to 6=2-3=8, which are linked by a diverse collection of

relations.
Now we have to decide what to do about "collinear",

One of the rea or ing is to form entities which at a hi
level ¢ msely 8 primitive elements in a ralation

2.« pgroupl mnear groupl

However we would still want to retain the ability to relate part of one
group to either the whole of another group, or to part of another group.

#.§. Consider again the task figure in the previous handout. (P V,1) We observe that
the bottom lines of the two rectangles forming the "chair" are collinear, and

that the same goes for the bottom lines of the rectangles forming the "table".
Furthermore all these lines are collinear i.e. part of part of the "chair”

group is collinear with part of part of the "table" group, and we can, and

probably do, use this evidence of a support plane, viz the ®floor™.

Example d. What do you see in this display?

EI8

At this point, I start seeing the letter E in several places, Can we
get this description with the rules we have been using so far? Try this
example yourselves.

Suggestico.
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tion. There is a much deeper bug in our method, which was hinted at
by the remark on P12 which referred to the possibility that hooks of the form
(1]
r might invoke the STORED DESCRIPTION or MODEL of a rectangle.

Thare is more to structuring a picture than is given directly in the
picture.

Example e. An ambiguous figure - - ing—to"
We now look at the ambiguous figure om P13,

This can be seen sither as a cross of 4 ribbed pie slices on a background
disc of concentric circles, a targetj or as @ cross of striped pie slices
on a background disc of radiating spikesa.  In the former case, the arcs ars
seen ag the visible parts of complete circles; in the lattar they are seen

as true arcs.
We form a description which reflects the fact that

1. The areas cluster into two groups by virtue of their surface markings,

2. In each group the members are idemtical to one another,
We describe a cypical member and note the members.

g@

ypical member

<_* _

'i

Ky

tihh:d/-" @

abuph=R

abuda~L

G @
— membar

P
J Py




An asbiguous Liguce:

PL = B are pie-slices,

ritbed YW or

striped ? ATeAS

L1-B are the shared lines
separating these areas
Rl and R2 are arcs
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But what are we to do with linss 1-87

Consider L1 and tha areas directly separated by it VIZ Pl or P2.
We could see L1 as belonging either to Pl, or te P2, or to both, [Let
us follow through the consequences of each cheice.

(1) Suppose we choose to assign LZ as the boundary of P1.  This leads us
to expect L8 to form tha other boundary of Pl which then achieves the status
of a closed figure.

BULE:t Try to group lines into closed figure.
Thus, P2 and P8 becoma bﬂk.‘nﬁlﬂ, If PL is to remain a typical membher of
our group 1, then we are led to postulate boundaries for all the other members
of the group in the same way; the group now consists of & pie slices joined
at the centra. Group 2 comsists of &4 bits of background and we are likely
te see them as onme area patchily occluded by the cross of closed figures by
noticing that the arcs in these areas form matching sets of T-junctions with

the figure boundarias:=

Again we Eorm "conceptual" closures as we did in the earlier rectangle
display and see the arcs as passing under the figure to complete the circles,

Our description mow looks like thias:=

in=front-of
groupl
mbars
typical
memhar
isqche
9 targat~faced
background
d=at=centre



{2) GSuppose we choosa to sssign L1 to Fl.

Applying our closure rule, we get L2 belonging to P2 as well, to form
a closed figure. The consequance of this spreads through the display,
this time turning all group 2 areas into closed figures joined at the cemtre
to form & cross. Now we hallucinate radial spikes behind the figure
The description follows the previous pattern.

(3) 1If we try to assign L1 to both Pl and P2, we run into difficulties
What is involved is conceptually splitting each line, and inhibiting the
T-junction effect, in order to see a flat surface of alternately ribbed and

striped figures. We just don't seem to do this very readily.

Yore examples of how context influences the structural descriptions
being constructed are given in the figures oa P V.19,

In Summar
We have explored; im a tentative way, some of the methods we as human
observers use to group lines into shapes into coherent structures. Crouping

imposes an organisation on the figure, structures it inte a meaningful whole

Points to notice

1. Small local changes in the display can produce large global effects

g.g. by influencing the choice of grouping rule. We saw how lines changed
their allegiance i.e. what they are sean as belonging to, by virtue of changes
glsewhere in the picture,

2. Grouping elements into larger units is part of an “"effort after meaning”

in which stored experience plays an important role.

3. We can systematically debug the rules we think we are using by spelling Ches
out and then trying them out on a new display. It is very likely that you can
find more bugs in the above account. That is good. It is a virtus of thae
methodology we are using to gradually refine our recipes by exposing them to
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| Pew cases. The best way to find bugs which elude the kind of hand-testing
we have been doing is to program up the rules and run the program on a set
of examples.

Choosing good examples is an important part of the story.
We take this up next time.
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Fiyure 1 3

TASK: Try and find Fig (a) in Fig (b) in each casa. |

(After K. Gottschaldt (1926); iu Experiments in Visual Perception,
. e aaE Ed M.D. Vernen. Penguir)

3 OEE T
© s i
Waprodused Wieed Skl ub Wieed Pepeoduned
st fgur list 3 fimitm
Cartaing i [/ * Diisensed in E
= awindow i" l-l'-:h**

2o ot S s 5

Fig. G. Ambigucean Berures, {Afer L, Carmichaed of of. in Foos, of
Expermiendad Pyyehslagy, vwol. 15 p. Eo)

Subjects were shown the series of stimlus figures shown in the central
columm, cach of which could represent two things. As each figﬂrudwuu
ghown, nares from list 1 were read out to one groupj al ternative
napes for each figure from list 2 were read out to amother group.

The two groups were then asked to draw what thay had secn as accurately
as possible.
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STRUCTURAL DESCRIPTION 3

p 2D drawings of planar solids: first wisic.

The taree faces of & cube meet at a trihedral vertex. 1In a 20 drawing of
a cube, the three edges forming such a vertex are represented by the junction

of lines, forming eitheri~- Jl

J
a. a FORK junction: J7 6 2

b. an ARROW junetiont J2 J# ‘Ji

(one of three angles at junction » 180%)

. ELL ti O S R |
or < an jmm'lﬂ-i

The number of visible faces at each vertex decides what the junction will
look like:

3 visible faces =) a FORK junctionm in the picture.
2 visible faces => an ARROW junction in the picture.
1 visible face =>an ELL junction in the picture.

Going the other way, given a 2D representation of a collection of planar
ide, we cén decide which regions belong to which solids, using RULES e.g
a. The FORK rule links all three regions surrounding a jumction.



b. The ARROW rule links two of the regions contributing to the junction.

z

To segment an arch inte its component parts, plant links vherever

For sxample:~-

R2 R34 "J,,.-

Rg [R5 | [R6 | Ry

-{1 i

an arrow or a fork occurs. The regions can be grouped on the basis of these |
links inte 3 groupsi= |

A segmentation process using rules like these forms the baszis of a computer
program written by Adolpho Guzman at M.IL.T in 1968. 'I'hi; will be discussad

in detail later in the coursa.

2. LEARN STRUC TU DESCRIPTIONS

We explore the problem of learning, using and extending the ideas of
building and manipulating descriptioms, which we have developed so far. We
will follow through a process of description refinement in response to a judiciously
selected training sequence. This is a simple minded version of a well know program
written by Pat Winstom at M,I1.T. and figure 1 A=D shows the sequence of exhibits

he used to "teach” the concept of an ARCH.
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ARCH

FIGURE 1-A
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1. |[Preliminary account
The world consists of children's building blocks, brick-shaped or

wedge=-shaped, ocut of which the arches {(and other simple structures) are buile,

The idea is to set up an INITIAL DESCRIPTION of the firset, good example
of the concept, and then to gradually debug this description in the light of
subsequent exhibits. The point of the exercise is to show the value of
exhibiting something which is nearly an example but just fails to be so because
of the presence or absence of only a few features - the NEAR-MISS.

The process rests on comparing descriptions, a technique we used in the
analogy problems. We build & deseription, for example, of the NEAR MISS, and
compare it to the one we already have of a good example, The difference
betwean the two tells us precisaly why this new thing didn't make it = it
highlights which of the features in our first (model) descriptiom, are just
not allowed to be misaing. We enrich our description by adding this
information about mandatory features of the concept.

Information comes too from new good examplea = if this new thing ie still
a goodie and yet isn't the same as our standard good example with which we have

compared it, then we need to loosen up our description to cover this new case

2. How we look at tha firat exampla (figure 1A) and build up our
INITIAL DESCRIFTIOR

We see that the arch conaiats of 3 bricks, one lying on and supported by
the other two standing ones. This step is achieved in Winston's program by
l. using the chject=finding program of Guzman mantionsd on PV.11 above

2. wusing algorithms for determining relations like LEFTOF, ABOVE, SUPPORT,
IN-FRONTOF .
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~ Our initial description would look like thisi-

Dl

left of

The node laballed "group" is tha distinguished entry node into the

Hote:

deseription.

3. MNext we build up a descriptien of the second figure,



4, low comes the task of comparing descriptions.

In sach case we have a group of 3 bricks; we can mateh up the lying
bricks (AtD) as each is supported by two other standing bricks. In each case,
one of these standing bricks (BiE) is to the leftof of the othar (CiF).

_&'_l'_ Thare is an extra "abuts" arrow connecting bricks E and F.
We conclude that this is the unvanted feature in D2 which makes it a
non=exampla.

Let us spell out in greater detail how we might perform this comparisen.
The process involves matching the nodes in tha two networks and deciding which
nodes to pair up. We note that any node or arrow may be present in one
description and mot in the other.

a. We start at the entry nodes. In each case ve find a node with 3 arrows
leaving it. Furthermore the arrows have the same labela. Wa decide to pair

up these nodes as a matched pair.

lglt node in D2

b. We then follow any onme of the arrows out of the D1 member of the linked pair,
locates the node it connects to (the daughter node) and examine this node. For
example, suppose we choose the arrow going to Brick A, This node has 3 arcs
leaving it and none coming in (apart from the one we arrived on). We compare
this with each of the nodes one arrow along in D2 to find the ome which is most
similar. Brick E has 3 entering and two exit arrows while Brick F has 4 coming
in and ome leaving. Brick D is the obvious winner since it has the same numba
of arrows as our criteria node, and moreover thess have labels vhich match up
exactly with those of the criteria nodes, so we link these nodes as follows:=



part af u_:

c. Now we repeat step b. for each of the other daughter nodes of "groug
in D1, attempting in each case to find a node in D2 which best matches it.

For Brick B, the comparison looks like thisi=-

ipcoming arrovs outgoing arrovs!
Brick B supported by standing; leftof
Briek E supported by; abuts standing; leftof
Brick F  supported by; leftof; abuts standing

1. Qt What do we need to do to Brick E so that it will exactly mateh Brick B?

At Remove the relations "abuts",

2, Qi What do we need to do to Brick F so that it will exsctly match Brick B?
At Remove the relation "abuts"j
Invert the relation "leftof",
Lonclusion: The change in 1 involves fewer steps than does the changs in 2,

We choose Brick E as the pair to link to Brick B, under the tranaformation
I:'l‘.-ru "ﬂ:uuﬂ

The same transformation converts Brick F into an exact match of Brick C.



5:; How we have located the bug in figure 1B, and can describe it in terms of
the transformation we had to make in order to get a match. Another way of
saying this, is that Remove "abuts" describes the mismatch. The way to
ensure that we get a match in the firet place is not to allow an "abuts" relatiom.

We capture the information gained from analysing this bug by recording eom
our model a "must-not-have" note.

MODEL OF AN

must=not=have = ABUTS

Hotet/



t We have marked the "must-not-have"” note using a crosshatched link,
This is to emphasise its meta-comment nature = to distinguish it from
arrows which will participate directly in the matching.

EXERCISE Repeat the process on figures IC and 1D.
Omit the detail in steps da=c.

(1) Form descriptions of the figure
(2) Find the mismatch by inspection

(3) Updata the modal appropriately



AL2 V.29 24th February 1976

1975/1976 8R4

|
VISUAL PERCEPTION

We are interested in studying machine vision for several hnwﬂ-

1. To increase understanding of human perception {

2. To increase understanding of intelligence - perception
is & rich area in which to study knowledge-based rmnh;.

3. Many connections with other branches of A,I. e.g. perceptual
strategies in game playing.

4, Application possibilities, e.g. the designing of industrial
robots.

Kinds of Tasks

1  Robot perception of real world scenes of simple objects.
= recognition of objects as a task in itself
2.8. first set of Freddy programs recognised spectacles, cups.

= as part of performing actions on such objects.
€.g. assembly tasks, as in current Freddy project; pushing
boxes around, as at 5.R.1.; copying structures from
a collection of spare parts, as at M,I.T.

Il Understanding line drawings
= line drawings as input using digitiser, e.g. Peanuts cartoons.
= low level symbolic description of line drawings as input
= typically drawings representing scenes from btm;tl world,

Genaral Remarks

Much of the work has involved a simplified world of objects with flat
surfaces, We know the world does not consist of only tu:&l objects;
however, this simplification has been a very productive one, leading to
the development of a series of programs, each built as & result of the
experience gained from, and attempting to repair the limitations of, the
previous ones and all contributing to an A.I. theory of perceptionm.

It is convenient to start with a consideration of line drawings
tepresenting scenes of planar objects. We will come back to the
problem of real world input later.




Fig. 1b

linklist: [ [R1 R2I[R2 RIIL[RZ R1ICRT R2ICR& RSICR& RSICRI R2IIR3 R1) )
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INTERPRETATION OF LINE DRAWINGS

We take up the story begun on pp. V.20 and 21, where we introduced some
of the ideas incerporated in Adlopho GUZMAN's program, SEE.

Foints to recall

(a)

(b)

{e)

The task under consideration is the SCEMENTATION task.

When we as observers look at a line drawing, say fig. la, we see
one cube lying on another. We allocate the regions to one or
other of the cubes present. How do we do this? What information
would we need to provide a program in order that it could perform
this task ?

We follow Guzman's program and tackle the problem in two stepsi-
(i) Collect local evidence for linking regions.

(ii) Weigh this evidence and accumulate groups of regioms.

What kind of local evidence can we use !

We exploit the fact that some places in the picture contain more
information than others VIZ. the points at which several lines mest
i.e. the VERTICES or picture JUNCTIONS. As usual, we need some
wocabulary for describing these picture fragments in order to be
able to talk about and use them. To the set of junctions already
mentioned - the FORK, the ARROW and the ELL - we add two more, as
shown in fig. 2, VIZ. the TEE junction and the PSI junctiom.

ELL - no links ARROW = one link

FORK = 3 links TEE = no links

PSI - 2 links

Fig. 2: JUNCTION TYPES and the links they generate.




H;- 2 displays the links generated by these junction types.

(a) We have already considered the FORK rule (p. V.20), which links all
three regions comprising the junction; and the ARROW rule (p. V.21),
which links the pair of regions which flank the shaft of the arrow.

(b) An ELL junction contributes no links.

(c) The links generated by a PSI junction reflect its origin; that
is to say, it is really an ARROW sitting on a FORK.

(d) A TEE provides powerful evidence for not linking the regions on
opposite sides of its crossbar.

e.g. in fig. 3, the circled TEE junction is evidence that
Rl and R4 belong to different objects.

Pr tions

Suppose we input the picture description as a list of junctions where each
junction is specified by its name; the list of lines which form it; and
the list of regions which meet at this point, given as the region nama
alternating with the size of the angle it contributes to the junction.

For fig. la, such a junctionlist would take the form:-

[ [J7 CLT L2 L5] [R1 40 R2 7O R& 2501 )
42 (L1 L3 aes

o E

(410 (LS L6 L14) [R2 110 R4 70 R6 18011 1,

To CLASSIFY a junction, we need to know:-

(a) How many lines meet at that junction, and

(b) whether any of its regions contribute more than two of the quadrants
around that junctiom ?

We can now write & procedure for each junction type which embodies its
behaviour i.e. which knows how to recognise an instance of itself, and
how to generate its characteristic links. Consider an ARROW procedure
taking as input & junction specification in the form indicated sbove.

TO ARROW 'JUNCTION
Step 1 answers the question: Ias this an arrow?
{a) find the number of lines which comprise it.
if mot = 3 then result false and stop.
(b) find a region which contributes a greater-than-180°







‘angle to the junction.
: if none, then result false and stop.

Step 2 is reached only if :JUNCTION is & bona-fide ARROW.

{c) find the pair of regions around the shaft of the arrow.
{d) add this pair to a global linklist.

EXERCISE
(a) Write a set of such procedures, one for each junction type.
(b} Using these, write & program to generate the linklist for fig. la.

Grouping regions using the linklist

The linklist captures all the pieces of local evidence we have accumulated.
We now need rules for weighing thie evidence. A simple rule could be:-

One-link rule: Group all regions which are linked to ome another by
at least one link.

Given a linklist such as that shown in fig. lb, and a global slot for
accumulating all groups of conmnected regions, initially empty, which we
call GROUPLIST, we can write a procedure for grouping regions comtaining
tha following steps:-
TO GROUP 'LINKLIST
Step 1 if :LINEKLIST empty then stop
Step 2 choose a pair from :LINKLIST and set this up as a group
Step 3 find all pairs containing at least one element in common
with this group and form into PAIELIST
Step &4 form the union of all such pairs and add to :GROUPLIST
Step 5 call GROUP recursively with input LINELIST-without-PAIRLIST
end
Applying this procedure to fig. lb, we would produce the GROUPLIST

[ [R1 R2 R3] [R& R51 1] 7 What about Ré

l-!'ininn and nldinl to our rules

1. ADDING a matching TEE rule
Ve need such a rule to segment fig. 3 on p. V.33

Matching TEE rule



‘fule applies when we have a pair of TEE junctions whose shafts are
Ilinear, as in the figure. We link regions on corresponding sides of
‘the shafts. Ve have already met this rule in the PIE-SLICE example on
P- V.16; it enabled us to hallucinate arcs passing behind the pie-slice
in complete the circles. 1In fig. 3, the effect of this rule is to enable
us to "imagine" the part of the low flat object which lies behind and is
OCCLUDED BY the object lying in fromt of it.

2. Two=link rule
ﬁ-—_

When we try our simple one link rule on figs. 4a and 4b we come up with a

single group in each case. Whilst this might do for fig. 4a,

it seems
unsatisfactory for fig.

4b which ought to be seen as two separate bodies.
One way out for this figure would be to require at least 2 links between
regions hefora admitting them into the same group.

3. Inhibi ting link-formation

While this rule would produce a more reasonable solution for fig. &b, it
would not help in fig, 5. 7T¢ is true that this could represent a single
body with the top brick glued on to the bottom one;
mice if our program could separate these two.
introducing the idea of inhibie
That is to say, if we allow the
information it yields,

however, it would be

We can achieve thig by
link formation in certain contexts.

context of a junction to influence the

Thus, if the arm of & fork ends in the barb of an

Arrow, do not place the link across that arm. i.e. the dotted linmk is
inhibited.

This gives the desirdd effact in fig. 5.

Another inhibitory situation arises when one of the
4 junction is known to be background.
between this and other regions,

regions contributing to
In this case we do not place links

®-§. at B in fig, 5, we would only place one link;

At A and B in fig. 4a, we would also only place one link.

Further examples require the addition of more inhibiting rules.
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of GUZMAN's program in its final form

"In the first pass, the pProgram gathers evidence through the
vertex-inspired links that are not inhibited by adjacent
vertices, In the second pass, these links cause binding
Eogether wherever two regions or sets of previously bound
Tégions are comnacted by two or more links. It is a some-
what complex but reasonably talented program which usually
returns the most likely partition of a scene into bodies."

{: B Ii.,- i-]'

This summary is tsken from "The MIT Robot", P.H. Winston (1972) in

Hachine Intelligence 7, Edinburgh University Press.
EROBLENS

The program comes to grief on fig, 7 and fig. 8. Try these.
In fig. 7, we notice that the pProgram cannot SEE holes.

In fig. 8, it cheerfully accepts the impossible DEVIL'S PITCHFORK as
ona Wt

An analysis of these definiencies provides the basis

for the next group
of scene analysis pPrograms.
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INTERPRETATION, SEMANTICS AND MODELS

Consider again the configuratiom in £ig. 5 (p. V.36), which led us to
postulate our first inhibitory rule. The source of the link that caused
the trouble was the FORK at A and the difference between this fork and
the forks in the previous figures is that it occurs at a concavity im the
object, whereas previous forks were at convex corners.
Another way of saying this:-

Whether or not a linkgenerating rule works, depends on the

3D situation represented by the 2D drawing.
That is to say, we need to attend to the 3D feature to which the 2D

fragment corresponds. When we see fig. 1a (p. V.30) as one cube on another,

we are using the following mapping rules from the picture domain into the

scene domain.

lines in the picture correspond to edges of solid objects;
regions in the picture correspond to surfaces meeting at these edges;
and junctions in the picture correspond to corners, where 2 or more edges

meet, i.e. where several surfaces meet.

The CLOWES-HUFFMAN linelabelling technique

As pointed out on p. V.20, when we look at a corneér of a convex object end
on, s0 that all 3 surfaces which meet at that corner are visible, we depict
that corner as a fork in our line drawing. Our fork rule which links all

J regions does so correctly. If we rotate the object (or walk round it)
until just beyond the point where one of the surfaces disappears from view,
a drawing from this point of view will show our same corner as an arrow.
Again the 2 surfaces which remain visible ars just the ones which the arrow
rule links. But we would like to be able to handle concave objects as well,
If we look at the concave edge of an L-shaped solid (labelled "=" in the
figure),

we see that the corner at which it meets 2 convex edges (labelled "+")
is depicted as an ARROW. If we rotate this solid fnti =~clockwise, say)



until the (left hand) surface disappears, that corner is now representced

by an ELL.

One arm of this ELL corresponds to the convex edge at which the remaining
2 visible surfaces meet. But now ome of these surfaces disappears under
the other arm of the ELL; this latter line depicts the edge of the
occluding surface A. We call such an edge an OCCLUDING edge, and label
it with an "+".  The labelling convention requires the occluding surface

to be on the right when facing the direction of the arrow.

S0 our occluding surface is partly hiding one of the original 3 surfaces
we could se¢, and totally hiding another. Notice that all three surfaces
we have been talking about belong to the same body. In scenes containing
several polyhedra, a so-called occluding edge can partially or completely
hide surfaces of bodies other than the one it belongs to. The external

edges of all bodies occlude the background.

There are & possible interpretations of a line

1. The line represents an edge, both of whose contributing

gsurfaces, A and B, are visible.

(8)  convex,  labelled “+" : ’
(b} concave, labelled "=" : =
2. Only one of the contributing surfaces is visible: the arrowhead

labels an edge that belongs to the (occluding) surface on the right

(as you move in the direction of the arrow)

{e) occluding: in-pointing arrow

o ol
B F i

(d) occluding: out-pointing arrow {: 2

(C ig further away and passes under A or B)
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B Btorial Inference

Now label fig. 8 (p. V.38). You will notice that different ends of lines
: B and C have different labels on them. We have contravened a basic
* rule of polyhedral sceme interpretation, VIZ.
A given line (in the picture domain) must have the same
meaning (in the scene domain) all along its length.
Using this single COHERENCE rule the line labelling method (published

independently by Clowes 1971 and Huffman 1971) correctly detects impossible
objects like this devil's pitchfork.

What is the effect of adding all this information ?

Since there are 4 possible interpretations of a single line, there are 4°
possibilities for an ELL and 47 possibilities for each ARROW and each FORK.
If we were to embark upon the task of sutomatically producing all possible
labellings of a given picture, say, a simple cube, by systematically
considering the possible labellings of each junction, the space of
possibilities we would be searching over would be very large. We appear
to have created a combinatorial explosion. The striking fact is that

very few of these are physically possible. These can be visualised using
the following reasoning:-

The 3 planes which meet at a corner divide the space arcund that cormer into
8 octants - some of these octants are Filled with solid material and some
are empty.

one octant filled implies all convex edges contributing te cormer
three octants filled implies 2 convex and one concave edge

five octants filled implies 2 concave and one convex edge

Seven octants filled implies 3 concave edges.

Any corner can be viewed from each unoccupied octant around it and
ALL VIEWS FROM A GIVEN OCTANT GIVE THE SAME CONFIGURATION.

Fig. 9 (p. V.42/43) shows the possible views for each COTNEr type.

This figure gummarises the legal labellings which have a meaning in the
real world,

We have added semantic information to our system, but instead of searching

over the whole space of theoretical possibilities, we need to search only

gver this restricted range of possible corner models.
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Use the table of possible line-labellings to generate all possible
labellings of a cube.

Notice that since the last choice has to mesh with the firse, you will
produce a graph, best represented on line drawings of a cube.

Another loock at GUIZMAN'S program

Now we can look back at the linkgenerating rules. We remarked (and in
this, we use the analysis of Mackwerth 1974) that Guzman's program works
as well as it does because of the implicit assumption sbout convex
bodies. Consider the legal labellings table again and eliminate all
those possibilities which involve concave edges - there is now a unique
labslling for each junction.

In the case of PORKS and ARROWS, if we disallow all lines labelled concave,
we are left with the unique labellings

T

If we look at fig. 9 (p. V.42/43) showing how the various ELL labellings

arise, we see that all but the first imply a hidden
concave adge.

Pr saive constraint satisfaction - the WALTZ effact

A dramatic reduction of the search space can be achieved by a PAIRWISE
ELIMINATION OF POSSIBILITIES. This involves the same rule we have
already used, VIZ that a single line must have the same label along its
entire length. By comparing adjacent pairs of junctions at the start
of the search and satisfying their mutual constraints, we can filter out
many of the possibilities from further considerationm.

‘L-.-—i_ . e
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Whichever of the 3 legal labellings of the ARROW we choose, we will
never have a match with the 2 starred possibilities of the ELL junction.
So under these particular circumstances, these latter two need never be
considered again. By repeating this process of pairwise constraint
satisfaction on each adjacent pair and by allowing the consequences of
each elimination to percolate through the whole figure, a remarkable
reduction in the search space is achieved. To use an analogy, the
more specified your piece of jigsaw puzzle is i.e. noting its colour

and surface markings as well as its contour, the fewer places it is
likely to fit.

An account of the work of WALTZ who first noticed and exploited this
effect is given in "the MIT Robot" (reference p- ¥.37).

hj the effect of pairwise elimination on the cube example used previously.

is yet a further bug in our method, which shows up when we use it on
i8- 10 (p. v.46). This is satisfactorily labelled, i.e. accepted as a

:! figure, because the method canmot dist inguish between different

; of convexity or concavity and makes no requirement sbout surface



« More recent programs have been generated by this bug but

are beyond our present scope. Locating and analysing surfaces

and identifying the solids to which they belong leads us into the next
section.




V.47 4th March 1976
EW/ 6
i

OBJECT IDENTIFICATION AND THE USE OF STORED PROTOTYPES
M

Task:

We have a real world scene of D cbjects and we wish to specify a

~ perceiving system which can say what these objects are. This is the

- IDENTIFICATION task. We restrict the objects to planar solids and

provide a set of PROTOTYPES so that objects are SEEN AS some

Iﬂhmfnmtinn of these models. Such a system embodies the notion of

- the continual perception of familiar shapes under a wide variety of
Eransformations - each model represents an invariant percept,

We base our discussion on a program implemented by ROBERTS in 1963; it

predates the programs already described and does not use junctions or
line-labelling.

To motivate the discussion, we illustrate the kind of answer we expect

OUr system to produce, In the first example, shown in fig. 1 (below), the
2x1 cuboid is SEEN AS A CUBE expanded along the Y-axis.

— the Yoaxts = [ pEnx 5

Pis. 1 2x%x1 cuboid

In the second example, shown in fig. 2 (p. V.48), the COMPOSITE object, an

L-beam, iz SEEN AS a combination of :rm]umtim of two instances of the
CUBE prototype.



,//:ﬁtitld and stuck

on to side of cube 1

I S B o e



In order to find the relation R (see fig. 3 (p. V.4B)) between the MODEL
and the OBJECT, we take an indirect route via a TV camera picture of the
unknown object. We set up the more tractable task of finding a PICTURE
description with which to compare our stored MODEL description and so
derive the relation H. Then we can use R = HxP~' (the inverse
transformation) to selve our problem.

Picture description

Taking & picture of the object corresponds to projecting 3D points in the
object through a focal point on to a 2D picture plane (see fig. & below).
For a given camera and picture size, this transformation is known.

A . \ictwl planc
D

focal point A

The first part of ROBERT's program consists of converting digital intemsity
values of the picture input into a line drawing and finding closed picture
regions. For present purposes, we assume that this (very considerable) task
has been completed. The resultant PICTURE DESCRIPTION consists of:-

(i) set of lines represented by their endpoint coordinates, and
{ii} a set of regions bounded by these lines.

Model description

We use three prototypes as shown in fig. 5 (p. V.50). A MODEL
DESCRIPTION consists of:-

(i) a set of point coordinates representing the cormers of the model, and
(ii) a list of the polygons surrounding each point.



Fig. 5.

Given the three models shown, the set of APPROVED polygons is restricted
to convex polygons of sidea 3, 4 or 6.

Each point on a CUBE model has 3 quadrilaterals around it.

Each point on a WEDGE model has 2 quadrilaterals and 1 triangle
around it,

Each point on an HEXAGONAL PRISM model has ? quadrilaterals
and 1 hexagon around it.

Model-picture matching - i.e. finding the transformation H.

Under ideal conditioms, we need only know what the regions around a
picture point are in order to assign it to the correct model. In
practice, the matching process is complicated by two factors:-

(a) The presence of COMPOSITE objects, e.g. the L-beam in fig. 2 (p. V. 48)
(b) OCCLUSION of one object by ancther as in fig. 6 (below).




V.51

means that regions in the picture may not belong to the set of
POLYCONS. Our task is to find the largest picture fragment

‘which will home in on the right model most rapidly, where "right" means

: ns a matching model fragment. Roberts provides an ordered sequence

4 tests, allowing successively greater departure from the ideal - i.e.
from a picture of non-composite, non-occluded object.

We illustrate by considering a picture of a simple cube, and the collection
of objects depicted in fig. 6 (p. V.50).

Test 1 Find a picture point which is completely surrounded by
approved polygons. A is such a point

{7 picture points
requiraed)

(See also point A in fig. 6 (p. V.50))

Test 2 Find a line which has an approved polygon on either
side of it. e.g. line AB

(6 picture points
requirad)

(See also line BC in fig. 6 (p. V.50)

£ 3 Try for an approved polygon with a line coming from
one of its vertices : ABCD, with line BE.

(5 picture points
required)

(See also DEFG,with line DH, in fig. 6 (p. V.50)



h_i_ Find a point from which 3 lines emerge. e.g. point D.

(4 picture points
required)

(See also point E in fig. 6 (p. V.50).

Selecting a model

The next step is to use the best PICTURE FRAGMENT (this will be the
largest fragment which passes the above tests) as the basis for model
selection. Roberts uses a predetermined order of models i.e. CUBE -
WEDGE - HEXAGOMAL PRISM over which the program searches for a MODEL
FRAGMENT to correspond to the PICTURE FRAGMENT. That is to say, it looks
for a MODEL point surrounded by the same polygon structure as the selected
PICTURE point and constructs a list of matching (i.e. topologically
equivalent) MODEL-PICTURE points pairs.

If the object were identical in shape, size and orientation to the
standard prototype, there would be an exact match (taking into account

the loss of the third dimension) between the picture points projected by
that object and the model points with which they have been paired.

A MISMATCH reflects a transformed model. To get an intuitive feel for
what this could mean, consider the upper surface of a cube as it is tilted
backwards away from the vertical. Two of the angles, starting off as 907,
would bacome increasingly more acute, and the other two more obtuse. The
degree of acuteness (obtuseness) reflects the degree of tile.

ROBERT's program uses standard matrix manipulation to calculate the
combination of transformations (rotation/trans lation/perspective/expansion-
along-an—axis) to account for the mismatch.

Finally, the selected model-plus-transformation is used to generate the
rest of the picture, i.e. to PREDICT all the remaining picture points not
so far involved in the matching., These predicted points are compared with
the actual picture points. Three possibilities arise:-
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A fit means we have found the correct model and the transformatiom H.
If some of the model generated-points fall outside the external
boundary of the picture, this means we have the wrong model and

': weé try another.

{c) If all the generated points fall inside the boundary but do mot
account for all the picture lines, this indicates that we are
dealing with & picture of a composite object. We need to decompose
the object into subparts which can be seen as transformed models.

Decomposition
Oongider the L-beam in fig. 2 and reproduced below in fig. 7.

Finding & "good" picture fragment imvolves trying the four

tests outlined above successively.

There is no picture point surrounded by three approved polygons (Test 1).
Applying Test 2 yields three possible candidates. Line 1, flanked by
regions A and B, would find a matching fragment in the CUBE model,

but when the rest of the picture is generated by this model, some

points fall outside the pieture boundary.

) = used point

rii' ?l
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Line 2, flanked by polygons B and C, is more promising; the
points predicted by the CUBE model which it matches would fall
within the external boundary of the picture. Roberts decomposes

the picture using the following steps:=

1. All model lines and points are added to the picture if
not already there (dotted lines im fig. 7 (p. V.53)).

2. If a model point falls on & picture line, insert the
point (X in fig. 7 (p. V.53)).

3. Each visible model point in the picture which does

not comnnect to any non-model line is marked "used"
(@in fig. 7 (p. V.53)).
4, Delete all used points and their attached lines and

polygons
Carrying out these steps on fig. 7 leaves us with fig. 8.

~,
™
L

Fig. 8.

The remaining picture is matched to the cube model under the

transformation ”a:panninn-in-?-l:il“.
Starting with line 3, flanked by A and D, produces the result showm
in fig. 2 (p. V.48).

NOTES

l. We cbserve that Roberts' first test, VIZ find a point surrounded by
three approved polygons, corresponds to Guzman's FORK heuristic; and
his second test, VIZ. find & line flanked by accepted polygons is just
our old friend the ARROW rule.

2. Roberts' system incorporates & two—way addressing process whereby stimulus

cues ("good" picture fragments) address or invoke internal models, which

in turn suggest (predict) where the rest of the picture will be.

3. Combining the ideas of Roberts with those of Guzman, Clowes & Huffman,

we see the possibility of a hierarchy of semantic models.

Points 2 and 3 will be taken up again in a later lecture.
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. systems developed to analyse real-world scenes have involved producing
 drawing as @ definitive stage in the processing of the scene. Fig. 1 (p. V.56)
miul stages in the process of transforming a TV camera picture into a
eription of the scene. We give a simple-minded version of the second stage
pmn VIZ the detection of discontinuities in the intemsity array, using
. radient operator and thresholding - and then discuss difficulties which

1 .;ﬂi Wih for overcoming these problems.

opeTato

icture of a 3D scene records the light intensity or brightness level (a

oduct of illumination and reflectance of the surface). The brightness intensity
ach small area of the resultant picture is converted via an analogue-to-digital
mvertor into an integer to produce an array of numbers - the "digitised image". A
11 portion of such an array (under near ideal conditions) might look like this:-

{

rows 11 | 1 11| 214 |5 |5 )6

12 Y1 E1 I E]LS JO 1S

13 U (N 1O N B TR A - R

columns A|lB]|C|DI|E |F |G

s interested in finding picture edges of interest, i.e. "significant" local
e h picture brightness. So we examine what is happening in the immediate
bourhood of each point by passing a 3x 3 grid across the whole array, and
the gradient at each point as follows:-

.- =

int D12 is flanked by column E, which sums to 1':} et Al Savamen. = 12

and column C, which sums to

and by row 13, which sums to 12-j
and row 11, which sums to 11

row difference = 1

, there is a lot happening in the row direction and not very much change i
umn direction. In contrast,

yields a column difference of 1
and a Tow difference of 1



STAGE 3

STAGE &

V.56

to produce
take TV camera picture s RS
apply local gradient to produce
operator and thresholding Tty
at every point in image
fit line segments to to produce

edge points and
identify closed regions

compare line drawing

with stored prototypes

= gurfaces: units normal
to face

: length in
real numhers

- corners : 3D coordinates

- edges

to produce

AND
use information about the
camera position and the |
supporting plane of the
scene F,

bri ;l-.tn_-‘nn array

edge point description
- gite of significant

intensity gradients

l.in- d.lnrin: description Cre

= lines : endpoint

coordinates

= regions ! boundary <13
lines and junctions

= jumections : coordinates .

of points (2D) Ty

-

-

=i

IDENTIFIED SOLIDS LOCATED
IN 3-SPACE

o

Fig. 1 Sh:uigg stages in scena analysis

(derived from Falk (L372}).
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pute the gradient as

) r' amount of difference = Jcolum difference’ + row difference’

column difference

the direction of difference = Yow O

as its tangent)

that the edge should be perpendicular to the gradient. Repeating the
ocess for each picture point, we get an array of gradients. Since we are
m interested in small differences, we eliminate these by applying a threshold,
hﬂ:l.ns only the edge points of interest.

Fit ting lins segments

Under ideal conditions, the edge points found in stage 2 should line up nicely.
Unfortunately difficulties arise with actual pictures of real world scenes dus
to mutual illumination, scattering effects at edges, smudges, shadows, object
deformities such as surface chips, surface markings and a whole battery of
inetrument defects. Background noise is high; wvariations within a picture
region can be larger than the step across to the next region. This gives rise
Eo spurious points which are above the thrashold and if we increase the threshold
we risk losing significant points. 1In general it is difficult to find a good
compromise! Consequently a line finder which tries to piece together edge
:;_;dinr.i by tracking at 90" to the gradient direction at each point, i.e. by
"following its nose" in the direction of a putative edge can be misled by wrong
Soc 1 data into going off in the wrong direction: and hampered by missing edge

come these difficulties, several approaches have been used, which include
of the following sort:=

Brightness contrast across edges falls into 3 categories ;=

AR e N _f o

atep roof

S0 use a set of different gradient operators to facilitate
ction of particular edge types (Binford-Horn) .

. At edge points more gleobally to find sets of collinear
ks (0'Gorman-Clowes).
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Find external boundary lines first, since these are more easily found, and
" use typical configurations in the contour to guide search {(Shirsi).

e.g. concavities are good places to start. They could conceal a T=junction,
e.%. at A, so lock for one by looking along the extension of one arm of the
concavity; find the 3rd line at a junction, e.g. B, €, by doing a circuiar
scan; in either case try to find a line parallel to a contour line.

(4) Don't try too hard for a complete line drawing at preprocessing stage and
leave it to high level programs to complete the picture by adding lines.
e.g. Falk provides 3 procedures to do this job, VIZ:=

{i)  JOIN which can complete the face F in (a) by joining the 2
hanging collinear lines L1 and L2

(a)

N

Pl
Ll 12 =

{ii) ADDCOENER which extends dangling lines L1 and L2 in (b) to
complete the corner and so complete the face F.

(b)

(iii) ADDLINE which looks for evidence that a complete line has been
missed and adds a line between P1 and P2 in (e) te split F into

twa .
-

(c) .. Pl
F

T
P2
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he improvements in lime-finding listed above involve using global

+» using progressively more context, using partial resules to suggest

ble pogition and orientation of lines still to be found.

collinearity of edge pointa (2 sbove)
collinear lines already found (ia)

- parallelism (3)

known junction types (3, 4b and ¢)

A KNOWLEDGE OF WHAT 1S BEING LOOKED FOR IS DEPLOYED TO PROVIDE
GOAL-DIRECTED SEARCH.

ERNATIVES TO LINE FINDING

; r'mtﬂlﬂ of looking for discontinuities in the intensity array to find lines
'"i:n the picture, we can look for BEGIONS of similar intensity

e.g. The programs used in the Edinburgh robot project to recognise

- spectacles, cups, etec., mentioned on p. V.29, used REGION FINDING.

‘We can use range-finders te locate surfaces of objects in the scene
@.g. (I} the LINE-STRIPING technique in the curremt FREDDY project
(ii) the use of a laser beam at Stanford, and by vision workers

in Japan.

assumption that producing a line drawing is a necessary stage in the snalysis
£ & scene is open to question. It would seem more profitable to regard line
nnn as an expression of - i.e. as generatable from - an internal description
aich is itself a 3D description. This is not to say that the reverse process

' "t occur - it obviously can. When in fact a line drawing as such is input,

a8 a diagram = or a PEANUTS cartoon - it can be readily seen as representing
‘scene, as indeed is a drawing composed of dots. In & technical drawing,

& circuit diagram, the conventions in terms of which the elements of the

g map into concepts in the domain

——— means resistor

ibe explicitly acquired before the cbserver can mske sense of the drawing.
} eartoon devotees gradually acquire a grest mass of conventionsi-

in a PEANUTS cartoon, "distsnce” means "distance from action™, and there
, 3 positions of importance in the picture:=

- middle ground - where the centre of the action takes place
:i-ﬂ:ruund = for observer status

L . i} Foreground - for emphasis.

gky and Papert (A.l. Memo 252) for a discussion of now children reveal

1 representations in their drawings.
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CONTRIBUTION TO A THEORY OF VISUAL PERCEPTION

J & now draw together themes from previous lectures.

Mrntinm and use of symbolic descriptions

In our consideration of grouping processes, we built up the notion of a hierarchical
description and suggested a role for an intermediate description (page V.12)

"if we had a description of a rectangle stored away, we could imagine
that finding the hook "[" could invoke this description".

We postulated (page V.B) that it was easier to see the picture under consideration
a8 a side-view (of a chair and table) rather than as an aerial view, by noting that

"the familiar arrangement of parts triggers concepts that we already have” and
‘that "parts take their names from the wholes they are seen to belong to".

We saw (page V.17) how lines can change their allegiance i.e. what they are seen as
belonging to, by virtue of changes elsewhere in the picture. Small local changes in
the display produced large global effects. Grouping elements into larger units was

part of an "effort after meaning” in which stored experience plays an important role
(page V.17).

In the 4th, 5th and 6th lectures, we considered programs (Guzman, Clowes~Huf fman,
- Roberts) for analysing line drawings. These programs deploy a vocabulary of
i.]lliﬂnl- to refer to significant parts of the picture e,g. arrow, fork junctioms,

i a repertoire of procedures (rules) for manipulating these descriptionms. ' Guzman
showed how junctions provided pieces of evidence for linking the regions of which they
ere part, into whole bodies (page V.32) and how the effect of any one bit of local

F. could be modified by the context in which the junctions occurred, i.e. the
_ ice of a particular neighbouring junction could inhibit link formstion (page V.35).

 the Clowes-Huffman line-labelling approach and Roberts' program introduce the

don of models. In the former, each of Guzman's picture parts has a set of possible

: €.8. there are 4 possible edge models for each line in the picture (page V.40).
g at a point constitute corner models and the number of physically possible

dels for each junction type was seen to be surprisingly small (pages V.42,43).

in a complete line drawing, each line connects two junctions, applying a

rule that a single line must have the same edge model along its entire

saptures the fact that the asgignment of a meaning to each junction must take

jithin the context of its immediate neighbours. Interpretation of a picture

quivalent to searching over the set of possible corner models for each
i in the picture, applying this rule.



In this line-labelling scheme, concave cbjects are handled in the same way as are
‘convex objects. FRoberts' system adopts an alternative possible mechanism, in which
concave cbjects are seen as decomposable into & small set of prototype convex models.
Finding the right model involves the topological matching of the polygon structure around
picture points with the polygon structure around model points. It is point-dominated
and no intermediate models e.g. edges or surfaces, are used. Again the search for a
solution takes the form of a search over possible models. A more powerful, suggestive

way of describing the seeing process is as a two—way address stem whereby stimulus
address (or invoke) internal models (or schemata) and

these models, once invoked, suggest (or predict) what and where the rest of the picture
might be.

We need both the stimulus patterns and bottom—up analysis of the Behaviourists; and
the candidate models (or WHOLES) and top—down hypothesis-generation of the Gestaltists.
By adopting this middle-ground position, we can account for such features of the human
perceptusl system as for example its comstructive gap-filling nature - for models
allow us to hallucinate the missing bits; and the role of mental set in perception in
determining which models are to be considered. In the figure on page V.62 we show a
selection of examples te illustrate this two-way process.

!
1
:
:

Enowledge-driven analysis

Notice (page V.52) that when we had collected our model-picture point pairs, we did not
exXpect an exact match. Instead, we expected to be able to eccount for the mismatch by
one of a given mumber of transformations, i.e. to interpret or make sense of the mis-
match between the incoming perceptual pattern and the stored concept. A crucial
element of stored conceptual structures must consist of knowledge of how to handle luﬂl
mismatches.

In our discussion of the low-level process of line-finding, we showed (page V.59) how
& knowledge of what is being looked for can be deployed to provide a goal-ditected .
 search, The analysis is conducted in terms of assumptions (hypotheses, pnjudinls_la
about what is significant (relevant) and what is noise to be ignored. Notice “““1

V.57) that surface markings are listed among the difficulties to be overcome. An -
alternative possibility would be to exploit their presence, which is exactly what t“
perception psychologist Gibson does in his demonstration of how surface texture can
provide depth information, - as the surface recedes, the markings get closer to
Shadows were regarded as a nuisance by the early vision programs, until Waltz sl
how to use the evidence they provide to cut down the number of possible int#!ﬁﬂl}__
of a picture, as shown in the M.1.T. film EYE OF THE ROBOT. Shadows tell us what
scene looks like from the viewpoint of the light source. '
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is acute angle is SEEN AS a right angle.
Our cube schema has 'right-angled” as
part of its deseription. Recognition
involves projecting a right angle on to
the acute angle .

Our schemata includes the rule:

Things further away appear smaller:
To get the correct size, enlarge
correspondingly.

Converging lines mean "receding into
the distance”. So we project a
larger man on to the stimulus of
the same size.

"We may repard pictures as lying in &
kind of continuum. At one end
there will be drawings, realistic
paintings and photographs that are
representational. ..... At the
other, the fantasy end, will be
inkblots or pictures in the fire
or in clouds .....

For most people plate V will be at the
fantasy end, meaning as little or as
much as an inkblot ..... People
appropriately trained in interpre-
tation of radiographs will recognise
it as a radiograph of part of a
human head ...

from 'Anatomy of Judgement'
M.L.J. Abercrombie.

Figure 1
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vision systems capable of representing different varieties of knowledge,

and allowing these to interact in different ways (in a heterarchical fashion), depending
on on-going partial results, is the challenge currently being tackled by workers in A.l.
wision projects e.g. the FORTRAN CODING SHEET project at Essex University; the "SPOTTY
mﬂ' project and the "pyppgr” project, both at Sussex University. This work is
very much influenced by the seminal paper "A framework for representing knowledge" by
Marvin Minsky.

Action perception
The view of the perceptual process as a constructive, interpretative activity in which
we see the current situation in terms of what we know, is captivated by Clowes' slogan

"We can not SEE, We can only SEE-AS",

Work in this department on Action Perception has involved an extension of these ideas
to a richer domain which includes moving objects. This canm produce a dramatic increase
in the range of concepts which emnter into the interpretative process. Thus moving
objects become participants in event-sequences or actions, in terms of which they
acquire roles such as agent or patient., We become concerned with what caused the
perceived movement and with the attribution of motives to the participants. The
Belgian Psychologist Michotte used simple 2-D "meaningless" shapes such as squares,
circles and triangles moving in relation to one another over a screen; subjects
viewing such displays receive impressions of ome object chasing another, pushing one
another, fleeing from another, and so on. Except for isolated instances, these
effects were independent of the particular shape used. These obgervations form an
ideal basis for our task of modelling the perception of moving objects on a computer.

In the classical LAUNCHING experiment, the subject fixates a stationary red square (B)
in centre of a white screen, while from a point 40 mm left of centre, & black square (A}
travels towards B and stops when it reaches it: B then moves off to the right.
Observers see object A bump into object B and give it a push,

What we require in order to produce an “explanation"of, or to give an account of, the
impressions reported by Michotte's subjects is, in the first instance, the development
of a vocabulary of symbols appropriate to various levels of interpretation of the
kinetic displays.
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ry |
Pk

low-level descriptions of position :bar (position Py (time tll
bar (position P, (time tzj
low=level description of change of position : A moves

. intermediate description

in relation to another object ! A approaches B rapidly
in relation to a previous movement : A moves to-and-fro
high-level description of causal sequence : A bumps into B and
pushes it forward

 Depending on the reference point chosen, the description of the movement
of an object, e.g. A moves, can become:

A approaches B
or A movesacross screen

or A withdrawsfrom B

i:lpnrl:lnt issue is how te represent moving objects in the computer in such a way as
> h-“.itltl the generation of descriptions of their movements. We input the Process
"'- uum as successive time slices, or conceptual snapshots, depicted as & frame
fience rather like a strip cartoon, It is as though the observer takes successive
inge of the movement processes and forms descriptions of each, so that the
fference-descriptions between successive frames express the changes which have

d during a particular time-interval. (cf.use of difference-descriptions by

_;_' i.n his ANALOGY program, and by WINSTON in his LEARNING STRUCTURAL DESCRIPTIONS

ments are input to the program in the form of low=level symbolic descriptions
| sequence of snapshots of moving objects. The program is required to build up a
n of what is happening in the form of event-sequences to check relevant

trainte, and so decide which of the act types it knows about corresponds to the
. SEequence.

i will in general be more than one way of pairing picture regions in successive
§ and we need a way of choosing which of the possible pairings corresponds to an
§G OBJECT IN MOTION. For example, in figure 2

]

1 @

@ [

Figure 2
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hich region should we combine with R3; R3 or R4 to which it is nearer? 1f we
choose R4 we are left with the pair R3.R6; but (R3.R5; RA.RE) is better in that

it gives a combined pairing which invelves the least overall change in positiom.

In Weir (1976)* we detail the steps involved in forming descriptions from the
experimental data: e.g. we show how the factors influencing the choice of a reference
point radically affect the intermediate descriptions generated. Since these latter
form the components of ACTION SCHEMATA, this in turn influences which particular action
schema will be evoked. Fig. 3 gives a representation of some of the features of a

PUSHING or LAUNCHING schema, Any component could evoke this schema. Typically, an
instance of [x collideswith y] would be responsible for an active search for the
"withdrawal” of the patieat y. "Suggestions” link similar schemata and facilitate
rapid access.

Anyone who wishes to pursue further the view of perception cutlined above might like
to read the D.A.I. Research Report No. 15 "Using LOGD to catalyse communication in an
autistic child" by Sylvia Weir and Ricky Emanuel.

* "From object perception to persom percepticn: An Artificial Intelligence view".
Proceedings of XXIst Internaticnal Congress of Fsychology, Paris, July, 1976.



V.66

name
I [SUGGEST ION
e sult
% preimpact speed
WITHDRAWS of x <2x
- postimpact speed
of y ¢
CO
HLII";'[:H TRI ING SCHEMAI]
patient
[default value: ¥ x
inanimate]
¥
-
[BUGGEST 10N

@ - if duration of contact >,2 sec.
th-:. try 2 independent movements]

(ie withdrawal noncausal)

Figure 3, Pushing Schema.
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=~ 1: Samuel's Checkers-pla and Hill-c
b
!.'. Introducticn

‘This is the first of two preliminary lectures on the subject of
“learning”. The topic will be dealt with at greater length in the
Spring Term. For the moment, restrict ourselves to issuss directly
related to the problem we've just been discussing, that of playing
draonghts.

8o today we'rs not going to discuss basic questions like "what do
we mean by learning?” or "How do we get a computer to learn?". We'll
spend scme time on that in the next lecture, but for the present, without
going into it more deeply, just say that the program we're going to dis-

cuss is a J.urni_ng Program because with experisnce, it improves it's

standard of EL‘I'
2. of the am

Recall; a game-playing program works by minimaxing back up a game
Lree, using an evaluation function on the Terminal nodes which congists
of a weighted-sum-of-features score. Typical features are: piece ratio,
centre control, threat of fork, denial of occupancy, etc,:

* *
E'"l’l+'2 -2*'-------""“‘

Want to look at this evaluation function in a rather different way then
have done so far. Motice firstly that there are two different ways that
mmu.m-mmhunuitvﬂuulmpdmm-:
(a)] HNodes at the limits of the gearch get a value by calculating
the evaluation functicn,
(b) Other nodes get their values by minimaxing the values from (a).

Evaluation score - gstatic, featural analysis.

Backed-up valua = dynamic, exploratory analysis.

Notice secondly that the only reason we need an evaluation function
At all is because we can't afford to search the whole tree. If we could

ssarch the whole thing, we would ba able to assign nodes thelr true value
of +1 (win), O (draw), or -1 (lose). But in fact we have to teminate

\ the search somewhere, and at these points we have to make do with an
‘Approximation to the true value.

In other words, the evaluation score is a second-rate substitute for
& full exploratory search. It is intended to tall us approximately what
- W& would find, if we wers able to carry out the full search that in fact
can't.




Generalisation learning
The guestion pow is this= in the "weighted sum of features score”,
where do the weights come from? What should they be? And the proposed
answer is that the program should learn the appropriate weights by expari=-
ence - it should continually be adjusting its weights to improve its
standard of play. {1t also chooses an appropriate set of features -
more on this below.)
The idea im for the progras to play for a bit, and see how well it
is doing. 1t must then somehow incréase the weights of the faatures
that are helping to make the right decisions, and decrease the others.
How often should it do this? If it does it ocnly once per game,
the rates of learning is far too slow, and one is extracting far too little
information from all the sctivity involved in playing. For example, even
if the program lost a game, it may have been because of just one mistake:

most of its decisions may still have baen right. Or conversely, if the
program won, does LIt mean that all its decisions were equally responsible
for the success? (What we are discussing here is an aspect of what is
known as the credit assignment problem.}

o we do the updating after each move. This is sufficiently freguent,
but there is a difficulty. On what basis can the program decide "how well
it is doing®? The simple description given above supposes that there 1s a
trainer standing by to cell the program "yes, that was a good move" or "Mo,
you did the wrong thing". Im the absence of such a trainer, how can the
program itself, which is already making the best decisions it can,; also
know how good these decisions are?

The solution comes from the two points we discussed in Section ().
There are two ways of finding the wvalue of a board position, (a) by static
evaluation function, (bl by dynamic search. Since it locks further ahead,
score (b} is lesa dependent on the details of the evaluation function, and

Bo it umhu;ﬂna:rimmtnrmmdm (a) .

To say the same thing & differsnt way: remember that {a) is: regarded
as a prediction of {b) , so that it can serve &8 a substitute for it. The
better the evaluation function, the better that predicticn. If the evalu-
ation functicn were perfect, the two scores wonld be in agreement throughout
the game. So all we have to do to do to see how good the evaluation funct-
ion im, is to see how closely it carresponds to the backed-up score,

So for boards encountered during actual play, compute

4 = (backed-up score of board resulting from chosen move)
- {evaluation scors for current board)
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If 4 i8 4ye, then the evaluation score made an under-estimate, so
the +ye terms in the polynomial should have more weight, and the -va
tarms less weight., If A is -ve, the score was an over-estimate or even
led to the wrong choice of move, so the weights should be altered conversely.

In fact, the program keeps a cumulative average record of the "cor-
relation" between the sign of each term and the sign of A, and this 15 used
to adjust the weights after sach move. The correlation of & given feature
tells us how good a predictor it is, so the better it is, ths more weight
it's given.

Tarm sslaction

The evaluation polyncmial involes only 16 out of a possible 38 features.
The program keeps track of which term has the lowest "correlation”, and if
any term is lowest too often, it is replaced by a new term which initially
has zero weight.

With experience this program becomes highly competent, a "better-than-
average” player with good middle- and end-game play, though the openings
ramain weak and uncomventional.

4. Hill climbing

Occasionally during learning, the program is temporarily unable to
improve its play any further. It is then necessary to give it a big
"kick", by setting to zero the weight of the leading term in the polynomial.

Why does this happan?

Samuel is essentially using the technique of hill climbing to cptimise
the program's performance. This technique is appropriate when for some
reason you are unable to analyse the task in such a way as to deduce the best
weights (s.g. in draughts, nobody knows how to do this). Instead you start
from where the program is and make a long series of small improvements.

Compare this with trying to reach the top of a hill on a foggy night,
without a map. The general idea is to "keep going upwards". One can

(a) £ind the line of steepest slope and take a step along it

(b) try steps in differsnt directions, and choose the best;

atec.

This method suffers from various problems. The one that concerns us
here is the problem of secondary peaks (or local maxima). You may have
reached a peak, but is it the highest one? Cne solution is to try making
random lesaps. To do better, you have to know more about the structure of
the problem. (Another difficulty is that of encountering a "mesa”, a
large area where there is no change whichever way you move, and therefore
no clus to the correct direction.)
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elimbing is a technigue widely used and studied even outside of
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In his 1959 papar, in addition to the "generalissd learning” die-
cussed here, Samuel describes a form of "rote learning” in which

selectad board positions encountered during play are remembered, and used

to increase the effective depth of search, thereby improving the program's

play. See pp. 79-83 in Computers and Thought.
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Learning — 2: Structural Learning and General Comments

L. Digression: "concept identification® experiments

We take a quick lock at a chapter of Experimental Psychology in order
to provide oursslves with certain terminoclogy and ideas. In a "concept
identification" experiment, the subject is presented with a set of cbjects
varying in some systematic way, ®.g. cards with shapes varying in ocutline,
number, size, colour, etc. A "concept" is a subset of the chiects speci-
fied by a simple rule. Different kinds of rules define different kinds of
concepts:

conjunctive - e.g. red and square

disjunctive - e.g. red or sguare

equivalence - e.g. both red and square, or neither.
For a given concept, certain attributes are relevant. E.g. for "red and
square”, colour and shape are relevant attributes, the rest are irrelevant.

Bubject is shown examples one at a time, and told whether or not they
are instances of the concept the experimenter has in mind. The subject's
task is to guess the rule.

A strategy commonly used for lesarning conjunctive concepts is "con-
sarvative focussing”. Here the subject remembers the first positive
instance, and then gradually strips away its irrelevant attributes. We
can see that if a new example differs from the first in several attributes
but is still a positive instance, then those attributes must all be irrele-
vant. Whereas if the new example differs in just one attribute and is a
non-instance (a "near-miss"), then that attribute must be relevant. This
should all socund vaguely familiar.

The field was cpened up by a book by Bruner, Goodnow & Austin in 1956,
Since then more than 1200 similar experiments have been published.

2, Winston's program revisitsd
(a) Consider the process of building a model from a sequence of

positive instances and "near-misses", e.g. HOUSE (see Figure l1). The
formation of the WUST-BE and WUST-NOT-BE links is the detection of the
relevant attributes.

(b) When having to relax a requirement, Winston's program makes an
appropriate generalisation by finding the first superordinate entity that
includes both cases. For example, in case I - C of learning ARCH (see
handout SW/3) ,it finds that both a BRICK and a WEDGE are acceptable as
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cross-members, so generalises them to PRISM,

e.g. OBJECT
/ \\ 1f something holds for
PRISM both CUBE and WEDGE, the
/ \ r s appropriate generalisation
is to PRISM.
WEDGE BRICK
v

(e} Previously learned concepts can be used in new ones.
#.g. ARCH as a component of ARCADE (ses Figure 2).
Such a concept is necessarily hierarchical: ARCADE could not be learned
without first learning ARCH - it would become hopelessly complicated.

{(d) These iterative structures like ARCADE and COLUMN are handled
in the same way as simple structures. The networks have a TYPICAL-MEMBER
link, and a NUMBER-OF-MEMBERS which can be "appropriately generalised" to
be an INTEGER (implicitly, > 2). Sea Figurs 3.

Digcussion

Note the central importance of near misses for the learning. Success-
ful learning is dependent on being given a good training sequence. Viewlng
learning as the building of an internal description gives us a rational basis
for discussing "good teaching®.

But does this go beyond what Bruner, Goodnow & Austin {1956) aid? Com-
pare this view tith Bruner's own work on educaticn (The Process of Learning,
(1960) ; Toward a Theory of Instruction, 1968). -

Limitation comes from the fact that the techniques is essentially "con-
servative focussing™, so it is restricted to learning conjunctive concepts.

e.g. Could it learn the concept "two bricks in the same orientaticn”

{either both lying or both standing)? What about the concept
“"gat"? Or "abuts"? Or “near to"? -

3. Discrimination nets
Consider the ANIMAL program you played with at the beginning of term:
THINKE OF AN ANIMAL
I8 IT A MOUSE? 1no
OH DEAR, I DID NOT GET THAT OHE
WHAT ANIMAL WERE YOU THINKING OF? t pterodactyl
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FIGURE 6-3

FIGURE 6-2

FIGURE 6-4










Lim

PLEASE ASK A QUESTION TO DISTINGUISH BETWEEN A MOUSE AND

A PTERODACTYL : is it prehistoric
WHAT WOULD THE ANSWER BE IN THE CASE OF A PTERODACTYL? : Yyes
THANK YOU, I WILL REMEMBER THAT

THINK OF AN AMIMAL
IS IT PREHISTORIC? : no -
IZE IT A MOUSE? : o
OH DEAR, I DID NOT GET THAT ONME g
WHAT ANIMAL WERE YOU THINKING OF? : whale
PLERSE ASK A QUESTICON TO DISTINGUISH A MOUSE FROM
A WHALE 1 is it encrmous
WHAT WOULD THE ANSWER BE IN THE CASE OF A WHALE? : yes
THANEKE YOU, I WILL REMEMBER THAT

THINK OF AN ANIMAL
I5 IT PREHISTORIC? : yes
IS IT A PTERODACTYL : no
OH DEAR, I DID RHOT GET THAT ONE
WHAT ANIMAL WERE YOU THINKING OFF : dinasaur
PLEASE ASK A QUESTION TO DISTINGUISH A PTERODACTYL FROM
A DINOSAUR : is it spelled funny
WHAT WOULD BE THE ANSWER IN THE CASE OF A DINOSAURY : no
THANE YOU, I WILL REMEMBER THAT

THINK OF AN ANIMAL

IS5 IT PREHISTORIC? 1 -po
IS IT ENORMOUR? : yes
IS IT A WHALE? : yes

I GUESSED IT!!!

How does the program recognise an animal by testing for suitable

features in a sensible way? By making use of a (binary) discrimination tree:
a tree in which the terminal nodes are names of animals, and each pon-terminal

node has

{a) a test
(b) a pointer to its YES-node
(¢} a pointer to its NO-node.
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e.g. in the sequence above, when the program has learned the first
discrimination it builds the structure.

+ -

After adding the second discrimination, this beccmes

PREHISTORIC?

And 8o on.

Exercise 2.1 Draw a sultable discrimination tres to distinguish the objects
CUBE, CYLINDER, PYRAMID, CONE, WEDGE, PRISM, BRICK? What about one for the
objects MAN, GIRL, COW, BOY, WOMAN, BULL?

g Thd EPAM program uses a discrimination tree to simulate the learning

' of "paired associates”, i.e. pairs of nonsense syllables, where the subject
Ltuhnrnthutuhmqimﬂ;:h-hn:tunplr:ﬂl,mdmm. By the
wery nature of the program's learning process it exhibits the phenomena of

: stimulus and response generalisation

retroactive interference

forgetting as a failure of accessing (rather than storage).

s provides a non-probabilistic model of paired-associate learning.

to Winston's program, EPAM is cruder but it does its learning more
¥

2

comments on_learning
e

£ cal vs structural learning.
e.g. height of man vs number of hands.
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Statistical: summarise wide experience in numbers
implicit descripticns (e.g. Samusl's program)

Structural: reflect characteristics of individual cases
explicit descriptions (e.g. Winston, EPAM)
‘significant learning from single instances

(2) Improving an existing program (cf.tuning an engine)

vs

writing a new program (cf. building a bridge)

In the case of improving an existing program, we already have a program
that does the job, and the task is to make it perform beatter. Such programs
usually have two distinct parts, the part that does the job and another part
that fiddles with the first part.

Trivial kinds of change

{1} Adding new procedures, new data: 4is this "learning"?

e.g. LOGO doesn't know how TO LAUGH

But if we “teach" it, then afterwards it does?

#.9. We might have a program that stores titles of bocks and the
names of their authors. But it can't tell us who the author
of Waverley is until it has learned it?

{2) The issue of "store vs racompute"

Essentially a matter of trading off space against time:
should the program remember all the results it produces?
1f we are selactive encugh in what gets remembered, we may get

an improvement of performance (e.g. MEMO functions).

Mo attempt to define "learning"

{1} Iearning as a possible aspect of the answer in the "what is intelligence?™
game, A feeling that a program is not intelligent if it is "merely
programmed” to do some task, but it is “if it learns to do it by itself".

(2) The slipperiness of learning programs when locked at hard. A program
that learns to do task T can usually be thought of as simply doing a
related task T'.

@.g. Bamuel's program learns to play batter checkers, or it cptimises
its performance.
{ef. "the computer just does what its programmer tells it to").
{3) Informal, everyday use of learning as an "explanation® - as an
alternative to "mechanism®?
e.g. How does one ride a bicycle - you m'thta_mmmﬂult,
you have to "learn by experience”.
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#.g. From ©.1920-1950, Experimental Psychology (especially in the
U.58.) was dominated by the "behaviourist™ wiew which saw learning
as the problem of psychology.

The cbjection to doing this: the need to have a sufficient
mechanism to accomplish the task. Look at the device/organism at a
particular moment in time: you can ask valid questions about the
mechanisms it's using, irrespective of how they were acquired,

(BUT ALSO: a desper sense in which this formulation may be valid?)

References

J.5. Bruner, J.J. Geodnow, & G.A. Austin (1956} . A Study of Thinking.
Wilay.

E.A. Feigenbaum (1961). The simulation of verbal learning behaviour,
reprinted in Computers and Thought.

P.H. Winston (1970). Learning structural descriptions from examples.
Ph.D. thesis, A.I. Technical Report 231, M.I.T. (especially

Chapters 5 and 6).
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Learn = 3: Perceptrons

Background

One of the many striking facts about the human brain is that it contains
more than lﬂm neurons, each of which is a sophisticated little computing
device in its own right. In the search for the "mechanisms of intelligence",
many people have tried to confromt this fact, and to ask what kind of organ—
igational principle could enable this vast mass of information-processing units
to exhibit intelligent behaviour. This approach is usually loosely called
"neural net" studies (at least by workers in Artificial Intelligence).

Underlying much of this research is the widespread notion "... of the
brain itself as a rather loosely organised, randomly interconmected natwork of
relatively simple devices". Several key ideas that arose during the 1940%s
and 50°s had an iwportant influence om this line of thought, for instance:

« the basic idea that lots (but lotsl) of simple elements
suitably put together can yield interesting, complex behaviour;

the theoretical demonstration in the mid-1940"s that networks of
simple neuron-like elements can be constructed to compute any

logical function;

. Fesults that were gtarting to appear from neurophysioclogical
studies of the way that information is processed in the visual

systems of various animals;

. proposals from the newly-emerging field of Artificial Intelligence
as to how pattern recognition can be done by using a large number
of independent little decision-making unite, working simultanecusly,

"organised” in a rather unstructured way.

86 far in this course we have examined ways of generating intelligent
iviour by imposing an organisation on a sequential process = that is what
jramming is all about. By contrast, the emphasis in the neural net studies

gely on self-organising systems. The extreme case is the idea of a
with initially random connections that get selectively strengthened or
d by learning.
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At one time these ideas were very popular, and much research — both

experimental and mathematical = was done on devices of this kind. Sometimes

for example that such devices would be able
How=

over-ambitious claims were made,
to play master chess by learning to "recognise” good board situations.
adays it is felt (at least by workers in Artificial Intelligence) that this
approsch has severe limitations. There is a need for greater structuré,
for an appropriate match between the mechanism and the task to be done.

One class of device to emerge from this work has & particularly inter=

gsting history, and we look at it more closely.

2 Ferceptrons

The idea is to have a machine that recognises a class of objects by a
simple combining of the evidence obtained from lots of small experiments
performed independently. Thus the perceptron provides a paradigm for the
{ntuitive notion of simple decision - making carried out by a richly parallel

mechanism,

Presented with an object X, a perceptron computes the values of various
features fi{:}. then combines them in a weighted vote:

Eﬂ‘ifi = "lflwzfzﬂjif"“wnfn

This value is compared to a threshold A, IF E"i.fi » @, we say the perceptron
responds positively. We want it to respond positively if X is an object of a

certain type., and negatively if not.
Eg. if X is-a-circlej
if X is-a-comvex-figure;

if ¥ is-a-single-connected-figure,

> 81

or
< 81




We can imagine some figure projected onto a 2-dimensiomal "retina"
which is "looked at" by a large mumber of little"demons” each computing one
M"Eh f.. The outputs of these demons are then multiplied w!ﬁih: Tespective
weights and added together.

How can this device be used to classify objects? Consider two examples:
& - L

 Example 1. Take the simple case where we want the perceptron to recognise

Just E. particular figure, at a fixed place on the retinas. Perhaps a block
capital litllF X, as shown in the diagram on the previous page.

Let each £; look at just one small spot on the retina, For each f  that
is looking at & spot that should be black if the object is in fact the one we
are interested in, suppose it produces output = @ if its spot is black, and
output = =1 if its spot is white, Por each £, looking at a spot that should
be white for the correct object, suppose it produces output = @ if the spot
‘is white and =1 if it is black.

Now consider the perceptrom with all weights = 1 and a threshold of -1
ﬂifﬂ = =]

If we show this perceptron our desired object, then all the £, will have value
zero, the whole sum will be zero, and therefore the inequality will be true.
But if the object differs in any way from the intended ome, then at least one

of the fi will have wvalue =1, so the whole sum will be % =1, and the inequality
will be broken.

So this simple perceptron discriminates between our desired figure and
‘all others,

' ample 2, Coneider next a case where we want to recognise not just a single
ct, but a broad class of ocbjects. Suppose we want it to recognise whether
the black area forme a single, convex object.

CONVEX HON-CONVEX RON-CONVEX
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One way of testing for convexity - or even for defining it ! - ia to
consider collections of three collinear points, p, q, r. In a convex figure,
if two points p and r are black, then all points q on the line between them
must also be black. In a non-convex figure, however, there will always be
gome black points p and r which have a white point q between them.

Suppose each Ii looks at three collinear spots. Lf the two outer spots
are black and the middle one is white, let the fi produce output = =1,
Otherwise the output = 0O,

Suppose now there are enough fi'u to "cover”" the whole retina, in some
gense, Again consider the inequality

(E.£.) > =1,

The argument proceeds as before. If the object is convex, then all the !i
will be gzero and the inequality will hold true., But if the figure is non-
convex, at least ome of the ti will have value =1, and the inequality will be

broken.

So this perceptron discriminates between convex and non-convex objects.

3. Learning in perceptrons

NWot surprisingly, given the neural-met background to the parceptron
research, much of the interest with perceptrons lies in the question of
whether a perceptron can learn to recognise objects. As with Samuel's
draughts program, learning is a matter of finding an appropriate set of
weights, w;. To get the perceptron to learn to recognise a class C, we
present it with a sequence of examples, some in C and some not. Bach
time, depending on right or wrong, we take appropriate reinforcing or

correcting action.

We can make an intuitive argument for the Form the correction shodld
take, analogous to the argument made in discussing Samuel's program, If
the weighted vote Iw £, is below threshold for a figure belonging to C,
then clearly the weights of the positive terms should be increased, and of
the negative terms decreased. And conversely, if Euifi > 0 for a figure

not im C, then vice versa.

One easy way to think about this is to suppose all the !i have value
either 1 or 0. Then the correction procedure takee the form of adding
{or subtracting) 1 to the weights of all the features which have value 1.
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limited perceptrons can recognise, e.g. a scene consisting only of
.ﬁeun;ln. 1f all £, output zero for any of

02000@eang!

and -1 for anything else, then we can set all wl-l and have

(Ef;(X) > =1) if and only if [scene consists of rectangles,]
But a perceptron cannot recognise e.g. scene consisting of a single dot .

Consider the figures:

QO s O ®
SO ] e .52 g

f!ll-i B c ]

For (A), we need z'ifi <9,
For (B), we need Evifi > @, so some 'i.fi (e.g. vﬁf“] must have increased,

Similarly, for (C), some other wol. (e.g. w a3 33) must have increased.
For (D) we need Iwf, <8, but thh is impossible since both groups
(like E“ and 133} will have increased.

Heither can it recognise whether a figure is connected. Consider

TR o i 5} s sy

A B C 1]
and divide the £, into three groups,

(1) those that can "see" the left hand end of the figure,
{z] " L1} " W 1] riiht— i : L] " i [ .
i - = " neither end. )

Then we can make the same argument as for the single dot. The point
is that we are trying to get the perceptron to make a global judgement - about
connectivity = on the basis of local evidence.
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I tha trouble is that B, which fs connected, looks locally just

1ike A or D, which are disconnected,

[But it is quite easy te write programs for a serial machine,
. e.g. in LOGO, to determine whether a figure is connected, and
they use very little storagel,

Various other interesting figures can't be recognised:

2,8, objects that contain other objects;
2.8, Teéctangle embedded in context;
ete.

Sa Discussion

There is a general moral to be drawn from the analysis. There is mno
point in discussing elaborate schemes for "teaching” a machine to do something
it inherently cannot be made to do. Most of the early proposed schemes lacked
careful analysis of

= their inherent limitations

= the rates of learning
= the sizes of the weights Wi

Consider for example, the inability of the diameter-limired perceptron
to recognise the sceme consisting of a single dot.

Notice, however, that Minsky & Papert's analysis applies only to the very
::_I‘hlut kind of perceptron, called "single layered". Real perceptron
enthusiasts play with far more complicated varieties, called "multi-layered”,
and "cross-coupled”, etc, It is not at all clear whether limitations analogous
é’l} those of Minsky & Papert apply to these more complex perceptroms. (If you
interested, see the careful review of the Perceptrom book by Block).

References !

. Minsky and S. Papert (1969) Perceptrons: An Introduction to Computational |
!!E!!EEE, M.1.T. Press. |
D. Block (1970) A review of "Perceptrons: ......" i

Information and Control, 17, 501-522,




M- 4: Induction

Inductive tasks require detection of a pattern, or regularity, in the
information presented, such as spotting a trend, seeing similarities, finding
odd-man-out, etec.

Examples
A. CGeometric analogy tasks. These were discussed extensively at the
beginning of the course - see handout AB/1.

Letter analogies. Fill in the blanks:
b A N ) | PO oOP B -

Letter grouping. Pick out the one that doesn't belomg:
AABC ACAD ACFH AACC

Number groups. State what is common: |
3% 110 75

Number relations. Pick the one that doesn't belong:
26 3% 412 & 15

Number series. State the rule:
15 18 21 24 217 I

Humber correction. State the onme in error:
12 3 & 5% 7

Seeing trends. What is the trend?:
ANGER BACTERIA CAMEL DEAD EXCITE

¢ Word groups. What ig common?:
MAITM TEST GANG LABEL

Word relatioms. Fill in the blanks:
REAL SEAL MEAT NEAT BORE ===
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PR alEcel
ries completion. Your task is to write the correct letter in

the blank:

(i) cpcpcps
(ii) AAABBBCCCDDX s
(1ii) ATBATAATBATS -

& figs i - ieren

S (dv) - CABMICD'M EFHG T Lirp !
ne s (v}’ ﬁ‘-'n'lr '«‘E"I--Piﬂ'l l‘ﬂ"n't-"ﬁ. pitdons s ilzue Sty ool roevraknd
(vi) Q:LP::qx;f : o s teasfln

(vii) nﬂu;@unﬂu:@uamuna
(viii) MABMBCHMCD NP &
ﬁﬂ‘untusriﬁggu : TR R
(x) ABYABXABWAB Ty T LR S M
(xi) :scnsrn:ru;:u
(xii) urabq;rlnqnn .
(xiii) W XAKYBYZCZADAB= ., - - : )
(xiv) JxkQrekLmsLusti -

(xv) PONONMNMLMLE- -

< i 1
Compared to more "deductive" problems, these tasks have a- uruin‘upmn"-
Finding the solution h a l,muiu "ereative act" and involves going beyond
the evidence given (cf. a scientific theory). The answer is not in the
sequence itself: the problem solver himself has to bring something to the

task.

What defines a right answer? Mathematically -pnk.iu: there are
indefinitely many sequences that begin 1 2 3 & ... "

2. Letter sequences ; .
See problem type K in the examples above, Notice how the problems
vary in difficulty (e.g. as measured by time taken to solve, or the number
of people failing)., Some seem especially difficult: Av), (vii), (ix),
(xv), s (Why?). By and I.irn, -ﬁifn:ut pnp‘.l- tend to agree ihut.
which ones are easier and which ones are h-ll'tltr. {'Ilhjr‘l".l. :

Motice how it is important to find the periodicity of the sequence,
People usually start by doing this.
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m and Kotovsky (1973) created a descriptive language for this class
All that is needed is:

¢ 1des of a repeating pattern, in square brackets [ )
¢« idea of pointers into the alphabet
+ operations of NEXT and BACKWARD NEXT on the pointers

Euge (iv): ABMCDMEFMGHNM.,.,
is: x + AJALPH, [x nx x nx M}

(ix): URTUSTUTT U U...
is: x + R/ALPH, [U x nx T]

(xv): ia:x+?+?!um.lth:hxhwl

8s & K, find that the harder problems have more complex descriptions.
In particular, the sequences that require two pointers impose a bigger memory
load and are almost always harder than the one-pointer sequences (Why?),

(A more detailed analysis, based on thinking~aloud protocols and eye-
movements is given in Kotovsky and Simon {1973}).

3. Induction program

8, & K. wrote various versions of a program to derive the pattern description
from the given sequences. This led to the idea of a "natural” ordering of the
difficulty of the problems, since a "stronger" version of the program (i.e. one
which solved more problems than a "weakar" one) tended to solve all the problems

the weaker one did. Indeed, it would be hard to write a program that solved
the harder problems and failed on the easier ones,

We look at a "rationmal reconstruction” of S, & K.'s program, presented
by Newell (1973). The idea is to start with a broad class of hypotheses (e.g.

"all sequences of peried 3") and then make successive refinements by repeated
comparison with the given sequence,

The trick is to allow for a large number of possibilities by using
variables &a B ¥), but then deducing what the varisbles must be in order to
Benerate the sequence correctly. In comparing the pattern against the
sequence, there are six different situations that cam occur, each of which
leads to an sppropriate action:

‘Case 1t Pattern has a variable @, sequence has a letter which is pointed
to by some pointer x.
Action: replace o by "x",
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Pattern has a variable a, sequences has a letter which is
"next" after some pointer x.

Action: Repldce a by "nx x".

Pattern has a variable a, sequence has & letter L.

A I - i g "
Action: Replace @ by new pointer "y", and add "yeL/ALPH",
Pattern has a pointer x, sequence has the letter puint.ad to
by x.

Action: That's fine, do nothing. .

Case 5: Pattern has a pointer x, sequence has the letter next after x.

Action: Replace "x" by "nx x".
Case 6:  Otherwike fail.

!

Let us see how this works out on problem (viii).
i.e. given: thHﬂ_ﬂHﬂl‘.‘lH...

(1) Guess [o B A}, i.e. a sequence of period 3. (See exercise below)..
Generate: o,.. compared to: M ...
Case 3: o must be pointer x, initialised to M.

(2) Now have: x+M/ALPH, [x B y]
Generate: M f... compared toi M A ...
Case 3: B must be pointer ¥, initialised to A.

{3) ¥Now have: x+M/ALPH, y+A/ALPH, [x y ¥]
Generate: “LT;-- w to: M A B...
Case 2: Y must be "ny ¥".

(4) ' Now have: x+M/ALPH, y-A/ALFH, [x y ny y]
Cenerate: MABMWBCMCD ...
OK: we're there!

Unlike the 5. & R. program, this one does not begin by finding the
periodicity of the sequence. But it has no need to, since the hypotheses
that it has period one (lal) or two((a B1) quickly come to grief.

Exercise. Show this.

4, Discussion

By working 'ui.l:.ﬂ symbolic descriptions of sequences instead of with
the sequences themselves, we have managed to cast the induction problem
into the same form as earlier problems we have looked at. As in the
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ries & Cannibals problem, for example, we have:
« an initial state, e.g. [a B ¥1,

+ which has to be transformed into a goal state,
f.e. a fully-specified pattern which generates the given sequence,

by means of a series of operators, e.g. replace "g" by "nx x".

Notice that in this case, for each kind of difference between the pattern
and the given sequence there is a single kind of change to be made to the

pattern, so we never have to undo a decision we made earlier. This means that
we can use the powerful matching technique instead of the comparatively weaker

tree=-search.

The traditional distinction between "deduction” and "induction" leads to
a certain mystique attached to the latter, I hope to have dispelled some of
this by showing how an "inductive" problem can be solved by the same means as

were used for "deductive" problems,

i.e, (a) use of symbolic descriptions, and
(b} application of operators to reduce the difference between

the current state and the goal stata.

Some interesting questions have to do with the hypotheses, e.g.:where do they
come [rom? Consider:

) oTTFrFrssEN.?

4] sn'rwrr.r';.?

(c) BCDGJOPQRS ...

AEPiuntQpIy v
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Learning - 5: Production systems

‘1. MNeed for & constrained language

In the programs we have looked at so far, the "learning’ has consisted

~of the building up of some data structure distinct from the learning program
itself:

&.8. .+ Winston's descriptive networks
« EPAM discrimination tree
» Samuel's weighted evaluation score
« Simon & Kotovsky letter sequence pattern

However, in order to get a wider range and greater flexibility of
learning, and to write programs that acquire the ability to do something
they couldn't do before, it will clearly be necessary to have programs
that modify and add to their existing program. For example, we might want
to write a robot program which, the first few times it is asked to assemble
‘@ toy car, does so slowly and painfully from first principles; but after a

whila, we would want it to have acquired a new procedure for that particular
task.

Unfortunately, LOGD and other "ordinary" programming languages are not
really suitable for this kind of automatic memipulation. The difficulty
is rather like trying to understand someone else's LOGD program, where all
- the procedures are called just P1,P2,P3, etc., and the arguments and {
wvariables are all called X,Y,Z! In order to modify someone else's program,
you have teo

= know the significance of each of the procedures, arguments,
variables, etc.

= understand the purpose of each line in a procedure

= know enough about the context to be able to make the modificarion
without introducing new bugs

= be able to use the EDITor effecrively to change the old procedure
or define & new one.




L.27

3 “i' eedless to say, it is very hard to automate this process. What we
do instead is to simplify and restrict the programming language drastically,
and to write programs in this more primitive language in a systematic way.
We will suggest a way of doing this by considering how to write LOGO
programs that have the desired properties,

2., Production systems

First suggestion. Suppose we write our program in the form:

TO MYPROGRAM
1 IF <condition 1> THEN <do action 1> AND GO 1
2 IF <condition 2> THEN <do action 2> AND GO 1
2 IF <condition 3> THEN <do actiom 3> AND GO 1

999 1F <condi tion 999> THEN <do action 999> AND 60 1
END

Motice that this is a special kind of program. Its execution takes
place in a sequence of cycles. During each cycle, just one line gets fully
obeyed. LOGO locks at the lines 1.2.3.... in turn, and finds which one
has a true <condition». The <action> on that line is obeyed, and then LOGO
jumpe back to line 1 and the next cyele begins.

This kind of program has some of the properties we want, for we are now
stating explicitly what the conditions are for easch possible action to occur.
However, this is not yet enough, because we have said nothing about what the
conditions and actions are allowed to be. And if we allow arbitrary LOGD
code to be written there, then all the old problems come back. Soi

Second suggestion. Suppose that we have a WORKING MEMORY, called WM, that
is used to hold all the changing information in the system. In other words,
there are to be no other variables, lists, etc. to hold data other than
those in WM. By analogy with the INFERENCE system (see handout RMB/2),

wa can think of WM as a database, and we are saying that all data must be
stored in the database.

We are now in a position to place interesting restrictions on the

conditions and actions. We will say:

{a) All <conditions> comsist of a pattern match against the information
in WM, rather like the IS0 pattern match in the INFERENCE system.
Call this operation MATCHES. Note that this is the only way of
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information from WM: we allow no FIRSTs, BUTFIRSTs, etc.

tions> consist of an addition to, or modification of, the
tion in WM, analogous to ASSERT.

program will lock like:

TO MYPROGRAM
1 IF MATCHES <pattern 1> THEN <dM-action 1> AND GO 1
2 IF MATCHES <patternm 2> THEN ©dM-action 2> AND GO 1
3 IF MATCHES <pattern 3> THEN <WM-action 3> AND GO 1

999 IF MATCHES <pattern 999> THEN M-action 999> AND GO 1
END

This kind of program is usually written in the following notation:

Bule 1 : <pattern 1> =+ <M-action 1>
Bule 2 : <pattern & = <IM-action 2>
Bule 3 : <pattern 3> = <WM-action 3>

Rule 999 : <pattern999> =2 <GIM-action 999>

This is called a production system. The individual rules are called
- preductions or production rules.

:"'. An example: ANIMAL program revisited

_ Bamember the ANIMAL program, which guesses what animal you are thinking

' by asking a series of questions sbout its properties? The disgram below
shows the state of the program after it has learned asbout MDUSE, ELEPHANT,
STORK, DALMATIAN snd LEOPARD:

spotted coat ?

long neck ?

/ +
big?

dangerous 7

can fly ? 7/
& P =
*
/ \ DALMATI AN \
E

PHANT EMU STORK LEOPARD



 On page L.30 is a production system to ﬂm.*.uhlch of these animals
Aﬁtu' have in mind. The notation is similar to that used for the INFERENCE
system. The easiest way to understand how the system works is to watch
it stepping through an example. Suppose we think of EMU, and suppose that
the WM is initially empty.

Cycle 1. The patterns of neither Rule A nor Rule'B match the WM, nor
do Animl, Quesl, or Anim2. But the pattern of Ques2 does match (since
there is no item [ASKED SPOTTED-COAT] in WM), so the system obeys the
actions of Ques2:

{a) It asks: SPOTTED-COAT 7 :

(b) It puts into WM the item [ASKED SPOTTED-COAT)

(c) It attends to the answer: we type in [ANSWER WO1, which
gets automatically ASSERTed,

Cycle 2. This time Ques2 does not match, since there now is an item
[ASKED SPOTTED-COAT) in the WM. The first rule to match is Quesé, so
as in Cycle 1:

(a) It asks: LONG MECK ?
(b) It puts into WM the item [ASKED LONG-NECK)
(e) It attends to, and ASSERTs, our answer: [ANSWER YES).

Cycle 3. This time Rule B matches, since the items [ANSWER YES) and
[ASKED LONG-NECK] are both in WM. So, taking the actions of Rule B,

the system deletes the item [ANSWER YES), and adds the item [PROPERTY
LONG-NECK].

Cycle 4. Quesd is the first rule which matches. As before, it asks
about "CAN-FLY", and gets our [ANSWER NOJ.

Cycle 5. This time Animé is the first rule that matches. Obeying
the action, the system adds to WM the item [GUESS EMU].

Cycle 6. Finally, Rule A can apply, since the item [GUESS EMU] is in
WM. It guesses "EMU!", asks us for the response, and records our typed-
in [RESPONSE RIGHT].
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[GUESS FANIMALIINOT [RESPONSE #RIGHTORWRONGI]
=> [SAY :ANIMAL!I[ATTEND-TO RESPONSE]

[ANSWER YESI[ASKED °PROP]
=> [DELETE [ANSWER YES]] [ASSERT [PROPERTY :PROP]]

[PROPERTY SPOTTED-COAT][PROPERTY DANGEROUS]
=> [ASSERT [GUESS LEOPARDI]

[PROPERTY SPOTTED-COATI[NOT [ASKED DANGEROUS]]
=> [SAY DANGEROUS ?][ASSERT [ASKED DANGEROUS]I[ATTEND~TO ANSWERI

[PROPERTY SPOTTED-COAT] => [ASSERT [GUESS DALMATIAN]]

[NOT [ASKED SPOTTED-COAT))
=> [SAY SPCTTED-COAT 71[ASSERT [ASKED SPOTTED-COAT]] [ATTEND-TO ANSWER)

[PROPERTY LONG-NECK][PROPERTY CAN-FLY) => [ASSERT [GUESS STORK]]

[PROPERTY LONG-NECKIINOT [ASKED CAN-FLY])
=> [SAY CAN-FLY ?1[ASSERT [ASKED CAN-FLY]1[ATTEND-TO ANSWER]

[PROPERTY LONG-NECK] => [ASSERT [GUESS EMUI1]

[NOT [ASKED LONG-MECK]]
=> [SAY LONG-NECK ?][ASSERT [ASKED LONG-NECK]][ATTEND-TO ANSWER]

[PROPERTY BIG] => [ASSERT [GUESS ELEPHANT])

[NOT [ASKED BIG]]

=> [SAY BIG ?J[ASSERT [ASKED BIG]I][ATTEND-TO ANSWER)

=> [ASSERT [GUESS MOUSE]]




(1) Notice how the "facts" that have been learned are of the same kind
as the original "program" - Rule A, Rule B, and perhaps Animé.
Rule Anim3, for example, is just as much part of the present program
as is Rule A, and it is treated in the same way.

(2) Notice how "modular" the production system is. Each rule states a
self-contained part of the knowledge embedded in the total system.
Rule Anim3, for example, states that if the animal ie known to have
a long neck and be able to fly, then STORK should he Buessed.
Similarly, Quesl states that if the animal is known to have a
spotted coat, but it is not yet known whether it is dangerous, then
that should be the next thing to be found cut. If we lock at the
corresponding nodes in the tree, we can see how "reasonable” these
tules are.

(3) Largely because of this modularity, the production system is highly
amenable to automatic learning - which is why we were interested in
it in the first place.

To see how this automatic learning might happen, again it is best
to follow an example. Suppose that we think of OSTRICH instead
of EMU. The answers to all the questions will be the same, so the
system will still guess "EMU! ", but this time we tell it:

[RESPONSE WRONG).  What needs to happen ?

(a) Clearly the system must ask us for a distinguishing
property of the new animal,
i.e. it does an [ATTEND-TO H!-TIHEI.IISHIHE"PRW!RT‘H:
and wve tell ic: [DISTINGUISHING-PROPERTY HEAD-IN-SAND].

(b) The system now has in hand all the information it needs in
order to build the new tules. If it takes all the
[PROPERTY ...Js that it has in WM, these are what specify
the incorrect guess that was made. 1If it adds to these the
distinguishing property we have just given it, them thoge
are all the features relevant to the new animal. S0 the
eystem forms two new rules:

ANIMIZ.5: [PROPERTY LONG-NECK ) [PROPERTY HEAD-IN-SAND] => [ASSERT [GUESS OSTRICHI]

QUES3.5: [PROPERTY LONG-NECK]INOT [ASKED HEAD-IN-SAND]]

=> [SAY HEAD-IN-SAND 7]1[ASSERT [ASKED HEAD-IN-SAND]J[ATTEND-TO ANSWER)




and puts them just before the rule respomsible for the
wrong guess, i.e. between Quesd and Animd.

Actually to implement these steps as part of the original production
system requires only a few extra rules, and one then has a fully=
fledged system capable of learning about new animals. For

details of how this is done, see the paper by Waterman.

In fact, production systems of this kind were originally developed
for the purpose of modelling human problemsolving behaviour. We
will have some more to say about this next time.

ference

D. A. Waterman (1975) Adaptive production systems. Proceedings of
the Fourth IJCAL, pp. 296-303,




L.33

Learning = 6: Schemata

- m”- ion systems as psychological models
I ._ ‘In origin, production systems (PSs) of the kind we looked at last
‘time were developed by Newell & Simon for representing human problem
solving behaviour. The data typically comsist of thinking-aloud
protocols on tasks such as chess and symbolic logic - much the same
#0tt of material as GPS was applied to. PS5s turn out to provide a
convenient and appropriate form to express the models of problem

solving.

A typical later application of Newell & Simon's ideas is illustrated
/by the videotape: the use of P5s to investigate cognitive development
dn children. This work capitalises on the suitability of the PSs for
modelling learning, and the ease of adding new rules.

As a psychological model, the "WM" (see last handout) can be more-or—=
less identified with the psychologist's "Short Term Memory", and the
PS iteelf with "Long Term Memory", i.e. our knowledge, abilities and

memories.

Parallel evocation. Although we described PSs last time as a serial
process, in terms of a special kind of LOGD program which tests the
rules one by one until it finds one whose "<condition>" is satisfied,
there is a psychologically more interesting way of regarding them.
By analogy with the Perceptron, we can think of sach rule as a little
"demon", each on the lock out for ite own <econdition>. As with the
Perceptron, all the demons are active at once. The first one whose
“condition> is satisfied yells loudly, and the system obeys the
corresponding <action>.

Thus we get the prototype for the idea of a system working on a
recognise-act cycle. More on this below. We can think of the

Perceptron—like aspects of the system as "recognising” wvhat to do
pext, while the LOGO-like aspects actually perform the "acts". '
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Schemata

The idea of a schema ag & representation of skill and knowledge:
information about something and about how to do things with it. , Derives
from:

[ §A
{a) Work of Bartlett (1932: Remembering). Schema as the essence of a
story: outline features remembered, plus any unusual characteristics
= but distorted in a normalising direction.

(b) Piager. Two aspects of adaptation:

(i) Assimilation - incorporation of new experience into ullti_ng
structure.

(ii) ﬁ.l!l.‘:mdltiﬁﬂ.. - modification of existing structure (or building
of new structure).

e.§. children's fantasy-play vs imitation.

{c) Wertheimer (1945, 1959: Productive Thinking). Role of naive,.

everyday schemata in understanding formal material, such as geometry
or algebra. Hence an emphasis on difference between "rote learning"
and "real understanding”.

Then in AT:

(d) ' J.D. Becker: a concrete suggestion for learning and use of simple
sthemata, but not a working program.

Schema is:

[kl-bkz-rka -b‘:ej,

Eventc event

i.e. Mif lr.l. then if k! and kl" then kﬁ“. There are weights attached
to lndlclti the confidence of the schema (i.e. the probability of :he
regularftj' holding) and the criteriality of each of its :nupuneuu.

Tlu schema can be used, e.g. to achieve ky» Biven kv
1 1

{e) Hlnuu_-.r. "frames" - already discussed, particularly in Vision.
High-level guidelines, but no program.

PR 1 S E—



does this buy?

h represent knowledge ranging from general to specific. Lots of
specialised schemata in an area where you are "expert”.

B) Place to attach items of information where they are likely to be
found when needed.

Provides the all-important context for perception triggered by a feature.
Model of cognitive skills: what you can do, as well as what you know.

{e) (Again:) Ildea of a cognitive system functioning on a "recognise-act"”
cycle. "Recognition" means the evocation of a schema, "act" means
its use. The "act" part in humans is serial, quite slow, and depends
heavily on symbolic description. The “recognise" part seems parallel
and rapid, and is poorly understood.

4. Discuseion

{a) Statistical and structural learning: the need for both, e.g. to learn
gignificantly from a single example and also to continue improving during

extended practice.

{b) Deeper sense of "learning by experience". Our abilities are structured
in terms of things that are "familiar" to us, and the actions they lead to.
Thus our past experience, captured in schemata, serves to guide our presemt
behaviour.

References

Becker (1973): A model for the encoding of experiential information. 1Im
Schank & Colby (Eds.), Computer Models of Thought and Language, pp. 396=434,

H. Gingburg & S. Opper (1969): Piaget's Theory of Intellectual Develo 4]
| An Introduction. Prentice-Hall.

.. Newell & TiiA. Simon (1972) Human Problem Solving. Prentice-Hall.
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How to use the Computer

Experienced users need only read sections 1,5,6,8,10 and 12,
1. Administrative

The computer terminals are situated on level 2 at the East end of
the Appleton Tower. They are available on weekdays during term time,
from 9.a.m. to l.p.m. and from d.p.m. to J.p.m.

During those hours a demonstrator will be available, whom ¥ou can
see if you need any help. For certain hours during the week the
demonstrator will be someone from the A.I. department and will be
familiar with the LOGO programming language. At other times the
demonstrator will be from the Computer Science department, and though
he will be knowledgeable about EMAS he may not be especially familiar
with LOGO. Thus you may find it helpful to spend your 3 hours ar the

terminal at a time when an Al demonstrator is present. These times
will be :

2, The terminal itaalf

The terminal itself is a kind of electric typewriter made by Olivetti.
The main part of the keyboard is laid out like an ordinary typewriter.
Notice the "shift" key at the left side of the hﬂunﬂ which you must
use to type some of the special characters,

@.,g. SHIFT and 2 results in "

SHIFT and 7 results in '
Hotice also that there is a complete row of numerals across the top of the
keyboard, Be careful to distinguish between the letter 'oh' and the
digit 'zero', between the letter 'ell' and the digit "one' - be sure always
to type the one you really mean.

To the right of the main keyboard are, at the top, a few more typing
keys - notice the [ and ] - and also some blue keys for control actioms.
¥ou will be using the ones marked CR, DEL, CAN, and ESC,

: Still further to the right, there is a box next to the keyboard with
couple of switches controlling the operation of the terminal.
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First turn on the terminal, using the switches mounted on th
to the right of the keyboard: turn the power switch to ON, _
should "bring the machine to life”; then make sure the black
switch is set at FULL DUPLEX,

(b)  Press the space bar. The system should respond by typing out:
HOST:

(c) Type in EMAS followed by the CR key
i.e. HOST: EMAS CR

(the bits you type are underlined)

(d)  The system will respond with
USER:
Type in your user code followed by the CR key
€.g. USER: ECMU13 CR

{e) The system will respond with
PASS:
Now type in your password, again followed by CR. Your password
will not be "echoed", in other words it will not be typed on the
Paper. This is to prevent other people from learning your pass~
word by looking at your listing.
Initially your password is TERM, but there are ways of changing it
if you wish to,

(f) If either the name or the password is invalid, the system types an
appropriate message, and you may then try the whole sequence again,

If correct the system responds (after a while) with a message like
PROCESS STARTED date time
SUBSYSTEM version date
COMMAND :
(the bits in lower case vary of course)
(g) You are mow logged into the EMAS system, and there are a number of
things you can do, which ¥ou may find out about in due course.
For the moment, though, we concentrate on running LOGO = see below.
4. Starting LOGO
(2) When prompted by COMMAND: you simply type AI2LOGO.
COMMAND: AIZ2LOGO
After a pause, LOGD will report itself by:
LOGO-VERSION m.n{date) time
13
and from this point on, you will be communicating with LOGO,
(b) Make a habit of giving as your First instruction:
l: LIBRARY ECMI@2 “AI2




This will load some useful LOGO procedures not normally available,
'¥han you want to end the session, type: -n_;"

& 1: GOODBYE Y
' This returns you to EMAS, so logoff by typing:

COMMAND: STOP

Some information will be printed out, and the terminal will be
disconnected. Remember to switch it off before you leave,
i Summary
: The complete sequence is given below. The conventions used are
the things you type are underlined and bits of the sequence that

between users or with time are in lower case letters.
SWITCH oN

LOGO-VERSION m.n (date) time
l: LIBRARY ‘BoMig2 ‘A1z

)“Eur LOGD session

l: GOODRYE

STOPPED AT LINE n

COMMAND: sSTOP

date time continue connect time page turns

CONSOLE DISCONNECTED date time
SWITCH OFF

charge
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6. Password p

Passworde are to prevent other people stealing your nuts or secrets,

or sabotaging your programs. Imitially everybodys password is set to

be TERM. You can change this to any set of 4 printable characters

other than a comma. To do this log on to EMAS and in responss to

COMMAND z

type PASSWORD (new password, new password)

e.g. COMMAND: PASSWORD (FRED, FRED)

Then inform Dr. Bundy what your new password is. It will be kept confi-

dential. It is necessary for our systems staff to be able to log on as

you, to keep your version of LOGO up to date,

7. Typing in lines

It is important to realise that EMAS (and LOGO) look only at

complete lines of input. So, every line you type in must be terminated

by CR (for Carriage Return). It is impossible for EMAS (or LOGO) to
respond to what you have typed until you have given the CR.

If you make & typing error on & line and motice it before you give

the CR, you can correct it by either of two methods:

1. If you press the DEL key (for DELETE) the system deletes the
most recent character typed in and responds with a \ followed
by that character. Each time you press DEL another character
is deleted and the system responds with the deleted character.
When you start typing normally agsin the system responds with

a nr.nml\ .
8.g- Llﬂﬁt\iﬂﬂ is the same as LOGO
s

G deleted A deleted O typed
2. You can ignore the whole line typed so far, and start over, by
pressing the CAN key (for CANcel). The system responds with
a ¢+ and gives you a nmew line,
e.g. TXIS LOIN IS B Miss AN ¢
THIS LINE 15 A MESS

8. Limitacions on use .
Because computing is expensive there are various limitations cn your
usage, The limitations are the:

(a) Rationing of Muts;

{b) Log-on limit of 22 students;

(e} Availability of terminals
and (d) Withdrawal of Service.

(a) Rationing of Nuts A Nut is a unit of computer power (about 10p




- based on a function of connect time, page turns and cputime. You
have an allowance of 250 nuts per week. When you have excesded
. this you will get a message
USE EXCEEDED
To get your allowance increased apply to Alan Bundy.
Log on limit Only 22 students may be logged on at anv cne time.
During the times when an AI demonstrator is on duty, AI? students
have priority. To claim your priority, approasch the demonstrator.
Conversely, you may be thrown off yourself io a non-priority period.
(e) Availability of consoles In exceptional circumstances you can get
permission from the demonstrator to use a terminal in Alison House,
Forrest Hill or Hope Park Square.,
Withdrawal of Service The computer may be unavailable for a
variety of reasons. For instance, it is broken down or being
maintained. You will get the message.
HO USER SERVICE
Inform the demonstrator and get him to ask when the service will be
available again,

9. Mistakes (bugs)

If this is your first programming experience you will be surprized

how many mistakes you make - everybody is! Do not worry about them

because: i

(a) Nothing you can do will damage the computer, and you will need
at least a small hammer to damage the terminal.

(b) Making mistakes is beneficial. It will help you to learn.
People who do not make mistakes are obviously mot stretching
themselves.

(e) If you get in a mess, ask the demonstrator. That is what he
is there for. If he decides there is & fault in the system,
you should send your entire terminal listing for the session,
annotated if necessary, to Rosemary Robinson, Dept. of Artificial
Intelligence, Forrest Hill.

A "bug" is & computing term meaning a mistake in your program.

rrupts

- If you make a mistake and want to interrupt the computer, because

’;é;l_.dui.n' something you do not want it to do, press the ESC button.

¢ computer will respond fairly quickly with the prompt

ENEE L oTed

# type Q (for Quit), this will cause the program to stop what it was

and allow you to start over again. It will respond with the
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If the program was typing to you when you interrupted it, this typing m
m:immtlhurtﬁihdmmh“trpdtlth:!ﬂng. The
reason is that the computer has a, half full, buffer of characters, which
it wants to empty before it responds.
The complete sequence is
interrupt with ESC
=sss+s perhaps more typeout
mr: g R
ssssss perhaps more typecut
1: now contioue.
Some errors will (unfortunately) throw you out of LOGO and back to
EMAS. You will recognise these because the message
HONITOR ENTERED FROM IMP
followed by a lot of meaningless rubbish, will be typed on your terminal.
Interrupt as soon as possible. In answer to the INT: prompt type A
(for Abort).’ EMAS will respond with:

w i

COMMAND ¢
You must now type ALZLOGO to re-emter LOGO.
11. Terminal Eisving

ﬁnptmﬁmﬁthtmmitiumitth:mtmrmm
is called "listimg". It is solely for your benefit. The computer keeps
its own record. You will normally throw it away except for bits on which
¥ou have

(a) The final record of your program.

(b) The results of the program.

(c) Some particular sequence (e.g. Logging on)
on T that:you want to remember.

(d) The record of an unsolved bug.
Keep your records tidy or you will be swamped. Do not leave the listing
hanging from the terminal - it is a fire hazard!
12, Having Fun

In order to give you the feel of computing, here are some exercises
to try. First logon to LOGO and do LIBRARY BcMig: 4ir2.
1. Solve the "tea ceremony" puzzle. Do LIB “CEREMONY and then CEREMONY.



Ly

Play a game with the computer. Do LIB “GAMEL23 and then GAME123
to play a matchsticks game, You can win if you play correctly!
Can you guess what makes ELL1l like things? Do LIB “ELL1 and then
ELLl to try.
Play "Guess the number". Do LIB “GUESSNUM and then GUESSNUM.
Explain how you think this program works.
Play the "Animal"” game. Do LIB “ANIMAL and then ANIMAL. Teach
the computer zoology.
LOGO objects
LOGO deals with two different kinds of objects: lists
and words.
Lists contain words and other lists as their elements:
[THIS IS [A LIST] (OF [4 ELEMENTS]]]
Words can be numbers or non-numbers. Numbers are written as integers:
- 17 104
and non-numbers outside of lists are written with a prime:
"WORD1 'CAT 'LONGERWORD.
(Words inside lists are written as themselves, as in the example
above) .
M is & procedure which takes in 2 numbers and outputs a third.
Can you guess what the third number is? Test your guess by typing
PRINT(SUM 2 3)
What happens if you omit the word PRINT?
FIRST is a procedure which takes in a list and outputs something.
Can you guess what this is? Experiment by typing
PRINT(FIRST ([THIS IS A LISTI)
How cry
PRINT(FIRST [[THI5S IS A LIST] OF [3 ELEMENTSI])
Were you surprized at the result?
Repeat exercises 6 and 7 with the procedures
DIFF PROD DIV (take 2 numbers)
BUTFIRST LAST COUNT (take 1 list)
Write an essay describing your initial experiences of computing in
LOGO.
You are not expected to do all these exercises. Your tutor may
t some, otherwise do those that appeal to you most.
Good luck.
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Procedires
) Arle 1
Introduction 3

In the LOGO programming language there are two kinds of b':m:
(1) Objects these can be numbers (like 2,13, 105), words {like CAT,
or TRIANGLE2) or lists (like [ON THE MAT] or [ON (THE MATI]).
(2) Procedures these are instructions or recipes which allow us
to manipulate objects
e.g. FRINT &
causes 5 to be printed on the terminal.
Synonyms
Not everybody uses the same notation as us. Objects are sometimes
called datastructures; data or items. Procedures are sometimes called:
programs; functions; routines; operations; commands or predicates.
A process is a procedure which is running.
What is provided?
Humbers must be non-negative; whole numbers. Words can be any
string of letters or digits, containing a letter. Lists are any
sequence of objects (i.e. numbers, words or sublists) separated by Spaces
and surrounded by brackets. Lists can be as nested as you like.
e.g. [THIS (IS5 [AJ]. [[VERY NESTED] LISTI]
Quite a lot of procedures are provided by LOGO
e.g. PRINT, FIRST, FIRSTPUT, COUNT, SUM, DIFF, NL, VALUE etc.
A complete list and definitions can be found in the reference manual.
An additional lot of procedures can be obtained by typing
LIBRARY “EoMIgz A1z
when you log on to LOGO. These ares LIB; LIBPAIR; ANDALSO; THAN; OR
and AMONGO.
Exercise 2.1 PRINT, TYPE and SAY are very similar procedures. Find out
how they differ by experimenting at the terminal.
Quotes

i Each procedure has a name, which must be a word. To distinguish

words as objects from procedure names, words intended as objects have a
‘quote sign ¢+ in front of them
e.g. PRINT “HI
'is & procedure name, 1 is an object.
PRINT HI
cause an error, unless HI was the name of & procedure.
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Exceptions to this rule are words in lists, since these could not
possibly be intended as procedure names.
e.g. PRINT [HI THERE] will work alright.
Procedure Calls
We communicate with the computer by typing in procedure calls
€.g. PRINT 4 is a procedure call,
The procedure PRINT prints ome LOGO object (number, word or list) on the
terminal listing. This LOGD object is called its Argument
e.§- 4 is the argument of PRINT in PRINT &.
Some procedures, like 5UM, take 2 arguments. Some,1like GOODBYE, take
none.  Some take 3 or more. The number of arguments a procedure takes
is fixed. Arguments are always LOGO objects.
Sometimes arguments are not given explicitly but are the result of
some other procedure call.
e.g. PRINT sUM 2 3
the arguments of SUM dre 2 and 3.
the argument of PRINT is 5, the result of SUM 2 3,
This nesting of procedure calls can get arbitrarily deep.
e.g. 1l: PRINT FIRST BUTFIRST BUTFIRST [A B C DI
c
The decisions about which procedure calls provide the arguments to which
procedures, are called the calling pattern of the procedure call. In
the above examples the calling patterns are obvious. In some examples
it can be non-obvious
e.g. PRINT SUM COUNT [A B C) FIRST [2 4 5]
When we write a procedure call we can try to make the calling pattern
clearer by putting brackets around sub-procedure calls and using new lines
and indentation for the second and consecutive arguments of a procedure
e.g. PRINT (SUM (COUNT (A B Cl)
(FIRST [2 4 51))
In fact these are not strictly necessary for the computer. Provided:
(a) The procedure name comes first, followed by its arguments.
(b) The computer knmows how many arguments each procedure takes;
(c) The computer can distinguish between procedure names and objects;
it can always fix the calling pattern in a uﬁqun way,
Can you do it?
Exercise 2.2 What will the computer type out if you type in each of the
following commands?
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FRINT FIRST [A B C]
PRINT COUNT FIRST [[(UP DOWN] [NORTH .SOUTH EAST WESTI]
FRINT BUTFIRST FIRST BUTFIRST [I[X]1 [¥ 21 [u v W1}
PRINT SUM COUNT [1 2 3] FIRsST [1 2 3]
PRINT SUM LAST FIRST [[2 11 (4 3]) FIRST
LasT [[3 4] [1 211
PRINT DIFF FIRST BUTFIRST [10 9 B 71 COUNT
BUTFIRST BUTFIRST [1 2 3 4 5 &)
New logon to LOGD and check your answers.
Evaluation

We communicate with the computer by typing procedure calls at the

terminal. EBach procedure call is evaluated by the computer which casses

LOGO procedures to be run on LOGO objects. The evaluation process is as

follows:

1. The computer works along the line from left to right.

2. When it sees an unquoted word it knows this must be a procedure
ngme. The definition of this procedure is recovered from the
computer's memory. It decides how mamy arguments the procedure
takes, and looks further along the lime to find out what these
are. The procedure is then run on these arguments and the
result is stored in memory.

3. When it sees a number, list or quoted word, it knows that these
must be the arguments of some procedure. These LOGO objects

are stored in a special place where the procedure can find them
when it runs.

User Defined Procedures

In LOGO you can define your own procedures and add them to the ones
already provided. For the mechanics of doing this see the handout en-
titled "How to define procedures".
Simple Procedures
Suppose, we have a longish message we often want to have typed out on
the terminal. We can define a procedure to do this.
. Bafs TO HELP

10 PRINT [TO LOGOFF TYPE]

20 PRINT “GOODBYE

3O PRINT [THEX TYPE]

40 PRINT “STOP

END

- The words TO and END mark the beginning and end of the procedure definition.
the firsc line
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T0 HELP
. title line, It consists of TO followed by the procedure name,
HELP. The middle 4 lines are the body of the procedure. Each line starts
with & mmber. When the procedure is called, the lines are executed in
numerical order. If they have buge in, procedures can be edited by in-
serting, changing or deleting lines. A line can be inserted between
lines 20 and 30 by givipg it a number between 20 and 30
€.g. 25 PRINT [WAIT FOR THE PROMPT COMMAND]

Exercise 2.3 Write a procedure called HELLO which will rype out

HELLO

[HOW ARE you)
Procedures with arguments

Procedures like HELP and HELLO always behave in an identical way
each time they are called, We would like to be able to write procedures
like FRINT and SUM which are given as arguments objects which they man-
ipulate. Such procedures behave differently according to the object they
are given. Procedures with arguments are defined in a similar way to
simple procedures except that they involve words (called parameters or
input variables) which stand for the arguments,
e.g. TO PRINTENDS “LIST

10 PRINT FIRST (VALUE “LIST)

20 PRINT LAST (VALUE “LIST)

END
LIST is a parameter in the above example. In the title line we put all
the parameters just after the procedure pame. So LOGO knows how many
parameters there are and what their names are. VALUE “LIST will give
the particular object which is input at any one time. The effect of
typing

FRINTENDS [SUNDAY MONDAY . . ., . . . SATURDAY]
will be that

SUNDAY

SATURDAY
is printed on the terminal.

VALUE LIST gives the list [SUNDAY ...... SATURDAY!
Here is another example

TO PRINTTOTAL “NM1 “Numz

. 10 PRINT (SUM (VALUE “NUM1) (VALUE “NUMZ))
END
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2.4 What would be the effect of typing

(a) PRINTTOTAL 2 3

(b) PRINTTOTAL (SUM 2 3) 1
(b) what are VALUE *NUM2 and VALUE #NUM1?
2.5 Write a procedure which takes a list as argument and prints
 number of elements in it (use COUNT).
esults and Effects
In LOGO there is a sharp distinction between two different aspects
£ a procedure's behaviour, namely its result (or output) and its effect
side-effect). To understand the difference consider the LOGO line
= PRINT FIRST [A B C]
‘The job of FIRST is to take one LOGO object, [A B CJ], and calculate an-
in_ﬂi:t. A . "A" is the resulc of this application of FIRST. It is stored
away in a special place, vhere it is later collected to be the VALUE of
the parameter of PRINT. LOGO procedures always produce exactly one result,
and this must be a LOGO object. Some procedures, like PRINT, are executed
mainly for their effect, which in this case is to cause the terminal to
work and start printing characters. Other effects might be to cause the
computer to read some characters from the teletype or te log you off LOGO
(e.g. GOODBYE). PRINT does produce a result, which is identical to its
imput, but this is very rarely used.

LOGO procedures which are executed mainly for their effect (like
FRINT) we will call commands. LOGO procedures which are executed mainly
for their result (like FIRST), we will call functions.

Bote that the leftmost procedure in a line will usually be a command
and that the rest will be funcrions.

Exercise 2.6 Classify the following procedures into commands and functions:
SAY; LAST; COUNT; SUM; DIFF; NL; VALUE: FIRSTEUT.
Litcle MEN

It is sometimes useful to think of each call of a procedure as a
'_'11I:I:1| man”,

.8 A B €]+ Mr. PIRST

&k
mts to the little man go in through his eyes., Results come from
mouth. Other things he does, like effects, are achieved by other
As. We can use this analogy to visualize what happens when, say,
PRINT (StM 2 3)




Mr. FRINT
Procedures which produce results
So far all the procedures we have defined '(HELP, PRINTENDS ete.) have
been commands. By using the command RESULT we can also define functions.
RESULT takes 1 inmput and stores it in the special place. Por instance,
suppose we wanted to write a procedure to find the second element of a
list, we could write
T0 SECOND “LIST
10 RESULT FIRST BUTFIRST VALUE “L1ST
END
Exercises 2.7 Define a procedure FOURTH for finding the fourth element

of a list,
2.8 Define a procedure 5UM3 which takes 3 numbers and outputs

their sum.
Sub=procedures
We have seen plenty of examples in procedure definitions where one
procedure calls amother
e.g. TO THIRD “LIST
10 OUTPUT FIRST BUTFIRST BUTFIRST VALUE “LIST
ERD
OUTPUT, FIRST, BUTFIRST and VALUE are called sub-procedures of THIRD.
We can use user-defined procedures as sub-procedures.

e.g- 10 OUTPUT SECOND BRUTFIRST VALUE LIST
1

user defined

Variasbles and Assignment

It is often useful to have variables im addition to the parameters.
For instance, as place holders for partial results. Consider the follow-
ing arithmetic procedure , DIFFSQ, for calculating the difference of 2
SquUATEs.
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Vs }I-Iﬂ

T0 DIFFSQ *N1 ‘N2
10 NEW [5 D]
20 MARE ‘s (suM VALOE ‘N1 VALUE “N2)
30 MAKE “D (DIFF VALUE “N1 VALUE “N2)
40 OUTPUT (PROD VALUE ‘S VALUE “D)
END
ine 10 declares that § and D are to be new local-variables within the
Mﬂ DIFFSQ. S and D are very similar to the parameters N1 and N2
MI that they are not ass asgigned VALUE's when the procedure is entered.
‘The VALUES of S and D are assigned (we say 5 and D are bound) in lines 20
and 30 by the command MAKE, MAKE takes 2 arguments, a word and an object
‘and assigns the object to be the VALUE of the word.
e.g. after MAKE “5 3
then PRINT VALUE s
causes 3 to be printed.

Of course we could have written DIFFSQ without using local variables,
but it would have been a little difficult to read, We will soon meet
examples where they are not so easy to dispense with,

The variable declaration (e.g. NEW (NI N21) and the assignment
Statement (e.g. MAKE “N1 @) are not required for parameters {e.g. ML
and N2). They are implicitly made when the procedure is entered,

When the procedure is exited (i.e., when it is finished) the assign-
ments of the parameters and local variables are cancelled, e.g. outside
(of DIFFSQ the VALUES of N1, N2, S and D are undefined. This is important

‘because it allows the same variable name to be used in different procedures
‘which call each other. Consider the procedure THIRD
T0 THIRD “LIST
10 OUTPUT FIRST BUTFIRST BUTFIRST VALUE ‘LIST
END
is vital that the 2 different versions of BUTFIRST have different ideas
t the VALUE's of their parameter (called eay, L.). Consider the
lowing "little man" diagram.

LN MR )

ll.‘. FIRST « BUTFIRST1 BUTFIRST2 Mr. VALUE
thinks thinks
VALUE'L is (B C D] VALUETL is [A B € D]

]
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little man thinks are the VALUE's of his parameters and local
ables is called conceptual cloud

Principle of Reincarnmation Each time we call a procedure

we get a new little man with his own conceptual cloud.
Abbreviations

Some of the LOGO procedure names are a bit longwinded, e.g., BUTFIRST,
FIRSTPUT. We want to minimise typing as much as possible, so each of the
LOGO procedure names has an abbreviation.

e.g. The abbreviation of
FIRST is ¥
BUTFIRST is BF
FIRSTPUT is FPUT
For a complete list see the reference manual.

There is also a facility for creating new sbbreviations of LOGO or
user-defined procedures. The command ABBREV is used., It takes as input
the old procedure name and the new abbreviation.

e.g. Calling ABBREV ’LONGPROCEDURENAME “LEN
will make LPN the abbreviation for LONGPROCEDURENAME

There is a special kind of abbreviation for VALUE. If VALUE is
being called on some quoted word, VALUE is omitted and the quote is re=-
placed by a colon.

e.g. :FRED is an abbreviation for VALUE “FRED
Infix Procedures

Some mathematical function names are usually written between the

parameters rather than in front of them.

8.8, we usually write 2 + 3
rather than SIM 2 3
+ is called an infix function.
Many LOGO functions have an equivalent infix form.

i.e. Funetion Abbreviation Infix Form
s 5iM +
DIFFERENCE DIFF =
PRODUCT FROD *
QUOTIENT QuoTt {
LESSQ LQ 2
LESSEQUALQ LEQ <=
GRTRQ GQ P
GRTREQUALQ GEQ e
EQUALQ EQ =
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Take care when you use infix function, because the calling pattern
be ambiguous.

E.F. FIRST :LISTL = FIRST :LIST2

will be interpreted (parsed) by LOGO as

FIRST (:LIST1 = (FIRST :LIST2))

which will result in an error. When using infix form always use plenty
‘of brackets and this will remove the ambiguity.

e.g. (FIRST :LISTL) = (FIRST :LIST2)

will be parsed correctly.

For similar reasons always put brackets around negative numbers
a.gs (=23)

Exercise 2.9 The following is an uncompleted table of LOGO functions.
Fill in the rest of the table by performing experiments at the terminal.

Name of Number Type of Imput
function of inputs | - Result
Humber| Word | List
FIRST 1 X * v First element of list
BUTFIRST
LAST
BUTLAST
s
DIFF
FROD
QuoT
WORD
EQUALQ
WORDQ
NUMBERQ
| L1sTQ
EMPTYQ
Jomx
le of experiment

;!'u FIRST &7

NMON-LIST ARG FOR LIST FN FIRST - @7
PRINT FIRST WORD

. HOM-LIST ARG FOR LIST FN FIRST - WORD
RINT FIRST (THIS IS A LIST3
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How to define a procedure

The Procedure

To define a procedure

10 design the procedure and write it on paper

20 ctype it into the computer

30 show it

40 pave it

50 test it

60 If procedure works perfectly then stop

70 debug it

BO edit it

90 go back to line 30

End
Designing Procedures

Analyse the problem and break it into parts, then analyse these parts.
Continue this process until all the problems are trivial. You should now
have a tree structured plam

main problem

trivial problems

Always work from the top dowm, You will gradually develop intuitions
about what is trivial at the lower levels and about how to break problems
down.
Write the top level procedure first and its subprocedures next.

The top level procedure can be tested before the subprocedures are
written, by using the CALLUSER facility. For instance,suppose you
needed a subprocedure ISITANENCLISHWORD(], which checked whether words
were in a dictionary. This would obviously be time consuming to write.
However, we can define it as follows:

TO ISITANENGLISHWORDQ * WORD

10 CALLUSER

END
When this procedure is called processing is temporarily halted and you
get a message and the prompt RESULT: . You now type im tha result
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d a procedure which does a similar task to 'oU WanEt | o

use it as a model.

Ksep your procedures short i.e. less than 9 lipes :I;;un;.

Use mneumonies for procedure names and variables. Wm

rwards if necessary.

in the procedure

Logon to LOGO and type the title line of your procedure
e.g. TO SECOND “LIST

this, the "prompt" that LOGO gives you at the beginning of each line

from its usual "1:" to a "&:". This reminds you that you are

. 8 & procedure. If there is a mistake in the format of the title

'H- you will get an error message. Try again.

wwiiss

Each line of the procedure must begin with a line number. Lines
can be typed-in in any order, and will be stored not necessarily in the
order you type them but in the order of their line numbers. If you
forget the line number you will g8t an error message. Try again.

In order to change a line already typed, merely type a new line with
the same line number. To remove a line, say line 30, type

&: DELETE 10

To type in a command that is longer than a single physical line,
towards the end of the first line type @ CR. LOGO will respond with
"C:" and you can then type in the continuation.

When you have finished defining the procedure, type

&: END .
and the prompt will then revert to "1".
' e.g. 1: TO SECOND “LIST

&: 10 RESULT FIRST BUTFIRST :LIST

&:  END

1: PRINT SECOMD [A B C)
B

1z

When you are defining (or editing) procedures the lines you type in

not run, they are merely stored away in the computer's memory for
reference .

Procedures

If you are writing a program you do not want to have to retype all
jour procedures every time you use LOGO. So there is a way to get LOGO
o remember your procedures at one session, so that you can use them
ain at a later session. Procedures can be stored in a "file" by
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, :._ﬂl storing objects in a file drawer. You can have several .
files - one for each program you are writing.
The procedure GETFILE is used for creating a new file or getting
i{d one. It takes as input the name of your file and makes this
the currently active file,
‘ e.g. GETPILE “JIM

The procedure SAVE is used to save procedures on the currently

active file.

e.g. SAVE “SECOND
stores the procedure SECOND om file JIM.

e2.§. SAVE [SECOND PRINTENDS HELF]
stores all three named procedures, r

There is also a useful command
1: SAVENEW

which saves all procedures which have been typed in or EDITed, and not
yet SAVEd.

FORGET can be used to remove procedures from a file:

e.g§. 1: FORGET “PRINTENDS
OR. 1: FORGET [SECOND HELP]
To recover the procedures at a later session, we first GETFILE the
relevant file, and then use LOAD:
e.g. 1: LOAD “SECOND
1: LOAD [PRINTENDS HELP]
or more simply
1: LOADSAVED
which loads all the procedures in the current file.

You can access someone else's file using the command LIBRARY., You
must give LIBRARY the other users code number as well as the name of the
file,

e.g. LIBRARY “ECMIg2 “A12
will lead all the procedures in Alan Bundy's file AIZ,
Showing Procedures
To get a procedure typed on the terminal use the procedure SHOW.
e.g. SHOW 7SECOND will type procedure SECOND
SHOW [SECOND PRINTENDS HELP] will type all 3
SHOWALL - will type all procedures currently loaded
SHOWTITLES will type just the titles
Testing Procedures

If you are an inexperienced programmer your procedures are much more
likely to be wrong than right.

(e
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To test a procedure call it on some of the arguments you ﬂpdn.‘-if'
-receiving in practice. Try a wide range of types of arguments.
ot forget "awkward" cases like: the empty list; especially long lists;
L numbers etec.
You will notice a bug because either the procedure does not produce
?ﬁlﬂlt you expected or you get an error message.
: ing Procedures
There are two types of bug: syntax errors and run—time errors.

errors are ungrammatical LOGO procedure calls. They always result |
in error messages, either when the procedure is typed in, or when it ie
‘i + Run-time errors come from procedures which deo not do what you ex-
cted them to. These can sometimes give error mesgages if they cause
prm-dun to receive an argument it is not equipped to deal with.

If you get an error message, make sure you understand what it means,
and what typical kinde of bug ceuse it. Ask the demonstrator if necessary.
If the error message tells you the line in error examine this line and
- possibly one or two lines before.

. Hake sure you have a listing of the most recent version of the
procedure at fault.

Follow the execution of the procedure through with your finger, playing
"devils advocate".

Execute each line of the procedure inm turn. Does it work as expected.
‘Make sure lines containing infix. procedures are being interpreted properly.
Sometimes the error will leave you in the middle of executing the pro=-
cedure which failed. You will recognise this because the prompt will
change from 1: to 2: , (or 2: t©o 3: etc.). You can now PRINT the
current VALUES of the local variables and parameters. Are they what you
expected? You can cause execution of your own procedures to be suspended
By inserting the command BREAK into them. CONTINUE will cause the pro-
ﬂﬂiﬂ to continue, QUIT will cause it to be abandoned.
s If you want a record of which procedures are called and by whom,
before the error, call the command TRACE on each procedure you want
ded, and then call your procedure
e.g. TRACE [SECOND HELP]
FULLTRACE instead will give the VALUES of parameters on entry, and
t on exit. To stop procedures being TRACEd call UNTRACE on them.
‘mot TRACE too many procedures, or you will be swamped.
To see whether a procedure reaches a certain point edit a PRINT or
AK command into that point.

Por further advice see the reference manual or ask a demonstrator.
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T on that procedure. You will get the prompt &: and will be back in
‘the mode in which you defined the procedure,

e.g. EDIT “SECOND
&: 5 PRINT ‘ENTER
&: 15 PRINT [TOO FAR)
&: END

Type in definitions of HELP, SECOND and PRINTENDS; and chen
try them out.
LIB ‘BUGS will Bet you some procedures with bugs in them,
Can you correct them?
Make sure you understand the procedure FIRSTPUT. Use it to
define a procedure BACKTOFRONT which cutputs a lisc with the
last element moved to the front,

e.8. BACKTOFRONT [A B C D) is[D & B CJ.
Write a procedure QUERY which switches the first two elements
of a list, so that

PRINT QUERY[BILL CAN FIX IT]
gives

[CAN BILL FIX IT].
Hints: What gives the list [FIX IT]? What gives the list
[BILL FIX IT)?
What is QUERY (DOGS LIKE CHEESE]? oOr QUERY [THE CAT CHASED
THE SQUIRREL]? How would you set gbout improving the procedure

QUERY?
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Control Structures

ntroduction
"~ So far all our procedures have consisted of a simple sequence of
- itructions, to be cheyed in order. Sometimes we will wint the order
to ba variable accerding to the circumstances,or we will want some
dinstructions to be repeated several times.,
| tionals :
For instance suppose we wanted to amend the procedure SECOND so
that it produced an error message if its input was not & list, We can
do this with the conditional TIF.....THEN.....ELSE,..., .
i.e.
TO SECOND LIST

10 IF LISTQ :LIST THEN RESULT FIRST BUTFIRST :LIST
ELSE SECERR :LIST

TO SECERR PARA

10 SAY [NON LIST PARAMETER FOR SECOND]
20 PRINT “PABA

END

The general form of the conditional is

IF condition THEN instructionl ELSE instruction2

It is a funny kind of procedure. 1t's name is split into 3 parts,

IF, THEN and ELSE, and distributed between the 3 arguments. The first
argument must return as result either the word TRUE of the word FALSE
Procedures like this are called predicates.

Examples are:

EQUALQ :A :B - tests whether :A and :B are equal

ZEROQ :NUMBER - tests whether the :NUMBER is zero

EMPTYQ :LIST - tests whether the list is empty

LISTQ :THING - tests whether the :THING is a list

WORDQ :THING - tests whether the :THING is a word

NUMBERQ :THING - tests whether the :THING is a number

We will adopt the convention that predicate names, even user defined
'uﬂ in a Q (for Question).
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Normally procedures evaluate all their inputs before they are
themselves. However, when
IF condition THEN instructionl ELSE instructionl
is called only "condition" is evaluated. If "condition" returns TRUE
"instructionl” is evaluated., If "condition" returns FALSE, "instructionZ™
is evaluated, otherwise an error message is called. |
There is a shortened versionm |
IF condition THEN instruction
RESULT not only causes its argument to be stored in the special place
for results, it also causes the current procedure to be exited. 5o an
alternative form for !m would be
T0 SECOND LIST
10 .IF LISTQ :LIST THEN RESULT FIRST BUTFIRST :LIST
20 SECERR
END
Exercises 4.1 Write a version of SECOND which does not check that it's
argument is'a listyr-but-doee;check that it is ac least 2 elements long.
*4.2 Write & versionm of SECOND which performs both checks. |
Linking Procedure Calls Together |
The arguments of IF-THEN-ELSE~ , like the argumentsof any other
procedure, must be a LOGD object or a single procedure call. However,
if a conditional test succeeds we often want to do a sequence of instruct=
ions.
e.g.

IF SUNNY :DAY THEN HANGOUT :WASHING
WEED :FLOWERBEDS

SUNBATH
As it stands this is illegal LOGD syntax. What we need is & way of
linking together the last 3 LOGO procedure calls into ome procedure call.
This is provided by the infix command AND. AND causes the procedure
calls it links to be evaluated simply by having them as arguments, but
it does nothing further to them.
The following is legal LOGO syntax.
IF SUNNY :DAY THEN HANGOUT :WASHING
AND WEED :FLOWERBEDS
AND SUNBATH
Exercise 4.3 Write a version of SECOND which prints out a message
"SECOND CALLED SUCCESSFULLY" whenever it is called successfully.
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Repetition

& Suppose we wanted to repeat an instruction several times. It
_would be tedicus to have to write the instruction several times. Im=
stead we can use the command REFEAT.
2.g-
TO LOVE
10 REPEAT 3 SAY (I LOVE YoU]
ERD
This will print "I LOVE YOU" 3 times.
We can BREFEAT things a variable number of times by having the first
input of REPEAT be a procedure call or variable.
.8
TO MUCHLOVE NUM
10 REPEAT :NUM SAY [1 LOVE YoUl
END
MUCHLOVE 1000 will now print "1 LOVE YOU" 1000 times etc.
‘Exarcises 4.4 Write a procedure, PRIDE, which prints
COMPUTERS NEVER MAKE
MISTAKES
MISTAEKES
MISTAKES

-
B
*
&
"

HMISTAKES

4.5 Write a procedure which prints 1 times

I LOVE YOU

VERY MUCH

Warning You now have the facility to define procedures which may go on
for a long time. I Before running one, make sure you understand how to
interrupt (with ESC) and QUIT. Otherwise it will be very boring for you
waiting for the procedure to finish and you will needlessly use up your
allocation of nuts. There is a facility to prevent this kind of accident
called the EVALIMIT. This will prevent you doing too much processing,
by setting a limit on the depth to which you can have sub-procedures call-
Eflt. each other. EVALIMIT is currently 500. You can increase or de-

g se this with the command SETELIM, which takes 1 argument, the naw limic.
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unning down lists
L We will sometimes want to do something to each member of a list in
turn. Por instance PRINT each member of the 1ist on a new line. The
easiest way to do this is with the command APPLIST.
i.e. 1: APPLIST [SUNDAY MONDAY ........SATURDAY] “PRINT
SUNDAY
HONDAY

SATURDAY

APPLIST applies the command PRINT to each member of the list in
turn. Since PRINT always prints it's arguments and then does a new
line, & mew line is inserted between every member.

The second argument of APPLIST can be the name of any system or
user defined, one argument, procedure (though it is usually a comsand).
Sometimes we do not have the appropriate command already defined, and we
do not need it except for this APPLIST. In this case the definition
can be made implicitly in the second argument to APPLIST. For instance,
suppose we wanted a procedure which printed TRUE for each word in a list
and FALSE for each list or number. It could be done as follows:

1: APPLIST [JOHN 23 MALE] ([PRINT WORDQ EACH]

TRUE

FALSE

TRUE
For each member of the list, [JOHN 23 MALE], EACH finds the VALUE of -
that member, WORDQ works on that VALUE returning as. result TRUE or FALSE
and PRINT prints that result,

[PRINT WORDQ EACH] is an alternative to some procedure name, say
“F00, where FOO is defined by

T0 FOo0 ‘ARG
10 PRINT WORDQ :ARG
END

Corresponding to the command APPLIST there is a function MAPLIST.
This takes a list and a function name and produces as a result the new
list obtained from applying the function to each member of the old list

e.g. 1: PRINT MAPLIST [JOHN 23 MALE] “WORDQ

[TRUE FALSE TRUE]
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As in APPLIST the second argument of MAPLIST can be a procedure
1 in the form of a list.
8.8.
: PRINT MAPLIST [1 2 3] ([siM 1 EACHI
[z 3 4]
tecises 4.6 What would be the effect of typing
| 1: PRINT MAPLIST [1 ©0 3] ZERDQ
1: APPLIST (JOHN 23 MALE] [PRINT NUMBERQ EACH]
1: PRINT MAPLIST [1 2 23] ([PROD 2 EACH]
4.7. Write a functiom, DOUBLELIST, which takes a list of
numbers and returns & list with each member doubled,
‘Conditional Loops

Sometimes we cannot say in advance how often we would like to repeat

8 command, we just want to go on repeating it until some goal has been
achieved (like hitting a nail repeatedly until it has sunk right into the
wood). This facility is provided in LOGO by the constructionm,
' WHILE condition THEN instructionm.
e.E.
WHILE OUT :HATL THEN HIT :HAIL

WHILE combines the ideas of conditiomals and repetition., As in IF-THEN-,
the condition is evaluated. If ic returns TRUE the instruction is eval=-
wated, Then the process is repeated until the condition returns FALSE.
Clearly evaluating the instruction should have some effect upon whatever
the condition is testing or this process will never stop.
We can use the WHILE-THEN- procedure to define a procedure
SUMFROMITON which adds up all the pumbers from 1 to some number N, say.
e.g.

1: PRINT SUMFROMITON 2

3 (i.8., 1#2 )

1: PRINT SUMFROMITON 5
15 (1.8, 1+2+3+4645)

TO SUMFROMITON <N

10 NEW [TALLY TOTAL]

20 MAKE “TALLY 1

30 MAKE “TOTAL 1

40 WHILE NOT EQUALQ :TALLY :N



P.27

THEN MAKE “TALLY SUM :TALLY 1
AND MAKE “TOTAL SUM :TOTAL :TALLY

50 RESULT :TOTAL
END
Wore the use of local variables

{a) to keep & running score (TOTAL)

(b) to count how many times something was done (TALLY)
Note also the use of AND to enable us both to do something and to record

we did it, each time round the loop. It is nearly always necessary to
+ use AND in WHILE loops.
Exercise 4.8, Write a procedure SUMOFLIST which adds up all the numbers
in a list of numbers
2.g.
1: PRINT SUMOFLIST [5 7 3]
15
(a) Using APPLIST
(b) Using WHILE- THEN-
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Becursion

ireaking problems into parts
So far most of the problems we have tackled have been fairly easy. It
s been possible to break the problem down into a short sequence of
uctions,each of which can be written with the LOGO procedures cur-

y available. Sometimes these instructions cannot be written using
‘existing procedures. Then writing these instructions becomes & new
problem and we begin to build up a hierarchical structure of procedures

&.g-

TO SINGSONG

10 SINGVERSEL

20 SINGCHORUS

30 SINGVERSE2

40 SINGCHORUS

etc,

TO SINGVERSEL
10 SAY [RICH GIRL WEARS A ........ ]
m BAY [ml GIRL --.p-.pii----q.u--.l-l--l]

TO SINGCHORUS
10 SAY [DIMAR DIMAH .. .. 3

ete.,
device of "divide and conquer”, the breaking of a problem into
5y is one of the main weapons of program writing. We will be develop=
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it further in our "little man methods".
__‘ﬂ'ﬂ:ﬂ now the break dowm of the task has been strictly hierarchical.

B -ll.l-
main procedure - SINGSONG »ill
sub-procedures - smﬂiﬂm
sub-sub-procedures - : b4 5aY SAY

In fact there is nothing in LOGO to stop one of the sub-procedures
or sub-sub-procedures being the same as the main procedures. When this
happens it is called recursion.

.8,

S5 INGSONG

SINGSONG SINGCHORUS
SINGSONG (Say)

In the rest of this handout we will be exploring this possibility;
seeing how it is possible and when it is useful.

Many of the examples we will be using could also be done using
REPEAT, APPLIST, MAPLIST or WHILE. For expository purposes we will be
ignoring these alternatives in this handout. When designing your own
procedures you should choocse the alternative which reflects the way you
naturally break down the task. Recursion is a very powerful programming
device. It can always replace, REPEAT, APPLIST, MAPLIST and WHILE, but
not vice versa. .

Indefinite Repetition

Using REPEAT we can repeat an instruction a finite number of times,
but suppose we want to go on repeating something indefinitely? We can
do this using recursion.

Consider, if we tell LOGO how to LAUGH:

T0 LAUGH
1 PRINT 'HAHAHA
2¢ PRINT 'HOBOHO
END
If we use this procedure
1: LAUGH
then LOGD will laugh just once
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HAHAHA
HOHOHO
1z

But suppose we want LOGO to laugh again and again and again? We

A

eould cry

=t

but these do not look promising because (a) it's a nuisance to have to
write out all these LAUGHs, and (b) it still doesn't make LOGO Llaugh
indefinitely.

Instead, try this:

TO KEEPLAUGHING

i ®

! 14 LAUGH

p. 2¢0 KEEFPLAUGHING FEEPLAUGHING calls 11‘.@
END

This has the desired effect:
1: KEEPLAUGHING

HAHAHA

HOHOHO

HAHAHA

HOBROHO

_—————

====== (indefinitely)

"litele man" method

. We give two ways of understanding how KEEPLAUGHING works. We'we
1 plified the task from the one large problem given to: a small

b1 we can solve + another large problem. We were asked to produce:
HAHAHA
k HOHOHO
HAHAHA

HOHOHO indefinite number of times

T G et e e e
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‘ackle it by breaking it into two parts:
 HAHAHA

)
HOHOHO )  (A) produce a single laugh
HAHAHA )
HOHOHO )  (B) produce the rest of the laughs
—) (an indefinite number)
=rE——————

But now we can easily write the procedure KEEFLAUGHING, since task
(A) is what LAUGH is designed to do, and task (B) is identical to what
KEEPLAUGHING is meant to do' S0 these become lines 1§ and 20 of the |

procedure,
The second way is to think about the "litrle men" involved. We
have only two kinds of little man here, LAUGH and KEEPLAUGHING, but there

may be many of each kind:
. Mr. LAUCH

Ne. EERFLEDGHING Mr. LAUGH

10 LAUGH Mr. KEEPLAUGHING
20 mrumm\’

Mr. LAUGHING
10 LAUGH /“'
20 KEEPLAUGHING '

10 LAUGH /
20 KEEPLAUGHING
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en we type KEEPLAUGHING we create l.m.l, who in turn creates =
1.m.2 and asks him to "do his thing", then (line 2@) creates
d asks him to "do his thing”. So l.m.3 first creates l.m.b4=—--,

We have here a powerful method of tackling problems involving repeti-
We'll see soon that ic's only half of an even more powerful method,
's say:

{Second Half of) Litcle Man Method

B. Can I break the task I'm given into two (or more)
parts, such that

(i) I can cope with one of the parts myself, and

(ii) I can give the other part(s) to someone else
to deal with?

2“1' sure to understand how this applies to the case of KEEPLAUGHING.

4 Ex, 5.1 Write a procedure, STORY, which prints out the following
-monologue:
' IT WAS A DARK AND STORMY NIGHT
AND THE CAPTAIN SAID TO THE MATE
TELL US A STORY

AND THE MATE BEGAN

IT WAS A DARK AND STORMY NIGHT

R N N N

AR R W R EEEE R EEE R ate.

5.2 Suppose you have procedures SING and DANCE. Define a
ure STHGANDDANCEPOREVER which will SING, then DANCE, then SING,
n DANCE, etc.. Define appropriate procedures for SING and DANCE,
try them out.

1 nle: COUNTUPFROM

Suppose we want to write a procedure which behaves as follows:

1: COUNTUPFROM 18 or 1: COUNTUPFROM 127

18 127
11 128
12 129
13 130

14 1M

— ——
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can start with $

TO COUNTUPFROM #GIVENNUMBER bt salll
Try same method as before. Break up the whole task into two partsi
1: COUNTUPFROM 127 »

123 ). This line produced by PRINT 127

128 )

129 )

20 1
131 ) ——— The rest of the lines produced by |
pems) COUNTUPFROM 128

ey

S0, in terms of the Little Man Method,
(i) the subtask we can do ourselves is to print the given number:

1@ PRINT :GIVENNUMBER I
(ii) the rest of the task is given to someone slse to do:

2@ COUNTUPFROM SUM :GIVENNUMBER 1

i.e. one greater than the given number
So, TO COUNTUPFROM ’GIVENNUMBER
1@ PRINT :GIVENNUMBER

29 COUNTUPFROM SUM :GIVEN NUMEER 1 |
ERD

Notice that each COUNTUPFROM little man has his own conceptual cloud:

:r.tirmm
h 127

dﬂi‘lv

o e
127 -7
i.l 128
dad = :
{GIVENNUMBER
.." R is 129
a

10 PRINT . ann/*

s )

b . o

| — | — — — —i
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ated WARNING Before trying these procedures on LOGO,
rstand about Interrupts.

rminated recursion: COUNTDOWN

Try an example similar to the earlier mmmhﬁﬂ
an important difference: s
1: COUNTDOWN 19 t o

s

B - MW B Wb s B

BLASTOFF

1: SHOW COUNTDOWN

How can we write COUNTDOWN using recursion? Most of it is easy,

analogous to COUNTUPFROM. Applying the (second half of the) Little Man \
Method, we break the task into two parts, and realise that in the call

of COUNTDOWN 1§ above, the "1¢" in the typeout is printed directly by H
the COUNTDOWN little man, whereas the rest, 9 8 7 etc., are printed by

a recursive call on COUNTDOWN 9. This gives us our first approximation: |
TO COUNTDOWN /NUMBER

10 PRINT :NUMBER |
20 COUNTDOWN DIFF :NUMBER 1

END

But when we try this we get

1: COUNTDOWN 3

there is nothing to stop COUNTDOWN comtinuing indefinitely. After
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ro, it will not print BLASTOFF and stop because we have nowhere
E to. It's easy to correct this omission:
TO COUNTDOWN #NUMBER
1@ PRINT :NUMBER
—> 15 IF ZEROQ :NUMBER THEN PRINT “BLASTOFF AND STOP
2P COUNTDOWH DIFF :NUMBER 1
END

This will now work correctly. ZEROQ ie a predicate which tests whether
or mot & number is zero. Make sure you understand the little man
structure of a call on COUNTDOWN. Here is a complete diagram of the
little men for COUNTDOWN 2. This time we have added explicitly a line

to represent each 1.m. saying "done":

L

5 |
Mr. COUNTDOWN
(A)
2 - . |
@ g I
omrr..."ﬂ
15 IF ZEROQ ...
\ Mr. COUNTDOWNM I
(B)
1 =
[
"1"
10 PRINT .77 I
A5 IF ZEROQ ...
“"done"s— 20 COUNTDOWN ... |
l
\\ . |
» COUNTDOWN
iy s [
ql
I




is zero so (line 15) he prints "BLASTOFF" and 5TOFs, i.e. tells
B that he is done. 1.m. B has already executed his last imstruction
2@), 80 he too is done, and so similarly is l.m, A.
ttle Man Mathod
We have just used an application of our very powerful Little Man
od, which looks like this:

Little Man Method
A. Is (are) there any special or simple case(s) that
I can take care of myself?

B. Otherwise, can I break the task into two (or more)
parts, such that

(i) I can cope with one of the parts myself,
and (ii) I can give the other part(s) to someoné elsa?

In the case of COUNTDOWN, the special case (A) is when the number is
. gero, the part the little man can do himself (B(i)) is to print the given
number, and the part (B(ii)) that he gives to someone else is to COUNTDOWH
- one less than the given number.

‘___ It follows that the scructure of a procedure writtem by this method
is somewhat as follows:

1)

1. Test for the special case; if so, take care of
it, and stop.

2. Deal with the part to be handled directly,

3. Ask someone else to deal with the rest.

(Sometimes, as in COUNTDOWN, step 2 may precede step 1).

Another example: LAUGHNTIMES

Try the Little Man Method on another example, Remember the procedure
] How about a procedure LAUGH7TIMES, that will laugh exactly 7 times?
uld have




T0 LAUGH7TIMES
1¢ LADGH

2¢ LAUGH
3@ LAUGH
4 LAUGH
5¢ LAUGH
6@ LAUGH
7@ LAUGH
END
but this doesn't look too good, and is obviously hopeless for LAUGHing
2719 times. It's actually easier to write the more general procedure
that can laugh any number of times, and then tell it how many times we
want.
So let's try writing
TO LAUGHNTIMES “HOWMANY
We could follow the same argument as for COUNTDOWN, so that we first have
8 procedure that laughs indefinitely (cf. KEEPLAUCHING) and then we worry
about how to stop it. Instead, apply the Little Man Msthod and Ery to
get the procedure right directly.
So, is there any special case the 1.m. can take care of himself?
Yes of course, if he is asked to laugh zero times then he simply stops:
10 IF ZEROQ :HOWMANY THEN STOP .
Otherwise, can the 1.m. break the task into two parts such that ... ?
Yes, for example if he is asked to laugh 19 times, he can laugh once himself
and ask someone else to laugh the other 1B times:
TO LAUGHNTIMES fHOWMANY
1§ IF ZEROQ :HOWMANY THEN STOP
——y. 29 LAUGH
—= 3@ LAUGHNTIMES DIFF :HOWMANY 1
END

Simple!
Exercises 5.3 Draw the little men diagram for LAUGHNTIMES 3.
5.4 Write a procedure to sing a simplified version of a well-
known song:
e.g. 1l: SIMPLEMOW 23
23 MEN WENT TO MOW
22 MEN WENT TO MOW
21 MEN WENT TO MOW




- In both COUNTDOWN and LAUGHNTIMES, we have det m -
ting. There is another important class of prwﬁ

ol the recursion by doing something to each item om a lis
) kinds of procedures correspond directly: ":I

For a counting recursion, where we do something ¥ cimes, \

fa) we ask if N is zero, if so we stop; W

(b) we do it once;

{e) someone else does it (N-1) rimes.

For a list recursion, where we do something with each item on a 1ist,
(a) we ask if the list is empty, if so we stop;

(b) we do it with the FIRST item of the list;

(c) someone else does it with the rest (i.e. BUTFIRST) of the list.
“An example: PRINTLIST

] Most of our examples could be done with APPLIST or WHILE, but chis will

not always be possible. In order that we can explore recursion along a
list in some simple cases we will suppress the APPLIST and WHILE solutions,
Let us again try to write the procedure PRINTLIST, which prints each element
of a list on a separate line. Assume we have
TO PRINTLIST “ANYLIST
‘and apply the Little Man Method.
1s there any special case the l.m. can take care of himself? Yes,
"if the list is empty, then he has nothing to do:

18 IF EMPTY( :ANYLIST THEN STOP
Otherwise, can he break the task into two parts =---7 Yes, he him~
' #elf can print the first item
2@ PRINT FIRST :ANYLIST
ask another l.m. to look after the rest of the list:

3@ PRINTLIST BUTFIRST :ANYLIST
S0 we have:

TO PRINTLIST ‘ANYLIST

1¢ IF EMPTYQ :ANYLIST THEN STOP

2@ PRINT FIRST :ANYLIST

3¢ PRINTLIST BUTFIRST :ANYLIST

END
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{ANYLIST is [PEN]

10 IF EMPTYQ ... l
MH L)
30 PRINTLIST %—rﬁ’n]—!
“PENCIL"
IANYLIST is [ ]

10 TF EMPTYQ

20 PRINT ...

30

Alh e s
PRINTLIST
ﬂ!lr
"PEN"

Exegesis of the Little Man Method

Try summarizing our experience with the kind of procedures discussed
above, as a commentary to help in the use of the Hethod:
For counting recursion, we often have:

Special case (A) consists of equality between two numbers
(with zero as a particular instance).

Step B(i) comsists of doing what was asked just once.
Step B(ii) consists of doing what was asked "N-1" times.
For list recursion, we often have:
Special case (A) consists of the empty. list,
Step B(i) consists of doing something to PIRST of the list.
Step B(ii) comsists of recursing on the BUTFIRST of the list.
AMONGQ
We are now in a position to write the procedure AMONGO:
TO AMONGQ /ITEM fLisT
Clearly, this involves some kind of a recursion down the list, though we
may not have te go to the very end. What we have to "do" with each
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€ of the list is to check whether it is the same as H-gim item.
'lr the Little Man Method: e

_Is there any special case ....7 The commentary recommends checking

the empty list., IFf we have the empty list, then

is not contained in it, so the result of the procedure mﬁg FALSE:

1#1!!!?1‘!’!1!1-1“1‘““8111.!!‘” 4
Bresk into two tasks .....7 The commentary mm&ﬂﬁ
the first element of the 1ist. If it is the same as the ;ifn item, then
‘the result of the procedure must be TRUE: \ ~
EIIPIMIMIMILMHWM -
Otherewise we need to go searching down the rest of the list:

39 RESULT AMONGQ :ITEM BUTFIRST :LIST
S50 we have:

TO AMONGQ /1TEM #LIST

1¢ IF EMPTYQ ;LIST THEN RESULT FALSE

2¢ IF EQUALQ yITEM FIRST :LIST THEN RESULT TRUE

30 RESULT AMONGQ.:ITEM BUTFIRST ;LIST

END

Exercise 5.5 Draw l.m, diagrams for AMONGQ "HOUSE [DOG CAT COW] and
AMONGQ 'CAT [DOG CAT COWl.

.m:'itl.ndiﬁl recursiong TRIANGLE
| Consider the procedure TRIANGLE
1: TRIANGLE [V W X Y 2)
vwxyzl
Wwxyzl
X ¥ 2]
[y z)
[zl
[l
1§
Writing this should now be a simple exercise:
TO TRIANGLE ‘LIST

1§ PRINT :LIST ———part B({)

2¢ IF EMPTY( :LIST THEN STOP =————apacial case (2)
3¢ TRIANGLE BUTFIRST :LIST —tha rest, B(ii)
END

what happens if we add a new line:
4@ PRINT :LIST 1
it and see!
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surprising? Try understanding it in terms of the little

TLIST is I8)

“h pyn 1=

10 PRINT ... ¥

20 IF EMPTYQ . o g - T

30 TRIANGLE .. TRIARGLE

40 mm&... (B)

“[l I]" "[n]“ -

[ =]
&

mmu'r...
mnm e il L.

30 TRIANGLE ... F
'ﬁﬂ' HI"T -? *‘\.
B [ J—3

"done"”
"[B1"

When 1.m. € stops (line 2@), 1.m. B resumes with his pext instruction
(line 49) and prints "[BI", then he is finished so l.m. A resumes and
prints "[A B)".
Exercises 5.6 What happens if we swap lines 10 and 15 of COUNTDOWN?
Or lines 10 and 20 of TRIANGLE?

5.7 Define the procedure COUNTUP which counts up from one
number to another: : TEi.

1: COUNTUP B 11

8

8

10

11
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3 5.8 Defins the procedurs NTH, which ra

list:
1: PRINT NTH 2 [COW DOG HORSE] - wend mw L
DoG e l.-'- ‘ﬁ_x " =TE
1; PRINT NTH 3 [ON CIRCLE SQUARE] . "-%ﬁzh
SQUARE BRdE
1: PRINT NTH 2. [PINK] .
LIST TOO SHORT nflﬁh S8z

5.9 The procedure RANDOM returns a random number between @ and
‘the number it is given as argument.
e.g. RANDOM } returns ome of the numbers 0, 1, 2, or 3 with equal
likelihood, T e
Use RANDOM and NTH to write a procedure RANDOMSELECT which returns &
randomly chosen element of the list it is given:
1: PRINT RANDOMSELECT [BLUE GREEN HED YELLOWI]
RED
1: PRINT RANDOMSELECT BLUE GREEN RED YELLOW]
BLUE
Constructing Recursive Objects
Just as we have used the Little Man Method to deal with tasks that

have a recursive structure, so also we can use it to construct objects

1i!

with a recursive structure. Adapt the wording of the l.m.m. appropriately.
e.g. we ask if there is a special case where we can comstruct the
entire object immediately, otherwise we ask other Little Men te build parts
of the cbject and then we put them together, ete.

In LOGO the "objects" we are constructing are usually numbers or lists.
e.g. in COUNTDOWN we analysed the task of doing something ten times
as: doing it once, then doing it the remaining nine times:

10 =% 1 + 9 (recursive)

Similar, to construct an object of ten parts, we get someone else to build
the object with nine parts and then we add the tenth part, an act of
synthesis:

i 1 =+ 9 (recursive)-=»=10

SUMOFLIST Want a procedure whose input is a list of numbers, and
‘which outputs the sum of all the numbers.

' 1: PRINT SUMOFLIST [5 7 9 11 133

&5

As usual, we break the list into its FIRST and BUTFIRST components:

1 (5791113158 (7911 13]



il a corresponding synthesis of the total sum we are seeking:

y 5+ SUMOFLIST (7 9 11 131 —» 45
© All we peed now to apply the l.m.m. is the specially easy case,
which as usual comes from the empty list.

Hotice that SUMOFLIST [ ] ia @. 5o we get
TO SUMOFLIST ’NUMBERLIST
1@ IF EMPTY( :NUMBERLIST THEN RESULT @
2¢) RESULT SUM FIRST :NUMBERLIST
SUMOFLIST BUTFIRST :NUMBERLIST

END

Exercise 5.10 Draw the l.m. diagram for SUMOFLIST [10 17 23].
COUNT  This is of course a built-in procedure, but how could we
write it if it weren't alveady provided?
e.g. COUNT [ABCDE) ?
Apply the usual l.m. analysis of the list, and there is a corresponding
synthesis of the number we want:
1 + COUNT (B C D E] ——% COUNT [ABCDE)
And of course, COUNT [ ] is @.
T0 COUNT “LIST
19 IF EMPTYQ :L1ST THEN RESULT ¢
2¢ RESULT SUM 1 COUNT BUTFIRST :LIST
END
Exercise 5.11 NUMBEROF
€.g. NUMBEROF 'COW [HORSE COW DOG COW SHEEP] is 2.
What are the analysis/synthesis rules?
(a) NUMBEROF 'COW [HORSE COW DOGC COW SHEEP) ———0o
@ + NUMBEROF "COW [COW DOG COW SHEEP]
(b) NUMBEROF 'COW [COW DOG COW SHEEP] ¢——
1 + NUMBEROF 'COW [DOG COW SHEEP]
(c) NUMBEROF 'COW [ ) s ¢ r
Can you write the procedure?
Constructing licts

To get the parts of a list, we have used the analysis

List -B2F o p 18T & BF sLIST
To build up a list, we can use FIRSTPUT

:ITEM & :LI1ST —EUh. ppUT :ITEM :LIST :
e.g. FPUT '& [B C D) is (A B € DI.




?.H

T i 5
these relationships that hold for all lists:
FIBST PINSTRUT X i¥ ,.pnrenaes ssins ERUE

BUTFIRST FIRSTPUT :XK :¥ ....vevvsess i :2Y

\DD1LIST

dnpl S0
Given a list of numbers, write a procedure to return the lhm -3
it

added to each of the numbers:

#.g. ADDILIST (100 200 300) is ... [100 201 301).
ADDILIST could be easily written using MAPLIST, but this is mot
of the next two examples, so we ignore the MAPLIST solution and
sncentrate on the recursive one.
We analyse the argument list as follows:

(100 200 300] — 100 & [200 300]
The corresponding synthesis of the result list is

ADDILIST (100 200 300) -—— (100 + 1) & ADDILIST
(200 3001

Unless this is the null list, in which case the synthesis is
ADDILIST [ ][ ]

S0 we have,

TO ADDILIST “LIST

1@ IF EMPTY(Q :LIST THEN RESULT [ ]

20 BESULT FPUT SUM 1 FIRST :LIST
ADDILIST BF :LIST

END

 Exercise 5.12 Write a procedure NEGSUBLIST which returns a list of
those numbers on its argument list that are negative,

e.g. NEGSUBLIST [1 -2 3 =4 5] 4is ... [=2 =4).

Example WITHOUT

In the M&C program we will need the procedure WITHOUT for changing

one state description into another "
i.e. MAKE “LEFTBANK WITHOUT :MOVELIST :LEFTBANK
rié WITHOUT is a procedure which removes a sublist from a list
e,g. 1: PRINT WITHOUT [M C BOAT] [M M C C BOAT)
M cl
We now tackle the problem of writing this procedure. Remember

the heart of programming is bresking tasks up into easier sub-tasks,
'-.L-. first tackle the easier problem of removing just a single item

fom a list.

@.g. WITHOUT1 "M [C M C BOAT] is ... [C C BOATI

are the synthesis rules? It must depend on whether or not the

irst of the list is the item we are trying to remove, e.g.
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s ol

~ WITHOUTL 'M [C M C BOAT] «—— 'C & WITHOUTL "M IM C
_ WITHOUT1 "M [M C BOAT] €—— [C BOAT) :
(c). The empty list this time is a bit weird:r if we can reach it
it means that we haven't been able to find the item we're
locking for. This may indicate an error.
S0 we have
TO WITHOUT1 “ITEM “LIST
(case (c)): 10 IF EMPTYQ :LIST THEN BREAK ERROR
(case (b)): 20 IF EQ :ITEM FIRST :LIST THEN RESULT BF :LIST

(case (a)): 30 RESULT FPUT FIRST :LIST
WITHOUT1 :ITEM BF sLIST

END
Exercise 5.13 Write WITHOUT, making use of the sub-procedure WITHOUTI.



Programming Test - 1

Please answer the questions below and hand in your answers next
ay, 30th October. This test will NOT BE USED FOR ASSESSMENT, It
purely to give us feedback on how you are finding the LOGO programming.
fore - and unlike other programming exercises - it would be betrer if
do this test individually, without collaboration.

What is the result of the following LOGO commands:

(a) COUNT [DESK [TABLE CHAIR] CARPET)

(b) FIRST [CIRCLE SQUARE TRIANGLE]

(¢) FIRST [[COLOUR RED] ([SIZE BIG]]

(d) BUTFIRST [CIRCLE SQUARE TRIANGLE]

{e) BUTFIRST [[COLOUR RED) ([SIZE BRIc])

(f) BUTFIRST [MAN WOMAN]

(g) SUM COUNT BUTFIRST [A B Cl 7

Define a procedure CENSOR which checks on the public acceptability
of lists. More precisely, the procedure CENSOR takes a list as
argument, and if the word "SEX" occurs in the list it prints out
the word "CENSORED", and if not it prints out the word "PASSED".
e.g. 1: CENSOR [A PORNOGRAPHIC FILM]

PASSED

1: CENSOR [REPRESENTATIVE OF THE FAIR SEX]

CENSORED

———————

Hint Use the predicate AMONGQ - see previous handouts.

Suppose that we keep student records in the form of lists, con-
taining the name, age, and department of each student,

®*8+ [BLOGGS 23 AsTROLOGY]
[MCFINLAY 95 GERIATRICS]
Write a procedure NICEPRINT that will type out one of these lists
in a readable format:
#.g. 1: NICEPRINT [BLOGGS 23 ASTROLOCY]
NAME BLOGGS
AGE 21
DEFT ASTROLOGY




" pefine a predicate VOMELQ which decides whether a given word is I
one of A, E, I, 0, or U,
#.g. 1l: PRINT VOWELQ 'E
TRUE
1: PRINT VOWELQ 'F
FALSE

Define a predicate CONSOMANTQ which tests for consonants.



; of students have asked guestions about what goes on behind
in LOGO i.e. how do computers work etc. This handout is

to give a simple and approximate answer to some of theses quest-
d point you to the sources of more accurate answers.

Physical Set-up
'Emnfmunnmmiudmtmundnemminmnpphtm
r, but just a lot of taletypes. The computer is actually located
the James Clerk Maxwell Building at King's Buildings, where it is run
the Edinburgh Reglonal Computer Centre (E.R.C.C.). The teletypes are
sonnected to the computer by a high speed telephone line provided by the
G.P.O. In order to save on telephone lines all the teletype signals are
collected together at the Appleton Tower end by a mini-computer (called a
PDP1l) and sent down one line to K.B. At K.B. a similar mini-computer
(the front end processor] decodes the separate signals and fesds them to
the big computer where they are stored in a "buffer” until they can be
Processed. A similar process happens in the reverse direction when the
computer talks to the teletypes.

In fact there are two computers at K.B., the I.C.L. 4-75 A and B
machines. Your relationship with them is cunningly controlled by the
front end processor, so that you should never motice that there are two

machines.

The main computers are actually dealing with several users at any

one time. They are running a main program called the operating system
which divides the effort of the computer between the users on a "round
robin® basis. The operating system also keeps sach users program iso-
lated from everyone elses in the computer's working memory. This is
done in such a way that it should always appear to you that you have the
cocmputer all to yourself.

The set up is summed up in the following Alagram.




: GPO Line A Machine
concentrator F.E.P. O0C0 |
‘ or
T‘cl"'
B Machine 0

For more information see: Frank Stacey in Comp. Sci. and various E.R.C.C. y
Hewsletters.
How Computers Work

Computers can be conveniently divided into four components: the
control unit; the arithmetic unit; the store and the input/output.

T —

input/
output Unit

= —

Arithmetic
b Unit

=

Store

Reproduced from O.0. Television Motes on Mathematical Foundation Course.
The Arithmetic Unit is where the basic arithmetic cperations, like
adding two numbers, are performed. The store is where your programs
and data are stored. Input/output covers a wide range of peripheral
devices like: teletypes; line printers; card readers; disc files
and even other computers. The control unit is the thing which decides
what to do next, e.9. whether to: add two numbers; get something from
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or output to the line printer. It knows what to do becauss it

ds itself your program in & suitably coded form. £ & T4
Machine Code i
The suitably coded form is called machine code. This is m ]
rogramming language which the control unit understands.  All m =
Wguages: LOGO; IMP; FORTRAN; ALGOL etc, have first to be translated
_: ito machine code. The computer does this for itself by using either &
piler or an interpretar. These are programs which operate on your
ﬁngzu ag If it were a piece of data and produce a machine code trans-—
lation. A compiler does this once, giving you the machine code in a

form in which you can ask for it to be run, An interpreter transiates
¥our program as it is run.

LoGO procedures are currently interpreted inte IMP by the LOGD system
- and thence intc machine code. ERCC do not allow dirsct translation into
‘machine code. Interpretation is much slower and more expensive than
\unning an already compiled, machine code program. However, interpre-
 tation is much more convenient when a program is being developed, inter-
actively because you do not have to recompile aftar every change. Com-
piling is best when a program has been complately developed and is now

to be used for several "production runs".

. Machine code is actually a sequence of binary numbers like:

21l o09011111
00111000011
010Cc0l1lilooo0

control unit will break this ints parts according to its own conventions.
BEBRrt will tell it the instructicn to be performed. One part will tell
. where, in store, to find the thing to perform the instruction on
®.g. The first number might be broken into
Cll10and0oOl1111]1
0110 tells us this is a "fetch from store” instruction.
ber 001 1111 is the address of some location in store,
is currently in that location is copied into a special place
 Sctumilator) in the arithmetic unit. The next number is broken
CO0lland 1000011
%r 0 0 1 1 tells us this is an "addition™ instruction. The number
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1nnnnllitthalﬁrulnfmplmnlnntnn. The contents of
that place are added to the number in the accumilator and the result is
Stored in the accumulator. The next instruction would be to store the
result in some place in store.

For more information see the Open University introduction to com-
puting or read:

Hollingdale, 5.H, and Toothill, G. C. "Electronic Computers”,

Penguin Books, 1965.
The Computer's Hemory -

S50 far we hawve discussed only one part of the computer's memory,
the store (sometimes called core store). This is whers the computer
keeps the things it is currently working on. Information in core store
can be accessed fast, but core store is expensive. Therefore the com-
puter has a hierarchy of cheaper but slower memories. These are, in
order of decreasing cost and speed: the paging drum; the disc files;
the archives.

uter

Automatic

Archives

All these extension memories are based on magnetic recording, like
your home tape recorder. The archive store is in fact just that: a
tape recorder. The disc files are a stack of magnetic discs: like a
juke bex for l.p.'s. The paging drum is a revelving magnetic drum.

The paging drum is an (optional) extension to the computer's core
store. Users who are logged on but who are waiting to be worked on,
will probably hawve their Programs stored there. Even parts of a program,
which is being worked om, may be there. You should not notice your
Program being put out or brought in frem the drum, except that the number
of "page turns”, i.e. the number of times bits (or pages} of your program

P R p—
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are moved in and out, is recorded in your logoff message.

The disc files are where your programs are rmm are
logged off. Procedures you want to be remembered are put omto the disc
by the LOGO command SAVE. They are copied from the disc :I.nb,i_ﬁ'_'{m
store by the LOGO command LOAD. B

Because space on the disc files is expensive, EMAS files whie
not been used for four weeks are automatically archived onto
taps. You only have one EMAS file, if it is archived it can be ré-
covered and put back onto disc by the EMAS command RESTORE. 'H-d.:m
ing is necessary because the file cannot be LOADed directly from -l-ﬂﬁ-i-'i!i'

For more information get the (out of print) EMAS User Manual or Eype.
HELP at moniter level, after the COMMAND: prompt.




A.l

nt Mathods

the methods used to teach the course and assess

course ran for three terms (of 9, 9 and 6 weeks) and there were
ture slots per week. Because of the difficulty of finding
background reading, the lectures were accompanied by the
handouts bound in this volume. Hot all the lescture slots were
Wsed for formal lectures. Some were used for: class discussions;
Pprobl classes; student presentaticns and an introductory teletype
1 These are sxplained below.
Discussions
i - Threa of the slots were used for holding general discussions on: Can
| Machines Think? Why is Understanding Natural Language so Hard? The
Scope and Limitations of A.I.
- Problem Classes
lmuumn!th.uuhnuntn-mmhp.nmttuumm
some of the students for them to make much initial progress, unassisted,
We set aside some of the lecture time for them to do exercises, with the
lecturer on hand to give assistance if nesded.

!Et Presentations

Each student was required to give a 25 minute talk on an A.I. topic
of his choice, usually his project, to the whole class.
troduc Tale sion
The whole class was assembled in the terminal room for the second
andoutummwlhwnm-hunriuﬂ, A series
games and simple copied commands were devised for this {zee pages P6-
7).
Audic Visual Adds
' The overhead projector was universally used with prepared trans-
irencies. Various films were shown ineluding: Winograd's "Dialog with

| obot"™; The MIT wision film "The Eye of a Robot"; SHAKEY and the
dinburgh Car/Ship assembly f£ilm,




Weekly tutorials were held in the first term with small (i,s, 2 - 5
students) , mixed ability groups. Exerciges were set and marked by the
Mut.MmauﬂWNm-unm:m-mhworup
according to their style, These tutorials were replaced by individual
project supervisions’ in the second and third terms,

Teletype sessions

Students were expected to put in about three hours a week at the
terminal in interactive computing. This computing often involved prep-
aration for tutorials. The terminal room was shared with the Computer
Science Department. It could be used at any time, but the students wire
encouraged to use it during the four hours when an A.I, demcnstrator was
present,

Agsi Read

This was kept to a minimum (approximately one hour a week), becauss
of the lack of suitable material and the pressure of other aseigned work,
The general reading list is given in Appendix 3, Specific reading is
included in the handouts, usually at the end of each section.

Reading Fortnight

At the end of the first term it became apparent that there were wide
discrepancies in the progress being made by different students. It was
decided to suspend all lectures and tutorials for a fortnight and run
individual supervisions geared to each students needs,

Assessment

Assessment was by one m-m“ttmmm:mjm.
The marks were split on a 60 (examination) - 40 (project) basis., Sample
examination papers can be found in Appendix 4, Projects could be of
three types: a programming project; the design of a program or a survey
of a small set of A.I. programs. GStudents were expected to spend about
30/40 hours on them and write a report of 3-5000 words (some students
spent much more time than this). The list of project titles for 1974/75
~*oafil1975/76 18 given in Appendix 5,

Ll e i | Bl L—==
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2 = A Rough Timetable

of Lectures

lat term
9+ 6

4 + 1

3drd Temrm

Subject

Representation of Knowledge (9 lectures) and
Programming (6 lectures) in parallal,

Introductions to : HNatural Language (2);
Vision (3) and Learning (2).

Class Discussion "Can Machines be Intelligent”.

Hatural Language

Reading Fortnight (no lectures)

Hatural Language (including 3 guest lectures by
Yorick Wilks, and class discussion on Natural

Language!) .
Represantation of Knowledge

Vision (4) and a Frogramming lecture.

Vision
Learning

Student Presentations

Concluding Class Discussion.
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d - General Reading List

cram LA
In addition to the recommended reading on specific topics (to be
found in the lecturs notes), the students were required hﬂ,h
following general refersnces,

Minsky, M. and Papert, 5. ‘'Artificial Intelligence Progress Report'.
Al Memo Mo, 252, MIT, January 1972,

Nilsson, N.J. ‘Artificial Intelligence'., IFIP Congress 1974, August,

Turing, A.M. '"Computing Machinery and Intelligence' in Computers and
Thought (eds. Feigenbaum, F.A. and Feldman, J.), McGraw Hill (1563),
pp 11-35,

Feigenbaum, F.A. 'Themes in the Second Decade'. Information Processing
EB, Vol, 2, (ed. Morell, A.J.H.), Morth Holland (1969), pp. l0OD8-22,

Longuet-Higgins, C, 'Artificial Intelligence', Br, Med. Bull, wol.27,
Ho. 3, pp. 218-221, (1972).

Four xerox copies of all reading material were made”available in a
central place (because this material is hard to track down and in short
supply) ,
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4: Examination stions

Here are the papers set for: the class examination 1974/1975;
tha dsgree examination 1974/1975 and the degree examination 1975/1976.
(There was no class examination inm 1975/1976). -




DEPARTMENT OF ARTIFICIAL INTELLIGENCE

UNIVERSITY OF EDINBURGH

ARTIFICIAL INTELLIGENCE 2

CLASS EXRMINATION

:

Monday 10th March 1975 9.00 a.m. - 12 noon

Instructions to Candidates

Answer any FOUR questions. All questions carry equal weight.



Give a symbolic description of figures A, B and C and description
of the similarities between corresponding objects in A and B.

(b)] Give a symbolic description of the rule which would change figure
A inteo figure B.

ic) If the description of the rule wers applied to the description of
figure C what would be the description of the resulting answer
figure?

{al Buppose figure C had been

- 1-

What goes wrong when we try to apply the description of the rule to tha
description of Figure D? How might we amend the rule description so
that it applies to the description of D and produces a description of
figure E?

i

RE: tions

(a) wWhat tests does Roberts' program use in order to select a picture
fragment for matching to a model?

(k) Show one possible decomposition of the scene depicted overleaf and
oné of the intermediate stages which would result from applying
Roberts' program?



»
fc) What are the principle virtues of Roberts® approach compared to
the way other programs you know do scene analysis? g
=h -

3=
Times of day are expressed by phrases such as:-
twelve fifteen, three o'clock, five thirtyseven, a quarter to
three, half past ten.
(a) Make a context free grammar to describe such sentences.
(b} Give the parse trees for the above phrases.
(e) Indicate by writing typical procedures how you would write a
LOGO program to take a list of words and return YES or NO
according to whether it is described by your grammar. {¥You
hay assume procedures CHECK and TRY are provided] .

4.
Discuss what is meant by:
{a) A Lock=-Ahead tras.
(bl A weighted sum of feature scores.
(e} Mini-Maxing.
Illustrate your answer with reference to any board game of your choice
except dravghts (checkers).

5.

Explain how a syntactic production rule may have a semantic rule
attached to it to compute the meaning of the phrases generated.
Illustrate your answer by referring to the meanings of variocus kinds
of phrase in the blocks world program described in the course.



Discuss Guzman's use of picture junctions and linking

a picture of a polyhedral scene. What are the limitations
approach?

{a) Using the LOGO inference system umhuuuhafunmmwtﬁg
sentences into a procedure call corresponding to its meaning:

The Pope is good

John Wayne is good

John Wayne is couragecus

Anycne who is good and couragecus is a hero

Who is a hero?

Suppose the translations of the sentences above the line were used
to set up a database and the translation of the sentence below the

line were used to interrogate that database. Draw the search tree I
of that interrogaticon.




UNIVERSITY OF EDINBURGH

FACULTY OF SCIENCE

ARTIFICIAL INTELLIGENCE 2

Monday 9th June 1975 Z.00 p-m. - 5.00 p-m.

Chairman B. Meltzer
External A. Sloman

Instructions to Candidates
“_"_l-_.*_

mmmmm:awllurmimmmof
B.A. {"'Ft.]-l‘ B. ht; B.S8c. [3:!:1!1 k.i.l.l!.ﬂl], B.Be. [’Eiﬂ-'l“’
and LL.B. should put (3) after their names on the script book.

Answer any FOUR questions. All questions carry equal weight.



Using the LOGO INFERENCE system:
ia) Give a partial symbolic description of the above drawing of a face
sufficient to answer "yes" to the follewing questions, by direct
data-base lookup:
Is the mouth in the lower portion of the face?
Is the left eye in the upper portion of the face?
Is the nose in the centre of the face?
{b) In addition represent the laws that:
Anything in the centre of the face is also in the middle
portlion.
Anything in the middle portion of something is always above
anything in the lower portion.
Anything in the upper portion of something is always above
anything in the middle porticn.
(e} Represent the question:
Is the nose above the mouth?
Draw the complete search tree of its interrogation of the
database.
s 4] In addition represent the law:
To infer that x is above y show that x is above z and z is
above ¥.
and the guestion:
Is the mouth above the nose?
Draw some of the search tree of this interrogation. What
problem arises? How might it be overcome?
Does your solution involve changing the LOGD INFERENCE
system?



2.
Suppose that a computer program is to be written to take in simple direct-
lons such as the ones below and check their correctness from a strest map
from a given starting place.
'To get to the school, take the first road on the laft, then the
first road on the right after the bridge’

'To get to the hospital, take the second road on the left, then
the first road on the right'

'T'o get to the station, take the fourth road on the left'

"Te get to the bridge, take the first road on the right after the
school"

fal Write a context-free grammar to generate directions such as these,
using the vocabulary in the above sentences,

(k) Explain how the following simple street map might be represented in
LOGO 50 as to be useable as a semantic model for such a checking
Program. (Hint: recall the list structure representations of the
State of the blocks world described in the course).

4S8 HIMNOJ
@5 OHIRL
48 amooas
L8 LSYId

BRIDGE

fﬂmxru.l
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Jl
The "Eight-Puzzle® is played on the 3 x 3 tray illustrated below:

ﬁ.ﬁu

Mounted in the tray are eight 1 x 1 sguare pleces, which are free to slides
left, right, up or down into an empty square. The standard position is
illustrated in which the centre square is empty and the numbers are arranged
in numerical order. The puzzle is played by initializing the pieces in
some other order and then trying to get them back into the standard position.
{al Explain how a course of play can be represented as a search

through a tree or graph.
{b) How would this representation help you to design a computer

pProgram to solve eight-puzzle problems?
{e) Suppose you were writing such a program. How could you

represent in LOGO: states of the tray and moves. Explain

in English (or LOGO) how you weuld apply moves to states to
produce new states,

4.

"The correspondence between 2D features and 30 concepts is central to the
design of any program for interpreting pictures of scenes", Discuss, giving
& critical account of relevant aspects of wision Programs you know of.

-

What difficulties arise in attempting to write a computer program to under-—

8tand children's stories? Describe some mechanismsg which have been proposed

Explain briefly (onme paragraph each) each of the following:
{a) credit assignment problem
i1 hill climbing

() near miss . J
- :l-



{d) Winston's notion of “appropriate generalization®
(a) discrimination tres

(£} diameter-1limited perceptron

Discuse up to four of the following statements. You may write at

length on one of them or more briefly on two or more.

la) Representing the effects of operators by add and delate lists
sclves the frame problem.

b} Line-verifying is better than line-finding,

Alpha-beta pruning is & way to obtain 4 gain in efficiency in
exchange for an increased danger of overlooking the best choice.

{d}  Since a program can now do analogy problems it makes no sense to
use them on human intelligence tests.

{a) Attempts to model human intelligence on a computer are doomed to
failure since the human brain and the digital computer are based

on different hardware.
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FACULTY OF SCIENCE
AATIFICIAL INTELLIGENCE 2
s .onday :  7th Juno 1976 2.00.p.m, = 5.00.9.5_.._

Examiners: Chairman B. Kaltzar

External A Sloman
INSTRUCTIONS  To CANDILATES

v 5 Candidates in the third or later years for the degreas of

B.A. (Arts), B. Com., B.Sc. (Bocial Science), B. Bo, (Scinnce)

and LL.B. should put (3) after their nemss on the seript book,

2y You have been provided with a copy of the “AIZLOGSO User's

Guide and Manual®,

a. Answer any FOUR questioms, a1l quastions carry egual weight,




.‘l_p -
1. 'The fullowing context-free granar gunersbes llngulntlpr!‘!!:ittxﬁnx

of chess pieces in tems of their colour and boord position,

Piecanamg -> "pavm

Plecename -> "king

Colour -» "black

Colour =-> "white

Piece => Plecenams

Piece -> Colour Piecenams

Nth => "Firat

Kth -> ‘sight

Position = WNth *rank

Fosition => Nth "file

Posltion -> NEh 'rank "and Mth "file
Description -> "the Piece
Description => "the Plece ‘on 'tha Position

(terminal symbols are guoted)

Eg; ~Helke put 5 dascripiiong guneraygd by gram;zf: =

The current state of a ciiess board can be pepresented, e.g. in
LOGO, by & list of quadruples, where sach quadruple represents a
piece by a list of four elements, namely

PIECEKIM§'umiﬂh is "PNWN or ... or 'KING

BIAWEI which is 'BLACK or 'WHITE

FANKNO which is8 1 or ... or 8

FILEND which is 1 or .., or 8

A chess playing program accepts linguletic descriptions of the
above form and needs to find their meaning ralative to the current
state, For example, in the current state "The pawn on the first
‘rapk” might refer to [PAWN BLACK 1 8],

(ii) what LOGO or other data etructures could you use ag tha
meaning of sach of the six kinds of Fhrase: Plecenams, Colour, ...,
Description?




(111) How could you write procedures to calculats the meaning of
each phrase from the meaning of its components and Lif neeccssary)
the current state? (Say what these procedures would have to dog
you need not write thes.)

2s "Deduction is a formal, logical procedure with well-defined
rules and can b carrisd-out by & computer program.,
Induction, on the other hand, by its very nature invelves a
creative component and cannot even in principle be dons by &

machine, "
Diecuse,’ with reference to ecoputer programs you know of that
claim to do induction.

3, Below is a typical ™Gecmatric Analogy Problem™,

955l

A B c

() fopE s

1 2 3 4 5

"Find the rule by which figure A has bsen changed to make figure B,
Apply the rule to figura C. Belect tha resulting figure from
figures 1 - 5.%
. »
(z) Explain, bricfly, hew Evani computar program, AMALOGY, dould
solve such prohlems.

{k) Give an example of a geometric analogy problem which Pvans’

i

program would be unable to solve and sxplain why.
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A

4. {4} Explain the distinction betwsen furvard inference and

backward inference, giving as an example m"ﬁ'm for
: =
which they might be used. NS

(ii) What problems arise with the use of (a) forward inference
and (b) backward infercnca? Illustrate your answer with
examples. Suggest ways in which thess problems might be
overccma,

P ‘L‘unaidnr the task defined by the following diagrams.

Rocmi RoomB Rocmh RoomB
Doorl T
L
X5 Lynevor
Robot Bosl [ eox1
Initial Stats Goal Stata

The initial state is described by
[In roBOT ROOMA] [IN BOX1 ROOMB] [OPEW DooRl
[IN DOOR1 ROOMA] [IN DOOR1 ROOMB] [CONNECTS DOOR1 ROOMA ROOMB)
The goal is described by:
[NEXTTO ROBOT BOX1) [CLOSED DOOR]
The Robot has 3 operators, described by s
[GOTO 70BJ]  Puts the ROBOT next to the OBJ, and not next to
anything else, (Represent this latter by putting [MEXTTO ROBOT *)
in the delete list)., It is applicable if the ROBOT and OBJ are in
the same room,
[GUTHRY 7DO0OR] Puts the ROBOT in the room which the DOOR
connects to his present room, Initially the ROBOT must be next to
~thEITHen DODR. -
[CLOSE 7DOOR]  Closes the open DOOR. The ROBOT must be next
to the DOOR.

{a) . Describe the 3 operators by drawing an Operator Table giving
their preconditions, delete and add Iists, .




6.

T

(b) Describe a plan for achieving ths goal, and draw & diagres
giving symbolic descriptions of the seguence of states which
would be achieved if the plan were exacuted, .-

iy

(e) What iz subgoal protection? Why is subgoal protecticn
gometimes needed by planning programs? If a robot plan
formation program, which used subgoal protection, was given
the above task, what diffioculty would it encounter? How

might this difficulty be overcome?

*A stimulus fragment takes its meaning from a consideration of its
neighbouring fragments; 4i.e. from the context in which it ocours”.
Discuss possible mechanisms for achieving this principle of context—-
sensltive analysis, drawing examples from A.I. VISION programs with
which you are familiar,

Can computer programs be used to model human intelligence? At
what level can they be compared? Illustrate your answer with
reference to GPS or some other program designed to simulate
human behaviour.

Discuss the relevance of AI programs to either philosophy, psychology
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Student Project Titlas

1974 /75

Etudent

N.
]

*Also available as

Conliffe
Davie

Fletcher
Gayle
Hol tzman

» Maleolm

Paterson
Reddish
Schroeder

1975/76
Student

R. Alkman

7. Allan

M. Bannatt
M, Bottomley
K. Chisholm
A. Coldham
P. Dunne

E. Doe

D. Giles

V. Keir

J. Eennaway
E. Lawsaon

G. Morris

M. Ferguson
M. EBchairer
5. Wrigglesworth

The project reports are kopt in the Library,

Title
GRIF: Graphics Routines with Interpretive Parsing

Rélation of work in AI and Psychology in Visual
Perception

A Bidding Program in LOGO

BUILD; A Lasson on Anarchism in the Blocks World
A Program for Key Detarmination

Maze Traversing

The Imitation Game: An Anti-Behaviourist Approach
Approaching Perception

Models of Linguistic Description and Implications
for Computer Programs involving Natural Language

DAI Research Repert No. 20,

Title
Cenerating Epglish Sentences
Question Answering
SUBSTITUTOR - CAI error analysis

Machine Translatien reviewed: evaluaticn of
selected programs

DRAFT4 - A Draughts program

Date {and time) Translation fuizzing Machine
Two Move Chess Problems

Fox and Hounds

Natural Language Analysis Using Case

Fugue Generation

Geometry theorem proving

A Puzzle Solving System

P.A. Learning Models

Translation from Staff into Tablature (Music)

Word into sentence: Parsing an agglutinative
language
A program to play Backgammon

Intelligence, Forrest Hill.

Department of Artificial
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Appendix 6: Student Questionnaire Returns 1975/1976

In order to get feedback to help us improve the course we issued a
questionnaire at the end of each year. The questions asked in 1975/76,
together with a brief summary of the replies,are given below. All 21
students who started the course were circulated - we received 17 replies.

Student Questionnaire

In order to get feedback to enable us to plan net years course, we
should be grataful if you would complete this questionnaire and give us
your comments on any aspect of the course., Please be completely frank.
1. How did you find out about the course?

Original source: Director of Studies, 2; Faculty Programme, 5;

A Friend, 2; Noticeboard, 1; Lecture in Computer Science on AI,2.

€. What factors influenced your decision to enrol in the course?

Most frequently mentioned factors were: Looked interesting;
Previous interest in AI; General interest in computers;
Eelevance to some other subijsct,

s What do you think the objective of the course was? Did it succeed?
Host answers centred on the "Introduction to AI" idea, mentioning scme
aspect like: past achievements, current developments or scope and
limitations, A few answers mentiocned our specific aims of teaching
the methodology or establishing the relevance with soft sciences.

Threa gave no answer at all. Mearly sveryone thought it succeeded,

4. Did you find the subject matter of the course

(1) Interesting?

Hearly everyone found it interesting, some sald "very”.

(i1i) Demanding?

Reacticn was mixed, from a non programmers "I still found myself
completely out of my depth" through "Some of the programs particularly
in Hatural Language (parsing), were difficult to follow®, to an ex-
perienced programmers “Most of the work I did was fun rather than

‘real’ work™. Most pecple found it time consuming (too many exercises)
whether or not they also found it demanding.

{1ii) Relevant to other subjects you are studying (please specify)?
Feople also deing computer science or linguistics found AI relevant to
those subjects. Otherwise a fairly negative response (e.g. not

such - but should it be), apart from one reference to peychology.



aRd.

How do you think the teaching and assessmant could be improved?

As an aid to thought we have listed the teaching and assessment
methods below.

{i) Formal Lectures

(11} Bandouts

Much appreciation expressed. They found lectures well prepared and
were able to give full attention to following them: "Handouts were
better than those I got in any other course so far - complete and
readable - and most of the lectures appeared to be well prepared”.
{iii) Problem Classes

{iv} Class Discussions

More wanted of both. Several criticisms levelled at class discussions
as being tob infreguent, too general and class too large.

iv} Student Presentatiocns

Welcomad but too late in term for feedback to be incorporated in
projects.

(vi) Audio Visual Aids

Compliments expressed on films, videos, overheads etc,

{vii) Tutorials

(%) Other Assigned Work

Strong feeling that these should continue into second term. A sug-
gestion that they should be streamed by programming abillty.

(viii) Teletype Sessions

Too much programming in course: More personal tuition wanted.

{ix) Assigned Reading

Beveral suggestions for improving the method of access.

(ki) Informal contact with members of the department

Better than most departments but could be better. More information
wanted about research work of department.

{xii) Examinations

ixiii) Project

Two requests for an extra class examination, balanced by ona requast
for continuous assessment and one for exemptions for deserving cases.
opportunity to do project much appreciated but not encugh time in
course to do it justice (e.g. "why give 30—40 hours as a guide-line
and then show previous examples which must have taken their authors

about twice as long?").

B e TRt
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(1) Was this your First opportunity to program a computer?
(11) If*so how hard did you find it?
f1ii} Did any particular aspect of learning to program give you
trouble, e.9.; a particular concept, a misconception you
harboured, a particular type of bug? (please specify).
Paople with no previous experience found programming very hard
(typical comments were “wvery, very hard"; "Bad”, etec.). Un~
fortunately (and significantly) they were unable to identify
particular areas of difficulty, but Just said “"all of it lexcept
the very early Programming)" or “sverything”.,
Please record any other Comments you wigh,
Mainly used to expand on above Points. General mood was that
Course was good (e.g. "10/l0 for effort put into S{ii,vi,wid, vidid,
ix, xiil) etc.™), but we had gone overboard with the imparting of
Epecific skills (e.g. Programming) , to the detriment of general
Philosophical discussion (e.g. "more a series of intaliectual
exercises"; "even after deciding to drop the course it was
Stressed to me that AT was not a mathematical-type subject - but
it isl"; "lack of spontanecus class discussion"), Some pointed
out that the proper balance was difficult to strike while the class
continued to contain a mixture of soft and hard scientists le.g. "1
don't think the s@#e*course should apply for people who have done
computer science and also Ffor people who have done nothing of this
sort before®; "more places should be allocated to Psychologists,
Philosophers, Linguists and other non-mathematicians"),



Correction

Page Line
RKl figure
RE1 5
RE1 9
RK23 5
RE24 14
REK42 table
RE44 5

RK44 figure

Small rectangles should be sgquares

"fule" should be “rule”

delete “could invelve some judgement®, Insert
"either straightforward or go back to beginning”™.
Insert line "100 TRYMOVES"™

Insert “AND ETOP" at end of line.

"table" should be "cable”

"searched® should be "grown".

tres all wrong — replace bottom half with:

Apply Operator

"travel by train" to
"me at home"
me 3

Reduce Difference Apply Operator

of "location” "travel by train™ to
"me at station"

—meathod 2
method 2—
Apply Operator Apply Oparator
"travel by train® to "travel by train" to

"me at home"

"me at station®

cop (8o backup)

RE46 2
REGE 13
HL1 17
HL1 20
ML3 20,22,24
HLE &
HL4 end

Insart "RESULT" between "60" and "TRANSFORM".
"from" should be "form"

After "IF :N=1 THEN'; replace "RETURK' by "RESULT®
After "2@" insert "RESULT®

Replace "UMPHUN' by *UMPHUNS

Feplace 'semantics without' by ®syntax without'.
Insert " (This grammar example is essencially due to

H.C. Longuet-Higgins) '



-3
17

17
end of

=5
=7.9,11
5,-8
figures

=15

heading
of table

13

14
16

12
14
11
13

should read '(3) {theoretical) it goes into an
indefinite recursion 1if given'

Insert footnote 'LOGO programs given LA lower case
have not been tested in their present form'.

after '([a €] (B D] (C p] insert ‘[a DI*

Should read

'mrrmnn—rm (X5 THEN P ‘CORRECT ELSE P ‘LIAR
pefore line starting V1@ HOUM' ingert line

195 IF EMPTYQ :STATES THEN RESULT £

pafore line starting '1@ JOIN' insert line as above.
Replace 'y (dimdf :b2)"' by '+ (dimdf :b2)°'.

After '[RED BLOCK ON' replace ‘A' by "TEE'.

After 'mkprop <ladj)> insart 1< {gimpnounphr) >’ «
Insert "Pressing 2 keys at once causes locking.
Unlock by pressing baz to right of spaca bar" .
Insert guota mark in front of LIST.

Change 3 occurrences of "QUTPUT" to “RESULT".
Change 2 OCCUrTences of "OUTPUT* to "RESULT".
Little men diagrams Wrong. cutput of men on right
should go to eyes of men on left (not ears).
Change "pu:‘.nit.ln" to “arguments” s

Change 2 oCCUrYences of "input® to "argument”.

Insert "and BUGS™ after "LI1B "BUGS".
Insart guote in front of LIST.
Insert guote in front of PARA.
Change 'PARA to :PARA.

(Hote: for consistency all references to PARAMETER
would be better changed to ARGUMENT) .

Insert guote in front of LIST.
ingsert :LIET after SECERH.

Change "input® to margument”.
Insert guote in front af NUM.



