s '.

i
-

¥
"

PR

gl
T!T-]'a",'!
FLY

Nty

. ..-|'-_‘.1-' st
DT
LY P,

g et
SN

e T
o T]
ol i [AN i

'._.
.;,. L
I -

PREFACE

This manual is a reference manual'which describes the Atlas

Autocode Compiler currently available (1/3/65) at Manchester
University. It is not a teaching manual though we have tried to
make it fairly readable, Further compilers may in the future
become dvailable both on Atlas and other machines and it 1is
expected that they will be described with reference to this manual,
We would like to thank Mr., G. Riding for his many valuable
comments and suggestions and Miss Christina O'Brien who has typed

and re-typed the manuscript,

R.A. Brooker
J.S. Rohl,
1st March 1965

e i LS o i = Ll o o n TR L i o e e i e cim

S e, il
T Bl ey e e g e S
-

E;E-;";."""r-..l.”- -

1,

CONTENTS

INTRODUCT ION

Example of an Atlas Autocode Program

Blocks and Routines

- Phrase Structure Notation

THE BASIC LANGUAGE
Symbols of the Language
Names

Constants

Delimiters

Types

peclaration of Variables

Functional Dependence
Standard Functions
Arithmetic EXpressions
Integer Expressions
Arithmetic Assignments
Simple Labels

Vector lLabels
Conditional Labels
Conditional gperators
Cycle Instructions

Miscellaneous Notes

STORAGE ALLOCATION AND BLOCK STRUCTURE OF PROGRAMS

The Stack

Storige.Allocation.Declarations

Block Structure of Programs

ROUTINES

Basic Concepts

Formal Parameters and Actual Parameters

Function Routines
Scope of names

Permanent Routines

Functions and Routines as Parameters

Recursive Use of Roqtines

gwn vVariables

1.1

1.2

5.

6. MONITOR PRINTING AND FAULT DIAGNOSIS

INPUT AND OUTPUT OF DATA
Selection of Data Channels
Basic Input Routines

Basic Qutput Routines
Captions

Binary Input and Qutiput

Compiler Time Moniioring
Run Time Monitoring

Fault Trapping

Fault Diagnosis
Query Printing

" Routine Tracing

Jump Tracing
Array Bound Check
other Checking Facilities

PRESENTATION OF COMPLETE PROGRAMS

Program and Data on Same Tape
Program and Data Tapes Separate

Program on Several Tapes

COMPLEX ARITHMETIC

Declarations

Standard Functions
Arithmetic EXpressions
Arithmetic Instructiions
Conditions

Routines and Functions

Input and Qutput of Complex Numbers

STORE MAPPING
The Address Recovery Function

Array Functions

The Renaming of Variables within a Block

Store Mapping Routines

;’)

10, THE USE OF MACHINE INSTRUCTIONS

11,

Stack Structure 10,1
Stack Instructions ' | 10.4
Machine Code Formats * 10,5
Example of Use of Machine Orders 10.7
THE PERMANENT ROUTINES

Linear Equations 11,1
Matrix Routines 11,2
Solution of Differential Equations 11,3

APPENDIX
APPENDIX
APPENDIX
APPEND1IX
APPENDIX

1
2
3
4
5

PHRASE STRUCTURE NOTATION

INDEX OF STANDARD FUNCTIONS AND PERMANENT ROUTINES
INDEX OF DELIMITERS

LIST OF MONITORED FAULTS

NUMERICAL BQUIVALENTS OF BASIC AND COMPOSITE SYMBOLS

1 INTRODUCTION

An ATLAS AUTGCQDDE PROGRAM consists of a series of STATEMENTS
which describe in algebraic notation the calculation to be executed,
The statements are of two kinds, declarative statements giving the
nature of the quantities involved, and imperative statements which
describe the actual operations to ke performed on them, and the sequence
in which they are to be carried out, The statements are not immediately
recognisable by the computer and must first be converted into an
equivalent sequence of basic MACHINE INSTRUCTIDNS. This is done by
a special translation program called a (OMPILER which is held
permanently available in the machine, Not until the program has been
'compiled' can it be executed,

The following example gives a general idea of the principles
involved in writing a progranm, We wish to fit a straight line
y = ax + b to sets of data of the form X1i,Y1l; X2,Y2: «w--; Xn, Yn
which are to #e punched and presented on a data tape in this order,
Each such set is to be terminated by the number 9gggggQ and the final

set by two such numbers, For each set the quantities

a = nEXivi - EXidyvi
ndxi? . (&xi)?
b = PYi - akXi
n

c = Yi? - 2(akXiYi + WRYi) + a? £Xi? 4+ 2awtXi 4+ nw?

are calculated, the last being the sum of the squares of the deviations
P(yi - axi - »)2,

The following is the formal program for this calculation, The
statemeﬁts are to be 1nterpreted in the written order umless a statement
is encountered which transfers control to another specifically labelled
statement, In general each statement is written as a new line, otherwise

it must be separated from the previous statement by a semi-colon,

1.1

begin

real a, b, ¢, alpha, al, a’
1nt!§or i, j, k, theta

array x'(i 10)
routine sgec testl (real d, nteger m)

B1, 3

~routine spec test2 (real name e, integer name n, real fn test3)

real fn spec test3 (arra{ name y)
cycle k =1, 1, 10

x(k)
reEeat
k=0 R : .
a=1; alpha = 7,663 ; al = 10,4 ; a'" = 21,6
j =2 ; theta = 123

testl (2, 3)

routine testl (real d integer m)
real f

- integer o S
f = 1,5 s 0= 3 |
test2 (f, o,.tesf3)

end

routine test2 (real name e, integer name n, realfn test3)

spec test3 (arraz name y)

real g

integer p
g=0.7; P=4
g = test3 (x)

end

end

end of program

L7/

2. THE BASIC LANGUAGE
SYMBOLS OF THE LANGUAGE

A program is presented to the computer as a 1gng;hio£ perforated

~ paper tape, prepared on & Flexowriter keyboard machine, the keys of which

are engraved with the following symbols: -

ABCDEFGHIJKIMNOPQRSTUVWXYZ
abcdefghi jklmnopgqrstuvwxyz

a7

0123456789 .
=>'<|*-:'r'8‘2/-4'-_%_()[]?

A back-spacing facility allows underlining and also the formation of

compound characters, For example :-

- cycle # > < 3 &

The last of these consists of an asterisk superimposed on a vertical bar ,
It is usually referred to as a vertical arrow (and would be written
‘as such in a manuscript) and is used to denote exponentiation, '
thus ak(n-1) means 'a raised to the power (n-1)°, such a notation is
necessary because we have no means of effecting superscripts and subscripts
with a Flexowriter; the format is essentially one_dimgnsionil, There is
one exception, the superscript 2 for which there .is a special symbol:
it is equivalent to 2, |

Since the handbook itself is prepared on a Flexowriter the same
conventions for exponents will also be used in the text, '

NOTE All SPACES and UNDERLINED SPACES in a program are ignored when the

progrﬁm is read into the machine, Thus they may be used freely to assist

legibility in the written form of the program,

NAME

These are used to identify the various operands, functions and
routines which appear in the program, A name conSists_of one or
more Roman letters, possibly followed by one or more decimal digits,

and possibly terminated by one or more primes(*). For example: -

X I Alpha alo TEMP1 y'' b3’

Underlined names and mixed names such as RK2ST are NOT allowed,
There are certain names, e,g. log, sin, exp, print, réad, etc, N
" which have a standard meaning (the PERMANENT routines) but all other '
' pnames must e declared before any reference is made to them (see below),

In future a general name will we denoted by LNAME].

QONSTANTS

Numerical (positive) constants are writtem 1n a straight forward

notation, For example: -

2.538 1 .25 17.280-1 lof

The last two examples mean 1,728 and 10000000,

The numerical part can be written in any number of ways, For example: -
15 015 15. 15,000

are all equivalent, The exponent, where present, comsists of a
followed by an*éptionallsign and decimal digits,
The symbol } is equivalent to the two symbols ,5. Thus 2,5
may be pumched as 24, |
' There is a further specialised type of constant consisting
" of a symbol'(eithér basic-orucomposite) enclosed in-quotesi- Its value
'.is that of the internal equivalent of the symbol, a list of which is
given in Appendix 5, Thus

'a’ = 33
‘P’ = 2003

Though this form of constant may be used whenever a constant is relevant

it is most often used when reading symbols off a data tape (see Section 3),

DELIMITERS

' These are a preassigned set of symbols'and-underlinad words, For example: -

+ = */ (,)>__>_">;'

czcle repeat integer real 1££ then caEtion comment

Note that -> consists of two symbols, -~ followed by >
Unlike names whose meaning can be defined by the user, delimiters

have fixed absolute meanings in the language.

2.3

TYPES

Calculations are performed on two principal types of operanad,

real and integer (later om we shall introduce complex), Both are
represented by floating point numbers (in the form a*8fb where a
is held tb a precision of 40 binary digits and b 1is an 8-bit integer):
but those of integer type are kept in an unstandardised form
(so that the least significant 24 bits can be used directly for
B-modification; the precise method of storage is described in the
section on machine instructions), |

. The locations in the computer store holding numbers are
distinguished by assigning names to them (see later), and referemce to
the number_is made by giving the appropriate name, Both real and integer
numbers referred to in this way are called variables and denoted by
[LVARIABLE].

Programs will consist mainly of operations on real operands,

the use of integer operands being generally confined to counting and subscript
arithmetic, '

DECLARATION OF VARIABLES
The names of variables used in a block are declared at the head of

the block., For example: -

integer I, max, min

real t, Temp, VOL 1, VOL 2

The effect of these declarations is to allocate storage positions (ADDRESSES)
to the named variables, and any subsequent reference to one of the declared
names will then be taken as referring to the number stored in the appropriate

address, The format of these declarations is formally

[TYPE][NAME LIST}
where [TYPE] = integer, real
[NAME LIST] = [NAMEI(REST OF NAME LIST]}
[REST OF NAME LIST] = [,]UNAME]LREST OF NAME LIST], NIL

N.B. This means of defining a list consisting of phrases separated
by commas 1s used throughdut: See Appendix 1,

2.4

one dimensional arrays of elements may be declared by statements such as

array a,b(0:99), c(i10:19) _ —~

which reserves space for three arrays of real variables a(i), W(i), c(i).

" In the first two the subscript rums from O to g9, and in the third from
10 to 10, '

To refer to a particular element of an array one might write

2a(50) B(j) Bb(2n+2j-1) c(10+1)

It is the computed value of the argument, which may be a general integer

expression (see later), which determines the particular element,

Two dimensional arrays are declared in a similar way, For example: -

array A(1:20,1:20), B(0:09,0:49)
t
This defines and allocates storage for a 20 X 20 array A and a 10 X 50

array B, To refer to a particular element, one writes, for example: -~

A(1,1) A(i-1,j+1) B(9,2K+1)

'Should an array of integer elements be required, the declaration 1is ”5

qualified by integer, For example: -

integer array Ka (1:50).

Arrays of more than 2 dimensions may also be declared, For example: -
array CUBE 1, CUBE 2 (1:10,1:10,1:10)

reserves 1000 locations for each of the two arrays CUBE 1, CUBE 2.

Storage allocated by all the above declaratidns has dynamic significance, 1.e,
they are implemented at run time and not at compiler time, Consequently,

the arguments in array declaratioms need not be constants but may be general
'integpr éxpressions. The significance of this will be explained in the Sections
on block structure and dynamic storage allocation (see later),

The format of an array declaration 1s

[TYPE'] array [ARRAY LIST]
where [TYPE'] = integer , real , NIL

(ARRAY LIST] = [NAME LIST) ({BOUND PAIR LIST])[REST OF ARRAY LIST]}
[BOUND PAIR] = [EXPR]:[EXPR] ' | D
Here the [EXPR]'S must be integer [EXPR]'S (see P2.6)

FUNCTIONAL DEPENDENCE
Functional dependence 1is indicated by writing the name of the

function followed by the list of arguments in parentheses (in a similar

fashion to array elements). For example: -

sin(27x/a) arctan(x,y) TEMP(i) a(10,10)

Each argument can be an arithmetical expression (see below),
Within a block all names must be distinct, and it is not

possible to have a function with the same name as a scalar, Thus.

a and a(i) or f and f(x) would NOT be allowed to appear in the

same block,

STANDARD FUNCTIONS

Certain standard functions are available and may be used
directly in arithmetic expressions (see next section) without formal
declaration: '

sin{x) cos(x) tan(x) log(x) exp(x) sqrt{(x)

arcsin(x) (r/2 < result < w/2)

arccos(x) (0O < result < ¥)

arctan(x,y) (= arctan (y/x), - < result < 7)
radius(x,y) - (= sqrt (x2+y?))

mod(x) (= Ix])

fracpt(x) (= fractional part of x)

ihtpt(x)' | (= integral part of x)

int(x) | (= neirest integer to x, i,e, intpt(x+,5))
parity(n) (= (-1)¥n)

The last three functions are of type integer (see later), the rest of type real,
The arguments of all these functions may be general expressions, except |
that the argument of the last must be of type integer,

A complete list of standard functions is given in Appendix 2.

ARITHMETIC EXPRESS IONS
A general arithmetical expression is denoted by [EXPR] and consists

of an alternating sequence of operands and operators possibly preceded by a

sign symbol, thus *
[+'] LOPERAND][OPERATOR]LOPERAND][OPERATOR] [OPERAND]

An LOPERAND] is a [VARIABLE], [coNsTANT], (LExXPR]), I|[(EXPR]I, or [FUNCTION],
and an (OPERATOR] is one of + -~ / ¢ (the asterisk denoting multiplication),

*¥0r, more strictly, (See Appendix 1)
LEXPR] = [+']1LEXPR"']
. LEXPR'] = lOPERAND]LOP]LEXPR'], [OPERAND]

[oPERAND] = [NAME](APP], [cONST], ([EXPR]), | (EXPR]|
[+'] = 4, ~,NIL

AR explicit multiplication sign is not required when ambiguity could not

arise from its omission, For example: -
2.5alb means 2, 5*al*bh

NOTE: When the compiler looks for a name, it finds the longest possible

name, Thus ak is taken as a name rather than a*b even if only a and b and not

ab were decliared. In this case a fault (NAME ab NOT SET) would be indicated,

Examples c¢f expressions are: -

ACi-1,3) + ACGi+1,3) + A(4,J-1) + A(i,j+1) - 4A(4,))
7 + log(l 4+ cos(2m(x/a + y/b + z/C)))

LENGTH * BREADTH * HEIGHT

1 4+ sqre(x(i)? + y(i)? + z(1)%)

a * b/c * d/e

(x + v +2z2)/(a + P + c)

2.5x1b * (c + d)e

e = |x-yl + .00001 '

(14x) ¥(n=3) * (1 x)¥3

NOTES
1 Multiplication and division take precedence over addition and

subtraction and division takes precedence over multiplication. Thus
the fifth example means a * (b/c) * (d/e),

2. | (EXPR]| is interpreted as the positive magnitude of the

[EXPR]. Thus it is equivalent to mod([EXPR]). '

3. An exponent is denoted by | [OPERANDJIand exponentiation takes
precedence over the other operations, Thus the last example means
((1 + x) to the (n -~ 3))*((1 - x) to the 3). In the formation of

a | n, n must he an integer or integer LEXPRI] (see next sectionm);

then if

AXA*A, . ,..0.0 2 (n times)

1

1/(a*a*a, ,, *2)

(1) n > 0, result

(ii) =n = 0, result
(1iii) n < 0, result

4. To form a k b, where b is real we must write it in the form

exp(b*log(a)),where a must be positive,

INTEGER EXPRESS IONS |
an [EXPR] is an integer [EXPR] if all the [OPERAND]'s are

scalars, array elements etc, declared to be of type integer, or are

integer constants or integer functions (q.g,_int, intpt, or parity).

o
Thus if we assume that x is a real LVARIABLE] and i,n,j,k(1),k(2) are

integer LVARIABLE]'s the following are integer.[EXPR]'st

-~ e ~ax(n=1)/2
1+ J + k(2) 4+ int(x)
J ¥k o
1ntpt(n*(n-1xﬂ3)

The definition given above does not guarantee that an nteger [EXPR]

will always give an integral result, e.g., 10/3 and jf(—l) are not
integral, There is no guarantee either that expressions like _
n*(n-1)/2(which is integral) will always yield the exact answer (in this
particular case it does), When the result of such an operation is in doubt
it is preferable to use 'int' e.g., int(n*(nfl)/z) to give an exact integer
result,

Except in certain special cases integer LEXPR]'s are evaluated by floating
point arithmetic in exactly the same way as general (real) ekpressiens, but
are destandardised on assignment (explicit or implicit) to their nteger
destination, The definition of an integer [EXPR] is a basis for checking
that such assignments are sensible, _The_special cases_mentioned above refer to
the subscript expressions in Array elements Such expfessions, which should
always be integer LEXPR]'s are usually simple linear forms which are dealt
with more appropriately by l-modification It is mainly to facilitate

~ such operations (and the associated operation of counting) that integer S
are used, Being destandardised quantities they can be transferred directly
'to B-registers without using the floating point accumulator '

ARITHMETIC ASSIGNMENTS L _
The general arithmetic imstructiom is

[VARIABLE] = LEXPR]
IExamples are:-

X(p,q) = 142cos(27(x+y)) -
= (b+c)/(d+e)+F
i= 141

The action of the general arithmetic assignnent is to place‘
the computed value of the [EXPR] in the location allocated to the 1. h 8,
[VARIABLE]. If the 1 ,h.,s, is a real [VARIABLE], the r ,h,s, [EXPR]
may be of type real or 1nte§er, but if the 1l,h,s, is integer then
| the r . h,s, must be an integer [EXPR]. For example, if v had been declared

real anaéihinteger then we could write y =1 but not 1 = y even if we knew-

that y had an integral value,

LABELS, JUMPS AND CONDITIONAL OPERATORS ,
Normally instructions are obeyed sequentially, but frequently it

is required to transfer control to some instruction other than the next
in the sequence, or to obey an instruction only if certain conditions are

satisfied, The following facilities are provided:

SIMPLE LABELS Any instruction can be labelled 10

by writing'an intoger'[N] before it, separated, ~ | - v
by a colon, More than one label is permitted, | ', 10! ew-
Unconditional jump instructions are writtenm as = 435% ===
> IN] ' 1 _ - . >4

>5

VECTOR LABELS

These are used to provide for a ; switch A(1 : 3)
multi-way switch, 'w1th~reference to the | C——
.acconpanyinz diagram the instruction ' - B
~>A(i):w111 jump ﬁa A(1), A(2) or AC3) o L -
according as 1 = 1, 2 or 3. - - R
A fault 1s,si¢na11ed if the value of 1 . - A(1): e==
corresponds in any way to a label not set, - ———
Tﬁe ceneril form of the laiel is [NAME]([H]):-f - CA(3): —--
nThe range must be declared at the head of B - c——
Ithg routine by a statement of the form . o ——
switch.[NAME]([if][N]:Lif][N]) *where-l' o - —
the [+'] indicates that the integers ' ~>A(1)
may be preceded by a sign if necessary, ' ' | -
For example: - _ I o —
switch SEGMENT (-4:+4) - ' A(2): ===
A ,iist of switches can bé'given. For Gxaﬁple:- ——

switch A,B3,C(1:3),D(0:2)

The [NAME]'s must not conflict with those

of other oparands in the same block,

CONDITIONAL LABELS
Another kind of multi-way switch is

illustrated Wby the accdmpanying'diagram.
Here the conditions at the places indicated

are tested in turn and control passes to the

test

4 case x<]1:

instruction following the first to me successful,

If none is satisfied a fault is signalled,

The general form of the lakel is [N] case [COND]:

where LOOND] denoteslthe general
- condition defined in the next section, A

simple label'[N]: may e used in place of

5 case 05;:;:

6 case x>1:

the last alternative(i.,e, 6:) in which case control

passes directly to the following instructions
if it reaches that point,

4, 5;6

NOTE All labels are local to the block containing them and jump instructions

may only refer to lakels within the block (see later),

CONDITIONAL OPERATORS
A CONDITIONAL OPERATOR of the form

if [cOND] then or unless [cOND] then

| may'bbrwritteﬁ before any'uncoﬁditional instruction, These form

the

FORMAT CLASS [UI] (see Appendix 1) and include arithmetic, jump and

test instruct10hs.

The [COND] phrase takes one of the forms*x

[sc] and [sc] and [sC] --~ and [sC]
or [sc] or [sc] or [SC] —--or [scl

or just Lscl

Here [SC] denotes one of the Ioliowing ‘simple’ conditions

[ExPR])[g](EXPR] or [EXPR][g]lEXPRI[g}LEXPR] or (LCOND])

where [(@g] denotes one of the comparison symbols

=f>><<

I1f (or unless) the condition is satisfied the instructioam is obeyed,

otherwise it is skipped and control passes directly to the next

instruction,

Examples of'conditional instructions and conditional labels are

if x <.0' then x = mod(y)

ifo<x<1and 0<y <1 then > 1

Stas . '

 .'cas (y'>‘1|g£_y < -yl)'and x> 0:

hd
w N 1 b
L B e P R

** or, more strictly, (see Appendix 1)

[conp] = [sc] and [AND-c], [sc] or [ar-cl, [sc]
[aAND-c] = [sc] and [AND-C],[SC] -

[orc] = [scl or [or-c],(scC]

2,10

Alternatively, conditional operators may appear AFTER unconditional

instructions, in which case they are written

it {coND]l or unless [COND]
for example X = Q i{llxl < ,0000001_
'=> 1 unless z > R 25 z = O
CYCLING INSTRUCTIONS
These are pairs of statements which allow a group of
instructions to ke obeyed a fixed number of times, For example: -
cycle i =0, 1, n-1
repeat
1In the above example the 1nstructions between gzgig and repeat are
traversed n times with i successively taking the values 0,1, .__,n-1_
After the final cycle, control goes to the statement following repeat,
The 1.h.,s., must be an integer name, but.the r.h,.s, quantities may be
general integer [EXPR]'s which are initially evaluated and stored, Thus ~
" within the innermost cycle of the example below, the valueslof p;q-end r -)
'mey be altered without affecting the number of times the cycle is traversed.
The initial value, increment, and final value must e such that
- final value - initial value
increment
Must'be a positive integer or zero otherwise a fault 1s'1ndicated;
For example: - o '
cycle i = 1,1,p
52313 k = 1,1,r
c(i,k) =
repeat |
cycle j = 1,1,4
cycle k = 1,1,r
¢c(i,k) = c(i k) + a(i J)*b(j k)
repeat
repeat
- regeat
NOTE Statements such as Exgig_x = ,2,.1,1 are NOT aileﬁed,and
- should be replaced by an.equivalcnt permiesiblc forn ~ For example: - | =N

cycle 1 = 2,1,10
X =‘.1il
where i has been declared integer and x real,

1
£ oy RSO Y o T RN T U g T VD ok AR e AL SR N 52T e s [e e T D L e e

MISCELLANEQUS NOTES

i, end of program is the formal end of the program and appears after the
last*written instruction; its action is to terminate the reading of the
program and to start obeying it from the first instruction,

2, The instruction stop can appear anywhere in the program and signifies
the dynamic end of the program; its actiom is to terminate the calculation,
3. The dellimiter comment allows written comments to be inserted in a
program to assist other users in understanding it, The information
following comment (which may include composite characters) up to the

next newline or semi-colon is ignored by the computer, The delimiters page

and | are synonyms for comment, though the first has an obvious special use

in the pagination of prograns,

4. It has been noted earlier that all spaces and underlined spaces in a
program are ignored and that Autocode statements are terminated by a semi-
colon or a newline, If a line is terminated by the delimiter c then the
following newline character is ignored by the computer, Thus a single
statement may extend over several lines of the printed page, It is not
anticipated that this facility will be frequently used, except when
writing comments and possibly long algebraic expressions.'

5. If a programmer is prepared to exclude upper case letters from names
and captions, then he can effect a saving both in the size of the tape

and the speed of compilation, by using the special instruction

upper case delimiters

and then writing all following delimiters in upper case without the
underlining, Thus the example of P2,10 could then be written: -

CYCLE 1 = 1,1,p

CYCLE k = 1,1,r°

c(i,k) =0

REPEAT

CYCLE jJj = 1,1,q

CYCLE k = 1,1,r

c{i,k) = c(i,k) + a(i,j)*b(j,k)
REPEAT

REPEAT

REPEAT

The delimiter causes the compiler to replace each upper case letter by
the equivalent underlined lower case letter, so that a mixture of
nornmal and upper case delimiters can be used, If this is required only for

certain parts of a program then the instruction

normal delimiters

can be used to return the compiler to its normal operation,

3.1
3 STORAGE ALIODCATION AND THE BLOCK STRUCTURE OF PROGRAMS

" TME STACK

In order to illustrate the principles of storage allocation, we

assume the following simplified picture of the data store (the stack),

7~ & fuller description being given in the section on,the,uge_of mach1ne inqtructions.

CELLS IN Ist AVAILABLE CELLS
USE I

RN\ R A N A 1 N

Each cell or location represents ar48 bit word in the computer Sto:e

and can bpe used to hold either a real or an integer variable, At any

time during the running of a program, the stack pointer, St, points to the
next available location i,e, it contains the address of the next free ward,
In the examples that follow, shaded areas represent locations .
which hold information essential to the program, such as array dinensions_
and origins, and are not of importance in the context of this section, Each
area may in fact consist of several locations, Cells which are allocated

to variables are indicated by the presence of the name given to the variable,

STORAGE ALIOCATION DECLARATIONS

‘The declarations which allocate storage space are

| - real integer array nteger arraz
- and to illustrate the stack mechanismrwe consider the followin; example:
begin

real a, b, c; integer i, max

- array A(1:2,1:2), x(1:3)

After the above declarations the stack pictﬁre would be_as below o
st1 S S St2
L NN & @ f et i tmaxi\\WWIACL, 1) [AC1,2) 1AC2,1) 1AC2,2) WWIXC1) 1x¢2) 1X€3) |

Stl is the position of St Wefore begin and St2 its position after the
declarations, Any further declaration advances St by an appropriate amount
likewise any aétivity initiated by the instructions in the body of the block
causes St to Be advanced(either explicity or implicity) still furthor.
Finally when end or end of program is reached, then St reverts to Sti,
Variakles declared by real and integer are called FIXEP VARIABLES,

because the amount of storage space required can be determined at compiler time,
Array declarations, however, may have general integer expressions as the parameters
and hence have dynamic significance, For example one might have a declaration

such as

array A,B(1:m, 1:n),x(1:n)
In this case the space allocated will depend on the cqmputed values

of m and n and canmot be determined at compiler time, The stack polnter
St is thus advanced in several stages following the initial step which

reserves space for all the fixed variables,

3.2

BLOCK STRUCTURE OF P

_Tkis is illustrated by the following example: -

The stack picture associated with the abové block is given below:

St1 , St2 st3
o L 1 _._ .
T C I EV L - U Y O . A
1 2 3 S 4 5 © ' o :

Before the first begin st is at Stil, and moves to St2 on entering the

‘outer Wlock, After the second begin St is at St3 and reverts to St2

whon'end is reached, At the second end, corresponding to the first
!ggig, St assumes its original position, Stl _
| In the diagram, positions 1, 2, 3 correspond to the declarations
of the outer block, and 4, 5, 6 to those of the inner block, After the
instruction ¢ = a+b, the'viluo 3 is left in position 3; while the instructions
f the inner dlock leave the values 2, 1, 3,14 in the positions 44 0, 5, 3

respectively., The last instruction of the outer block leaves the value

7 in position 1,

33

Thus the variables a, » of the inner block do mot contlicf with

E h;!iib of the outer block, while a reference to ¢ in the inmer block is

"' t§k§nftd_reter to the variable of that name declared in the outer block,

We ﬂsﬂi.y,.that 2,0 are LOCAL names to the immer block and ¢ is a NON-LOCAL
ntﬁe.‘ie also note that the information stored im the variables of the
inner Block is lost when the block is left, and that we could mot refer
in the outer block to a variable declared in the inmer block,
Futher details of the structure of programs will be_:iven.in the
section on routines, and for the present the following notes on blocks
~will e sufficient,
. 1.lﬁllocks may contain any nunber'of_sub-blocks and blocks may be nested to
o any depth, o _
. 2.”_Nanes deélared in a block take on their declared meaning in the block
_ and in any sub-blocks unless redeclared in the sub-block, '
3. Labels are local to a block and transfers of control are only possible
between statements of the same block,

4. The outermost Block of a prozram.is'términated by end of program,

which causes the process of compiling to be terminated and transfers

control to the first instruction of the program,

A simple and common use of Block structure arises when reading arrays
from tape, each array being preceded by its dimensions,

For example: -~

begin
integer m,n
1: read(m,n)
begin
;EEE[_A(l:m,l:n)-

If the begin and end defining the sub-block were not included, then

the stack pointer would be advanced further each time a new array_was read, without
ever being reset, and this could be very wasteful of storage space, '

particularly for very large values of m and n,

4 ROUTINES

BASIC QONCEPTS

A large program is usually made up of several routines

‘each of which represents some characteristic part of the calculation,

Such routines may be called in at several different points in the program,
and their_design and use is a fundamental feature of the languagé.

The introductory example consisted of a main block only (delimited by

begin and end of program) although it makes reference to the routines 'read’,
'print’, 'newline’, which are permanently available in the machine, 1In
exactly the same way however, the user may callhin routines which he has
written himself in Autocode language., Consider for example a routine

to evaluate
y = a{m) + a(m+1)X+.000000000.+ a(men)xin (n > 0)
where the coefficients are selected from some vector a,

routine poly(real name y, array name a, real x, integer m,n)

integer 1

y = a(m4n) ; returnllg_hh= 0
cycle i = m4n-1,-1,m

y = x*y+a(i)

repeat

return -

end

Given the values of x,m,n and the addresses of y and the arrdy
elements a(i), it evaluates the polynomial and sets y to this value,

The ‘statement end is the formal or written end of the
routine while return is the dynamic end, i.,e, it is the instruction
which returns control to the main routine, Where the formal end is also a
dynamic end as in the present example the return instruction preceding end
can be omitted; in this case end serves for both purposes,

NOTES

1: There can be any number of alternative exit'points in a routine - i, e,

return can occur more than once, _
2: return is a member of the FORMAT CLASSLUI] - i,e, it can be made conditional,

as above,

4.2

This routine can bhe EMBEDDED and used in a main routine as illustrated
below,

begin |
real U, V, z, X ; integer nm N

arraz b(0:15), ¢c(0:50)
routine spec poly (realname y, array name 4a, real x, integer m,n)

poly(Vv,c,x2,20,10)

)

stop

routine poly(realmame y, array name a, real X, integer m,n)
integer 1

y = a(msn); return if n =0

cycle i = mn-~1,~1,m
y = x*y+a(i)

repesat

return

end
end of program

5

The routine is called in by the main routine whenever the
name 'poly"appears. The first reference to 'poly' would cause the poly

routine to evaluate
U=D5b(0) + b(1)z + ... + b(m)zm

and the second would cause it to evaluate

Vv = c(20) + c(21)x® + ..., + ¢(30)x¥20

The parameters in the routine specificat;on and routine
heading are the FORMAL PARAMETERS and the parameters in the call statements
are the ACTUAL PARAMETERS (see next section).
| The body of the routine may be considered as a block

delimited by routine and end, and the concepts of storage allocation, local

- and non-local names etc, apply to routines in exactly the same manner as

for blocks, In fact a block may be considered as being an open routine

without parameters,

4.3

Any number of routines may be embedded in a main routine
in the above fashion and they are referred to as SUBROUTINES of the main
. routine, If the body of a subroutine occurs before any reference to it
_— in the main routine, the routine specification may be omitted, but by
convention it is usual to place all the subroutine specifications among

the declarations at the head of the main routine and the bodies at the end,

FORMAL PARAMETERS AND ACTUAL PARAMETERS

The parameters of the routine are the items of information which
specify the action of the routine whenever it is used, The formal parameters
are the names by which this information is referred to inside the routine itself,
and the actual parameters are the names or expressions which arelsubstituted
for the formal parameters whenever the routine is used in the main program,

For each type of formal parameter there is a permissible form

for the actual parameter, as shown in the following table: -

Formal parameter type | | Corresponding actual parameter
integer name } name of an integer variable
real name | name of a real variable
|
integer | an integer LEXPR]
-] (similar to an integer assignment)
~ | |
real | a general(i,e, real or integer)lEXPR]
I (similar to a real assignment) '
l _ _
integer array name | @~ name of an integer array
array name ' name of a (real) array

\

integer array

arra | | name of a (real) array

(the difference between these and the

name of an integer arra

previous pair of parameters is

explained below)

routine type i,e, Sometimes it is required to pass on the

routine name of a routine as a parameter,
real fn In this case the actual parameter is the
integer fn name of a routine which must correspond in

type and specification with the formal
parameter, the specification of which will be
found in the routine body

]
1
A L A L L AR e i

In the example of a routine to evaluate a polynomial described earlier,
the formal parameter y is the name of the variable to which the result is assigned,
and the corresponding actual parameter must be a name, in this case the name of

2 real variable. The formal parameter then is of type real name,

A reference to y inside the routine is essentially a reference to the non-local
variable named by the actual parameter, The same applies to the arra name
parameter a, a reference to : 1nsidé the routine being a referenc-~ t¢ the
non-local array whose name is substituted for a in the calling statement,

The formal parameter real x on the other hand can be >c<placed by a

general arithmetic expression, which is evalusted and assigned to the local

variable x which is specially created in addition to any local real

variables declared in the rou’ine, The same applies to the formal parameters

integer m, ., These are esentially local quantities, and expressions are substituted

in place of them are evaluated and the resultant values assigned to the local
integer variables m and n, which are lost on exit from the routine, Consequently
the routine should place the information it produces in variables which are
called »y NAME (such as x and a),

The formal parameters X, m, n are said to be called by VALUE in so far
as it is only the values of the corresponding actual parameters which are of
interest, This is the essential difference between the formal parameter types
array and array name (or integer array and integer array name), In the former
case the array named Ey the actual parameter is copied into a specially created
local array, and a reference to the name in the routine is taken as referring to

this local array., As the copying process can be time-consuming and space-consuming

arrays should be called by NAME if at all possible, especially 1f they are large,

Another example of a routine is the following

routine matmult(arrayname A,B,C integer p,q,r) -

integer i,j,k ; real c

\ cycle i =1,1,p
cycle j = 1,1,r
c =20

EZElﬁ.k = 1,1,q

c = c+A(1,k)*B(k,j)
repeat

c(i,j) = c

repeat

repeat

end

This forms the product of a p x q matrix A and a q x r matrix B, The
result, a p x r matrix, is aceumulated in C, The routine assume: that the first
element of each matrix has the suffix (1,1). A typical call sequence might be
mat mult(N, x, y, 20, 20, 1) | “~N
where B, x, y had been.declared by
array H(1:20,1:20), x,y(1.20,1 1)

FUNCTION ROUTINES

When a routine has a single output value it may be written as a
function routine and then used in an arithmetic expression in the same way as
the permanent functions (cos, sin etc,), For example, the polynomial routine

described earlier may be recast as a function routine as follows: -

real fn poly(arrayname a, real x, integer m,n)
integer i ; real y

ke

y = a(msn) ; if n = O then result =y
cycle i = myn-l, ~1,m
y = y*x+a(1)
repeat
result = y
end
NOTES
1: In general, the exit from a routine is of the form : result = [EXPR]

and this causes the EXPRESSION on the right hand side to be evaluated as

the value of the function. ' '

2: result = [EXPR] acts as the dynamic end of a function (i,e, it corresponds
to'return in a routine), and may appear’any number of times within the function,

3: result = [EXPR] is a number of the FORMAT cLASS[UI] - i.e. it may
be made conditional,

The specification of the above routine would be written

real fn spec poly(arrainame a, real x, integer m,n)

and the routine can be called in an arithmetic statement, for example
y = a*b + 2h*poly(c,1/x,0,16)
An example of an integer function is given next.' It selects the index of the

maximum element x(k) in a set of array elements'x(m), x(m+1),....,xX(n) (n> m)

integer fn max(arrayname x, integer m,n)
integer i,k

Kk =m

<1 if n = m
cycle 1 = m+1,1,n
k=1 if x(1) > x(k)

repgat

1: result

i

k

end

A call sequence for this function routine might be
y = 1 + x(max(x,1,100))

SCOPE OF NAMES
In general all names are declared at the head of a routine

either in the routine heading or by the declarations integer, real, array, etc,,
and the various routine specifications, '
Therefore they:are local to that routine and independent
of any names occurring in other routines., However, if a name appears
in a routine which has not been declared in one of the above ways, then
it is looked for outside i.e, in the routine or block in which it
is embedded., 1If it is not declared there it 1; looked for in
the routine or Bblock outside that and so on until the main block is reached,
Now the main block is itself embedded in a permanent block at
'»ero level' which contains the PERMANENT material, so that if a
name is not found in the main Block it is looked for among these,
The permanent names may in fact be redeclared locally at any level, but
clearly it would be unwise to assign new meanings to such routines as
'log’', 'print', etc, This outer block also contains supervisory
material for controlling the entry to and exit from the miin block,
very often, the only non-local names used in a routine will be the
permanent names, The level at which a name is declared is sometimes

referred to as its 'textual' level,

PERMANENT ROUT INES

The permanent names include the standard functions, sin, log, int,
ecc. and the basic input/output routines read, print etc,
These routines are used in a program without declaration and without
the necessity of inserting the routine bodies, since these are
permanently available at level zoro. A full list of the permanent routines
is given in Appendix 2,
[NOTE : the standard.functions (and the same applies to 'read’)
are not strictly routines : THEIR NAMES CANNOT BE SUBSTITUTED AS
ACTUAL PARAM_ETERS IN PLACE OF FORMAL PARAMETERS OF ROUTINE TYPE.

they would first have to be redefined and renamed as formal

routines,]

4.7

ONS AND ¥ _U'rnms AS_PARAMETERS

" This 1s 111us£rated by the follawing example 1nvolvins an

integration routine

rqutine spec intograte(rpal niﬁé y;'réaiﬁa;i;into;ér n;‘regl tn £)
which integrates a function f(x) over the raﬁgé (a; ®) by evaluating

y = (£(0) + 42(1) + 22(2) + ... +-4t(2n-1) + f(2n))(bwa)/(6n)
where (i) = f(a + ii*(b—a)/n) ' |

An auxiliary routine is required to evaluate f(x) and details of it
‘must be passed on to the integration roﬁtiﬁe. This is done bj'means of the
formal parameter type [RT] as defined earlier, and the body of the routine
might then be: - e

routine integrate (real name y, real a, b, integer n, real fn f)

real fn spec f(real x)
real h; integer i
= 4(b-a)/n
ymio T o o e e e

9.&1’2 i=0,2,2n2
¥y = y+22(asi*h)+42(a4(1+1)R)
 repeat
y = (Y—I(a)+1(b))h/3

To énable instructions such as
_ y = y+2f(a+i*h)+42(a+(i+1)h)

to be translated, a specification of the formal parameter f is required,
In this case the delimiter real fn spec can be replaced by‘gggglsince the type
of the tunction is given explicitly by the formal parnmator itself,
No# consider a progrhmme to evaluate - | |

for various values of b read from a data tape, the last value being
followed by 1000, using for n the integer nearest to 10Wb,

begin
outine sEec integrate (real name y,real a, b, nteggr n,real tn)

real fn spec aux (real y)
real z, b

comment Slmpson rule integratlon
1:read (b) . o
if b = 1000 then sto op

integrate (z, U, 1, 1nt(10b), aux)
ewline |

print (b 1 2) spaces(z) print (z, 1 4)
> 1 '

‘real fn aux(real y)

result = exp(ﬁy) cos(b*Y)

end

Wmﬂ'—m
| routine integrate |

W .

end of program

NOTES

e o i o

1: That the names given to the auxiliary routine and its

parameters need not be the same in the 1ntegration routine a;_in the

main program, but they must correspond in type, o)

2 Since the result of the intergration is a s1nsle quantity, the routine
could be recast as a real fn ;-

4

real.fn s2ec integrate(reel a,b, 1nte§er n,'regl fn 1)

and called by, for example: -

RECURSIVENUSE OF ROUTINES S -
: The name of a routine is local to the routine or block 1n*wh1ch
1ts specification appears, and so the body of the routine is within the
scope of its own nanme, Hence it may call itself., It may also call itself
indirectly by invoking other routines which make use of it, o0On each activation
of the routine a fresh copy. of the local working space 1is eet_upf;g the stack,
so that there will be no confusion between variables on successive calls,
(This does not apply however to own variables, See next sectien) Sohe criterion
within the body of the routine must eventually inhibit the calling statement
3and allow the process to unwind. Functions defined recursively, for example: ~ "
n'! = n(n-1), , n>1l
= 1 ' : n=1
can be implemented in this way, but it 1s always more efficient to use,

recurrence rather than recursive techmiques,

P pEue M .H':""-J"'*-’-‘."\-l PR T R T TS e i, M.r'-"'l'f.’;ﬂ'. _u-.h.‘-.t'-i‘ini"l'.‘-';i':'..-u‘: iﬂ-"lwi-i'ﬁ.ﬁﬁ-'ﬂﬂ'ﬁ*i‘!#‘-f“ \"-J'.:.ﬁi?-;'r'ﬁ‘l:'i'i‘i'ﬁ‘.""':i‘lf-“'l"'i"h I I T I L e . B

4.9

OWN VARIABLES
When a routine is left any information stored in variables corresponding

to local declarations in that routine is lost, and no furthur reference may
be made to it, In some cases it may be desirable to retain some of this

information and be able to refer to it on a subsequent entry to the routine,
This may be accomplished by prefixing the relevant declaration by own,

For example
own real a, b; own array A (1:16)

The effect of own is to allocate storage space for the named variables
in a part of the store which is not overwritten when other routines are
called in and to set them to zero. This is done during the compiling of the
program and hence does not have dynamic significance; as a consequence an

own array declaration must have parameters which are integer constants,

5.1

5. INPUT AND QUTPUT OF DPATA
’ The input and output of data will generally be accomplished by
means of permanent routines, Ih this section these permanent routines are

described and the precise form of data is given,

SELECTION OF DATA CHANNELS

The selection of an input channel is performed by the routine: -

routine spec select input (integer i)

This selects the input chanmnel corresponding to the value of i, and
this channel, together with the particular input device assigned to it
in the Job Description (see Section 7), remains selected until
another 'select input' instruction is encounted,

gutput channels are selected in a similar way, by means of the

routine:

routine spec select output (integer 1)

In both cases channel O is initially selected, and in the absence of

a channel selection instruction, remains selected during the execution of a

program,

BASIC INPUT ROUTINES

Decimal numbers may be read from a data tape by means of the routine

routine spec read (LVARIABLE])

This reads a decimal number from the currently selected data channel and
places it in the location specified by the [VARIABLE], which may be of
type integer or real, The routine reads numbers in either fixed or floating

point form, for example: -

0.3101 18 7.13a- 3.1872al4

A number is terminated by any character other than a decimal digit,
the first decimal point, or an exponent, An exponent consists of a followed
by an optional number of spaces, an optional sign, and the decimal digits,
Spaces and newlines preceeding a number are ignored, but all other symbols
cause the routine to signal a fault (but see NOTE on P5,4). A fault is also
indicated if a number assigned to an integer variable is not integral,

It should be noted that a single space is sufficient to terminate a

number, and that no spaces are allowed within the mantissa or within the numerical

Further since 'tabs' are converted to a number of spaces, numbers may

be separated by 'tabs', Several numbers in a sequence may be read by the routine: -

routine sEec read([VARIABLE LIST])

For example, read(a,i,X(i))

This is treated as if it were a series of inst:uctions
read (a) ; read(i) ; read(X(i))

hence the subscript of X(i) takes the value just assigned to 1,

The read routine is an exception to the general form of a routine, as

it may have an indefinite number of real name and integer name parameters,
successive numbers on a data tape may be read so as to £fill

an array by means of the routine

routine spec read array(arrayname A)

For example:- array A(1:20, 1:20)

read array (A) N
would cause the next 400 numbers on the data tape to be read so as to fill
the array A, row by row, It is thus equivalent to

array A(1:20, 1:20)

integer 1i,J

cycle i = 1,1,20

cycle j = 1,1,20

repeat

repeat

Three permanent routines are provided for manipulating alpha-numeric
data, The first: -

routine spec read symbol (integername 1)
reads the next symbol (simple or compound) from the selected channel,
converts it into a numerical equivalent and places the result in the

specified integer location,

For example, if the next character on the data tape were an
asterisk (numefical equivalent 14) the instruction 'read symbol (p)’
would set the value of the integer variable p to 14 and move to the next

character on tape,

The second allows the next symbol on the data tape to be inspected without

moving on to the following one, It is

integer fn spec next symbol

The third: -
routine spec skip symbol

passes over the next symbol without reading it,

A table of numerical equivalents and a description of the formation
of compound symbols is giveﬁ in Appendix 5,

It is in testing symbols that the alternative form of & comstant
ls useful, For example, we could test if the next symbol on a tape were an

asterisk by

=>1 if next symbol = 14
or ->1 if next symbol = 'x'

Since spaces and underlined spaceS-aré ignored in a program, and newline
and semicolon are used as terminaters, special symbols are provided to
represent them, Thus a space can be tested for by I

->1 if next symbol = 'g°’
The symbols are: -

2 $ representing a space

2 $ ' an underlined space
n » te a newline

i ' a semi-colon

If the data itself contains these special symbols,.then they can be tested only
by using the internal equivalent,

Finally there is a permanent input routine which permits the reading
of an indefinite number of decimal numbers into successive storage locations,

stopping when a particular symbol on the data tape is reached, This routine is

routine spec read sequence (addr s, integer p, integer name n)

- The formal'parameter type addr is explained in Section Q; for the

present purpose it is sufficient to say that the actual parameter will be the
name of a variable, representing the first location into which the numbers are
to go, p is the numerical equivalent of the terminating character, and on

exit from the routine, n contains the number of numbers that have been read,

As an example of the use of the above routine, suppose a data tape
contains an unknown number of numbers, but less than 1000, and that the

last number is followed by an asterisk, Then the instructions

array X (1:1000)
integér n

read sequence (X(1), 14, n) [lor : read sequence(X(1),'+',n)]

would cause the successive numbers to be read into X(1), x(2), etc,
If there were 800 numbers in the sequence, then n would be set to 800

when the routine was left,

NOTE

On input, each line of data is reconstructed to give an image of the
print -out produced by the Flexowriter., Thus 'backspace','tab', 'upper case’
and 'lower case' do not appear as characters in the reconstructed line,
since they do not appear on the print-out, 'Tab’ produces an equivalent
number of spaces, 'backspace’ helps form a composite character, and
non-significant cases are ignored, Those positions containing an erase
are then deleted from this line, The line image 1is normally 160 characters,
but where the tab and backspace facilities are avoided, lines can be of any

length, sections of 160 characters being taken serially,

BASIC OQUTPUT ROUTINES

The routines for the output of a single decimal number are

routine spec print f1l (real x, integer m)
routine spec print (real x, integer m,n)

The first of these prints the value of x (which may of course be a
general LEXPR]) in floating point form, standardised in the range 1<x<10,
with m decimal digits after the decimal point, The number is prededed by
a minus sign if negative, and a space if positive, The exponent is preceded
by a and consists of a space or a minus sign and two decimal digits, the first of
which is replaced by a space if it is not significant,

The second routine prints the value of Xx in fixed point form with m
digits before the decimal point and n after, Non-significant zeros, other than one
immediately before the decimal point, are suppressed, and a minus sign or space
precedes.the~fir3t digit printed, If Ix}| z;okm-thgn extra digits are included
before the decimal point, the effect being to spoil any vertical alignment of

- the printed page.,

1t should be noted that no terminating characters are included
by the above routinns.' They may be included by the user by means

of the routines: -

routine spec newline

routine spec space

routine spec newlines(integer n)
routine spec spaces (integer n)
routine spec tab -
routine spec print symbol (integer i)

The first of these resets the carriage of the appropriate printer
{(or punches the newline character), and the second causes the printer to
skip a character position, 1f a number of consecutive spaces or newlines

are required, the third and fourth routines may be used, for example: -

spaces (5)
newlines (3)

The fifth routine punches the tab character or causes the printer to move to the
next tab setting. These settings are at positions 8, 16, 24, 32, 48, 64, 80,
96; 112, 128, 144, and 159, The sixth prints the symbol cnrrespondin; to the

value i,

The routine: -

routine spec newpage

causes the lineprinter to commence a new page, if the output

device is a line printer, or punches 30 newline characters if it is a pumch,

The routine: -

routinn_sggc runout (integer n)

punches n runout Characters (used tn_seperate_sets of results, for example)

on the punch, It bhas no effect if the output is on a line printer,

Arrays of numbers may be output by means of the routines

routine spec print array fl (array name A, integer m)
routine spec print array (array name A, integer m,n)

For a one-~dimensional array, the elements of the array are printed
across the page, each number being terminated by two spaces, or a newline

if the right hand edge of the page has been reached, The successive rows of

~a two dimensional array are printed as above, successive planes of a three

dimensional array are printed as two dimensionnl arrays, and so on, Each
array is started on a newline and the printing style for the individual

pumbers is the same as that of the 'print f1' and 'print' routines,

5.6 .
CAPTIONS
' There is a special facility for printing captions, For example
caption ggss TABLE # OF TEMP # AGAINST g VOL
This prints the 1nforﬁati$n afterhcaption ubfto, but not.inclﬁding, the
terminating symbol 'newline' or 'semi-colon', Since spaces and underlined space
are ignored and 'newline' and 'semi-colon' are used as terminators, we also use

the special characters: -

[@

t

w B r W
- .

Thus

newline

caption A . g8 ;3 print (y,1,3); newline

caption B g

gg 3 print (z,1,3); newline

would be printed as

In general ¢ can be used (in its usual sense) in a caption if the information O
is too long to fit on one line across the page, In view of this if an
underlined word ending in c is used at the end of a caption, it must be

terminated by 'semi-colon' not 'newline’',

BINARY INPUT AND OUTPUT

Binary tape méy be read and punched by means of the routines

routine spec read binary (integername i)
routine sEgc:punCh binary (1ﬁteg¢r 1)

The first reads the next row of holes on the tape as a binary number
(iﬁ the range 0-12%7, with the tape so oriented that the sprocket hole comes
between the digits of value 4Aand 8), and places it in the named variable,
Binary data tapes must be preceded by ***xB or, if they contain characters of
of even parity, by |
* % KP
* %k kI
The second punches the seven least significant binary digits of the
integral part of the integer expression as a row'Of'holes on the output
-_tipe. - | - o T B R ~
'gggg; Cards or 5;h013'tape may be used in which case the operations are on

5 or 12 digits rather tham 7,

— 6 MONITOR PRINTING AND FAULT DIAGNOSIS

FAULT MONITORING
There are two types of fault which can be detected by the compiler,

those which can be found during compiling and those which become evident during
the running of the compiled program, To aid the programmer in correcting

thesé faults information is automatically printed out where a fault occurs,

COMPILER TIME MONITORING

During compiling an outline of the program is produced as an aid to the
finding of faulty instructions, It also associates each block and routine with
its serial number, for use in tracing faults found at run time (see later),.

All faults during compiling are monitored, Those to which a line

number can be attached, such as NAME NOT SET, are preceded by it, while

those which can only be found at the end of a routine such as TOO FEW

REPEATS are monitored after the END, 1In calculating the line number, blank
lines are ignored, and lines joined by.the continuation symbol ¢ count as one,
Finally at the end of each routine all the non-local variables except the
permanent routines and functions are printed out, Although these do not

necessarily indicate a fault, they may indicate a name which should have been

o declared locally, A typical program monitor might be
0o BEGIN BLOCK : SERIAL NO = 89, M/C ADDRESS = 2721

20* NAME TEMP NOT SET
55 * LABEL 7 SET TWICE
70 BEGIN ROUTINE POLY:SERIAL NO = O, M/C ADDRESS = 3210
115 * NAME TEMP NOT SET
115 * REAL NAME X IN EXPRESS ION
120 END ROUTINE POLY : OCCUPIES 256 M/C INSTRUCTIONS

* ~ LABEL 18 NOT SET

NON-LOCAL VARIABLES A TEMP1 S1
182 END OF PROGRAM: OCCUPIES 800 M/C INSTRUCTIONS

The above should be self-explanatory, It indicates that the program

started at line O and finished on line 182, These are physical lines

and exclude all blank lines on the print-out., The outer block is given

the serial number 89. The routine POLY started on line 70 and was given

the serial number QO, There were mistakes in lines 20 and 55 and two in line
~ 115, Finally label 18 was not set in the routine POLY.

6.2

gince there may be more than one statement on a line, it is not possible

to tell specifically which.statement is involved but the faults are printed
in the order in which they are discovered, A full list of faults is given
1nAppendixl4 together with a brief description of their nature,

RUN TIME MONITORING
During the running of a program certain faults may be detected

both by the compiler and by the machine and its supervisor progran,
For examplé, the supervisor program detects the case where the square
root of a negative argument is being requested and the compiler detects

faults connected with switch and test instructions,

The standard procedure is to print out 2 lines of information
specifying the fault and the line on which it occurs followed by a list
of useful information found in the FIXED part of the stack, For example: -

LINE 117 ROUTINE QO
EXP OVERFLOW

ROUTINE QO

ARRAY(1:10,1:5)
ARRAY{(1:10,1:5)
10 §

0.3333333341la O =-1.1249999997a -1 0.0000000000a-99
6 4 '
CYCLE(CURRENT VALUE
CYCLE(CURRENT VALUE

6, FINAL VALUE = 10, INCREMENT = 1)
4, FINAL VALUE = 5, INCREMENT = 1)

BLOCK &g

 0.0000000000a-99 3.7152403802¢ 3
o5 36

ARRAY(1:10,1:5)

ARRAY(1:10,1:5)

indicates that an instruction in line 117 routine QU (the line number
refers to the entire program, not just the routine), resulted in exponent
overflow, Then follows a list of the scalars, array dimepsions and cycles
of the routine in the order in which they wereloriginally declared,
followed by the list for the routine or block which called this routine,
then that of the routine which called it and so on until.the main block

is reached, Thus the above might correspond to: -

begin

real a,b

integer i, j,k,1
array X,Y(1:10,1:5)

L

'
'
matrix fn (X,Y,1i,Jj)

'

¥

routine matrix fn(arrayname A,B integer m,n)

real a,b,c ; integer i,]j

L

1,1,m

{l

cycle i
cycle j = 1,1,n

regeat

repeat

end

end df program

NOTES _
1 This fault print out must be interpreted with care, When the fault occurs,

the fault print out routine looks in the STACK to find the fixed variables and
interpret them (see Section 10)., Now every locatiom in the store initially looks

as if i. contains a real'quﬁntity. Thus: -
(i) until an integer is assigned a value, it will appear as (and be printed

as) a floating point quantity (probably zZero),
(ii) until an array declaration is obeyed, it will appear as 2 floating-

point quantities,
(1ii) until a cycle has been entered, it will appear as 3 floating-point

quantities.

Conversely, since all sub-routines of a program share the same space,
then on entry to the second and subsequent routines, the stack will contain

the valies left by the previous routine and these will be interpreted accordingly,

if the current routine does not alter them,

2 The °'CURRENT VALUE' attributed to a2 cycle is the value of the integer

name used on the left hand side of the instruction at the time of the faul?,
Thus if a program consisted of a number of cycles one after other, controlled
by i, and the fault were inside the last cycle, then all cycles would have the
same 'CURRENT VALUE' - the current value of i. _

3: Oonly cycles, arrays, integers and reals are distinguished,

(i) for integer name's and real name's the address of the actual paramter

is printed (as an integer) .,

(i1) for array fn's (see Section g) its parameters are printed (as integers).

(iii) for routines and function's used as parameters, six real quantities

are printed,
(iv) for complex quantities, the real and imaginery parts are printed in

floating point style,

FAULT TRAPPING
The above standard monitoring procedure involving the termination of
the program, is not always convenient, For example if a'prograﬁ is dealing
with a series of data ths, it may be pregerable to restart on the next
'case' in the event of (say) EXP'DVERFLOW'rather than terminaté the entire job,
An instruction is provided which enables the user to trap certain
faults ‘and transfer control to some preassigned point in the program, It

takes the form: -

fault LFAULT LIST] _
where ~ LFAULT LIST] = LN-LIST]->INJLREST OF FAULT LIST]

For example: -~

fault 1,2,5 ->18, 3,4 ->10

means 'if a fault of type 1,2 or j subsequently occurs then jump to label 18 ; and
if a fault of type 3 or 4 occurs then jump to label 10,

The effect is to preserve all the necessary control data to enable control
to.revert to this point in the program (and then jump to 1abel|18 or 10) should

one of the specified types of faults occur at some lower (or the same) level,

The label must be in the same block as the trapping statement, which will
usually_be in the 'main' block at (saj) level 1 or 2.

The fault instruction has dynamic significance, and a following fault

instruction can change this trapping action, All faults not referred to

by a fault instruction are dealt with in the usual way (i,e, they cause
the program to be terminated), '

The first two lines of the standard fault monitoring are printed for
faults trapped in this way, Appendix 4 contains the list of faults which

can be trapped and the corresponding fault numbers,

FAULT DIAGNOSIS

Provision is made to compile certain checking facilities in
selected parts of the program, Having been compiled they can then be
switched on or off at run time by means of instructions in the program,

The formats are: -

compilelcheck]
stoplcheck]

Lcheck]on
[check]off

6.6

The first pair of statements are DECLARATIVES which delimit the areas of
the program in which provision is to be made for the particular checking facility.
The second pair are INSTRUCTIONS which turn the facility on or off (initially they
are on), They do this by setting a certain switch which is examined whenever
the facility is about to be executed, .If the relevant switch is on then the
facility is executed, if off it is skipped., If the facility has not been
compiled in the first place then the instructions have no effect, This switch
setting is extremely fast so that there is nothimg to be gained from recordiag
the current state of the switch (in some integer, say), and testing this before
each setting order, For example, the following seﬁuence causes queries to be

printed every tenth time round the cycle,

cycle i = 1,1,m
guerieé off
if fracpt(i/10) = O then queries on

1]
]
¥

repeat

The switch sensing on the other hand is a time consuming operation and it
is for this reason that the declaratives are provided to delimit the areas of the

program in which this takes place, In most cases, however, the check is compiled

over the entire program,

The checking facilities in question are described by the phrase: -

[check] = queries, routine trace, jump trace, array bound check

They will be described in turn,

QUERY PRINTING
Any arithmetic instruction (including complex) can be followed by a ?,

for example: -
a = b(i) + ¢?

when the facility is operative the new value on the 1l,h,s, is printed every
time the instruction is obeyed. The style of printing will be fixed, floating,

or complex floating according as the 1l ,h.,s. is of integer, real, or complex

type.
[Unlike the other facilities, ?'s are normally compiled so that a

compile queries at the head of a program is redundant, Also ignore queries
is equivalent to stop queries,]

ROUTINE TRACING
When the routine trace is operative it causes the routine number to

be printed each time & routine or block is entered and left, The correspondence

between the routine number and the name can be found from the program outline

produced during compilation, The printout of a routine trace might appear
RQ5 [g7 RFgb6 ENDGb ENDQ7 RQ9.......

Here R, RF denote routine and real fn respectively, The full list of

abbreviations is: -

B begin R routine

IF integer fn RF real fn CF complex fn
IM integer map RM real map CM complex map

" JUMP TRACING _
The jump trace facility allows the flow of the program to be followed

in greater detail., For every jump imstruction obeyed the label number

is printed; for every test the value of the label at which the [COND]

ls satisfied is printed; for every switch the value of the switching
index is printed, Thus a label trace might appear

>3 T1 =>4 ~>6 S3 ->7 ~>8 ->Q

Here T and S refer to test and switch respectively, If the label and

routine trace are both operative the print out might appear: ~
RO5 >3 T1 =>4 =>D RO7 S3ecceccens

ARRAY BOUND CHECK
If this facility is operative the values of the subscript

expressions in all array elements are checked to see if they lie in the
range s ecified by the bound pairs in the array declaratioms, If not, the
progranm 1s terminated with the appropriate'monitoring. '

OTHER CHECKING FACILITIES

Certain checks are built into the object program e,g., whether
& cycle instruction calls for an integral number of cycles amnd whether a
switch index is out of range or corresponds to a label not set., All
are time and space consuming operations, They can be removed from an

object program which is otherwise ready for production by means of the

declaration

production run

7 PRESENTATION UF COMPLETE PRUGRAMS

JOB DESCRIPTIONS | | |

- The running of programs on the computer iscontrolled byra .
supervisor program held permanently in the machine, _Thé supefvisbr
accepts complete programs as amgeries-of_tapés (programfand data) and
a JOB DESCRIPTION whicn may be on a separate tapé or included ﬁitﬁ_the
program or data, A full degcriptipn of;the system is given elsewhere
L1], and in this section we give examples_to.iilustréte_the general

principles of job descriptions,

PROGRAM AND DATA ON SAME TAPE

Thezsimplest_form of Jjob consists of job decription, program and

data on the one tape, . For example: -

JOB

UMA, JONES 5/2

OUTPUT

0 LINEPRINTER 10U LINES
STORE 32 BLOCKS

'CUMPUTING 10000 INSTRUCTIONS
COMPILER AA

begin

PROGRAM

i“ L A—

end of program

DATA

NUTES |

i, The title.(znd_line) identiﬁieslthe Job, The first few charaéters
will be a code to iduntily ihe particular organisation and the rest will
be iniormation of an arbitrary form to identify the programmer and the

program within the organisation,

Reference

L1] ‘Documents and Job Déscription‘ I1.C, T, Ltd,, October 1403,
This gives a full description of the possible arrangements ol program

and data tapes and the utilisation of the multi-channel input/output

facilities on Atlas,

72

2. ‘The QUTPUT information says that refereﬁce to channel ©C in the

| pxogram means the lineprlnter (1f no output channel is selected in the

program channel O is used), The number of LINEb glves an upper limit
to the amount of output that is to be permltted.

y STGORE giveS”an:Upper'limit on"the'number of 512 word main storé
blocks uéed b& the'program and data, I

3. | CUMPUTING gives a limit on the running time of the program, An
'INSTRUCTION' 1is equivalent to 2048 machine 1nstructions.

The QUTPUT, STORE, and CUMPUTING sec tlons are optional, both
individually and collectively, 1f they are omitted the allowances given
in the above example are assumed, i.e,, 100 LINES, 32 BLOCKS, 10000
INSTRUCTIONS. | These should in fact be adequate for most small problems,
except possibly the 100 LINES, The foregoing example could therefore be

shortened to: -

JOB
UMA, JONES 5/2
COMPILER AA

begin

- PROGRAM

o= AENES et SR
TR I Eieew Sl

end of program

DATA |
|
|

YL v/

A program tape 1s'always assumed to be on input channel O so that in the above

case, the data for the problem is'also on channel 0, which is the channel

‘used in the absence of a_contrafy '‘select input' instruction in the

program, ++*7Z is an end of tape marker and indicates that all the
information on that tﬁpe has been read, This must be on a line of

its own, and must be followed by at least one 'newline’,

) '::F A I .I:C-lr\-. Jeden .'-,,,... e = . i A -\...:l ot .!-_ JRTe. :El- .
b] . E Fy . ' 5 < W - | a TR)) - s F St Cr, .- "
i . N S O T AN SR i Foonm e g F::'L!.f-'i A - 2 IR 3 4#:&?} -elr f oy
e - - - - I P r

73

PROGRAM AND DATA TAPES SEPARATE _
Often when a program is being used for production runs, it is
_ convenlent to keep the program on a separate tape which is never changed

For each run the Job description and data form a separate tape, For example:

COMPILER AA
(title 1)

begin

PROGRAM

end of pProgram

* % K7,

The data tape including the job description, would be

JOB

(title 2)

INPUT

O (title 1)

SELF = 1 .

DATA \

DATA

* - k7,

The input-section gives the relevant program as being channel O (the program
Channel) Qnd SELF = 1 indicates that the data tape 1s to be read as channel 1,
Thus an instruction 'select input (i)' is required in the program, This
tape could, if necessary, include any QUTPUT, STORE, and COMPUTING information
since this is the part of the job description,

Possible titles for the above example might ba

(title 1) UMA, P10

(title 2) | UMA, P10/RUN 26

PRGGRAM ON SEVERAL TAPES

It is often convenient to have the program itself on two or more distinct
tapes, where, for example, the program may be SO long that it would be phy31cally

unmanageable to keep 1t on one tape

Alternatlvely the program may contain a large sectlon (declarations and

routlnes perhaps) which is common to many programs and'which can conveniently

be kept on alseparate tape,
The instruction

now compile from input[N]

is used to switch the compiler from one input stream to another, For exampile: -

FIRST PART I
OF o
PROGRAM l
- |

— g —

now compile from input 1

AR A

COMPILER AA

(title 2)

| C
bl

end of program

* % %7,

DATA
(title 3)

DATA

* %k %7, . ' | ~

N

8 COMPLEX ARITHMETIC

As indicated previously, facilities exist for the mamnipulation
of complex as well as real and integer quantities, complex quantities

are stored as a pair of real numbers in consecutive locations (the real and
imaginary parts respectively), The address of the complex quantity is
that of the real part,

DECLARAT IONS
All quantities must be declared before they are referred to.

For example: -

real R1, R2, R3

complex y /
complex array P(1:10), Q(1:10,1:10)

causes 3 locations to be reserved for R1, R2, R3, 2 for z, 20 for P and

200 for Q.

STANDARD FUNCTIONS
The following standard functions are added to those previously

given: -

re(z) ~ (real part of z)
im(z) (imaginary part of z)
mag(z) (modulus of z)
arg(z) (argument of z - in radians)
conj(z) (complex conjugate of z)

The argument z may be any [EXPR] (in the complex sense as described below)

The functions
csin,.ccos,'ctan, cexp, clog, csqrt

have complex L[EXPR]'s as arguments and yield results of complex type,

For example if z = x + iy, cexp(z) = exp(x)(cos(y) + 1 sin(y))
In the case of clog and csqrt it is the principal value which is computed,
i.e,, the value for which the argument @ lies in the range -r <o < ¥

8.2

ARITHMETIC EXPRESSIONS

The arithmetic expression LEXPR] is still of the form

[+')LOPERAND] [OPERATUR]LOPERAND] LOPERATOR] [OPERAND]

but LOPERAND] is now expanded to be

(VARIABLE], [CUNSTANT], (LEXPR]), | LEXPR]|, LFUNCTION] or i

Here i is a delimiter denoting the 1 (or j) of complex algebra notation,

Examples of this more general expression are: -

(Viconj(I) - I*conj(Vv))/(21i)
(2122 + Z2Z3 + 23Z21)/Z3
v(1,2) + csin(conj(v(2,1)))
RO*(1 + 2iQod) I
i

e

When a complex number is written out explicitly (say x + 1y),

then it is regarded as 3 operands (x,i and y) connected by the two

operators + and (implied) *, Thus if the brackets were omitted

from the denominator in the first example it would mean

((Vxconj(1) - I*conj(V))/i)2

ARITHMETIC INSTRUCTIONS

The form of an assignment instruction remains

but [VARIABLE] now includes complex scalars and complex array elements,

example: -

[VARIABLE] = LEXPR]

7 = 2172/(Z1 + Z2)

Y =G + 12wf*c

A(p,q) = 2csin(272)

R = Rl +re(Z).

P = ire(Viconj(I) + I*conj(V))

For

NOTES

1, Just as real quantities may not appear on the r,h,s, of an integer

assignment (except as arguments of integer functions), so complex

quantities may not appear in real or integer expressions. -

Howevef, the functions
.
re(z), im(z), mag(z), arg(z)

convert from éomglex'to real quantities and may therefore appear on

the r,h,s, of a real assignment, In fact any function whose

value is real regardless of its arguments may be used in a real

expreSSion (Just'as'any integer functién, regardless of its argument,

may appear in an integer'éXpression). Thus 1if X and B are real and Y

complex then: -

X =B + im(Y)

is valid,

2. re(z) and im(z) are actual locations in the store and can therefore

be used on the 1,h,s, of an instruction (whose mode is then real).

For example: -

re(z) = sqrt(2)
im(y) = 5 + im(z1)

However, mag(z) and arg(z), even though they do define z, are not locations
in the store and cannot be used on the 1l h.s, If a complex quantity
is being evaluated by means of the evaluation of its magnitude (m) and

argument (a), the assignment is done by

z = m+*(cos(a) + i sin(a))

or ~ z = mxcexp(ia)

8.4

CONDITIONS

In conditional operators, [EXPR]'s must be real (in the sense

of note 1 of the previous section), Hence the following are legitimate: -

it arg (z) > #/2 .hen -> 3

3 case mag(z) >1 ¢

ROUTINES AND FUNCTIONS

Since rdutines and functions are allowed to operate on complex

quantities, the parameter types have been expanded to include

Formal parameter type I Corres-ond1=j actual parameter
complex name I name of a complex variable

_ _ .

complex I any expression (which will be

- evaluated as if for a complex

assignment)

name of a comglex'arraz

l
I
I
complex array name I
|

MW

comglex array | ; name of a complex array
' I

_-___—_____——-—-————_——-——_————_——-—_—-'——

The routine types [RT] have also been expanded to include complex fn,

As an example we will rewrite the function routine for the polynomial

a(m) + a(m4l)X+, . 0cceeees + a(m+n)xrh

assuming x and the coefficients a(i) to be complex,

complex fn poly (complex arrayname a, complex x, integer m, n)
integer i ; complex y
y = a(msn) ; result = y if n= 0

cycle i = myn-1, -1, m
y = y*x + a(i)

repeat

result =y

end

INPUT -QUTPUT OF COMPLEX NUMBERS
Data is punched in the form

[REAL PART] + i [IMAGINARY PART)

but the individual parts can e punched in any acceptable 'real' form., Both

parts must be punched however., For example: -

3+i4 0+i1 -0.5+i 0 1,17a3 -i2.1304
They may be read by the instructiom

read(Z21,22,23,24)
The permanent routines

print complex(complex z, integer m,n)
print complex fl(complex z, integer n)

print the value of z in the form

LREAL PART] + i [IMAGINARY PART)
the individual parts being printed with the aid of the corresponding real

routines, 'print' and 'print fl1', using the same digit layout parameters,
For 7-hole tape this form of output is compatible with the format for

punching complex data,

NOTES
1, Spaces are permitted except in the two number parts themselves, In these

they may only appear after an o (see description of basic input routines),
2. The other input and output routines described in Section §

have not been generalised to deal with complex numbers,
3. One may of course read a pair of real numbers on a data tape as a

cdmplex number by the 'real’ read instruction

read(re(z),im(z))

Q STORE MAPPING

THE ADDRESS RECOVERY FUNCTION

The absolute address of any variable is not generally knoin in
an Autocode programme, but it may be obtained by means of a standard
function. For example: - | |

s = addr(A(0,0))

This places the address of A(0,0) into the variable s, The argumeat
may be any variable, real, integer, or complex and the result is an 1nto¢or

giviang the abksolute address of the storage location allocated to that
variable,
Absolute addresses are used in comjumctiom with array fumctioms

(see below) and with the 'storage' fumctions

ilto(cr (integer »)
real (imteger n)
complex (integer n)

These give the comtents of the address in questiom as am integer,

real, or complex number, Im the last case the real amd imagimary parts
of the number are assumed to be in n and n+l1., The actual parameter

may of course be an integer expression e.g., s+k-1, These functioms
may be employed on the left hand side of am assignment statement as

well as in an expression, Thus the pair of imstructioms

s = addr((a)

real(s) = b
are equivalent to

a = b

ARRAY FUNCTIONS

T e declarations of Sectiom 2 define variables and allocate
storage space for them, In this section we introduce a declarationm
which defines variables as the numbers comntained in storago locations
that have already been allocated, This is of importamnce in commumicating

between routines with the addr type of formal parameter and imn renaming

variables (see below),

An example is

“array fa X(s,p)

which defimnes X(i) as the real number in the storage location whose

address is given by s+i*p, Thus it defines a vector X(i) in

terms of an origin s and a dimension parameter p,

Array functions may define rectaamgular arrays with any number

of subscripts., For example: -

array fn Y(s,p,q)
defines Y(i,j) = real (s+i*p+j*q)

integer or complex array functions may be defined by prefixing the declaration

by integer or‘conglex. (i,e, integer array fna X(s,p))
Array fumctions may also describe scalars, For example : -~

-~ array fa A(s)

defines A to be real (s). Imn this way, elements of a vector, say, Caa be

given individual names,
The parameters im array fumctions may be gemeral integer expressionms,

As an example, assume that 100 storage locations have been allocated

in some way, and that the starting address is given by the integer

variable sl, Thern to define the comteats of these locatioms as a

vector x(i), ome could write

'arra! fa x(s1,1)

x(0) would them correspomd to the mumber inm address si, x(1) to that
in si+l etc. If it is desired that the first locatiom should
correspond to x(1), the declaratioa would be written

array fm x(si-1,1)

If we had wanted to defime a 10 x 10 matrix, stored row by row

rather tham a vector, we could have written

array fa A(si,10,1)

and A(0,0) would correspomd to address sl

array fa A(s1-11,10,1)

would defime a matrix in the available space whose first element

was A(1,1),

NOTES

1, If the suffices of arrays are to start from (1,1, ---1) rather than

(0,0, ~--0), am appropriate adjustment must be made to the expressiom giving
the origim im the array fumctiom declaration,
2 Space redefined by array fu's may still be referred to by its origimal

9.3

THE RENAMING OF VARIABLES WITHIN A BLOCK
We illustrate this with an example, Suppose we want to define and

allocate storage for pairs of real variables x(i), y(i) so that they

are 1m succesive locatioms, The array declaratiom will only define
& vector or matrix array stored in the convemtiomal mammer, so we

adopt the following device

begin

integer s
array a(1:2000)

addr(a(1))
array fa x(s-2,2), y(s-1,2)

S

The first pair of mumbers could them be referred to either as
x(1), y(1) or a(1), a(2), the secomd by x(2), y(2) or a(3), a(4) etc,
Since the array declaratiom is for 2000 variables, up to 1000 pairs
x(1i), y(1) car be accommodated,
As anothar example, suppose we have defimed a matrix A amd allocated

storage for it by the declaratiom

array A(1:10,1:10)

and we wish to defime the first column of'A as a vector, them we could

write

array fa y(addr(A(1,1)) -~ 10,10)

which defines y(1i) = real (addr(A(l,l)) ~ 10 4+ 10%*1i)

inlliguy

i,e, as the first columm of A, Thus y(1) is equi#alent to A(1,1), y(2)
to A(2,1), - - - -,y(10) to A(10,1).
In the case of complex array fumctioms the user must take imto account

that a complex mumber occupies 2 comsecutive locatioms., Thus if si is

the address of Q(1,1) of a complex array Q(1:10,1:10), then

complex array R(s1-20,20)

defines a vector R(i) whose elements are the first columm of Q, 1.e,,

R(1) = Q(1,1)

9.4

74 STORE MAPPING ROUTINES
Storage fumctioms of arbitrary complexity can be obtained by means of store

- mapping routimes, These are essentially fumctioa routimnes which

compute am address, For example: -~

real map X (imteger i,j)

result = s+3ix(1-1)+j-1

- end

conputés the address of the (i,j)th element of a real lower triamgular matrix
stored by rows startiag with X(1,1) at locatiom s, Here s is a moa-local
quantity, but would probably be local to the routine in which such a
statement appeared, Such a fumctiom may also be employed on the 1 h, s,
of an assigament statement, For example: -

X(i-1,j+1) = [EXPR]
In the same way we Can also_define integer map and complex map routines,

If the map is placed at the emd of a program a specification must

e given before the routime can be referred to, for example

real map spec X{(imteger i,])

We cam mow complete the list of formal parameter types

actual parameter

Formal :aranoterlt | cOrresf-ldi.

I
I
addr ’ the name of amy imteger,real or complex
| variable (imcludiag am array element), The
| address of the variable is handed om as the
i parameter proper, It is equivaleat to an
i integer parameter in the'body of the
I routine, In fact am addr parameter
. replaced by x is equivaleant to
I I'al intc!dr parameter replaced
| by addr (x)
| ' —_
real iaz i the actual parameter is the name
1-:.!.r nig | of a mapping routime of the
cduplexuug | specified type
- |

10,1

10:THE USE OF MACHINE INSTRUCTIONS

STACK STRUCTURE

Machine instructions can be used in routines either to make an
inner loop more efficient or to effect some operation which cannot
easily be done othérwise. It is assumed that the reader is reasonably
familiar with the logical structure of the machine, that is with the
basic order code, It also essential to know how data is stored in the

stack, We illustrate this with reference to the following routine,

routine matrix fn (array name A,B integer m,n real fn F)

real a,b,c ; integer 1i,]j

array C(1:m,1:n),E(1:m)

real fn spec F (real x)

)

i,1,m
1,1,n

cycle i

cycle 3

H

repeat
regeat

end

NOTES

1, The first word of the local stack section contains the control number

for returning to the calling routine (the first half word) and the previous
contents of Bd, the current level B-line (the second half word), The 1st

half word of the second word contains the test link (which records the position

within the label list of a test instruction), and the 2nd half word contains

information (the number and type of the routine and the number of fixed
variables) required by the run-time fault monitor routine, Here Bd refers
to the B-line associated with the routine, and corresponds to the textual
depth of the routine in the program in which it is'embedded. I£f (say)
this is 2 then Bd = B2, The relative locations of the fixed variables A,

B, m, n etc,, are assigned at compile time, Immediately;on entry to the routine

LAYOUT OF THE STACK FOR THE DECLARATIONS OF 'matrix fn'
Everything except real a, b, ¢ and the (real) arrays themselves are destandardised and held in 'longword' units.
In some cases the 1st (or m.s.) half word of the destgndardised quantity is 'flagged' to identify its function
for the purpose of !'stackprint’ (see the shaded h.w!s.) The blank sections indicate an indefinite number of words.

e £ x€d variable allocation ~—————————y | ¢ dynamic allocation —————————>|

!
| \
B.(initial value of B ov _ . st _
nmw | ? \ o (final value
_ - | " of wmov
destandardised | \ |
similaxr to numbers f
C, D but I
Mmmmﬂ back standardiged - . points |
o non-loca fl.pt \ points to
arrays numbers cycle ﬁHon to 'origin'
m \ | i=1,1,m j=1,%n location I . |
.—.ﬁ._. 7% | 7 e 0 i.e.D(0)
_ H IH 1B 1N IR EEDD D N R D _ S —
A B realfn F D similar dope "T1iffe® array C dope array D
to 1 vector vector vector
18t h.w. cycle for C for for D
MMM&@H:w inal array C There is no Iliffe vector for one
£ words. ¢mwﬁm dimensional arrays. The 2nd ﬂOHauow_wwo
The information stored +increment primary reference points to the address
: of D(0).
WMMMdHMMWwMMM MWM@MMWM% final value The array 1is wmox«m by rows: 1st element
B-line 'display’ address of i (1st of omowaﬂoﬂ following last element of
1st h.w. contains the test link h.we 18 N@HOV previous LTow.

The entry for the rth row of C stands in location
. : In+r.In being the 'origin' of the vector. The entry
1st h.w. contains the c.n. link =0T+ -0 , : .
.hHZNMmsn h.w. contains the previous value of B itself is the address (possibly implicit) of c(r,0)
As.ﬂ. - half word) n in the rth row.

>nd hew. contains monitor information

10. 3

2. Destandardised quantities are formed by adding o0x*8k(-12) to the standardised
form, This constant will be found in location *1000001, This octal form

of the address can be used in machine instruction formats(see later),

There are no 1nteger'nnme or real name parameters in this example; if

present they would be represented (at the appropriate place among the fixed
variables) by single words, namely their addresses, in a destandardised form,
They are at present in distinguishable from integer's, Similarly for

complex name pdrdmeters. A complex quantity requires two consecutive
words,:fepresenting the real and imaginary parts,

3. ARRAYS, The primary reference to an array consists of a pair of words, The
second half of the 1st word points to the (ist word of the) 'dope vector’,
that of the second word to the 'Iliffe vector'. jThe dope vector contains

the values of the bound-pair list together with the number of pairs, i.e,

the dimensionality of the array, If there is more than one array associated
with same bound-pair list they share the same dope vector, The Iliffe vector
gives the origin of each row of the matrix (which is stored by rows), The
purpose of this is to simplify'computation involved in accessing an element

of the array, Thus for example to add C(i+5,j-0) into the accumulator

the instructions are: -~

101, 96, d, 1 + 3 put i in 896
104, 96, 0, C + 13 BgO = .596 + IO
101, 97, d, j+4 put j in 897
104, 97, 96, 55 ' 897 = 897 + entry for row (i+5)

30, 0, 97, -0 acc = acc + real (Bg7 - 6)

Similarly to add the element D(i+5) of the one-dimensional array D

(which has no lliffe vector) one may write

101, 97, d, i + % put i in Bg7
104, 97, O, D + 14 BQ7 = BQ7 + addr (D(0))

320, 0, 97, 5 aCC = acc + real (Bg7 + 5)

In these instructions i, C, j, D refer to the addresses of these quantities

(see later)

Arrays of k dimensions (>2) are stored in hierar hical fashion,
The primary Iliffe vector points to a set of arrays of k - 1 dimensions
stored end to end, Each such array consist of an Iliffe vector referring

to a set of K - 2 dimensional arrays, and so on,

4. THE PARAMETRIC FUNCTION F, ' 8ix words of information are kept here,
In sddition to the control number for entering the routine it is
necessary to keep a record of the display of the relevant B-lines

when the routine is first substituted as an actual parameter, For

further details see the Compiler,

5. THE CYCLES. As explained in the text the initial and final values and
increment in a cycle are evaluated and checked for compatibility belore
the cycle is commenced. The increment and final values, together with
the address of the controlled integer variable are recorded for use in

the execution of the cycle, The diagram 111uétrates how they are stored,

STACK INSTRUCTIONS
The following autocode formats involving the stack pointer (BQO)

are available

st = st + LEXPR’]

L

st = [EXPR]
[NAME] = st

st represents the contents of Bg0, In the last imstruction the L NAME]

must be local to the routine containing the instruction, otherwise a

fault is indicated,

fHACHINE CODE EDRHATS
"Some 'machine code' formats are now described,

1, Where there is no symbolic address involved an instruction is written in

the form
(¥p], [N], [N], [ADDRESS PART)

(and terminated as usual by ; or newline). Here [FD] refers to the
function digits, [N] to the Ba and Bm digits, and [ADDRESS PART] to the
address part, which may take a number of forms, It may be written as &
constant in the usual way (preceded possibly by a sign) bearing in mind
that the binary point is located 3 places from the right hand end, Thus

o121, 8o, 0, 2.5 is equivalent to
05064000 00000024

10,5

It may also consist of an octal number which consists of an * followed

by up to 8 octal digits, including any significant zeros, Thus

~
- o101, 91, 0O, *1001 is equivalent to
040606600 10010000
in octal notation,
Finally it may consist of a label or a (possibly signed) constant plus
a label, The label is replaced by the control number corresponding to it, Wwe
may refer to labelled constants (see next section) in this way. For example
0334, 0, 0, 14:
oioi, 09, O, % + 14:
'
t
14: *03, *0000012
puts an unstandardised 10 in the accumulator, and a halfword 10 in 899
NOTE : The formal definition of LADDRESS PART] is
LADDRESS PART] = [+']lcoNsTl+IN]:,[N]:,[+']1(coNST], [OW]
2. The format

[+']1{cONST]
is used to plant a standardised 48-bit floating point number in the current

location of the program,
3. Pairs of 24~bit words may be planted in the object program by means of the format

LADDRESS PARTI1(,]LADDRESS PART]

Thus we may plant tables of integers or labels, for example: -

34
7:,8:

4. We now have an instruction format which uses a symbolic address,

L¥D], [N], -, [NAME] [+CONST']
where [+CONST']=[+]LCONST], NIL

Here the [NAME] can refer to anything which is represented in the fixed storage
”~ sections of the stack, Tho'resultinz instruction is
| , | |

-

(rp],[N], 4, p [+ CONST']

10.6

where (Bd, p) is the raddress' of the name, Bd being the B-line pointing
to the appropriate section of the stack, and p being the address relative

to the origin of that section, Thus an instruction

03241 O, - a

appearing in the routine.under discussion would be translated as

0324, 0, 2, 14

assuming Bd = B2, and that F occupies O words,

The effect would be to put a in the accumulator,

1f the [NAME] refers to an unstandardised floating point integer then we

may wish to select the integrallhalf for use in a B-=line, For example

oiol, 8o, -, m+d

is equivalent to
oiol, 80, 2, 0.5

If a and m had been real and integer name's then 2 instructions would

be necessary in each case, thus

0101, 99, -, & + 3
0324, 0, 99, O

and
0101, 99, -, M + 3
oi01, 80, 99, %
If a is complex then
Oy4' 0’ | ﬂ.
would put the real part into the accumulator, and
0?4’ 0' -5 a+1

would load the imaginary part,

Ia the case of arrays we can select by similar meins the two primary

reference words, and with their aid obtain access to the dope vector and/or

the array itself,

)

10,7

EXAMPLE ON THE USE OF MACHINE ORDERS
The following example forms the sum of three routines A, B, C of

similar dimensions, (It is in fact the permanent routine 'matrix add')

routine matrix add (array name A, B, C)
comment The routine forms A =B + C
real dump
oio1, 61, -,
oio1, 62, -,
oloi, 63, -,
0121, 65, O,
0101, 64, 61, 3
0172, 64, 0, 2
0225, 127, 0, 1
22 o101, 64, 61, 3
0152, 64, 62, 3
1:
3
1

+ 3 ; comment dope vector of A
+ 3 s comment dope vector of B
+ 3 ; comment dope vector of C

; comment check dimensions

0225, 127, O,
0152, 64, 03,
0225, 127, O,
0124, 01, 0, 1
0124, 621 0, 1
0124, 63, 0, 1
0203, 127, 65, 2:

0101, 05, -, A + } ' ; comment 865 = dope vector of A
0324, 0, 05, 1 ; comment 804 = no of elements in matrix

0322, 0, 03, 2
0320, 0, O, *10000040
0350, 0, -, dump
0324, 0, 05, 3
0322, 0, 05, 4
0320, 0, O, *10000040
0362, 0, -, dump
0330, O, 0, *10000010
0350, 0, -, dump
o101, 64, -, dump + 3
oiol, 06, 65, 13 ; comment set 61 = address of 1st element of A
0104, 06, -, A + 13
o101, 61, 65, 3%
0104, 61, 66, 3
0101, 66, -, A + 13 s comment set S62
o120, 66, 61, O
oio1, 62, -, B + 13
0124, 602, 66, O
o101, 63, -, C + 13 ; Comment set 863 = address of 1st element of C
0124, 63, 66, ©
0122, 04, O, 1 scomment
0324, o4, 62, O
o320, 04, 63, O
0356, 64, 61, O
0203, 127, 64, 5:
4
1 0121, 91, 0, 3}
fault monitor ; comment DIMENSION FAULT
43 end '

address of 1st element of B

perform addition

&) !

11,1

11, THE PERMANENT ROUT INES

In Section 5, we decribed the input and output routines,
The permanent material also includes routines for the solution of linear
equations, the solution of systems of ordinary differential equaiions and

operations on matrices, Further routines may be added from time to

time,

LINEAR HQUATIONS
routine spec eqn solve(arrayname A,b, reainame det)

This routine solves the equations

ACL, 1)x(1) + ACL,2)%X(2) +....+ A(1,m)x(n) = b(1)
A2, 1)x(1) + A(2,2)x(2) +....+ A(2,n)x{(n) = b(2)
A(n, 1)x(1) + A(n,2)x(2) +,...+ A(n,m)x(n) = b(n)

(i.e., Ax = b), where the coefficients A(i,J) are stored in the

matrix A, and b(i) in the vector b, A is destroyed and the solution
is placed in b, If during the elimination process, the equations are
found to be linearly dependant, then 'det' is set to zero and the
routine is left,-with~both.Agand“b_upset,, Otherwise 'det' is set to
the determinant.of.a‘ Consequently ‘det’ shouid be tested after each

call of the routine,

MATRIX ROUTINES
The matrix routines operate on two dimensional arrays(i,e, matrices

not vectors), The dimensions of the arrays are not required as parameters
as the routines automatically find these from the declarations, and check
them for compatibility, The programmer may insert similar tests

in his own routines by means of the functions

integer fn spec dim (arrayname A)
integer fn spec bound (arrayname A, integer n)

The first gives the dimensionality of the array(l for a vector, 2 for a

matrix etc,), and the second the nth bound (upper or lower) of the array

counting from left to right, For example, if A were declared by: -

array A(-5:+3, 1:p) where p = 1y then

dim(A) would have the value 2

bound(A,1) ' ' ' ' <5
bound(A,2) ' ' T 45
bound(A, 3) ' ' ' ' 1

bound(A,4) T ' 1o

11,2
Tiie¢ rout.ines

routine spec unit (arrayname A)
routine spec null (arrayname A)

set A Lo be a unit matrix (checking that it is square) and a null matrix

respectively, The routines

routine spec matrix add (arrazname A,B,C)

routine spec matrix sub (arrayname A,B, C)

routine spec matrix copy (arrayname A,B)

set A to B+C, B-C and B respectively, Although the parameters are of
type arrayname, the operation of the routines is sucii taat the same array

can be substituted for more than one of the parametcrs, For example: -
matrix add(A,A,A)

doubles A, The same is not true of the following routines, -

routine spec matrix mult(arrayname A,B,C)

routine spec matrix mult’(arrayname A,B,C)

~routine spec matrix trans (arrayname A,B)

Tnese set A to B»C, BC' and B' respectively where the ' denotes Lransposilion,
If it is required to, say, set a matrix to the product of itselif and anothe.

then the call
matrix mulc{(A,A,B)

will fail, IiL is necessary to declare another ariay, 'dummy' say, and

then use ’'matrix copy' and’matrix mult': -

matrix copy (dummy,A)

matrix mult(A,dummy,B)

Alternatively, a rouiine with parameters of type array may be defined whi-h

calls the permanent iroutines : -

routine MATRIX MULT(arrayname A, array B,C)
matrix mult(A,B,C)

end

In this case a call of the form

MATRIX MULT(A,A,B) or even MATRIX MULT(A,A,A)

is possible,

11,3

The routines

routine spec matrix div(arrayname A,B, realname det)
routine spec invert(arrayname A,B, realname det)

set A to inv(B) ‘A and inv(B) respectively, 1In the process B is destroyed
and the value of its-determiﬁant placed in det, Should the matrix be
found to be singular, 'det' is set to zero, - Consequently ‘det’ should be
tested after e#ery call for these routines, If B is required at the end
oi the routine, then the techniques described above should be used, The

funciion
real {n det (arrayname B)
sets 'det' to ihe determinant of B and deStroys B,

SOLUL ION UATIONS

OF DIFFERENTIAL
There are (wo routines available for advancing the solution of

a system of first order ordinary diiferential equations

dy(i)/dx = 1(i)(x,y(1),y(2),....,y(n)) i=1,2,...,n

from X Lo x+h, using the Kutta-Merson fourth-order integration methodiz].

The system is defined by means of an auxiliary routine, which must be

supplied by the user, of the form : -

routine spec aux(arrayname f, real x)

which musi evaluate ithe derivatives f(i) in terms of y(1),y(2),...y(n)
and x and then place them in £(1),i(2),, f(n).

The first routine

routine spec int step(arrayname y,real x,h, integer n ¢
realname e, routine aux)

advances the solution by a single step of length h of the Kutta-Merson

process,

L2] Reference L, FOX (Ed,) Numcrical Solution of Ordinary and Partial

Differcntial Equalions, Pergamon 1gvz, P,24.

11.4

The parameters are : -

y

= S ~ -

aux

name of a (real)array. oOn input y(1),y(2)...y(n) should

contain the solution at x, 0On output they will

contain the solution at x+h,

the initial value of the independent variable
the increment of the independent variable,
the number of equations in the system,

the name of a real variable, which on output will contain

an estimate of the maximum truncation error over the step.
the name of the routine which evaluates the derivatives at a

general point (see above),

The second routine

roucine spec kutta merson(arrayname y,real x0,Xl1, realname e c

integer n,k, routine aux)

advances the solution, by means of a series of calls for 'intstep’, from

X0 to x1, keeping, if possible the estimate of the maximum truncation

error less than e, An initial step length of (x1-x0)/2¥m where 2}(m+1)

>k > 2fm, is taken, If over a step the local truncation_érror-(given

by 'int step’') is greater than e, then the step length is halved; if

the error is less than .Vle then the step length is doubled,

If three successive reductions in step length give no improvement in the

estimated truncation error, then e is replaced by twice the smallest error

achieved, and the integration process continued, The parametexrs are . -

XU

x1

Gj

aux

the name of a (real)array, On input y(1),y(2),....y(n)

should contain the solution at xu, On output they will
contain the solutioh'at X1,

the inital value of the independent variable,

the final value of the independent variable,

Lihe name of a real variable, 0On input this should contain

the accuracy criterion, ©On output it will be unchanged if this
accuracy has been achieved ; if not, it will be replaced by a
more realistic value(see above),

the numbeir of equations in the system

an estimaie of the number of steps'required to cover the
range(see above)

the name of the routine which evaluales the derivatives

at a general point(see above),

Al,1

APPENDIX 1. PHRASE STRUCTURE NOTATION

In describing Atlas Autocode we use square brackets round an
entity to denote that it represents a class of entities and may'be replaced
by any member of the class, We call an entity in équare brackets a.PHRASE.
For example we could define a decimal digit by -

- PHRASEiDIGIT] = 0,1,2,3,4,5,6,7,8,9

- where the commas are interpreted as meaning 'or', Thus there are ten

diiferent things which can be called [DIGIT], and when we refer to [DIGIT]
elsewhere we mean that any of the ten will be legitimate_ |

We can then build up from this basis and describe, for example,

a signed digit as

PHRASELSIGNED DIGIT] = +[DIGIT], -(DIGIT]

There are also places where a phrase may or may not appear and to
signify this a Special phrase 'NIL' may be written as the last alternative
in a phrase definition, For example the switch limits in a switch

declaration can be preceeded by a + or - sign if desired, (Absence of

a sign corresponds to +;) The relevant definition is

LNAME LIST]([i'][N]:[i'][N])
where PHRASEL+'] = +, ~,NIL

Thus - 4 i+4
4: 4
1: 3
are examples of switch limits,

" Alternatively we can use the special ? qualifier as follows,

"PHRASE[+] = +, ~
PHRASEL+?] = [+],NIL

The-last is impiicit and we can use [i?]-(e;g., in place of [i']) without
explicity giving the latter definition, -

In the,interest of efficiency however, it is preferable to
Keep the depth of ﬁnalysis as small as'possible and for this reason we

use the former scheme,

The phrase structure notation can be used recursively, i.e., phrase

~ definitions may,directly or indirectly, use themselves, For example we

may define a 'list of names separated by commas' by

PHRASELNAME LIST)] = INAME)[REST OF NAME LIST]
PHRASELREST OF NAME LIST] = [, 1INAME](REST OF NAME LIST],NIL

[Since a ',’ is used to separate the alternatives of a phrase definition
it cannot stand for itself like the other basic symbols, Instead we
must write [,], Similarly [EOL] and LSP] are used to denote 'end of line'
and 'space' in the source language,] -

The qualifier * also indicates recursiveness and a [NAME LIST]
could be defined as

- PHRASELNAME LIST] = [NAME][, NAME #?]
PHRASEL,NAME] = [, JINAME]

the definitions

[,NAME ¢], NIL
[,NAME][,NAME*], L , NAME]

PHRASE(L , NAME *?]
PHRASEL , NAME *]

being implicit, Again, however, for reasons of efficiency we use the former definition
Given the phrases of the language it is then possible to describe all the format.

allowed in a program, For example, if we introduce the phraselTYPE] as

PHRASEITYPE] = integer, real, complex

we can define the format for the scalar declarations as

FORMATISs) = LTYPE]JINAME LISTILS]

The [SS] indicates that it is a source statement, which means it appears on
its own in an Autocode program, |

In Atlas Autocode there is a further type or CLASS of format,
the unconditional instructions [Uu1], which have the gpecial proberty that
they may be preceded by the conditional operatorsilgilcoND] then and

unless [COND] then,

A list of the phrases and formats of Atlas Autocode follows,
Note that some phrases ([S], lCONST],[NAME] and LTEXT]) are not formally defined,
These are defined by special built-in routines which we will not consider here,

but those interested may refer to the references given below,

Al, 3

Finally we should point out that some of the definitions are not

completely rigid, For example, the arithmetic assignment statement is

defined as

FORMATIUI] = [NAME][APP] = [EXPR]

In the routine which deals with this format, tests are made to ensure that

the [NAME]LAPP] does in fact describe a variable, and is not, for example,

a function,

References

[3]. Brooker,R.A,, Morris,D, and Rohl,J,S, ''Trees and Routines'',
Computer Journal, Vol. 5, No. 1, '

[4]. Brooker,R.A,, MacCallum,I R,, Morris,D, and Rohl,J.S.
'*The Compiler Compiler'' 3rd Annual Review of Automatic Programming

(ed, Goodman), Pergamon Press,

Al 4

PHRASE
PHRASE
PHRASE
PHRASE
PHRASE
PHRASE
PHRASE
PHRASE
PHRASE

PHRASE

PHRASE
PHRASE

PHRASE

PHRASE
PHRASE

- PHRASE |

PHRASE
PHRASE
PHRASE
PHRASE
PHRASE
PHRASE
PHRASE
PHRASE
PHRASE
PHRASE
PHRASE
PHRASE
PHRASE
PHRASE

PHRASE
PHRASE
PHRASE
PHRASE
PHRASE

PHRASE
PHRASE
PHRASE

PHRASE

PHRASE

LEXPR]

L+]

L+']

LEXPR']
LOPERAND

LAPP]

[EXPR-LIST]

S
- ——

L+ JLEXPR']
+’ e
+’ -y NIL

LOPERAND]LOP]LEXPR'], LOPERAND]
LNAME]LAPP], LCONST], (LEXPR]), | LEXPR]}|, i, BUT NOT if
(LEXPR-LIST]), NIL |

LEXPR]LREST OF EXPR-LIST]

[REST OF EXPR-LIST]=[,1{EXPRILREST OF EXPR-LIST], NIL

LOP]

(CR)Lacc]

LAO]

[QUERY']

[TYPE]

LTYPE']
[NAME LIST]

i

[]
il

+y = % /r h *) NIL

dsa, acc, ca, sac

acc +, acc-, acc*, acc/, accl, addr, -, NIL

?, NIL
programme, program
L,], NIL

if, unless

acc, ca, Ssac

L —— e

integer, real, complex

integer, real, complex, NIL
LNAME]LREST OF NAME LIST]

{REST OF NAME LIST]=L, 1LNAME]ILREST OF NAME LIST], NIL

{ARRAY LIST)

[NAME LIST]1(LBOUND PAIR LIST])LREST OF ARRAY LIST]

[REST OF ARRAY LIST]=0,]1(NAME LIST](LBOUND PAIR LIST])LREST OF ARRAY LIST], NIL

{BGUND PAIR LIST]

M
-

LBOUND PAIRILREST OF BOUND PAIR LIST)

[REST OF BOUND PAIR LisT]=L[,](BOUND PAIR]JLREST OF BOUND PAIR LIST], NIL

LBOUND PAIR]
LARRAY FN LIST]

Lt
L]

LEXPR] : LEXPRI] _
[NAME]([EXPR-LIST])[REST OF ARRAY FN LIST]

[REST OF ARRAY FN LIST)=i,1[NAME]}(LEXPR-LIST])lREST OF ARRAY FN LIST], NIL

LSWITCH LISTI]

[NAME LI1ST]I(L+'JIN]:{+']1IN])[REST OF SWITCH LIST]

[REST OF SWITCH LIST)}=L,]INAME LISTI((+"JIN):Ll+']IN])LREST OF SWITCH LIST], NIL

(RT]

| FPP]

LFP-LIST]

LFP]

[REST OF FP-LIST]
{FP-DELIMITER]

L COND]

LAND-C]

LOR-CJ
iscl

L cOMP]

i ! il i

il

- H

integer map, real map, complex map, integer fn,
real fn, complex fn, routine

(LFP-LIST]), NIL

[FP]1LREST OF FP-LISTI

[FP-DELIMITER] L NAME]
[FPI[REST OF FP-LIST], NIL

[,'JLRT),[,'] integer array name, [,'] integer array,
[,'] integer name, [,*] integer, 5

[,']nggij] arfaz name, [;'][5231’115555!,

[,'] real name, [,'] real, '

[,’] complex array name, [,'] complex array,
[,'] complex name, L,'] ggﬂglgg, [,'] addr, L,]
[sc] and [AND-C],[sc] or [oR-C],(sC]

(501 and [AWD<),5C]

(scl or [OR<C],[SC)
LEXPR]LcOMP]LEXPR]LCOMP]LEXPR],

(ExPR] L coMP](EXPR], (LCOND])

=, F, 2, <, <, 2

[N]JLREST OF N-LIST]
L, JLNJLREST OF N-LIST], NIL

Ll

PHRASE LN-LIST]
PHRASE LREST OF N-~LIST]

PHRASE LALPHA'] = a, NIL

PHRASE [+ CONST'] = L+]JLCcONST], NIL

PHRASE lreal'] = real, NIL

PHRASE LADDRESS PART] = [+')LcONST] + IN]J:,IN]:, [+ JiLCONST], Low]

PHRASE icheck] = routine trace, jump trace, queries, array bound check
PHRASE LFAULT LIST] = |N-LIST] -> ULN]LREST OF FAULT LIST]

PHRASE LREST OF FAULT LISTl}=L,]LN-LIST] -> [N]LREST OF FAULT LIST], NIL

PHRASE LSIMPLE LABEL] = [NJ:, BUT NoT [N]:[,]

PHRASE LRT'] . = [RT],NIL

FORMAT CLASSLUI]

Al, 5

FORMAT LUI] = LNAME]LAPP] = LEXPR]LQUERY']
FORMAT LUI] = LNAME]LAPP]
FORMAT LUI] = ~>[N]

FORMAT [u1] = ~>_LNAME](LEXPR])
FORMAT LUI] = caption LTEXT]
FORMAT LUI] = result =1[EXPR]
FORMAT LUIX] = return

FORMAT LUI] = stop

FORMAT LUI] = test LN-LISTI]
FORMAT [U1] = [check]on
FORMAT (U] = Lcheck]off

A1, O

FORMAT LSS] = Lu1lls]

FORMAT 1SS = [UrliiulLCcoNDlisS]

FORMAT [sSs]] = LiullcoND] then LUI}LS]

FORMAT 1SS] = cycle LNAMEJLAPP] = LEXPRIL, JLEXPRIL, JLEXPR]LS]
FORMAT Lss] = repeat LS] '
FORMAT LSs] = |SIMPLE LABEL]

FORMAT LSSl = LNl case LCOND]:

FORMAT [Ss] = LNAMEJ(L+']LN]):

FORMAT (Ss] = LTYPEILNAME LIST](S]

FORMAT [ssS] = LTYPE'] array LARRAY LISTI]LS]
FORMAT iSs] = LTYPE'] array fn LARRAY FN LISTILS]
FORMAT [Ss] = LRT'] spec LNAMEILFPP]lis]

FORMAT (ss] = LRTIJLNAME]LFPPILS]

FORMAT LSS = begin LS]

FORMAT Lss] = comment LTEXT]LS]

FORMAT LSs] = end LS]

FORMAT Lss] = end of lprogramlis]

FORMAT LSs] = ignore gqueries [s]

FORMAT (Ss] = Eroductioh run [S]

FORMAT (SS] = page LTEXTILS]

FORMAT [ss] = switch LSWITCH LIST]Ls]

FORMAT (SS] = compile [check]is])

FORMAT LsSsl = stop lLcheck]ls]

FORMAT 1SS = own LTYPE]JLNAME LISTILS]

FORMAT iSs] = own LTYPE'] ggggg LARRAY LISTIilS]
FORMAT iSS] = fault LFAULT LIsTliS]

FORMAT LSSl = LFDIL,1iN]L,]iN]L, JLADDRESS PARTILS]
FORMAT (Ss] = [(FDIL, JLNIL, } <[, JLALPHA JINAME] L +CONST ']LS]
FORMAT LSs] = L+'JLCONSTILS]

FGRMAT (Ss] = [ADDRESS PART][,]1LADDRESS PART]iS)
FORMAT [ss] = LNAME] = st IS] '

FORMAT [Ss] = st = LEXPRILS]

FORMAT Lss] = st = st [+]LEXPR']iS]

FCRMAT [ssl- = prepare to read perm Ls]

FORMAT Lss] = define compiler

FORMAT Lssl = define master comEiler

FCRMAT LlsSs] = define special compiler

FORMAT (Ss] = édvancé 38 Lsl

FORMAT [Ss] = pl [NAME](INI(,1(NIL,1(ND)(s]
FORMAT LSs] = real exponentiation LS]

FORMAT Lss] = |LTEXT]LS]

FORMAT LSs] = now compile from input [N](S]
FORMAT [ss] = upper case delimiters [s]

FORMAT Lil& = normal delimiters LS]

FORMAT (Ss] = LTEXT]LS]

APPENDIX 2 INDEX OF STANDARD FUNCTIONS AND PERMANENT ROUTINES

All the functions and routines listed below are declared at level
O and hence are permanently available unless the names are redeclared locally
by the user., The number in the right hand margin indicates the page on which

they are described.more fully,

- STANDARD MATHEMATICAL FUNCT IONS

nLeger fn spec intpt(real x) - 2.5
integer fn spec int(real x) ' o 2.5
integer fn spec parity(integer n) - | i | 2.5
real fn spec sin(real x) o 2.5
52?1 fn spec cos(real x) o | - | 2.5
real fn spec tan(real x) - - 2.5
real fn_gggg 1og(£gE1 X) _ o 2.5
real fn spec exp(real x) o 2.5
real fn spec sqrt(real x) | 2;5
real fn'gggg-arctan(rehl X,y) | | 2.5
real fn spec radius(real x,y) | 2.5
real fn spec arcsin(real x) o | | 2.5
real fn spec ar cos(real x) | - . 2.5
real fn spec fracpt(real x) - | S 2.5
real fn spec mod(real x) | o 2.5
real fn spec re(complex z) . o - 8.1
real fn spec im(complex z) | ' 8.i
real fn spec mag(comglex z) | | 8.1
real fn spec arg(complex z) o ' 3.1
complex fn spec c¢sin(complex z) | | 8.1
complex fn spec ccos(complex z) 8.1

- complex fn spec ctan(complex z) | ' - o 8.1
complex fn spec clog(complex z) 8.1
 complex fn spec cexp(complex z) | | 8.1
complex fn spec csqrt(complex z) 8.1

complex fn spec conj(complex z) o - 8.1

STORAGE FUNCTIONS - . N
integer fn spec addr(addr s) j | Q. 1

integer fn spec integar(integer s) _ | ' 0.1
real fn spec real(integer s) ' .' | g.1
comgiex In spec complex(integer s) | - 9.1

MISCELLANEQUS FUNCTIONS

~integer fn spec control no([ROUTINE NAME])
This gives the address of the first word of the routine in question,

integer fn spec dim(arrayname A) 11,1
integer fn sgg bound(arraxname A, 1nteger i) 11,1

NOTE : The above classes of function cannot be substituted as an actual

parameter in a routine call, since they are implimented in a different way,

A2.2

INPUT ROUTINES

routine spec select
routine spec read(a

input(integer n)
ddr s)

routine spec read array(arrayname A)

routine spec read symbol(integername i)

integer fn spec next symbal

" routine spec skip s
1Lroutine spec read s
routine spec read b

OQUTPUT ROUTINES
routine spec select

ymbol
equence(addr s,integer p,integername n)

inary(integername i)

output(integer n)

routine spec print(real x, integer m,n)

routine spec print
routine spec spacé
routine spec spaces
routine spec newlin

fl{real x, integer n)

(integer n)

e

routine spec newlines(integer n)

routine spec tab

routine spec newpage

routine spec runout

routine spec print
routine spec print
routine gpec print
routine spec print
routine sgec print
routine spec punch

MATRIX ROUTINES

(integer n)

array(arrayname A, integer m, n)
array fl(arrayname A, integer m)
symbol(integer i)
complex(complex z,integer m,n)
complex fl(domglex-z,integer m)
binary(integer n)

routine spec null(arrayname A) | A=0
routine spec ﬁnit(arraxname A . =1
routine spec mairix add(a:razname.A,B,C) o A=B+C
routine spec matrix sub(arrayname A,B,C) | A=B-~C
routine spec matrix copy(arrayname A,B) =B
routine spec matrix mult(arrayname A,B,C) A=B*C
routine spec matrix mult'(arrazname A,B,C) | =B«C"
_gggyiqgtsggg matrix trans(afrazname.A,B) A=B"

routine spec matrix
routine spec invert

real fn spec det(arrayname B)

M1 SCELI.ANHJUS ROUT INES

div(arraynameA,B,realname det) A=inv(B) A

(arrazname'A,B,realname det) - A=inv(B)

routine spec eqn solve(arrayname A b realname det)

ML_routlne spec kutta

routine sgec intstep (arrayname y,

A

merson(arrazn e y,real x0,xl1,realname e

integer n,k routine aux)
nteger n

real name e, routine aux)

real x,h,

G
(1

‘result=|B|

b Ui v o e n L
S W W W DDk

o i
S

(Ji 1 it D h i
[] & » » »]
h Ui v Ut Ut U

-

KS ey
n Lh

11,2

11,2

11,2
11,2
11,2

11,2

11,2

11.3
11,3
11, 3

APPENDIX 3 INDEX OF DELIMITERS

addr

and

arraz

\A array fn

array bound check off
array bound check on

begin

2

caption

case

comment

comgile queries

comgile routine trace

comglex
comglex array

comglex array in
comglex array name

comglex in
comnlex fn spec
complex map

comglex map spec

comglex name
.czcle

end

end of program(me)

fault

f

if.....then

.’...lE

integer

integer arraz

integer array in
integer array name

integer map
integer map spec
integer name

9.1
2.9
2.4

9.1

0.5

0.5

3.1

2.11

5,6
2.9

__2.11

compile array’ bound check 6,5
compile jump trace

0.5
6.5
0.5
8.1
8.1

9.2

jump trace off

jump trace on

now compiie from input

normal delimiters

queries off

gueries on

age

Eroduction run

- real

(real)array

(real)array in
(real)arrayname
real In

real fn spec
real map

real map spec

real name

repeat

return
result
routine

routine spec

routine trace off

routine trace on

spec

st

stop

stoE arraz'bound check

stop jump trace
stop gueries
stop routine trace

switch

test

unless.,.....then

csessesUNlESS

upper case delimiters

A3, 1

2.9

2.9

2.9
2,11

APPENDIX 4 LIST OF MONITORED FAULTS

| Fault monitoring is very dependent on the form of the compiler used,
We describe below the monitoring now given (1/3/65). It will probably change

with time but all changes will be designed to give the maximum information

COMPILING TIME FAULTS J
1, Feults due toI[NAME]’s'not having been declared,
| NAME{NAMEINOT SET
SWITCHLNAMEINOT SET

2. Fauits, found in arithmetical instructions, which give special
indications but which are most often caused b& LNAME] 's not being declared
at the current level, These special indications arise when the LNAME]'s appear
in the level above,
NAMELNAME]CANNDT APPEAR ON L, H.S.
SWITCHLNHME] IN EXPR
ROUTINELNAME] IN EXPR
CALL FOR ADDR OF NON-VARIABLE
CALL FOR CONTROL NO OF NON-ROUTINELNAME]

3. Arithmetic fault-s;
COMPLEXLNAME] IN EXPR :
i IN EXPR
REALLNAME] IN EXPR
REAL CONST IN INTEGER EXPR
CALL FOR DIM OF NON-ARRAY NAME
CALL FOR BOUNDS OF NON-ARRAY NAME
NAME L NAME JHAS WRONG NUMBER OF PARAMETERS

(This may be due either to the wrong number of parameters appearingﬂ

or to the omission of a multiplication sign before a left bracket)

4. Faults found at the end of each block or routine,
LABEL [N] NOT SET There is a reference to labéllN] or
CASE fN] ﬁDT SET | | I a case LN] which has not=been set
NO LABELS SET i |)
TOO FEW REPEATS' ' cycle's do not match repeat's
5 Other faults.
AP FAULT - | An actual ﬁarameter fault:the call
' sequence is not consistent with the
routine‘speC' | |
FP FAULT A formal parameter fault: the routine
' ‘heading is not consistent with the

4.2

NAME LNAME JSET TWICE | The name has been used for more than
one purpose at a given textual level =
SWITCHLNAME JOUT OF RANGE A label(NAME](LN]) appears where LN]
lies outside the declared range of
the switchlNAME] '
SWITCHLNAMEIGUT OF RANGE A labellNAME]J(LN]) appears where [N]
lies outside the declared range of
the switchlNAME]
TOO MANY REPEATS Too many repeat's in a block or routine
LNAME] =ST NOT VALID The LNAME] is non-local
RESULT OUT OF QONTEXT A result = LEXPR] statement appears in a

routine other tnan a function or map

routine
NON-INTEGER CYCLE VARIABLE The controlled variable is not an integer

RUN TIME FAULTS ™

1. The following faults are monitored at run time, Normally they cause

the program to be terminated but it may be restarted by a fault instruction,

The relevant fault numbers appear in the tables below, For those numbers noi

appearing, reference'should be made to the ABL Manual,

DIV OVERFLOW Division by { or a non-standard number -Iault.l
EXP QOVERFLOW | Exponent overflow I - fault 2
SQRT -VE o sqi't of a negative afgument . fault 5
LDG -VE ' - Log of a negative argument fault ©
INV TRIG FN OUT OF RANGE In inverse trig function e.g., fault 8

arcsin when the argumentiis not
within range(-1, +1) ' |
INPUT ENDED Insufficient data so that a read fault g

instruction effectively reads over
| the end of the data tape
SPURIOUS CHARACTER IN DATA spurious character (i.e., NOT fault 14

a decimal digit, point, sign,
or a) appears in data,

MORE THAN 3 SYMBOLS IN POSITION . | o - fault 15

A compound character formed from
_____ more than3superimposédcﬁﬁ;icters N
has beeh eﬁcounted in textual data,
REAL QUANTITY INSTEAD OF INTEGER IN DATA ' ' fault 16

FAULT IN COMPLEX DATA ' the complex data is not punched fault 17

according to the conventions of P8.35

2. Faults which indicate programming errors but which always cause the

program to terminate

INPUT NOT DEFINED An iaput or output channel has been selected

OUTPUT NOT DEFINED _ which is not mentioned in the Job Description
ALL TESTS FAIL | _ All conditions in a test instruction fail
SWITCH VARIABLE NOT SET Refers to a'multiway switch instruction

- ->[NAME]([EXPR]) '

where the value of LEXPR] is out of range
or'corresponds to a missing label,

ARRAY DIMENSIONS NOT +VE Refers to a bound pair (L:U) where U-L+;io.

NON -INTEGRAL CYCLE Refers to the check carried out immediately
prior to the execution of a cycle

CALLS FOR NON-EXISTENT ROUTINE Occurs when the routine and a specification
are not at the same level, or the former
15 missing,

DIMENSION FAULT ' Occurs when a matrix routine is called
using parameters which are not matrices ox
are incompatible,

ARRAY SUBSCRIPT QUT OF BOUNDS (Qccurs when compile arrax'bdund check is
used and the subscripts are not within

the right bounds,

3. Faults which can arise because of accessing array elements outside
the bounds given in the declaration e.g, A(10,3)'when A had been declared
A(1:3,1:10), If the immediate éause is not obvious the'comgile array bound check
should be used, There are a number of indiéations such as

SV OPERAND

ILLEGAL BLOCK

A5, 1

APPENDTX 3 NUMERICAL EQUIVALENTS OF BASIC AND COMPOUND SYMBOLS

The numerical equivalents for use in conjunction with the read symbol
and 'print symbol' routines are given in the table overleaf, The table gives
the numerical equivalents of the basic symbols i,e, symbols comprising of a
single (upper or lower case) character, '

Up to three basic symbols may be superimposed (by means of the
backspace facility) to form a compound symbol, For example: -

is formed from = /

The numerical equivalent of a compound symbol is
a*2flg4 + b+2k7 + ¢ |
where a,b,Cc are the numerical equivalents of the individual symbols, ordered
so that a>b>c, Thus the numerical equivalent is independent of the

order of punching the individual characters.

I1f only two symbols are used, the formula is
b$2#7 + ¢, b>c¢

Thus # is equivalent to 86#2F14 + 28=2§7 + 15
and > is equivalent to 80*247 + 27

“"J NN N = O

=t
C O 0o
- N

11 ¥
12 ?
13 &

15/

16 O

18 2
19 3

20 4

21 5

22 6

23 7
24 8

259

27 >

newliﬁe

55 W

57 X

" TABLE OF NUMERICAL BQUIVALENTS

e

95

64 96
65 space 97 a
- 66 938 b
67 9Q ¢
68 100 d
69 101 e
70 102 ¢
103 g
72 104 h
73 105 1
74 106 J
75 107 k
76 108 1
77 109 m
78 110 n
79 ¢ 111 o
80 112 p
81 [113 q
82 1] 114 r
83 115-3
84 116 t
85 117 u
86 (underline)ii8 v
87 | 119 w
88 120 x
89 121 y
90 « 122 2z
91 8 123
92 3 124
93 125
04 126
_ 127

2.0

z._:6

2.9
2.9

Bi1.1

AtlasAutoCodc'ReIErencé Manual

Amendments for QOMPILER AB

The major deviations of AB from tné AA description are:

No complex, Ignore all references to same,

No test - case, Use a sequence of conditions.

No routine or jump tracing,

No distinction between real,,,.and integer [EXPRIs,

No array or integer array formal parameters,
No maps, array fns, own variables,

New program map and stack print, See attached examples,

A detailed (but incomplete) list of textual alterations follows,

after line 3
''2.5alb means 2,5 *al*b’

insert
''c(b+l) means c*(b+l) if ¢ is a scalar, but 2|a+b| is not
allawed for 2*|a+b|, * before | | may not be omitted, '’

NOTES 3/4: replace lines 8-15
"In the formation ,,, must be positive e

. by

'1a2 or a2 is compiled as a*a,
All other cases of a ¢ n are distinguished at run
time by subroutine: if

(1) n = int (n) > 0, result = a¥,,, *a
(ii) n = 0, result =1
(iii) n = int (n) < 0, result = 1l/ax*,,, *a

(iv) n # int (n) and a > 0, result = exp (n*log(a)) '

ARITHMETIC ASSIGNMENTS: replace lines 10-13

'*but if the 1;h,s., ... an integral value'’

by e _ |
'*but if the 1l,h,s, is 1nteger and the r.h.s, turns out at
run time to be non-integral, it will be rounded to the
nearest integer., For example, if i is of type integer,
i= 2,7 will leave 3 in i.''" -

CONDITIONAL LABELS: delete this section,

CONDITIONAL OPERATORS: replace line 11

, '*[ExPr] ... ([coND])'®

by -
' ' LEXPRIpLEXPR] or (LcONDI1)'’

FORMAL PARAMETERS AND ACTUAL PARAMETERS: delete entry 4 of the table

''integer array ... explained below)''

 FUNCTION ROUTINES: insert after the end

'*There is no distinction between integer fn
and real fn, and both may be writtem fn,''

OWN VARIABLES: delete this section,

'61-63

COMPILER / RUN TIME NDNITORING The examples on pp. 6,3,6.1,6,2
should be replaced by those on pp, Bil. 3 -~ Bl,4 in order, Note that

 the first line of program is line 1,

FAULT DIAGNOSIS: delete lines 7 -8
'[check] on [check] off'"'
0.6 delete lines 3-23
- '"'"The second pair ., entire program, '’
0.6 replace line 25 _
' _ ~''[check]}] = ,,,""
by S
''lcheck] = queries, array bound check''
0,7 ROUTINE TRACING: delete this section
6,7 JUMP TRACING: delete this section
0.7 OTHER CHECKING FACILITIES: insert after the end
"the checks may be restored again by
normal run"
0.7 After the end of the chapter insert a new section
B ''USE OF B-LINES AT COMPILE TIME

" If the program fails in compiling B4Q should
contain the current line number,

Various aspects of compiling are controlled by
digits of B2, and can be altered by compile time machine
instructions (see section 10,1a)*, Initially B2 =

i | B2 &2 % 0 | | B2 & 2H = |
-—l A i SR g T G AN S 4D Sy SN G AU SR Al ST A SN A Gy A G T e W l ————————————————————— -—--——I
2 | ignore queries | compile gueries I
4 | production run - | normal run |
2 | print ccmpiled code | don't print compiled code |
8 | don't print program map | print program map]
9 | upper case delimiters | normal delimiters I
*Amendment on"this page
8.1-8,5 _ -
COMPLEX ARITHMETIC: delete this chapter
9.1-9. 3 .
ARRAY FUNCTIONS: delete this section
0.4 STORE MAPPING ROUTINES: delete this section
10,5 MACHINE CODE FORMATS: insert after subsection 1
= ''1a, If such an instruction is followed by =, it is
obeyed immediately on compilation, not at run time, '’
1APPENDICES' delete all inapplicable syntax definitions, and c Elex
library routine specs, |
Al, 4 lina;13
'*PHRASE (CR) [program] = programme, program''
delete ''programme'' _
A2,1 MISCELLANEQOUS FUNCTIONS: delete line 1 ,
''integer fn spec control no ([ROUTINE NAME])''
A4.1 COMPILING TIME EAUDTS subsection 3: delete lines 3q4

' 'REAL [NAME] IN EXPR
REAL CONST IN INTEGER EXPR''

e

begin

real

a, b, ¢, Sx, Sy, Sxx, Sxy, SyYy, nextx, nexty

integer n

read (nextx)

SX =

n -

U

O, Syy = 0O

}

Oy Sy = 0; SXX = 0} SXY

read (nexty) ; n=n + 1

SX =
SXX

SXy

SX + nextx ; Sy = Sy + nexiy
Sxx + nextx?® ; Syy = Syy + nexty?

SXy + nextxx nexiy

read (nextx) ; ->1 unless nextx = gGg Qyg

a = (n*Sxy - Sx*Sy)/(n*Sxx - $x?)

b = (Sy - axSx)/n . _

c = Syy - 2(a*Sxy + b*Sy) + h’*Sxx - 2a*b*Sx + n*b?
newline

print f1(a,3) ; space ;'print f1(b,3) ; space ; print £1(c, 3)

read (nextx) ; ->2 unless nextx = 99 Ggg9

stog
end of program

BILOCKS AND ROQUTINES

Complete programs are generally split up into a number of

self-contained units called ROUTINES, and each routine may be further

split into a number of BLOCKS.

A detailed description of their

construction and use is deferred until later, but 1in the earlier sections

it is sufficient to note that the Autocode statements between begin

and end constitute a block,

program as in the above example, end'is replaced by

PHRASE STRUCTURE NOTAT ION |
Atlas Autocode is a PHRASE STRUCTURE LANGUAGE and to assist in 1its

However when a block defines a complete

epd of program,

description we sometimes have resort tb phrase structure notation, In

general, whenever a name appéars in square brackets in the description of

an Autocode statement, we mean that in an actual statement it would be replaced

by a particular element of the class defined by the name, For example, in the

next section we define {NAME] and [EXPR] to denote a general name and a

general expression respectively, and with these defimitions we could go om to

define a function of a single variable by

[NAME] (LEXPR])

and in an actual program this might be replaced by

g(x +y -2)

since g is a name, and X + y - 2 1s an expression, Further notes on phrase

structure notation will be found in Appendix 1,

COMPILER AB/3
1

15
20
21

28
39
40

BEGIN BLOCK NO = g1

ADDRESS =00115100.

BEGIN ROUTINE<testi>
END ROUTINE<testl> OCCUPIES 37 LOCATIONS

BEGIN ROUTINE<test2> NO = 93 ADDRESS =00117000

NO = g2 ADDRESS =00116320

END ROUTINE<test2> OCCUPIES 42 LOCATIONS
BEGIN REAL FN<test3» NO = 94 ADDRESS =00117530
END REAL FN<test3> OCCUPIES 79 LOCATIONS

END BLOCK QCCUPIES 244 LOCATIONS

PROGRAM ENTERED

A RUN TIME FAULT HAS OCCURRED AT

LINE 33 REAL FN <test3>

SQRT «VE

THE FOLLOWING BLOCKS AND/OR ROUTINES WERE EXECUTED

BILOCK a1
a= 1,0000a O

alpha= 7, 6630a 0

j="2 theta= 123
CYCLE <k> EXECUTED 10 TIMES
THE PROGRAM NEXT CALLS IN AT LINE 14

ROUTINE <testl>

f= 1,5000a O

o= 3

~ THE PROGRAM NEXT CALLS IN AT LINE 19

ROUTINE <test2>

g= 6,7000a O

P= 4

THE PROGRAM NEXT CALLS IN AT LINE

REAL FN <test3>

h= 0,4300a O

g= 1

CYCLE <g> EXECUTED O TIMES

CYCLE <g> NOT

ENTERED

26

al= 1.0400a 1

THIS IS THE REAL FN IN WHICH THE FAULT GCCURRED

ALF e

AQC OUAD
X S b

¢ .‘}1;_
LA

v,

