

The Elementary

Structural Description

Language

The Elementary Structural Description Language - ESDL - is a notation to
facilitate the description of digital systems in a manner which i3 amenable
to further automatic processing by a computer. Although E3DL is a textual
notation and uses only ASCL1 characters, it has been designed 'to be as
close as possible, semantically, to the languages of hand sketched logic
dlagrams and system block diagrams. Consequently it i3 very easy for a
designer Lo sit at a computer terminal and directly translate the 'back of
an envelope' denotation of his initial ideas to a forwm that can easily be
processed mechanically. No special input devices are required - any
character oriented computer terminal will do - and a significant amount of
design documentation can be produced automatically from an ESDL
description.

ESDL was first defined by P Mclellan in the summer of 1977, and was
extended and re-defined by L v Smith in Aug 1978. L » Smith was
responsible for the definition of I-code.

L D Smith
Sept 1979

Contents
Introduction
...hlack-box specifications

...an example - the Johnson counter

The ESDL compller
...documents

The textual layout of ESDL
Reserved words

The syntactic tokens of ESDL
...comments

Identifiers (Tags)
..numbers
“..3trings
The structure of an ESDL description
...units
...unit headers
...3ignal names
Examples of unit headers
Input-outputs
Extra information attatched to unit headers
Defaults for extra information
The body of a unit defintion
..the WIRE construct

...the scope of names

A simple macro facility
...defining Tags to have a textual valuw

Compiler control statements
...examples of compiler control statements

The compiler 1listing
Flattening a hierarchical description
..an example hierarchical description
...the flattened description
Linking together separately compiled units
Invoking ESDL on Departmental computing systems

...on LEGOS
..on VAX

N -

ww

- -
(- N-1 -] © 0 O O -1 oo

- @ -
N Ne =20

- -
EEw

Appendix 1

A semi-formal definition of ESDL
...error recovery

Recovery groups

Error messages from the ESDL compiler

...Wwarnings
...errors
...disasters

Syntax graphs

Appendix 2

Pre-definitions for ESDL

Appendix 3

A semi-formal definition of I-code

Appendix 4

Describing chips in ESDL

Appendix 5

Describing slotted boards in ESDL

Appendix 6

Decsribing package geometry in ESDL

Alphabetical Index

2y

25

21

27

28

29

Introduction

ESDL 13 a textual notation for describing the structural features of
digital systems. It is semantically close to the language of hand sketched
logic diagrams and the following exanples show that it is very easy to
generate an ESDL description, by inspection, from such sketches:

Sketch ESDL

A

—

B— NI Y N1:NAND(A,B,C)->Y
—

c

Note that all signals must be named, in order that they may be referenced,
and that the gate is referenced by the name of its type. 1In this example
the gate has also been given a label ton distinguish it from other gates of
the same type. This is not usual practice, but {llustrates the ease with
which an ESDL description can be made to incorporate the information
content of the original sketch. The example below illustrates how new
building blocks can be defined from existing black-box specifications:

Sketch
21K -BY_4_MEMORY
-
203
210y 2y
Dbo3 Ded
aw l seo T [ece
SEL I
At !>Q | 7
ESDL

$ SEL is asserted when low, and selects the chip
$ RW 1s O to read and 1 to write
SPEC 211U4(ADDR<0:9>,DATACO: 3>, RW,SEL)->DATA<O: 3>

UNIT 2K _BYH MEMORY(A<0:10>,D<0:3>,RW,SEL)->D<0: 3>
2114(A<0:9>,D<0:3>,RW,SEL0)->D<0: 3>
2114(A<0:9>,D<0:3>, RW,SEL1)->D<0: 3>
OR (SKL,A<10>)->SELO $ Asserted when low
INV(AC10>)->A10" $ 0 when AC10> is 1

OR(SEL,A10")->SEL1 $ Asserted when low
END

The new building block 2K_BYHW MEMORY is defined from two 2114 1K X U-bit
memory chips and the loglic circuitry necessary to select one chip or the

other according to the value of the most significant address bit. The ESDL
description commences with a syntactic specification of the 2114 chip in
which DATA i3 declared to be an array of U input-output signals indexed by
0 through 3. DATA<i> is declared to be in input-output signal by virtue of
appearing in both the input specification and the output specificatlion of
2114 (on both sides of the arrow). The SPEC further serves to remind the
reader of the significance of each of the signals to or from the 2114 chip,
since each signal 1s given a name suggestive of 1ts meaning. The ESDL
compiler attributes no meaning to a signal other than by virtue of its
position in the signal list, so it is important that each instance of 2114
has 1ts various signals in the correct positions. This is easy to check
visually when a SPEC is provided. '

It should also be noted that the UNIT (representing a building block)
delimits the scope of names of signals. This is a programming language
property that logic diagrams and block diagrams do not possess.

In the example below a 4 bit Johnson counter is described in terms of
D-type flip-flops, which are in turn described in terms of primitive gates.
This is not a very sensible thing to do but it i1llustrates the use of
hierarchical descriptions in ESDL and the obvious scoping rules for names,

GENERIC SPEC NAND(?,?,?)->? DELAY 5:10:3:6
$ declare all 3-input NAND gates to have
$ min/max turn-on/off delays of 5,10,3, and 6
$ (but don't force all NAND gates to have 3 inputs)

UNIT 4 BAT_ JOHNSON_COUNTER(CLOCK,CLEAR)->D<0:3>

UNIT DTFF(CK,D,P,CL)->Q,Q"
$ a D-type flip-flop in terms of gates ...
$... the UNIT header is automatically a SPEC
NAND (J,P,K')->J"
NAND(CK,J',CL)->J $ set for output stage
NAND(CK,K',J)->K $ reset for output stage
NAND(D,K,CL)->K"
$ the output S/R flip-flop
NAND(J,Q',P)->Q
NAND (K, Q,CL)->Q"'

END

$ Now the 4 D-type flip-flops and inverter
$ which form the Johnson counter

DTFF(CLOCK,D3', .1,CLEAR)->D<0>,? $ note the use of ? to
DTFF(CLOCK,D<0>,.1,CLEAR)->D<1>,? $ denote deliberately
DTFF(CLOCK,D<1>, .1,CLEAR)->D<2>,? $ omitted connections
DTFF(CLOCK,D<2>,.1,CLEAR)->D<3),?
NOT(D<3>)->D3"

END

Physical or constructional details can be included in an ESDL description
just as easily. The example on the next page of a Texas series 7400 chip
shows how pin numbering (or naming) and chip carrier information can be
included in a natural manner.

$ a CHIP is much like a UNIT ...

$ except that it has more physical d=stails

$ such as power (.VCC) and ground (.GND) connections
$ and PIN numbers associated with each signal ...

CHIP TT410(AY,B1,C1,A2,B2,C2,A3,83,C3,.VCC, .GND)
->¥1,¥2,Y3
$ there 13 a pin number for each input or

$ output in order ...
PINS 1,2,13,3,4,5,9,10,11,14,7,12,6,8

$... the CHIP 1s mounted in a DIL14 package ...
ON DIL1Y

$ and contains three three-input NAND gates
NAND(A1,B1,C1)->Y1
NAND(A2,B2,C2)->Y2 .
NAND(A3,B3,C3)->Y3
END

In a similar manner it i3 possible to define the physical details of
packages, and pre-slotted boards. This will be discussed later after a
fuller description of the language (see appendices U-6).

The ESDL compiler

Before an ESDL description can be processed by a computer it must be
translated to a form that is easier for a machine to read than is the
user-oriented source text, This task is accomplished by the ESDL compiler
which also checks that the description really is a description. A bonus of
this syntax checking and translation step is that many trivial errors of
transcription can be detected before the description undergoes further
processing. Of course only syntactic errors can be detected, but,
surprisingly, this accounts for over half of the errors that are wmade in
transeribing from the primary informal denotation of an idea to ESDL.
Errors such as mistyping a signal name (which causes an unused signal name
to be introduced into the description), numbering too many (or too few)
pins, and instancing a UNIT in a manner which does not match its
SPECification, are easily detected and located by the ESDL compiler.

When a description is found to be syntactically correct it is translated
into a more compact intermediate format henceforth referred to as I-code
(see appendix 3 for a definfition of I-code). I-code is another textual
notation, with a very simple syntax, and is always guaranteed (by any
process which generates it) to be syntactically correct. Consequently, any
applications program which reads I-code need do no syntax checking or
syntax-error diagnosis. This is a considerable simplification of these
programs,

The most important property of I-code is that it has the same
information content as the ESDL source text from which it was generated.
Consequently it i3 always possible to regenerate an equivalent ESDL source
text from I-code. In fact it is not necessary that the I-code was
generated from ESDL source text; it could have been generated by a program
which accepts I-code as input and produces I-code as output. It is this
ability to 'invert' I-code that allows us to think of computer aided design
operations as transformations from an ESDL document to another ESDL
document, rather than operations on intermediate representations. A

computer aided design system which operates on ESDL descriptions can then
be thought of as a document flow system in which design documents flow
through various processing stages, gaining information as computational
work is performed upon them. This inversion property is most elegantly
summarised by the following isomorphism diagram:

ESDL source ESDL source

\L [document transformation]
(virtual)
[compile] [de-code]
I-code > I-code
[actual CAD operatlion]
(real)

If CAD processes are always constrained to produce I-code.as output (except
as final output which is not fed back into the design system), then it is
never possible to create an object that cannot be described in ESDL (by
virtue of the fact that any I-code description has an equivalent ESDL
description associated with it), Thus ESDL describes the universe of such
a computer aided design system

A particular exanple of I-code to I-code transformation, the flattening
of hierarchical descriptions through the replacement of UNIT instances by
the appropriate UNIT bodies, will be discussed in detail later, after a
fuller description of the language. This process of flattening hierarchies
(almost macro expansion) groups naturally with the processes of compilation
and inversion introduced above, as all three are intimately connected with
the manipulation of ESDL source documents.

The ESUL compiler also produces a listing of the input text on which the
position of errors is marked by a | character. As far as possible the line
structure of the listing follows that of the source but occasionally source
lines have to be split over several listing lines. In this case the
continuation is marked with a + character after the line number. Parts of
the source text which are skipped during recovery from syntax errors are
marked by a $§ character after the line number. Error messages are output
on the listing as close as possible to the site of the error, however,
certain classes of warning message can only be produced at the end of a
UNIT (such as the unused signal name warning - see appendix 1 for details).

The textual layout of ESDL

ESDL is a textual notation, using only ASCII characters, designed for
the description and definition of black boxes with inputs and outputs. The
notation is completely free-format (there is no concept of 'statement') and
spaces and newlines can be used anywhere, except in the middle of a
syntactic token, to improve readability. Similarly, comments can appear
between any pair of syntactic tokens. ESDL can be parsed with single token
look-ahead (though not with single character look-ahead) and the language
is context sensitive in a trivial way (there is an ambiguity between Tags,
Strings, and Numbers, the character sequence 1234 being a valid member of
all three classes). A formal definition of ESDL and the compiler's
syntax-error recovery strategy can be found in appendix 1.

Reserved words

Certain words have a pre-defined significance in ESDL, and these are
listed below. Since these words are read from a pre-definition file
whenever the compiler is invoked, there is freedom to 'tune' E3DL to a
particular application by altering these words. Consequently the list
below i3 implementation dependent and liable to extension. In a similar
vein the ESDL compiler usually ignores the distinction between upper and
lower case letters (translating both to upper case) except when the letter
occurs in a string (when no translation occurs). However, the compiler can
be made to preserve the distinction between the cases and thus it would be
possible to establish a convention that keywords (reserved words) were to
appear in one case and all other identifiers in the other (one of the
'stropping' conventions available in ALGOL68). This has not been done in
any of the implementations to which this document refers, and henceforth
only upper case will be used in example ESDL descriptions. The compiler
can also be made to convert lower case letters within strings to upper case
by using COPTION STRCONVEKT (see later - Compiler control statements). The
reserved words are:

AT BOARD .. CHIP COPTION DEFINE
DELAY END FINISH GENERATE GENERIC
LISTOFF LISTON NOGENERATE ON
OPTION PACK PACKAGE PINS PLACE
SIZE SPEC SUBPACK UNIT VALUE
WIRE

The syntactic tokens of ESDL

Syntactic tokens are the atomic objects recognised by the E3DL compiler.
These comprise comments, identifiers, numbers, strings, reserved words, and
a nunber of special characters not included in these classes such as () ,
<> =>=z= 4+ - %/ and ?2.

Comments
Comments begin with the character $ and are terminated by the next $ or
newline character to occur. A comment may appear between any pair of

syntactic tokens.

Identifiers (Tags)

Identifiers, or tags, consist of letters, numbers, and the following
characters: 1 # % & ' [) .\ and . Tags beginning with '.' have a
special significance (to be explained later - see the section entitled 'The
scope of names in an ESDL description’). The characters '#', ' ', '[' and
']' are used by the program which flattens hierarchies in order to generate
unique names (see later) and consequently the use of these characters in
identifiers should be avoided until their standard use is well understood.
There is no constraint that a tag must start with a letter and 1234 is a
valid tag (so i3 1#'&%[] - however not a very sensible one).
Conventionally an apostrophe at the end of a signal name denotes an inverse
of the naned signal, thus, for example, Q and Q' are often used to name the
complementary outputs of a flip-flop.

Numbers

A nunber in ESDL i3 an unsigned integer in a specified base and takes
the form <base> <number-in-base>. The base and underscore character can be
omitted in which case base 10 is assumed (as would be expected). A number
is any sequence of digits whose value is less than the base (which is
usually 10). For bases greater than 10 the letters A, B, C, ... and a, b,
¢, ... are considered to have the values 10, 11, 12, For example, 10,
16 FC, 8 20 0a0 are all valid denotations for the decimal numbers 10, 252,
and 160 respectively.

Strings

A string in ESDL is either any sequence of characters (except newline)
enclosed by string quotes (") in which the quote character itself is
represented by a double occurrence (""), or it is any sequence of
characters not beginning with a string quote (") and not containing the
characters space, newline, comma, or right parenthesis. Ahy of these four
characters terminates (and is not included in) an unquoted string. Strings
may not have a length exceeding 255 characters. Within strings lower case
letters are not converted to upper case unless the compiler option
COPTION STRCONVERT is specified (see later - Compiler control statements).
All occurrences of the character '"' are replaced by '}', and there is no
denotation for the newline character within a string. This is because '"'
has a special significance in I-code. The newline character has a special
insignificance in I-code, and cannot be permitted to occur in strings,
numbers, or tags. A quoted string can span two source lines under the
conditions that the first non-space character to follow the end of the
first part of the string is a newline and the first non-space character on
the continuation line 1s a string quote ("). For example:

"This is rather a long string and is continued"
" on another line of the source text."

The structure of an ESDL description

In this section the syntax of a number of ESDL constructs will be
presented in a modified Backus-Naur notation. The brackets { and } will be
used as meta-brackets to denote that an item is optional. An asterisk
after a closing meta-bracket denotes that the object inside can appear any
nunber of times (including zero times). Non-terminal symbols have names
consisting of lower case letters and terminal symbols appear as they would
in an ESDL description (see above for 1ist of reserved words and special
characters). Identifiers, numbers, and strings are denoted by the names
Tag, Number, and String (with a capital letter at the beginning).
Alternative right hand sides of the definition of a non-terminal symbol
appear on separate consecutive lines, and the left and right hand sides of
a definition are separated by the meta symbol ::= ('is defined to be').

An ESDL description consists of any number of units, each of which
defines a black box with inputs and outputs, followed by the reserved word
FINISH. Formally:

ESDL_description ::= (undt}* FINISH

Units

Each unit is either a SPECification, in which case it comprises only a
unit header, or it has a (possibly null) body which forms the definition of
the unit. 1In both cases the unit header forms a SPEC for instances of the
unit, and can be preceded by the reserved word GENERIC to indicate that
this is only one of a class of definitions for units of this name (for
example AND gates may be defined with 2 inputs, 3 inputs, 4 inputs, 8
inputs, etec). Formally:

unit ::= {GENERIC) rest-of-unit

rest-of-unit ::= SPEC unit-header

ucbp unit-header unit-body END
ucbp 2= UNIT

CHIP

BOARD

PACK

The ';' symbol is rarely (if ever) required by users of ESDL, but may be
required by those who prepare pre-definition files. It i3 used to force
compiler control keywords (see later) to have immediate effect in
circumstances in which the effect of toggling a compiler switch would be
delayed.

Unit headers

A unit header consists of an optional label, the name of the unit, a
1ist of input signals, a 1ist of output signals, and optionally some extra
information such as delay values, chip position, etc. Formally:

unit-header

::= [Tag :) Tag rest-of-head {extral®*
rest-of-head ::=

(input-signal-list) (-> rhs)

-> rhs

rhs ::= (output-signal-list)
output-signal-list

signal-names {, signal-names}*

Tag 1< expn {: expn} >}

.
.
.
H

signal-1list ::
signal-names ::

Signal names

Note that a signal name can be subscripted by an integer expression
(which must be evaluatable at compile time). This encourages the sensible
naming of 'arrays' of signals such as are found in bus structures. 1In
fact, two integer expressions separated by a colon can be specified and
this is shorthand for a range of subscripted signals, for example:

BUS<7:0> may be written as shorthand for
BUS<T >, BUS<6>, BUS<5>, BUS<U >, BUS<3>, BUS<2>, BUS<1>, BUSKO>

The direction in which the subscripts in the range run is determined by
inspection in the obvious manner. It should be noted that the longhand
form of BUS<7:0> is the canonical form and that is is this form that is
generated when I-code is decoded by the DCODE progran.

Examples of unit headers

Some examples of valid unit headers follow and should be compared with
the BNF descriptions given above. Note the use of '?' to denote a signal
in a SPEC (there is no sense in naming a signal if there is no unit body to
reference it and it is not an input-output).

SPEC NAND(?,?,7,7)->? $ U-input NAND gate
BOARD EURO1:EIA_INTERFACE(DATA<0:6>,RESET,GO)
~>DONE, ERROR

PACK CERAMIC:DIL16(.VCC,.GND)
GENERIC SPEC AND(?,7)->? $ 2-input AND gate
GENERIC SPEC AND(?7,7,?)->? $ 3-input AND gate

Input-outputs

As was mentioned earlier it is possible to specify that a signal is an
input-output. This was used in the example 2K BYY MEMORY where the signals
DATA<CO:3> were declared to be input-outputs (clearly, the memory chip
either reads from, or writes to, DATA, according to whether it it enabled
to read or enabled to write). A signal is declared to be an input-output
by virtue of appearing in both the input and output 1lists of a SPEC or unit
header. For exanple:

SPEC 2114(ADDR<0:9>,DATA<O: 3>, RW,SEL)->DATA<O: 3>
SPEC TRISTATE(I,IO,.VCC,.GND)->I0,0
or SPEC TRISTATE(?,10,7,?7)->I0,7
UNIT FRED(ACI>,A<2>,A<3>)->A<l> A<C3> A<2>
$ A<2> and A<3> are input-outputs
$ AC1> is an input, and A<4> is an output

Extra information attatched to unit headers

To every unit header, whether it constitutes the black box input output
specification of a unit or stands for an instance of a unit, it is possible
to attatch certain extra information such as pin names, delay values etc.
There are three classes of such extra information. The first is the PINS
construct, which specifies a pin name to be assoclated with each signal
nane in the unit header (note that the same pin must be specified twice in
the case of input-outputs). The second is the OPTION construct which
specifies an integer expression which is interpreted by applications
programs, which read the I-code generated by the ESDL compiler, as a series
of flags (currently only one flag is used). The third class consists of a
nunber of reserved words each of which can be followed by a String (see
above for the definition of a String) which i3 interpreted by applications
programs which read I-code. This class is extensible, and (as previously
stated) can be tuned to a particular task in any specific implementation of
ESDL. However, the following descriptions and examples apply to all
implenentations which are referenced by this manual, and it is unlikely
that other implementations will differ radically from these. Formally:

extra ::= OPTION oexpn
PINS pin-list
AT - parm-string
DELAY parm-string
ON parm-string
PACKAGE parm-string
PLACE parm-string

SIZE parm-string
SUBPACK parm-string
VALUE parm-string

oexpn t:= (expn)
expn
pin-list it= (s-11st)
s-1ist
s-list ::= String (, String)®*
parm-string ::= (String)
String

For exanple:

NOT(A)->A" ON T7404 DELAY (8:12:7:10)
T7474 (P4, .H2,RESET,CLOCK,DU, .H2,RESET,CLOCK, . VCC, .GND)
->DU,?,TON,?
PINS 2,4,1,3,12,10,13,11,14,7,,5,6,9,8
ON DIL 14
AT A3
FRED(A)->0UT OPTION 1 $ no expansion by FLATTEN
SPEC INOUT(?,?,I0)->10,?
PINS (A1,A2,A3,A3,Al4) $ note repetition of A3

Defaults for extra information

Note that the value of any particular 'parameter' (for lack of a better
word) applied to a unit instance automatically overrides the value which is
passed, by default, from the SPEC or unit definition to all instances of
that unit. For example:

GENERIC SPEC NAND(?,?,2)->? DELAY 6:12:7:10

NAND(A,B,C)->Y § with standard delays
NAND(P,Q,R)->Z $ a fast gate $ DELAY U4:6:3:5

The body of a unit defintion

The body of an ESDL unit definition consists of any number of unit
definitions, unit instances, and WIRE constructs. A unit instance is
syntactically identical to a unit-header (defined above) and denotes that
the named unit is to be instanced with the given signals in the given
positions in the input and output signal lists. Several exanmples of this
have been given already in the introduction. Formally:

unit-body HY
body-stinnt 1

{body-stmnt} *

WIRE wire-stant

unit

instance

instance :i= unit-header

wire-stmnt ::= {pstag) rest-of-wire

rest-of-wire ::= (list-of-tags) {-> rhs-of-wire}

-> rhs-of-wire

(list-of-tags)
list-of-tags

list-of-tags ::= pstag [, pstagl)*

pstag :1= Tag (<expnd>)

rhs-of-wire

The WIRE construct

The WIRE construct is used to create a single electrical net from the
signal names listed. No significance attatches to the different syntactic
positions that signal names can occupy in the WIRE construct - this is
merely to allow uniformity of notation with unit headers and instances.
For example:

WIRE CLOCK->CLK $ make CLOCK and CLK the same net
WIRE (.1,.H, .HIGH) $ different names for logical 1
WIRE .VCC->.GND $ Whoops! A catastrophe.

The scope of names in an ESDL description

Unit definitions can be nested to any depth, and their names obey the
obvious scope rules. Units must be defined before they are referenced and
become out of scope as soon as the properly nested END is encountered. All
signal names introduced in the body of a unit have scope local to that unit
definition unless the signal name begins with a '.', in which case the name
is considered to have global scope. This feature is useful for dealing
with obviously global connections such as power, ground, constant values,
master clear, clock signals, etc. The global signals .VCC, .GND, and .1
have already been encountered in the examples above. These examples should
be perused further if there remains any uncertainty about the semantics of
global signal names.

A simple macro facility

ESDL implements a simple parameterless macro facility whereby a tag can
be defined to have a textual value. Whenever the ESDL compiler reads such
a tag it automatically substitutes the textual value (which itself may
contain references to tags with textual values). A simple, and useful,
application of this facility is to give a symbolic name to a numeric
quantity. 1In an example above the OPTION reserved word was seen followed
by the numeric quantity 1 to denote that the unit was not to be expanded by
the hierarchy flattening program. It is much cleaner and more
comprehensihble to express this as

_ OPTION NOEXPAND

where NOEXPAND is defined to have the textual value 1. This facility can
also be used as shorthand, or to provide alternative expressions for ESDL
constructs. For example

DRIVER (INPUT,P) PRODUCES OUTPUT

where PRODUCES has the textual value "->" and P has the textual value
"_VCC,.GND" is equivalent to the statement

DRIVER(INPUT, .VCC, .GND)->0UTPUT

10

Defining tags to have a textual value

The macro facility introduced above requires that at tag be given a
textual value. This is accomplished with the DEFINE statement. Formally:

define-stant ::= DEFINE Tag = String {, Tag = String}*
For example:
DEFINE P="_,VCC,.GND", PRODUCES = ->

(Why does the string .VCC,.GND have to be enclosed in string quotes when
the string -> need not be?)

A define statement can occur anywhere that a unit would be valid (see
earlier), which is to say anywhere between unit definitions, unit
instances, and wire constructs. No macro substitution takes place within a
define statement so it is possible to re-define a defined tag. To be
meaningful a defined tag must comprise an integral number of syntactic
tokens, and an instance of a defined tag (macro call) will only be
recognised if it stands as a complete syntactic token. For example, if
THIS is defined to be "U43" and THAT is defined to be "7" then THIS.THAT is
not recognised as 43.7 (but as the Tag THIS.THAT), however THIS*THAT is
recognised as U43%7 because THIS, THAT, and * are all distinct syntactic
tokens.

If more sophistacted macro-processing is required then it is recommended
that a general purpose macro-processor be used, such as GPM [A general
purpose macrogenerator, C Strachey, Computer Journal 8/3, 1965, pp225-241]
or the pre-processor due to McLellan [undocumented] which is available on
several Departmental machines (the program is called PRE and is available
on VAX and LEGOS).

Compiler control statements

There are a number of compiler control reserved words which are used to
control the production (or otherwise) of a listing file, to determine
whether or not macros (described in the above section) are expanded in the
listing, and to set certain internal compiler flags. These keywords can
occur between any pair of syntactic tokens, take effect almost immediately,
and are listed below:

LISTON. Turn on the production of a compiler listing. This is the
default established at the end of the pre-definition file.

LISTOFF. Turn off the production of a compiler listing.

NOGENERATE. Do not 1ist the expansion of macros. This is the
default established at the end of the compiler pre-definition file.

GENERATE. List the expanded form of all macros.

COPTION <numeric-expression>. Set the compiler's internal flags to
the value of the expression (which must evaluate to an integer).
Initially the flags are all set to 0. The compiler pre-definition
file establishes mnemonics for the values required to set these flags
in a convenient manner, and these are explained below:

1R

DUMP1 (=1) Dump the keywords part of the stack on the
diagnostic dump stream (this facility is not normally available
to users).

DUMP2 (=2) Dump the stack after the END of each unit definition
(this facility is not normally available to users).

DUMP3 (=4) Dump the stack at the end of the description (this
facility is not normally available to users).

FORGET (=8) Forget the SPEC of a unit as soon as the END of its
definition is encountered. This can save a considerable amount
of workspace if the ESDL description consists of a large number
of small units which are independent (such as the definition of
a collection of chips) and allows larger descriptions to be
compiled.

STRCONVERT (=16) Convert all lower case letters within strings
to upper case. This is useful when a string containing lower
case letters defines a name that i3 subsequently matched
(perhaps by an applications program) to a tag defined elsewhere
(tags are converted to upper case by default ... see earlier,
Reserved words).

PUTSPECS (=32) Output all SPECS to the I-code. This feature is
for diagnostic purposes only and is of no use to users.

NOSIGNALS (=64) Allow unit instances to reference no signal
names (normally this condition is faulted). This is useful
when defining pre-slotted boards when the only information to
be included in a description is the name of a slot and its
position.

Examples of compiler control statements

The example statements

LISTOFF
COPTION FORGET+NOSIGNALS

cause the compiler listing to be turned off, the SPECification of unit
headers to be forgotten as soon as the END of the definition is
encountered, and cause unit instances with no references to signal names
not to be faulted.

The compiler listing

As well as translating an ESDL source document to I-code the ESDL
compiler produces an annotated listing. The compiler listing can be
disabled and enabled by means of the compiler control statements LISTOFF
and LISTON (see above - Compiler control statements), however lines
containing errors are always listed together with the error messsages
pertaining thereto. If the cBmpiler control option GENERATE has been
specified then all macro invocations are listed in their expanded form. As
far as possible the line structure of the 1isting follows that of the
source document. Sometimes it is necessary to break a source line over two

12

or more listing lines (such as when a macro expansion causes a source line
to lengthen, or when a error is flagged and the error message breaks the
line) and when this occurs the continuation line is given the same line
number as the first part of the line followed by a + character. When
‘recovery from syntax errors causes syntactic tokens to be skipped the
skipped tokens are identified by a $ character after the line number and
the proportion of tokens skipped is printed at the bottom of the compiler
listing (and also on the report stream - usually the terminal from which
the ESDL compiler has been invoked). Error messages are largely self
explanatory and a 1ist of them, with brief explanations, can be found in
appendix 1.

Flattening a hierarchical description

As was mentioned earlier it is possible to flatten, or expand, a
hierarchical ESDL description mechanically, and replace references to units
by the appropriate unit bodies. This is accomplished by a program, called
FLATTEN, which takes hierarchical I-code as input and produces monolithic
I-code as output.

A moment's thought will convince the reader that there are certain
problems associated with this process. Look back at the definition of the
Johnson counter. Within the definition of the D-type flip-flop there are
four signal names (J, J', K, and K') which are entirely local to DIFF.
Consequently when the four references to DTFF are replaced by DTFF bodies
there will be four signals called J which are intended to be distinct!
FLATTEN solves this problem by adding a prefix to an instance of a local
signal name which makes it distinct from all other instances of it. The
form of this prefix is:

unit-name # n) {{ m)} _

where unit-name is the name of the unit definition to which the signal name
is local. This is further qualified by # followed by an integer if there
i3 more than one unit of this name whose name is defined in some scope
containing the scope of the signal name. The integer takes the value 1 for
the first such unit to be defined, 2 for the second, and so forth (where
the ordering i3 the order in which the definitions occur in the source
text). If there is only one unit defined with the given name (as in the
Johnson counter example) then no qualification with #n takes place.

The prefix is further qualified by {m] where m is an integer taking the
value 1 for the first instance of the unit, 2 ftor the second, and so on
(where the ordering is the order in which the instances occur in the source
text). The pretix is separated from the signal name by the underline
character. In the case of the Johnson counter exanple (see above) the
internal signal name J gives rise to the signal names DTFF[1)_J, DTFFL2) J,
DTFF(3] J, and DTFF[4] J within the flattened description of the Johnson
counter. To emphasise the manner in which this prefixing operates, the
description of the Johnson counter is reproduced below, followed by the
flattened description. This is produced by applying the program DCODE to
the output of the program FLATTEN. Note that FLATTEN leaves a history of
the hierarchy it destroys in the form of a series of mechanically generated
comments which note the start and end of the body of an expanded instance.

13

The hierarchical description

UNIT JCOUNT(CLOCK,CLEAR)->D<0: 3>

UNIT DIFF(CK,D,P,CL)->Q,Q"
NAND(J,P,K')->J"
NAND(CK, J*,CL)->J
NAND(CK,K',J)->K
NAND(D,K, CL)->K
NAND (J,Q',P)->Q
NAND(K,Q, CL)->Q"

END

DTFF(CLOCK,D3"',.1,CLEAR)->D<0>,?
DTFF(CLOCK,D<0>, . 1,CLEAR)->D<1>,?
DTFF(CLOCK, D<1>, . 1, CLEAR)->D<2>,7
DIFF(CLOCK,D<2>, . 1,CLEAR)->D<3>,?
NOT(D<3>)->D3'

END

The flattened description

UNIT JCOUNT(CLOCK, CLEAR)->D<0>,D<1>,D<2>,D<3>

$ DIFF
NAND(DTFF(1])_J,.1,DTFF(1] K'")->DTFF[1]_J'
NAND(CLOCK,DTFF (1) J*,CLEAR)->DTFF([1)_J
NAND(CLOCK, DTFF[11 K ' ,DTFF[1]_J)->DTFF(1] K
NAND(D3' ,DTFFL11_K,CLEAR)->DIFFL1] K'
NAND(DTFF(1]_J,DTFF[1] Q',.1)->D<0>
NAND (DTFF 1] _K,D<0>,CLEAR)->DTFF (1) Q"

$ End of DIFF

$ DIFF
NAND(DTFF(2] J,.1,DTFF[2] K*')->DTFF[2] J'
NAND(CLOCK,DTFF[2) J',CLEAR)->DTFF (2} _J
NAND(CLOCK, DTFF[2] K',DTFF[2]_J)->DTFF[2] K
NAND (D<0>,DTFF (2)_K,CLEAR)->DTFF(2) K'
NAND(DTFF[2]_J,DTFF[2]) Q',.1)->D<1>
NAND (DTFF[2) K,D<1>,CLEAR)->DTFF[2] Q"

$ End of DTFF

$ DITF
NAND(DTFF[3] J,.1,DTFF(3] K')->DTFF(3] J'
NAND(CLOCK, DIFF (3)_J',CLEAR)->DTFF(3)_J
NAND(CLOCK,DTFF[3] K',DTFF[3]_J)->DTFF[3] K
NAND (D<1>,DTFF (3] _K,CLEAR)->DTFF13) K'
NAND(DrFF[3] J,DIFF[31_Q',.1)->D<2>
NAND (DTFF [3) K,D<2>,CLEAR)->DTFF (3] Q'

$ End of DTFF

$ DIFF
NAND(DTFF(4] J,.1,DTFF{4] K')->DTFF(4] J°*
NAND(CLOCK,DTFF (4 J',CLEAR)->DTFF (4] J
NAND(CLOCK,DTFF[41 K ' ,DTFF[4] J)->DTFF(4] K
NAND(D<2>,DYFF 4] K,CLEAR)->DTFF (4] K*
NAND(DTFF[4] J,DTFF[4] Q',.1)->D<3>
NAND (DTEF [4)_K,D<3>,CLEAR)->DIFF (4] Q"

$ End of DTFF -
NOT (D<3>)->D3"'

END

Note particularly how the signal name Q' becomes multiply instanced.

1

Although Q' is not local to DTFF, no signal name is specified in the Q'
position of any of the instances' signal lists. This causes Q' to be
treated as being local to the unit body that replaces each instance.
Contrast this with tne Q position of the signal lists which is variously
occupied by D<O>, D<1>, D<2>, and D<3>.

Linking together separately compiled units

A further function performed by FLATTEN is that of linking together
Separately compiled units. This feature allows libraries of standard units
to be constructed and used. For example, it i3 not usual to expand
fiip-flops to gate level (as was done in the Johnson counter example):
flip-flops are available as complete entities, packaged several to a chip,
at even the lowest levels of integration. However, in order to use a gate
level simulator that has no inbuilt model of flip-flop it is necessary to
make this expansion. A convenient way to reconcile this conflict (to
expand or not to expand) is to create a library of flip-flop descriptions.
Design documents can then be written in terms of flip-flops (which is
convenient for constructional purposes) and expanded, by a mechanical
process, when gate level simulation is required.

The precise operation of the linking process is as follows. The first
I-code stream (representing the compiled design document) 1s read, and
references to units (due to instances) are resolved if this is possible.
There will always be some reterences that cannot be resolved: lowest level
units which have no definition and references to library units. At this
stage the second I-code stream (representing a library of independent unit
definitions) is read. Any unit whose name matches an unresolved reference
is retained and all other units are ignored. The resulting structure is
then flattened in the usual manner.

Note that a library unit can be deliberately ignored if OPTION NOEXPAND
-(see above) is specified tor its instances. This can even be applied
selectively in order to expand some, but not all, instances.

Invoking ESDL on Departmental computing systems

ESDL, DCODE, and FLATTEN are three of a suite of computer aided design
and construction programs known collectively as DL1. DL1 has been
implemented on the LEGOS systems and the DEC VAX 11/780 belonging to the
Department of Computer Science.

On LEGOS

On the LEGOS systems access can be gained to DL1 by issuing the command
Lis CAD. Thereatter, programs of the suite are run in the usual manner.
Specifically:

ESDL Inputl,Input2,Pre-def/I-code,Listing

Inputl and Input2 are ESDL source text files and are read in that order.
Input2 can be omitted, and will not be read if Inputl is terminated by the
reserved word FINLSH, Pre-def is the compiler pre-detinition file, and, if
omitted, defaults to the system pre-definition file (listed in appendix 2).
I-code is the output tile tor the compiled document, and Listing (if
specified) will recelve a listing of the source text annotated with line

15

nunbers, error messages, and warnings.
FLATTEN Input,Library/Output

Input 1s a compiled ESDL description (to be flattened). Library is a
11orary of unit defintions and can be omitted. Output receives the I-code
representing the flattened description.

DCODE Input/Output

Input is any l-code file. Output receives the de-coded input, namely an
equivalent ESUL description. If omitted, Output defaults to the temporary
file $DCODE.

Examples:

ESDL JCOUNT:SRC/JCOUNT:E, JCOUNT:LIST
FLATTEN JCOUNT:E/JCOUNT:F
DCODE JCOUNT :F/JCOUNT :FSRC

On VAX 11/780

On the VAX 11/780 (under the VMS operating system) access is gained to
the VL1 system by issuing the command DL1SETUP. Thereafter, programs of
the suite are invoked in much the same manner as on LEGOS (see immediately
above section for details). The major difference between VAX and LEGOS is
the file naming structure. On VAX all file names consist of two parts: a
name and an extension (up to three characters in length) separated by a
dot. Programs of the DL1 suite use a number of standard extensions which
are provided by detault if no tile name extension is specified when the
program is invoked. Consequently it is often possible to invoke a program
of the VL1 suite with only a single (input) file name as parameter. The
extension for this file name is added by the program and any other
filenames required are generated by adding appropriate extensions to the
specified file name. In the defaults given below %11 refers to the name of
the file specified for the first input stream. Note that the defaults can
always be overridden by specifying a full file name explicitly.

Examples:

ESDL FRED

ESDL JKMS/,.TT

ESDL JKMS/ .N

Defaults: .SRC,.SRC,SIO:lESDLJESDL,PRM/3I1,.EIC,%11.LIS

FLATTEN FRED

FLATTEN JKMS/FLIPFLOP

FLATTEN CLRCULT,JKMS . F1C/SIMCCT,L1B
Defaults: .EIC,.LIB/%I1.FIC

VCODE tRED.EILC

DCODE JKMS.FIC/JKMS.LIS
Defaults: /.1T

Appendix 1

A definition of ESDL and its syntax-error recovery strategy

In this appendix a semi-tormal detinition of ESUL is presented.
Embedded in this description is a definition of the syntax-error recovery
strategy which is implemented in the ESUDL compiler.

The syntax definition is presented in a rather unusual form which
requires some explanation. In order to clearly define the error recovery
and error message generation mechanisms it 1s necessary that the denotation
for an attempt to recognise a non-terminal symbol allows three outcomes
rather than two as in more conventional notations such as BNF. These
outcomes are success (denoted by T), failure (denoted by F), and error
(denoted by E).

In the syntax graphs that follow, non-terminal symbols are denoted by
lower case words. Terminal symbols are denoted by upper case words or
special characters, as in the preceding sections of this manual. The first
non-terminal in a syntax graph is the name of the whole graph (the left
hand side in BNF terms). The flow of control proceeds to the right and
downwards, unless otherwise indicated by arrowheads. Conceptually,
recognition proceeds by attempting to match the first symbol of the syntax
graph to the input text. If this match succeeds then the horizontal branch
is taken, otherwise the vertical (downwards) branch is taken and the next
(lower down) symbol tried. Eventually an outcome is reached and this is
the *‘value' of the parse at that point. Note that the recognition of a
terminal symbol has only two outcomes; success or failure. If the
recognition succeeds then the horizontal branch marked by the terminal
symbol is taken. An attempt to recognise a non-terminal symbol can have
three outcomes and every non-terminal symbol in a syntax graph is tollowed
by a number of horizontal branches labeled with these outcomes (in diamond
shapes). The branch which matches the outcome is taken and outcomes which
can never occur do not appear in the graph. Whenever a circle is
encountered, the recognition of the non-terminal symbol represented by the
syntax graph 1s terminated with the outcome with which the circle is
labeled. Terminal symbols which must be recognised then re-recognised
(look-anead, in effect) are enclosed in rectangles and error messages are
enclosed in a box with a right pointing arrow head. Error messages are all
of the form '*' followed by 'E' for error or 'W' for warning and the number
of the message. These messages are listed below. A continuation of a
syntax graph i3 denoted by a single capital letter enclosed in a right
pointing arrowhead and the continuation begins with this same capital
letter, rather than the more usual lower case non-terminal name.

Error recovery is performed by the pseudo non-terminal symbol 'recover'
which reads syntactic tokens until a token belonging to one of the two
recovery classes i3 recognised. All tokens thus skipped are marked on the
compiler 1isting with a '$' symbol at the beginning of the line. The
recovery classes are listed at the end of the appendix. Essentially, a
groupl token (denoted below by GP1) is anything that denotes the start of a
unit (such as UNIT, SPEC, etc) and a group2 token (denoted below by GP2)
anything that might denote a sensible re-starting place within a unit
definition (such as UNIT, WIRE, a Tag - denoting the start of a unit
instance- etc). Consequently syntax-error recovery is crude, but
effective. More sophisticated error recovery is difficult in a language
with no statement boundaries and less textual redundancy than is usual in a
conventional programming language such as PASCAL (indeed, error recovery is
only possible because of redundancy).

Recovery groups

The first recovery group contains all tokens that might begin a unit
definition, namely DEFINE, GENERIC, SPEC, UNIT, CHIP, BOARD, and PACK. The
second recovery group contains all tokens that could reasonably begin a
'statement' within a unit definition (of course, there are no statements,
which i3 the problem, so this is a guess at where the parse might be picked
up successfully). This group contains END, ';', newline followed by Tag,
and WIRE.

Error messages from the ESDL compiler

The warnings, errors, and disasters listed below are referenced from the
syntax graph definition of ESUDL by error number. Most of the messages are
self explanatory, but a few words of explanation are given for those that
are not.

Warnings

W1: Unexpected end of input
Most probably the FINISH statement has been omitted from the end of
the input. If a message of the form "n/m input ignored" also
occurs then this message indicates that the compiler has become
badly lost.

W2: missing ')’
W3: missing '>!'
W4: missing '='

The following warnings are issued at the end of a unit (when the END
statement is encountered).

* unused? FRED
The signal name FRED is occurs only once in the unit (thus it
cannot connect two or more subunits). This is either an error or
the specification of a deliberately unused pin. In the latter case
use ? instead of an otherwise unused Tag.

* no fan-in? FRED
The signal FRED connects only inputs (thus the net FRED has no
fan-in).

* no fan-out? FRED

The signal FRED connects only outputs (thus the net FRED has no
fan-out).

Errors

E1: not recognised
This indicates that a non-specific syntax error has occurred.
Usually the message is output after the compiler becomes lost or
when an incorrect attempt at error recovery is made.

E2: missing tag

E3: missing '->*

18

EA4: 1invalid expression
E5: missing '(’

E6: missing ')’
Normaly an omitted ')' only causes a warning. Sometimes there is
insufficient redundancy in the text to allow a sensible attempt at
recovery to be made. In these cases and omitted ')' causes an
error.

E7: missing, or invalid, expression
E8: 1invalid options

E9: missing '™
A quoted string has not been closed before the end of the line
(erronious attempt to enclose the newline character within a
string).

E10: type conflict .
An attempt has been made to use a Tag for two entirely conflicting
purposes, for example as a signal name and as a macro name (in a
DEFINE statement).

E11: too many pins
E12: too few pins

E13: string too long
The string exceeds 255 characters in length.

E14: missing END
This message may also be indicative of other errors that have
caused the compiler to become lost.

Disasters

A disaster i3 an occurrence that causes processing to be terminated
immediately.

D1: workspace full
The implenentation dependent workspace limit has been exceeded.
Either have the 1imit increased (by the maintainer of the system)
or move to an implementation which allows a larger limit.

D2: too many errors
The compiler has become hopelessly lost. Fix some of the errors
and re-submit the compilation.

D3: too many levels of DEFINE
Macro definitions have been nested beyond the implementation
dependent limit (currently 9 on all implementations). See the
system maintainer to have the 1imit increased. Note that the
existence of a limit provides some protection against certain
classes of internal compiler error.

19

ESDL_description FINISH ———O <

udef |li L recover @

<
udef H @

DEFINE deflist (1)
GENE—RI—C——]_—
- SPEC

:]- uhead

CHIP Q G
L BoARD

L UNIT 1 uhead —(E) 0

(1)

PACK

T

A

A J—-ude(‘

~ recover Gp2 Tag uhead -[g—
| WIRE —— wlist -[gi‘

. o
’

L END —@
L FINISH @.
[e D>-(5)

20

deflist

N

Tag w String —[

wlist pstag - (— nlist > — nlist
j—y PD@ 3

nlist —— namelist 9
| 0.0
namelist

namelist -I-— pstag

pstag

2

_®

e\v

gT

ol
[S—

Tag Tag < — expn o

5
G\ -
® @

uhead

B — (— clist a I.;ﬁ'a_—

Tag — :

0

" _[EE%;;EE;
rhs -g——- extra

gl)
so 6o

clist J~ Tag — < J- expn

22

L
<

extra —I-—- OPTION — (— option
CEH® Y >
option %——

- PINS ——- (— pins)
E) H >
" W

- AT

- DELAY —

- ON

- PACKAGE -

- PLACE —

|- SILE ——

|- SUBPACK +

|- VALUE (— String

®

option — expn o o
(L e>—(®)

e
pins —4— String .

[

String

Appendix 2

Pre-definitions for ESDL

The following pre-definition file i3 read by the ESDL compiler before
processing input text. Tt comprises a list of reserved words (each
preceded by a '¥*' and followed by the numeric value which is used
internally by the compiler to represent the token), a list of pre-defined
numeric values (such as NOSIGNALS), and a 1ist of SPECs for logic gates.

*DEFINE 1
*GENERIC 2

¥SPEC 3

BUNIT 4

ECHIP S

*BOARD 6

PACK 7

*END 8

*WIRE 129

*FINISH 11
*OPTLION 13

*PINS 14

*AT 15

*ON 16

*PACKAGE 17
*SUBPACK 18
*DELAY 19

*WALUE 20

¥SILE 21

*PLACE 22
*COPTLON 27
*LISTON 28
*LISTUFF 29
*GENERATE 30
*NOGENERATE 31
DEFINE DUMP1=1,DUMP2=2,DUMP3=4
DEF INE NOEXPAND=1
DEFINE FORGET=8, STRCONVERT=16,PUTSPECS=32,NOSIGNALS=6U4

GENERIC SPEC NAND(?,?)->? GENERIC SPEC NOR(?,?)->?
GENERIC SPEC AND(?,?)->? GENERIC SPEC OR(?,?)->7
GENERIC SPEC NOT(?)->? GENERIC SPEC INV(?)->?
GENERIC SPEC AMP(?)->7?

GENERIC SPEC XOR(?,?)->? GENERIC SPEC XNOR(?,?)->7
GENERIC SPEC WOR(?7,?)->? GENERIC SPEC WAND(?,?)->7
GENERIC SPEC NAND(?,?,?)->? GENERIC SPEC AND(?,?,?)->?
GENERIC SPEC OR(?,?,?)->? GENERIC SPEC NOR(?,7,?7)->7

GENERIC SPEC WOR(?,?,?)->? GENERIC SPEC WAND(?,7,7)->?
GENERIC SPEC NAND(?,7,?,2)->? GENERIC SPEC AND(?,?,?,7)->7
GENERIC SPEC NOR(?,?,?,2)->? GENERIC SPEC OR(?,?.,7,2)->7
GENERIC SPEC NAND(?,?,?,7.2,7,2.2)->?

GENERIC SPEC AND(?,?,7,2,7,2,2,2)->7

GENERIC SPEC NOR(?,?,2,2,2,7.2,2)->?

GENERIC SPEC OR(?7,7,?,7.2.7,2,2)->?

’
LISTON

24

Appendix 3

A formal definition of I-code

In this appendix a semi-formal definition of the ESDL intermediate code
(I-code) is given, This is the particularly simple form into which ESDL is
translated by the E3DL compiler. -

Within I-code all numbers are decimal, and all strings are preceded by
their lengths. I-code 1s 'punctuated' by control characters, each of which
consists of '"' followed by an upper case letter (recall that '"' was not
allowed within a String, and was translated to '|' - this prevents the
accidental occurrence of control characters). Newlines can occur freely in
I-code and are ignored, however, a newline must not occur in the middle of
a number, nor may it separate a '"' from its following letter. An I-code
comment (a String preceded by “K) may occur immediately before any control
character (including "K itself). Strings have a maximum length of 255
characters,

In the definition which follows { and } are used as meta brackets to
denote that an item is optional. If the) is followed by a * then it may
be repeated any number of times (including O times). A)} followed by *n
denotes that the enclosed item is to be repeated exactly n times. D:
denotes that the following item is a decimal number, and S: denotes that
the following item is a String. A single significant space is denoted by
the character @.

I-code t:= [{"S D:flag) unit}®

unit :i= U D:type unit-header {unit}* {unit-body) "E

"

unit-body :2= "J D:insubs {sub-instance}*nsubs {connection-net}*®
sub-instance ti= unit-header

unit-header ::= "H D:options @ D:nin @ D:nout @ D:nio @D:nt @
S:label S:unit-name {terminal}¥*nt {parameter}®* "G

terminal ::= °T D:tflags @ S:pin-name S:signal-name
parameter t:= "P D:parameter-number @ S:parameter-string
connection-net ::= "N {"A S:net-name D:fan (@ D:subno @ D:tno}*fan}*

comment tiz K S:comment-text

S:string ::= Dilength : (any-char-but-"-and-NL)}*length

The various decimal numbers which appear in the above definition all
have conventional values or interpretations, and these are given below.
flag currently this is unused.
type type takes the value 1 for a SPEC, 2 for a UNIT, 3 for a CHIP, 4

for a BOARD, and 5 for a PACK. A further 8 is added if the unit
header is GENERIC (i.e. GENERIC SPEC corresponds to a value of 9),.

nsubs

i3 the number of sub-instances in the unit body.

nin, nout, nio, nt are the number of inputs, outputs, input-outputs, and

options

tflags

pno

fan

the total number of signal names in the unit header.

is interpreted 23 a series of flags. Currently only the least
significant bit i3 interpreted. If this bit i3 set then it is
equivalent to OPTION NOEXPAND on the unit or instance header, and
FLATTEN will not expand this instance (or all instances if the bit
is set in a unit header).

consists of two fields. The least significant two bits contain a
flag: 1 for an input, 2 for an output and 3 for an input-output.
The rest of the integer contains the effective terminal number.
This number is 1 for the first input to the unit or instance
header, and is incremented for each signal in the input list, and
for each signal in the output list that is not an input-output.
For example the header (A,B,C)->C,B,D has effective terminal
numbers 1, 2, 3, 3, 2, and 4.

takes the value 1 for AT, 2 for ON, 3 for PACKAGE, 4 for SUBPACK, 5
for DELAY, 6 for VALUE, 7 for SIZE, and 8 for PLACE. Most programs
of the DL1 suite currently assume that pno will not exceed 10.

Some assume the limit of 8.

fan i3 the number of terminals in a connection net fragment. Note
that a connection net can consist of a number of fragments, each
with a separate name (caused by WIRE and the use of input-outputs).

subno and tno are the number of the subinstance and the effective terminal

nunber (see 'tflags' above) of a terminal in the connection net
fragment. Subinstances are numbered from 1 in the order in which
they occur in the ESDL source text. Conventionally subinstance 0
is the unit definition header.

26

Appendix 4

Use of ESDL to describe chips

In this appendix a number of CHIP definitions are given as examples of
the use of ESDL. Normally such definitions would be used to create a chip
library for use by the ASSIGNment program (see separate documentation).

CHIP BO8S5A(READY,HOLD, INTR,RSTSS, RST65,RST75, TRAP,NRESETI, SID, X1,
X2, .VCC, .GND)->AD<0>,AD<1>, AD<2>, AD<3>, AD<H >, AD<S >, AD<6 >,
ADCT>,A<8>,A¢<9>,A<10>,A<11>,A<12>,A<13>,A<14>,AC15),ALE,S0,S1,
NRD, NWR,HLDA ,NINTA, RESETO, CLK, TONM, SOD
PINS(35,39,10,9,8,7,6,36,5,1,2,40,20,12,13,14,15,16,17,18,
19,21,22,23,24,25, 26,27, 28, 30, 29, 33, 32, 31, 38, 11, 3,37, 34, 1)

ON "DIL40O")

SPEC UB085A(A,B,C,D,E,F,G,H,?,?,2,2,7,2,7.7,7,7,2)->A,8,C,D,E,F,
GoH,2,7,702.202,7,2,7,7,2,2,2,2,7,2,2,2,?

UB0B5A(AD<O>, AD<1>, AD<2>, AD<3>, ADCU >, AD<5 >, AD<6 >, AD<T >, READY,

~ HOLD, INTR, RST55, RST65, RST75, TRAP,NRESETI,SID, X 1,X2)->AD<0>,
AD<1>,AD<2>, AD<3>, AD<H >, AD<5 >, AD<6 >, ADCT >, A, A<9 >, A<10>,
A<11>,A<12>,A<13>,A<14>,A<15>,ALE,S0,81,NRD, NWR,HLDA,NINTA,
RESETO, CLK, IONM, SOD
END

CHIP 8212(DI<1>,DI<2>,DI<3>,DIU>, DIC5>,DI<6>, DI<T >, DI, NDS1,
DS2,MD,STB,NCLR, . VCC, .GND)->D0<1>,D0<2>,D0<3>,D0<4>,D0<5 >,
DO<6>, DOCT >, DO, NINT
PINS(3,5,7.9,16,18,20,22,1,13,2, 11, 14,24, 12, 4,6,8, 10, 15, 17T,
19,21,23)

ON "DIL2u®
UB212(DI1>,DI<2>,DI<3>,DI<U>,DI5>,DI6>, DICT >, DI, NDS1, D32,
MD, STB, NCLR)->D0<1>,D0<2>,D0<3>,D0<4>,D0<5>,D0<6>,D0<T >,
DO<8>, NINT
END

CHIP TT4126(I1,E1,12,E2,13,E3,14,EY,.VCC, .GND)->01,02,03,0U
PINS(1,2,4,5,8,9,11,12,7.14,3,6,10,13)
ON DIL1Y
UT8126(11,E1)->01
UTY126(12,E2)->02
U74126(13,E3)->03
UTH126(TH, EN)->0U
END

CHIP TT7425T(A<O>,A<1>,A<2>,A<3D>, BKO>,BC1>,B<2>, B3>, STROBE, SELECT,
VCC, .GND)->C<0>,C<1>,C<2>,C<3>
PINS(2,5,11,14,3,6,10,13,15,1,16,8,4,7,9, 12)

ON DIL16
UTH25T (A<O>, A<1>, A<2>,A<3>, BCO>, B<1>, B<2>, BC3>, STROBE, SELECT)->
€<0>,C<1>,C<2>,C<3>

END

CHIP T8T13(A1<1>,A1<2>, A1<3>, A1<H>, A1<5>, A1<6>, A2<1 >, A2<2>, A2<3D,
A2<H>,A2<5>,A2¢6>, . VCC, .GND)->Q1,Q2
PINS(1,2,3,4,5,6,10,11,12,13,14,15,16,8,7,9)

ON DIL16
UBT13(A1<1>,A1<2>, A1<3>, A1<>, A1<5), A1¢6>)->Q1
UBT13B(A2<1>,A2<2>,A2<3>,A2<l>, A2¢5>, A2<6D)->Q2

END

27

Appendix 5

Use of ESDL to define slotted boards

In this appendix a fragment of an ESDL board definition is presented.
Normally such definitions are used to create libraries of standard boards
for the PLACEment programn (see separate documentation). Note how the
signal names of the BOARD header are used to specify edge connector names,
and how the PINS statement is used to associate a coordinate pair
(representing the edge connector position) with each edge connector name.
Slots for packages are named by means of a label on the instance of the
package type (e.g. A1:DIL1M .., to represent a DILIN slot called A1) and
the position of the slot is given by means of a coordinate pair
(conventionally the coordinates of of the corner of the chip nearest to
pin 1, measured on the wire side of the board) as the AT parameter. Any
pre-wired signals (such as power and ground planes) are specified as signal
names of the slot instance, and associated with the appropriate pins by
means of the PINS statement.. The size of the whole board is given by the
SIZE parameter (conventionally measured on the wire-side of the board using
right-handed axes).

COPTION NOSIGNALS
BOARD CSDUB3(
AA1,AB1,AC1,AD1,AE1,AF1,AH1,AJ1,AK1,ALT, AM1, AN, AP1,ART,AS1,AT1, AU, AV,
AA2,AB2,AC2,AD2,AE2,AF2,AH2,AU2,AK2,AL2,AM2,AN2,AP2,AR2,AS2,AT2,AU2,AV2,
BA1,BB1,BC1,BD1,BE1,BF1,BH1,BJ1,BK1,BL1,BM1,BN1,BP1,BR1,BS1,BT1,BU1,BV1,
BA2,BB2,BC2,Bv2,BE2,BF2,BH2,BJ2,BK2,BL2,BM2,BN2,BP2,BR2,BS52,BT2,BU2,BV2)
SIZE 850:525
PINS(95:508,95:496,95:483,95:471,95:458,95:446,95:433,95:421,95: 408,
95:396,95:383,95:371,95:358,95:346,95:333,95:321,95:308,95:296,
115:508, 115: 496, 115: 483, 115: 471, 115: 458, 115: 446, 115: 433, 115: 421, 115: 408,
115:396,115:383,115:371,115:358,115:346,115:333,115:321,115:308,115:296,
95:232,95:220,95:207,95:195,95: 182,95:170,95: 157, 95: 145,95: 132,
95:120,95:107,95:95,95:482,95:70,95:57,95:45,95:32,95: 20,
115:232,115:220, 115: 207, 115: 195, 115: 182, 115: 170, 115: 157, 115: 145, 115: 132,
115:120,115:107,115:95,115:82,115:70,115:57,115:45,115:32,115:20)

A1:DIL16(.GND, .GND, .VCC) PINS(7,8,16) AT 155:500
A1:DILI4(.GND,.VCC) PINS(7,14) AT 155:500
A2:DIL16(.GND, .GND, .VCC) PINS(T,8,16) AT 155: 440
A2:DIL14(.GND,.VCC) PINS(T,14) AT 155:u440
A3:DIL16(.GND, .GND, .VCC) PINS(7,8,16) AT 155:380
A3:DILI4(.GND,.VCC) PINS(7,14) AT 155:380
AU4:DIL16(.GND, .GND, .VCC) PINS(7,8,16) AT 155:320
A4:DILI4(.GND,.VCC) PINS(T,14) AT 155:320
A5:DIL16(.GND, .GND, .VCC) PINS(7,8,16) AT 155:240
AS:DIL14(.GND,.VCC) PINS(T,14) AT 155:240
A6:DIL16(.GND, .GND, .VCC) PINS(7,8,16) AT 155:180
A6:DILI4(.GND,.VCC) PINS(7,14) AT 155:180
AT:DIL16(.GND, .GND, .VCC) PINS(7,8,16) AT 155:120
A7:DILIA(.GND, .VCC) PINS(7,14) AT 155:120
A8:DIL16(.GND, .GND, .VCC) PINS(7,8,16) AT 155:60
AB:DILI4(.GND,.VCC) PINS(7,14) AT 155:60
B1:DIL16(.GND, .GND, .VCC) PINS(7,8,16) AT 245:500
B1:DIL14(.GND,.VCC) PINS(T7,14) AT 2u5:500

B2: DIL16(.GND, .GND, .VCC) PINS(7,8,16) AT 2u5:440

28

Appendix 6

The use of ESDL to define packages

In this appendix it is shown how ESDL can be used to define the geometry
of physical packages. Normally such descriptions are used to create a
library of standard packages which i{s used by the PLACEment program (see
separate documentation). Note how the signal names of the unit definition
are used to name the package's pins, and how the PIN3 statement is used to
associate a coordinate pair with each pin (conventionally the coordinates
are the offsets of the pins from Lhe corner of the package nearest to
pin 1, measured in right handed axes on the wire side of the board, in
units of a hundredth of an inch).

UNIT DIL4(1,2,3,8)
PINS(5:0,15:0,15:-30,5:-30)
SIZE "20:-30"

END

7.8)
:0,35:-30,25:-30, 15:-30,5: =30)

’
5

UNIT DIL8(0,2,3,4,5,6
PINS(5:0,15:0,25:0,3
SIZE "40:-30"

END

UNIT DIL14(0,2,3,4,5,6,7.8,9,10,11,12,13,14) \
PINS(5:0,15:0,25:0,35:0,45:0,55:0,65:0,65:-30,
55:-30,45:-30, 35: -30,25:-30, 15:-30,5:-30)
SIZE "70:-30"
END

UNIT DIL16(0,2,3,4,5,6,7,8,9,10,11,12,13, 14,15, 16)
PINS(5:0,15:0,25:0,35:0,45:0,55:0,65:0,75:0,
75:-30,65:-30,55:-30, 45:-30, 35:-30,25:-30, 15:-30,5: -30)
SIZE "80:-30"
END

UNIT DIL18(0,2,3.4,5,6,7,8,9,
10,11,12,13,14,15,16,17,18)

PINS(5:0,15:0,25:0, 35:0,45:0,55:0, 65:0,75:0,
85:0,85:-30,75:-30,65:-30,55:-30, 45: -30, 35:-30,25:-30,
15:-30,5:-30)

SIZE "90:-30"

END

UNIT DIL20(0,2,3,4,5,6,7,8,9, 10,
11,12,13,14,15,16,17,18,19,20)
PINS(5:0,15:0,25:0,35:0,45:0,55:0,65:0,75:0,
85:0,95:0,95:-30,85:-30,75:-30,65:-30,55:-30,45:-30,
35:-30,25:-30, 15:-30,5:-30)
SIZE "100:-30"
END

UNIT DIL24(0,2,3,4,5,6,7,8,9,10,11,12,
13,14,15,16,17,18,19,20,21,22,23,24)
PINS(5:0,15:0,25:0,35:0,45:0,55:0,65:0,75:0,
85:0,95:0,105:0,115:0,115:-60,105:-60,95:-60,85:-60,
75:-60, 65:-60,55:-60, 45: -60, 35:-60, 25: -60, 15: -60,5: -65)
SIZE "120:-60"
END

29

AND

ASSIGN

AT

black-box

BNF

BOARD

bus

CAD systen
CHIP

Comment
oontrol char.
COPTION

DCOLE
defaults

DEF INE

DELAY
Disaster

DL

DL ISETUP
document

DItF

pumMp1

puMr2

punp3

D=-type

END

Error

error messages
error recovery
E3DL

ESUL compiler
extra

FINLSH
FLATTEN
FORGET
GENERATE
UENERLC
geometry
#lobal

P erarchy
identifiers
input-output
{nastance

INV

T=-code
Johnson counter
keywords
LEGOS

1ibrary
LISTOFF
LISTON
logic-diagram
macro

macro expansion
NAND

net

NOEXPAND

Alphabetical Index

20

27

5, 8, 24, 26, 28
1, 4, 8

8, 17
5, 7,
7
3

2, 5,
u' 5'
25

5, 6, 11,
7, 15

9

5, 11, 24
2, 5, 8,9, 24, 26
18, 19
15, 26

16

3

2, 13, 14
12, 24
12, 24
12, 2u

2, 13

5, 7. 10,
18

17, 18

4, 17

15

3

7. 8, 9, 25
5, 6, 15, 24
5, 9, 10, 13,
12, 24

5, 11, 24

2, 5, 7, 8, 24, 25
29

5. 10

2, 4, 5, 10, 13

b, 5, 6

2, 8, 26
9, 10, 13,
24

3, 4, 8, 13, 15, 25

8, 2u, 25, 28

7. 24, 25, 27
13, 25

12, 24, 28

12, 24

15, 26

15, ¢5, 26

2, 13

5. 8

11, 15

15, 27, 28, 29
5, 11, 12, 21
5, 11, 24

1

10, 11

L}

24

26

10, 15, 2U, 26

NOGENERATE
NOR
NOSIGNALS
NOT

Number

ON

OPTION

OR

PACK
PACKAGE
parameters

5, 11, 24

20

12, 24, 28

24

4, 5, 6, 25

2, 5 8,9, 24, 26
5, 8, 9, 10, 15, 21
24

5. 7, 8, 21, 25

5, 8, 24, 26, 28, 29
7, 8, 9, 25

physical details2, 27, 28, 29

PINS

PLACE

PRE

prefix
pre~-definition
pre-wired
PUTSPFCS
quoted string
recovery group
reserved words
schematic
scope

signals
simulation
SIZE

SPEC

STRCONVERT
String
stropping
SUBPACK

syntax check
syntax defn.
syntax graphs
Tag,

terminal number
UNLT

unit body
unit header
unquoted string
VALUE

VAX

WAND

Warning

WIRE

WOR

2K_BYU MEMORY
.GND

.vce

1

?

2, 5, 8, 9, 24, 28,
29

5, 8, 24, 26, 28, 29
1"

13

5, 24

28

12, 24

6, 19

18

5, 8

1

2, 10, 13

1, 2,5 T, 8, 10
15

5, 8,
2y 5,
25

5, 6, 12

u, 5, 6, 8, 25
5

4, 8,
3, 4
W, 17, 25

17, 20

4, 5, 6, 10, 17
26

2, 5. 7, 8,
25

7, 9, 25, 26
7, 8, 10, 25, 26
6

5, 8, 24, 26

11, 15

24

18

5, 9., 10,
24

1, 8

5, 10, 28
5, 10, 28
2, 5, 10, 28
7, 24

2, 8

2h, 26

7, 8, 17, 2n,

2h, 26

17, 20,

17, 24, 26

