University of Edinb

urgh

Department of Computer Science

The Structure
of the EMAS 2900 Kernel

by
D.J. Rees

CSR-91-81

James Clerk Maxwell Building,

The King's Buildings,
Mayfield Road,
Edinburgh,

EH9 3JZ.

August, 1981

The Structure of the EMAS 2900 Kerpnel

D. J. Rees

Department of Computer Science
Edinburgh University

The role of the kernel of the Operating System EMAS 2900 and the
implementation of 4its functions is desoribed in some detail. The
significance of local scheduling policies and their implications on the
design of the kernel are discussed with particular reference to paging
management and scheduling ocontrol. 1t is shown that the oconcept of
local and global control of resources can lead to a oconsiderable
simplification in the structure of an operating system kernel. The
resulting EMAS 2900 provides time-sharing services very effectively and
efficliently to a large computing community.

Introduction

EMAS 2900 is a multi-access time-sharing system for the ICL 2900
series of computers which was developed by a small group of staff from
the Department of Computer Science and the Edinburgh Regional Computing
Centre in Edinburgh University. The development was 1in essence a
reimplementation of the EMAS system which ran on the ICL System u-75
coaputer using the same underlying philosophy for the most part but
taking into acocount the experience of several years use and improvement
it had undergone and new insights which had resulted. As with any large
system, the EMAS implementation had become somewhat untidy and more
difficult to maintain as time went by and as the original team left the
scene. A significant goal was therefore to achieve a simplification and
"cleaning-up"” of the system in order to facilitate future in-service
developments and improvements and to postpone the inevitable point in
time when ocomplexity escalation and the consequent poorly-understood
interactions make further changes difficult to contemplate. There was
also a strong desire to investigate and exploit the architecture of the
2900 series 1in relation to multi-access systems, An overall view of
this project has been described by Stephens et al. [ST80]. The purpose
of the present paper is to describe the kernel of the system in some
detail, in partioular the organisation of the virtual memory ocontrol and
scheduling.

The objectives and structure of EMAS were described by Whitfield et
al. [WH73) and much of that has been carried forward ‘to EMAS 2900. The
objeatives remain very similar, namely, to provide a large-scale
interactive system which both gives good facilities and response to
users and makes efficlent use of the hardware resources. Technological
developments since the days of System-4 have changed some aspeata, The
trend, for instance, towards machines with very much larger main stores
and away from drum storage as a paging medium has affected the approach
to scheduling. From the standpoint of the kernel, the most aignificant
features are the provision of a virtual machine for each of a large
nunber of users, the controlled sharing of information between those
virtual machines and the requirement for response and efficiency. A
virtual machine in EMAS 2900 consists of a virtual address space and a
virtual processing unit which provides access to the non-privileged
instruction set and to a wide variety of system services including
input-output services and a comprehensive file storage system. The term
"process® 1is used here to signify the operation of such a virtual
machine. What the user sees at his console is at a much higher level
than this since he is insulated from the raw virtual machine by a
"gub-systea" which provides a command interpreter and a convenient
ianterface to the system services.

One of the most important design concepts in both EMAS systems has
been that of process-local page replacement policies. Overall
performance has vindicated this choice in comparison with systems using
global policies and theoretical studies also bear out the wisdom of this
choice [DE78]). The full recognition of the significance of this polioy
motivated what is perhaps the main difference in structure between the
two EMAS systems. Whereas in EMAS the implementation of the local
policies was intermingled with the rest of the resident kernel, in the
EMAS 2900 system a very clear separation has been made between local
policy controllers and controllers of global functions. In principle,
each process contains an incarnation of a local controller whose

function is to control those and only those resources which have been
allocated to that process from the global scheduling controller. This
notion of completely separated local controllers has also been utilised
with very great benefit in the design of the communications sub-system,
described by Laing and Shelness in [LA81).

The implementation of this policy of separation was greatly
facilitated by the organisation of 2900 virtual address spaces. Each
virtual address space of 2%%32 bytes is divided into two halves, a
"local” half unique to each process and a "public" half which is shared
by all processes. The local half contains all the prograns and data in
use by the user of that particular process together with an incarnation
of the local controller, the director and the sub-system. The director
is the innermost layer of software of a process and incorporates many of
the local system services such as the file system services. Its
functions in EMAS 2900 remain the same as in EMAS which was described in
[RE75). The sub-system implements the next layer of the hierarchy which
includes the basic command interpreter, editors, compilers and loaders
etec. As much as possible of this material 1s shared between processes
using the standard sharing mechanisms of the system. This inocludes the
director and sub-system code together with all the compilers and editors
ete. that the user may happen to be using. The local controller code is
also shared but it was found convenient to compile this as a module of
the kernel as will be clarified later. The public half of the virtual
address space contains the kernel of the system 1.e. the global
controller, the message passing dispatcher, device handlers etoc. The
arrangement of processes and controllers is shown in figure 1.

< looal Y SUSNERR. S 'y | P SO————
| { | |] {
! loecal | director | sub- | wuser || kernel |
| controller | | system | il (global controller etc.) |
| ! | | 11 {

|

i -
| | | } } |
} | | | | |
| | | i | {

]]

. | other

. | processes

|
i] |] | |
| | | | i |
| | i 1 | |
figure 1

The kernel thus appears in every process address space and indeed
always runs in virtual mode unlike most earlier hardware designs such as
the 4-75 where it ran in real address mode. Switching between the
current local space and the kernel therefore does not involve switching
virtual machines. Peripheral interrupts, for example, can be direated
to an address in the kernel in the same virtual space whilst interrupts
such as page faults and local process time-outs can be taken directly by
the local controller. There they can immediately be dealt with
according to the resources that have been allocated to that process.

The resources in question are primarily pages of physical storage and
CPU-time but there are also various other internally defined resources
such as "active memory" sections (desoribed below) which also have to be
controlled.

The basic page size of the 2900 series architecture 1s 1K bytes. 1In
the light of the implementors' experience on EMAS we decided that this
would probably be too small for best efficiency. To overcome this
problem EMAS 2900 groups these basic pages together to form larger
units. We had originally hoped to be able to experiment with different
unit sizes so as to choose the most efficient but this proved to be
infeasible mainly due to the difficulties of varying physical block
formats on disc and magnetic tape. The unit size we fixed on was the
same 4K bytes that we had used on EMAS and this gave a useful continuity
in addition to being what we felt was a sensible choice. "Pages"
hereinafter therefor refer to these 4K byte unit multiples of basic
pages.

The whole of the operating system is written in IMP, the language
used in Edinburgh University for most systems implementation work. This
was desoribed by Stephens in [ST74]. The architecture of the 2900
series was designed very muoh with the use of this kind of high level
language in mind (BU78]. 1In partiocular, the hardware defines a stack
segment which can be used as the stack for IMP storage allocation and
procedure calling protocols., A potential problem for operating system
kernels is the size of its internal arrays when the number of users and
processes is likely to vary considerably either over time or over the
various machines in a range such the 2900 series. This has been
overcome in the EMAS 2900 kernel by making use of the fact that it runs
in virtual space itself although permanently resident. A dynamic scheme
is used. Bach array that may need to be extended is mapped into a
separate segaent. Initially, a suitable minimum size 1is chosen and
thereafter physiocal store pages claimed from the free page-frame list in

the ordinary way can be added onto the end of the segment and locked
down as and when required. An extra entry is then appended to the
appropriate page table.

In order to coordinate the sharing of informatlon, physioal movement
of pages 1s initiated and controlled globally but this is in response to
requests from local controllers. Each local controller is unaware of
any sharing of pages which is taking place between pr . It makes
requests purely for certain pages to be made available to it in main
store. The global controller then fulfills the request as best it can.
For instance, if the page is already in store being used by another
process or is still in store from a previous usage but that physical
page-frame has not yet been re-allocated, the global controller ocan
simply tell the requesting local controller where the required page 1s
and allow it to continue without having to initiate a page transfer from
backing store. This 1is all transparent to the loocal controller.
Similarly, when a local controller decides that the process it controls
no longer needs a particular page, it just tells the global controller
and leaves the global controller to get on with removing it while it
itself continues. If the global controller knows that another process
is still using the page it will not need to page it out. This method of
operation in which the local controller only has to be concerned with
its own individual process makes implementation of the loocal controller
very much easier and the result much more reliable. The details of its
data struotures and implementation are described later. The details of
the global controller are described first. 1ts organisation reflects
the two functions of paging oontrol and scheduling of resource

allocation. The former can be regarded as including disc and drum
handlers but these will not be discussed here as they are relatively
straightforward and do not introduce any great originality.

Paging Control

A fundamental feature of EMAS is the way in which virtual memory is
used. Conceptually, files are mapped into virtual memory space such
that when a partiocular virtual address 1is accessed the corresponding
jtem in the file 1is referenced. The action of creating the mapping
between a file and an area of virtual memory is termed "connection".
This 1s purely a logical operation and no file data 1is transferred
around the system at this time. Physical movement of file data is only
initiated when a page-fault occurs. This is the well-known "one-level
store" concept implemented in wmany systens. No direot physical
movements of file data are ever requested by a user, It is furthermore
the case in EMAS that a user does usually not even know which disc his
files are stored on. The allocation of disc space is handled entirely
behind the scenes by the file system. A file resides on disc storage as
a set of disc "extents" (termed "sections® here) as a wmatter of
convenience for the file manager. The connection wmapping therefore
consists of a table containing the locations on disc of each of the
sections of the files which are ocurrently connected. This table forms
part of the loocal controller and will be described in detail later. The
significance to paging control lies in this division into sections.

The file is the unit of sharability to EMAS users and all flles are
potentially sharable, simultaneously, between any number of processes.
Since files may potentially be very large, it is more convenient to use
the section as the basic unit which the global controller handles rather
than the file. When a local ocontroller requires a file page for its
progcess, it must first ensure that the section within which that page
lies 1s "active". The action of "activating” a section takes the form.
of a request from the local controller to the global controller
specifying the disc start address of the pages of the section together
with the length of the section and a ™new" page mask. The global
oontroller then sets aside an appropriate data structure for this
section (an "active memory table entry"”) and allocates a logical section
number, known as an "aotive memory table index" (amtx), which is used
thereafter to identify the section. Again, no physical movement of file
data takes place at this time. Individual page requests specify the
particular amtx and a page-within-section number. The new page mask
allows the local controller to specify that certain pages in the section
have never had data written into them, This allows the global
controller to avoid making a physical transfer from backing store when
such pages are requested. A free store page-frame is simply allocated
and cleared to zero. The mask of those pages remaining new 1is returned
to the local controller when the section is deactivated. 1In prinoiple
this means that if the file system were to store this updated mask the
disc sites would never need to be cleared to zero for privacy reasons.
In practice, the file system clears any non-used page sites to zero on
disc when the file is disconnected as this proved to be more convenient.
Figure 2 shows the data structure for such an activated section.

The collection of AMT entries for all the active sections in effect
forms a dictionary through which sharing can be controlled. It is
organised as a hash table using linked 1lists of entries and with the
disc address as the key. Loglocally speaking, the disc address could be

| disc addr | | length | users | outs |

I{ flags.ptr | flags.ptr | . . . | flags.ptr ||

figure 2

used instead of the amtx value to identify the active section but search
time is saved by using the latter. Sections shared between processes
appear having a “users™ count greater than one. The "outs™ fileld
contains a count of the number of page-out transfers of pages belonging
to this section ocurrently in progress. When the "users" and "“outs™
counts both drop to zero, the section can be removed from the AMT
dictionary. The pointer field shown indicates a collection of entries,
one per page in the section, which record the current status of each
page. This area is allocated within a single global array and since
sections may have different lengths, a dynamic allocation scheme is used
to find space. A simple free list 1is adequate for the fixed length
header records.

The status .information for each page consists of two flag bits and a
pointer field. The first flag bit is the "new" bit distributed from the
activation mask and the second indicates whether there 1s an up-to-date
copy of the page on drum storage. Where the hardware installation does
not have drum storage this latter bit is always zero. The pointer field
contains a null value if the page only resides on disoc, a pointer to a
drum table entry if the on-drum bit is set or a pointer to a store table
entry otherwise., Since drum table entries correspond one-for-one with
page-frames on drum the pointer also denotes the position of the page on
drum. A drum table entry contains a pointer to a store table entry if
there is also a copy of the page in store or a null value otherwise.
This is illustrated in figure 3.

| flags.ptr | flags.ptr |
!

store table

R Y

drum table

-—v-—
RS N S I

figure 3

Owing to the non-contiguous nature of main store addressing on the
2900 series (each Store Multiple Access Controller (SMAC) has its own
range of addresses whether or not they are fully utilised) the position
in main store is given in terms of a store table index., Amongst other
information, therefore, the store table entry contains the physical

address of the page. In addition to this, each entry contains a count
of processes currently sharing the page, a flag field and three link
fields. The flags indicate whether a backing store transfer is in
progress to or from this page, whether the page has been modified since
being paged in (and which must therefore be written out in due course
rather than discarded) and whether the page is "recapturable". A page
is sald to recapturable when it is no longer in use by any process and
the page-frame is back on the free page-frame list but has not yet been
claimed for use by anyone else. In these circumstances, a page-in
request for the page will recapture the page-frame from the middle of
the free list and avold the need for a transfer in of the page from
backing store. This mechanism has been observed to have a very
significant effect on the performance of the system with figures of
typlcally 30% of all page-in requests being satisfied by recapture even
under heavily loaded circumstances and a very much higher percentage
under light-load.

The free page-frame list is formed from the store table by linking
together those entries not in use. To enable page-frames to be
recaptured from the middle of the free list it is constructed with both
forward and backward links which can be adjusted appropriately when an
entry needs to be removed. The third link in each entry is used in two
different ways. When the page is recapturable, it 1s used to refer back
to the AMT entry so that page-frame numbers can be removed therefrom
when the page-frame 1s claimed for a different purpose, When the page
is in use and a page-in transfer has been initiated, it is used to point
to a list of processes waiting for the page to arrive in store. These
are referred to as the page-in-transit 1lists and for efficiency take the
form of messages that will be forwarded via the message-passing
mechanism of the kernel to the processes when the transfer in has been
completed.

The sequence of operations which take place when a page-in request 1is
made ocan be summarised as follows. 1f a page-frame is already allocated
for this file page, it may either already be in use by another process
or may still be recapturable., If it is recapturable the page-frame is
retrieved from the free list and a reply is sent immediately to the

ting pre . If it is not recapturable, the flags are examined.
If they indicate that a transfer of this file page into store is already
in progress, a further pushdown onto the page-in-transit list for that
page is made, Otherwise, a reply can be generated immediately even if
the page is in transit out of store. 1n this case the page will not be
discarded and the page-frame will not be returned to the free list when
the transfer out is completed as the users count will no longer be zero.

1f a page-frame has not been allocated to the file page requested, a
request is made for a free one. Although, in general, the scheduling
manager limits the number of processes in the multiprogramming set so
that they may each acquire sufficient real store to accommodate their
working sets, occasional delays in being allocated a page-frame still
occur. One source of delay arises because pr are given a
notional allocation of pages before they are necessarily physically
available. For instance, when a process is being paged out of store
it's notional allocation is given up and can be reallocated immediately
before all the page-out transfers are complete. Another ocause of
possible delay is when store "overallocation™ has been too optimistic.
This is described in more detail later. When a page-frame has been
allocated, the AMT entry is examined. If the page is marked as new the
page is cleared and a reply sent as desoribed above. The "“modified"
marker in the store table is also set to ensure that the cleared page 1s

written out subsequently. 1If the page is not new, the backing store
position of the page is determined. 1f an up-to-date copy of the page
exists on drum i.e. the AMT entry is flagged as meaning a drum table
entry, a transfer is requested from there. Otherwise, a disc transfer
is requested. Since the disc and drum handlers may reorder transfer
requests to suit the current status of the device e.g. head position,
each request contains an identifier which is returned with the "transfer
complete® reply from the device handler. In the case of page-in
transfers, the replies are normally sent direct to the originator of the
request rather than indirectly through the paging manager. This results
in a worthwhile reduction in overhead. Only when a drum read fails for
some reason i1s a reply sent back to the paging manager. 1In this ocase,
the transfer is requested from the disc site instead and the drum site
is marked as "bad®. In the case of diso read failure, the originator of
the request is informed and an error 1s signalled to the process. The
page may either have been left as it was transferred e.g. a hardware
parity error, or cleared to zero for more serious fallures.

The philosophy adopted for page-out requests 1is that the local
controller making the request ocan assume that the paging manager will be
able to perform the task without its further involvement. In
particular, no reply 1s made from the paging manager. This simplifies
the local controller very considerably and allows the local controller,
for instance, to return all its notional resources to the scheduling
manager as soon as all the page-out requests have been made following a
decision to page its process out from store. This has the effect of
maximising the overlap between a process being paged-out and a new
process being paged-in since the local conroller of the process being
paged-in can make page-in requests immediately. The only slight
disadvantage 1s that very long queues of backing store transfers can
build up.

If a page has more than one user, the page will remain in store and
no transfers will be requested. The information on whether the page was
modified passed with the page-out request is recorded for later use
since the remaining process may not modify the page but it will still
need to be written out when the process has finished with it if the
first process had modified it. If the page only had one user, the page
can immediately be paged out., Here another major simplification from
EMAS can be observed. This concerns the use of the drum., A decision
was made to regard the drum as a higher-speed cache of active diso
pages. In particular, when a page is transferred out, it is transferred
to both drum and disc, not just to the drum. Subsequent paging-in will
normally take place from the drum site, except in the rare case of drum
failure, but the very great advantage 1s that wvwhen a section 1s
deactivated or a file is disconnected, the only actions required are
those of housekeeping the AMT entries. No transfers have to be made
from drum to store and then from store to disc, Furthermore, in the
case of a system crash, the disc file site will be more up to date than
if many of the modified pages are only on drum which might not be easily
recoverable. Clearly this will involve more supervisor overhead in
setting up both transfers but this has to be balanced against the
avoidance of setting up transfers back from drum to disc and the greater
simplicity within the supervisor which will be highly valued during the
course of maintenance over the lifetime of the system.

Pages which were not modified since being transferred in will not be
transferred out again with the exception that if a valid copy of the
page does not yet exist on drum, a transfer out to drum alone 1s made.
When all transfers out have been completed the page-frame is returned to

the free 1list but marked as recapturable. The "page modified"
information is passed with the page-out request from local ocontroller
since the *written" markers get set in page table entries and each local
controller maintains its own local page tables. Page tables are not
used in common when segments are shared. The extra complication of
using common page tables is hardly warranted and by not so doing local
working set caloulations can be made from usage bits (also set in the
page tables) without risk of inaccuracy due to sharing. Extra storage
will be taken but not by a significant amount.

The system is naturally a good deal simpler when there are no drums
but a proportionate increase in main store size is needed to compensate
for their absence and maintain the same level of overall performance,.
‘Extensive monitoring of the performance of the system was carried out
during its development and since it has entered service both by internal
wmeasurement and by external measurement using the Edinburgh Remote
Terminal Emulator (ERTE) [AD78]. This proved to be of lmmense value in
determining the best approach to certain aspects of the design and
demonstrated the most fruitful directions to pursue.

Scheduling Control

One of the fundamental scheduling problems in time-sharing paged
systems is that of thrashing, the phenomenon of continual page-faulting
from processes that are unable to acquire an adequate number of pages in
store. In EMAS 2900, as in EMAS, this is avoided by carefully
controlling the number of processes in the oultiprogramming set 1i.e.
those processes allocated main store and potentially able to run on the
CPU. (The period during which a process is in the multiprogramming set
is referred to as a "store residence”.) By making an estimate of the
number of pages each process requires to run efficiently, the scheduler
can ensure that the processes it decides to allow into the
multiprogramming set do not overload the available store, The estimate
of how much store a process will require the next time it enters the
multiprogramming set is made from its previous behaviour. This is a
surprisingly good indicator but olearly a process will occasionally
change context and begin to exhibit different characteristics. For this
reason the scheduler is designed to be adaptive and changes of behaviour
are dealt with automatically. No intervention from either the user
himself, his process or the system manager 1s required. The adaptation
is derived from a table of categories through which processes migrate.
Each category defines a combination of store requirement and CPU-time
requirement together with a priority, a set of transition indicators and
various other data. The system attempts to be democratic in the sense
that categories which define lower resource requirements are allocated
higher priorities and vice versa. The transition indicators control the
route through the categories a process takes depending on the variations
in its resource requirements as time goes by. A typical category table
is shown in figure 4.

The category table shown is a fairly basic one that has undergone no
tuning to fit a particular installation and the known characteristics of
the programs which run on it such as popular editors and compilers. By
being table-driven, the scheduling is very easy to change. Deciding
what changes are sensible is a more diffiocult problem. The system-wide
ranifications of local scheduling changes are not always immediately
apparent. The regular use of the ERTE remote terminal emulator system
was of particular value in this respeoct. One modification which is

category | pages time priority more more less runq runq strobe
pages time pages 1 2

]

|
1 1 20 y 1 2 5 1 1 1 0
2 | 32] 2 3 6 1 1 1 0
3 | 64 L] 2 L] 7 2 1 1 0
4 { 128 [3 4 8 3 1 1 0
S { 20 24 2 6 9 5 1 2 0
6 1 32 24 2 7 10 5 1 2 0
7 } 6u 24 3 8 1" 6 1 2 0
8 | 128 24 4 8 12 T 1 2 4
9 1 20 64 3 10 9 9 2 2 0
10 | 32 64 4 " 10 9 2 2 8
11 | 64 64 [12 1" 10 2 2 8
12 | 128 64 5 12 12 1" 2 2 8

figure 4

normally present is to incorporate into the table a disjoint set of
categories and their transitions suitable for jobs submitted to a batch
stream. EMAS 2900 has facilities which allow a number of processes to
be created as batch processing streams but these will need different
priorities so as not to interfere with the response of interactive
processes, When a process is placed in a certain category the scheduler
tells the local controller the number of pages it may acquire on behalf
of the process and the number of time-slices of CPU it may consume (the
"pages"™ and "time" columns of the table). The local controller can then
allow the process to proceed within these limits. 1If these resources
are not sufficient, the local controller is obliged to request to be
rescheduled. In principle this means that that process will be removed
from the multiprogramming set in order to give other processes a chance
to make progress. 1In asking to be rescheduled, the local controller
says which resource it has run out of and how much of the other resource
it had used by this stage. This allows the scheduler to adapt the
category of the process to one which will be more sultable. For
example, if the process had run out of time, the scheduler would assign
it to a new oategory that had a greater allocation of CPU-time., This
category is indicated in the "moretime®™ column of the category table.
In addition, if there is a category with fewer pages but still with more
pages than the process had used when it ran out of time, that ocategory
would be chosen instead in order to minimise overall resource allocation
and to maximise the priority of the process.

Local controllers endeavour to avoid exceeding their page allocations
to the extent of performing "strobe®” operations through the page usage
markers in their page tables at certain times. I1f the marker indicates
that a page has not been accessed recently then it ocan be paged out.
The typical time this is done is when the page allocation has already

been used up and a further page-fault has ooccurred. This is only
attempted once to avoid local thrashing ocourring. Strobing also ocours
at other times controlled by the category in which the process resides.
This control is necessary because the effectiveness of strobing varies
considerably depending on the characteristics of the process and because
strobing is a relatively time-consuming operation to perform.

The priority given to a process from its category is used by the

scheduler exclusively to oontrol when it is admitted to the
nultiprogramming set. The scheme 1is not pre-emptive but uses a

10

"priority ratio™ table which indicates the priority of process that the
scheduler should load next. Even if the process at the head of the
corresponding priority queue cannot yet be loaded, no other smaller
process is loaded in its stead. This table contains a sequence of
priorities with the higher priorities occurring more often and lower
priorities occurring less often. Thus higher priority processes will be
admitted frequently but the lower priority processes can never be
entirely excluded from the chance of making forward progress in their
computation. A process is allowed to change category "on-the-fly" and
remain in the multiprogramming set when no other process is waiting on a
higher priority queue. This tends to ocour when the system is lightly
loaded and avoids the cost of paging a process out and in again
unnecessarily.

There are two stages to admitting a process to the multiprogramming
set., The first is to allocate pages for and to page in the local
controller stack (the rest of the local controller is shared and already
resident). The second is to allocate the pages for the process itself
and activate the local controller which then passes control to the
process and deals with its page-faults. Since the local controller
stack is only three pages long, an allocation for this can almost always
be made well ahead of sufficient pages becoming available for the
remainder of the allocation., The scheduler then immediately pages 1in
the local controller stack using exactly the same mechanisns and
facllities described above that local controllers themselves use. The
pages are thus very likely to be store by the time the full allocation
is avallable and the potential inefficiency of two utages 1is largely
avolded.

In EMAS and in the initial version of BMAS 2900, a "working set
reloading® scheme (also known as "preloading") was used (see [AD77]).
In other words, the constitution of the working set of each process was
remembered at the end of a store residence and these pages were
automatically paged in again at the start of the next store residence
without waiting for page-faults, On the 4-75s this scheme was very
beneficial in improving response. On the 2900s it proved to be rather
less so for various reasons. Firstly, the author was tempted to
implement a rather complex arrangement involving three stages of loading
a process into store, the extra stage being the allocation of just that
part of the total allocation of pages required for the local controller
to reload the working set, followed by a pause until the remainder
became available before the process was allowed to run. it was also
discovered that on machines with drum storage at least there was very
little performance gain since the drums were so fast that a page fault
could be satisfied very quickly. The inaccuracy of preloading 1i.e.
those pages reloaded but never actually accessed, was for some
unexplained reason also rather higher on the 2900s than it had been on
the 4-753s which resulted in more wasted effort. Preloading was
therefore removed and a rather simpler multi-stage store allocation
scheme implemented instead. Having dealt with the local controller
allocation, the scheduler attempts to allocate the whole amount required
in the category. If there is not sufficient to do this, then what there
is is allocated anyway and the local controller set running with the
knowledge that it has not yet received its whole allocation. When and
if it runs out of this partial allocation it can request the remainder
from the scheduler. The scheduler may by this time have made a further
allocation to the process in which case the local controller can carry
on again. If not, the local controller 1s held up until more becomes
available, By this means, all the spare allocatable store is mopped up
and at least the satisfaction of the -initial page faults of the process

1

is set in motion as soon as possible. In the absence of drum storage
the benefits of preloading might have been expected to reassert
themselves but the substitution of large main stores meant that page
recapture tended to be much more effective and to perform pretty much
the same function.

The method of totting up the process page allocations so as not to
overload the available store is effective but has drawbacks. One is
that most if not all processes will share pages in store from common
files. Indeed, much of the effectiveness of the system derives from
this. Clearly, only one actual page will be needed for each such shared
page but as many notional pages as processes sharing it will have been
allocated., If actual store pages are avallable corresponding with all
the notionally allocated pages then store pages will be unused and
wasted. This can easily be overcome by adding one to the number of
pages available to be notionally allocated each time a page sharing
ocours and subtracting one when a shared page 1s released. A second
drawback arises from the faot that in order for a process to adapt
itself quickly to a reasonable category, the page allocations in
categories rise in fairly large Jumps. Any particular process is
liable, therefore, not to bé using the whole of its allocation at any
point in time f.e, a form of internal fragmentation. This disadvantage
can be mitigated by overallocating the notional allocations to a limited
extent, say twenty per cent. Since requests for store pages ocannot
always be immediately satisfied (a previous process may still be being
paged out as mentioned above) a queueing mechanism for requests already
exists. With overallocation more queueing takes place but the overall
gain is noticeable. A further snag is unfortunately introduced though.
This is the possibility of deadlock arising. It may occasionally be the
case that the processes in the multiprogramming set are so near to thelir
notional page allocation limits that no store page-frames remain to be
allocated. If no more page-frames are expected to be released when
page-outs complete and all the pr are req ting a further page
(via the paging controller) then a deadlock situation has arisen. As
Long as the overallocation is kept reasonably small such deadlocks only
occur rarely. When one does occur the solution we adopted is to detect
that one has occurred in the store page allocation routine and
arbitrarily to force one local controller to page out its process. This
will release pages for the remaining processes to proceed. This 1is
admittedly somewhat messy but effective, A final imperfection of
totting up is that unless some extra action is taken the store may
become dominated by large processes even though they have low priority.
This would have they effect of limiting the number of small interactive
processes in the multiprogramming set and correspondingly Llimit their
overall rate of response. This can be overcome by arbitrarily limiting
low priority processes to a number which do not occupy more than some
proportion such as a half of the total store.

When a process wishes to wait for some external event such a console
input, the local controller has to request the scheduler to suspend it.
If there is sufficient store available the scheduler may allow the
progess to "snooze"™ in store without being paged out but otherwise the
local controller will have to page its process out before suspending.
An intermediate form of snoozing has also been implemented which
consists of just retaining the local controller stack. This ocouples
very much less space and still improves response to the user when the
pr i1s unsuspended. When suspended, a message to a process ocauses
the scheduler to be invoked so that the process can be rescheduled and
brought back into the multiprogramming set in due course to receive the
message. The message passing scheme EMAS 2900 adopted is very similar

12

to that described in [WH73] for EMAS but a certain amount of extra
flexibility has been bullt in for paged processes. Basically, messages
are addressed to a particular service number but any one service routine
may accept several service numbers, Service numbers can also be
"inhibited". This inhibits the message dispatcher from delivering
messages on that number. A typical usage of this facility 1is when a
device handler cannot deal with any more transfer requests for the
moment. Paged processes each have four service numbers, one for the
local controller to receive messages on and three for the paged part of
the process. One of these is reserved for asynchronous events and the
other two for all other events and messages. These latter two allow the
process to control what messages get delivered to it. A common
inconvenience in operating system implementation is for a process to be
obliged to service any type of message which is sent to it at any time.
A basio loop of some description is often used which introduces problems
of modularity. 1n EMAS 2900, by inhibiting one of the pair of service
numbers, messages to that number can be held pending while messages sent
to the other can still be received. By controlling what service numbers
other processes pass their messages on, message handling code can be
modularised much more conveniently with a corresponding gain in oclarity
and simplieity.

Asynchronous messages when p d to a pre result in a different
context being set up from a stack of contexts set up for the purpose by
the process. We have not been entirely happy with this scheme although
some mechanism of the sort 1s oclearly required. In any future
implementation, we would favour a user having much more freedom to use
multiple concurrent processes. This then 1leads naturally to the
abandonment of asynchronous events as such in that it should be possible
to arrange that all events are synchronous to some sub-process or other.
A system such as that would be much cleaner and less error-prone than
our present arrangement.

Dispatcher priorities amongst processes in the nultiprogramming set
use the "runqi® and "rumq2" fields from the category table. The
dispatcher maintains two run queues for paged processes (they are, in
fact, message queues and the message dispatcher is one and the same
thing as the paged process dispatcher). Processes on the first have
pre-emptive priority over those on the second and which queue processes
g0 on 1is defined by "runqi®™ and "runq2®. "runqi® indicates the queue
that the process 1is to go on during 1its first time-slice in the
round-robin CPU-allocation scheme used for the processes in the
multiprograzming set. "runq2" indicates the queue it should go on during
the second and subsequent time-slices of its residence. Thia oontrol
allows highly interactive processes to be given favoured treatment and
improves their response times significantly. Processes which only ever
g0 on the second queue still make reasonable forward progress since the
processes on the first queue are such that they do not hog the CPU.
Most of them usually do not even use up the complete time-slice.

Ihe Logal Controller

The main functions of the local controller have in essence been
desoribed above in the contexts of paging and scheduling control. The
organisation of its private data structures and other details remain to
be described.

13

As has also been described above, there is an incarnation of a local
controller for each virtual process. This 1ncarnation oonsists of
shared code which is common to all loocal controllers and a private data
segment suitably protected from user access by using the "rings of
protection™ mechanism provided by the 2900 series hardware. This
segment is used to hold both the looal segment table for the process and
the stack which is associated with runaning the local controller as an
IMP progranm.

Since a looal ocontroller is intimately associated with the global
controller it was found convenient to compile the local controller code
as a procedure within the kernel rather than as a separate entity. This
implies that whenever the local controller procedure 18 called the stack
has to be switched from the ons on which the kernel is running to the
local controller's own stack. Doing this was not as straightforward as
one might Iimagine since control of stacks is highly protected by
hardware mechanisms which ensure the integrity of a running system. The
scheme which was evolved results in the local controller only being
called as a procedure on the first occasion i.e. on process creation.
Thereafter, the process "activate" instruction is used to re-enter the
local controller at the point where it exited previously. The great
advantage of this scheme i3 that all the data structures required by the
local controller can be allocated by the normal IMP mechanisms and on a
stack which can be paged out when the process 1is not 1in the
multiprogramming set. The kernel stack still remains resident. A
subsidiary advantage is that the local ocontroller can access global
controller data structures just as global variables, even though they
are on a different stack. Philosophically this is perhaps undesirable
but makes life very much simpler in one or two instances. By being able
to page out much of the information which the kernel has to maintaln
about each process i.e. all the local controller stack data, the amount
of resident storage which is required for each active process is reduced
to a minunmwi. 1In our case case this is just a few words of storage.

In order to access a file it is mapped into virtual space by being
"connected”. (This 1s one of the functions of the file system.) To make
a connection the director writes mapping information into the local
controller's data structures. A segment is made accessible to the
director for this purpose and the local controller tells the director
where the data structures are within this segment on start-up, This
requires cooperation between the two layers of the system, local
controller and director, to avoid 1inadvertant misuse but has not proved
to be a problem from the reliability point of view. The data structures
which define oconnection mappings consist of a table known as the
"secondary segment table™ parallel to the local segment table, and a
series of lists each cell of which describes a section of storage on
dise, Figure 5 shows the organisation.

local secondary
segment segment connected section lists
table table

I
| - — -
[— — Jommm> | 1
|
i

— ———— ————
- T e -
S e S e

figure S

14

The description of each section of storage contains the disc address
of 1ts start, its length and a field which 1s either used to hold the
“new™ bits for pages in the section when it is not active or the “amtx"
active memory table index received from the global controller when it is
active. The remaining tables maintained by the local controller are
concerned with active sections. For each active section, those pages
within it which are also active 1.e. in use by this process, must be
remembered, Furthermore, an abbreviated history of the usage of active
sections must also be maintained. The struoture of the tables went
through several iterations before settling on those now to be described.
These 1iterations were entirely local to the local controller and
therefore posed no interface problems with the global controller. This
was another benefit of the modularisation into 1local and global
controllers. Originally, linked lists were extensively used but these
proved to take more space than was desirable and so bit maps were
substituted which were more compact. Fortunately, the 2900 series order
code contains some rather useful instructions for efficient bit
manipulation and these were made use of in the local controller., IMP
has a convenient facility for embedding machine instructions in-line
with the high-level code which allows normal IMP variable and label
names to be incorporated in the instructions. The system implementors'
philosophy since the implementation of EMAS has been to program
initially completely in IMP and only to embed machine instructions where
absolutely necessary for reasons of efficiency or for input-output
initiation etc.

The main bit map consists of an array of 64-bit words, declared as a
% longintegerarray in IMP, each word of which relates to.some segment and
each bit to a page within a segment. It is ossentially a "tertiary
segment table™ therefore but not in parallel with the primary and
secondary tables. One of these words 1s set aside when any section
within a segment is first activated. The local controller then regards
these as active segments. The word to allocate is chosen arbitrarily
using another word as a bit map to indicate which are in use., Entries
in the array are indexed from a spare field in the local segment table
as shown in figure 6.

local
segment segment active segment bit maps active this prev.
table ptr. seg. res. res,

- ———
—— e o ——
- - ———

figure 6

The segment pointer array shown relates active segment bit map words
back to segment numbers, The rightmost parts of the data structure
shown are updated to indicate those segments which contain pages that
have been referenced during the present store residence and those
segments pages of which were only referenced in a previous residence.
These latter are used in the management of local active store by the
local controller. The active segment bit map array was chosen to be 32
entries long. This allows up to 32 segments to be active at any one
time, a 1limit which has proved more than adequate in practice.

15

Nevertheless, as the context of a process changes this limit would be
exceeded through old segments still being active although not in current
use. The local ocontroller therefore attempts to work out a form of
working set of active segments and to deaotivate sections within
segments that are no longer within that set. Apart from wishing to
economise on bit map space in the looal controller stack, the amount of
space needed by the global paging manager in its active storage tables
is also direotly related to the total number of active segments in all
the local controllers.

The construction of page tables for each of the segments of local
virtual space in use is a further funotion of the local controller, For
this purpose the 1local ocontroller is allowed to oclalm physical
page-frames directly from the global allocator instead of indirectly
through the paging manager but they still must be accounted for in the
local controllers notional page allocation. Several maximuz sized page
tables oan be packed into one page and many more when the segments are
of the typical small size,

The remalning main function of the local controller is to handle
communications with the director of the process. Interprocess messages
are forwarded by the local controller, for instance, together with an
inevitably growing list of specialised services that have been thought
to be desirable as the system has developed.

Conclusions

The exercise of transporting EMAS to the 2900 series hardware has
been a conspicuous success as far as its users are concerned, 1t has
proved much more effective than the manufacturers operating system in a
University environment mainly, we believe, because our objectives were
clear and because we did not aim to produce a system that was all things
to all men. The opportunity to rethink the design of the kernel after a
number of years experience with EMAS was invaluable and the resulting
design has improved on the original in almost every respect. The
simplicity and elegance that we sought has largely been aohieved.
Though one ocan always think of ways one could do it even better next
time by and large we are satisfied with the outoome of our efforts. It
is hoped that a future paper will update the desoription of the kernel
given here to include recently added features such as those dealing with
multi-processor configurations.

Agknowledgegents

The implementation of a large system such as EMAS 2900 is very much a
team effort. The constitution of our team changed over the period of
the development but the hard core of the implementors who stuck to the
task deserve special mention for their efforts and constant availability
to disouss ideas and develop the EMAS philosophy. They were
P.D.Stephens, J.K.Yarwood' and N.H.Shelness together with the able
agsistance of W.A.Laing, R.R.McLeod and F.Stacey.

16

)

Referencea

{ADT7]

(AD78)

(Bu78]

[DET8)

[LA81)

[RE75)

[ST74]

[sT80)

{wn73)

J.C.Adams:"Perfornance measurement and evaluation of time-shared
virtual memory systems", Ph.D. Thesis, Edinburgh University,
1977.

J.C.Adams, W.S.Currie and B.A.C.Gilmore: "The structure and uses
of the Edinburgh Remote Terminal Emulator", Software Practice
and Fxperience, Vol.8, 451-459 (1978).

J.K.Buckle: "The ICL 2900 Series", Macmillan, 1978.

P.J.Denning: "Working Sets Past and Present®, Purdue University
Report CSD-TR-276, 1978.

W.A.Laing: "Communications Control in the Operating System EMAS
2900", presented at IUCC, September 1981.

D.J.Rees: "The EMAS Director™, Computer Journal, Vol.18, 122-130
(1975).

P.D.Stephens: "The IMP language and compiler", Computer Journal,
Vol.18, 131-134 (1975).

P.D.Stephens, J.K.Yarwood, D.J.Rees and N.H.Shelness: "The
evolution of the Operating System EMAS 29007, Software Practice
and Experience, Vol.10, 993-10608 (1980).

H.Whitfield and A.S.Wight: "EMAS -~ the Edinburgh Multi-Access
System™, Computer Journal, Vol.18, 331-346 (1973).

17

