University of Edinburgh

Department of Co'mputer Science

An Introduction to VAX/VMS
by
Natalie Royal

Internal Report 'CSR-93-81

‘September, 1981

James Clerk Maxwell Building,
The King’s Buildings,

Mayfield Road,

Edinburgh,

EHI 3JZ.

10.

11.

CONTENTS

INTRODUCTION
1.1 Meeting The Terminal
1.2 Meeting The System

FILES

2.1 How To Identify Files
2.2 Sub-Directories

2.3 Protection

USING THE COMMAND LANGUAGE
3.1 Command Format

3.2 Entering A Command

3.3 System Responses

FILE MANAGEMENT
4,1 Editing A File
4,2 File Handling Commands

PROGRAM DEVELOPMENT AND EXECUTION
5.1 Compilation

5.2 Linking

5.3 Executing A Program

COMMUNICATING WITH OTHER USERS
6.1 The Mail System

TAILORING THE COMMAND LANGUAGE
7.1 Assignment Statements

- Creating Synonyms For DCL Commands

7.2 Command Files
7.3 Batch Job Processing

. LOGICAL NAMES

8.1 Logical Names In Coummands

8.2 Displaying And Deleting Logical Name Table Entries

VAX AND THE FILESTORE

VAX AND THE ERCC NETWORK

10.1 Logging On To VAX From The ERCC Network

10.2 Logging On To EMAS From VAX

10.3 Transferring Files Between VAX And ERCC Network
10.4 Sending Mail To Users On The ERCC Network

PRODUCING DOCUMENTATION
APPENDIX: DEFAULT FILE TYPES

REFERENCES

AN INTRODUCTION TO VAX/VMS

by

Natalie Royal

September 1981

The Digital Equipment Corporation's
VAX-11/780 forms the principal computing
resource in the department of Computer
Science, The wachine is situated in the
Department's machine halls and supports
around 30 simultaneous users running under
the manufacturer's operating systea "VMS"

(Virtual Memory System).

This guide gives a general introduction
to the system and describes some of the
more common commands and features.

Note: Commands marked with an asterisk (%)
have been added locally and are not
generally available on other VAX
systems,

1. INTRODUCTION

1.1. Meeting The Terminal

VAX terminals can be found in Block O/P and in the dark room off
the North Machine Hall. First of all, check that the terminal is
switched on. The on/off switch can be situated in some very obscure
places e.g. below the screen (Perkin-Elmer), below the keyboard

(Tektronix), behind the terminal (Dacoll) and at the right-hand side
of the terminal (Visual 200).

The terminal keyboard is used to communicate with the VAX systen.
The first key to become familiar with is the RETURN key (henceforth
known as <CR>). This must be pressed at the end of every complete
command line entered so that the command interpreter can start to
process the line. There are other special function keys which should
be noted, such as the DEL (or RUBOUT) key which deletes the last
character entered on the line, The current line can be discarded by
pressing the control (CTRL) key and the U key siaultaneously. This
is symbolised by CTRL+U. The control key has many other uses, which
are summarised below: ‘

CTRL+Y -~ Cancels an entire command and all those typed ahead. Can

also be used to interrupt the system while it is executing a
command .

CTRL+S - Temporarily halts further display of output at the terminal.
Useful when the output exceeds the number of lines the
terminal can display at one time to give the user time to

read it.
CTRL+Q - Restarts the display of output which was stopped by CTRL+S

CTRL+R - Performs a carriage return and displays the current line,
leaving the print position at the end of the line to

continue typing i f (This is useful for terminals which
cannot erase eted characters, and instead. print

characters 'backwarda to show they have been deleted,
leaving the line unreadable!)

CTR L+Z - Used to signal the end of input for data entered at the

terminal, for exauple to terminate a message to be sent by
the MAIL systen.

1.2. Meeting The Systen

Before ahyone can use the system they must identify themselves by
entering their username and password. These are assigned to each
user by the system manager. It is very important, for the protection
of your data, programs and documents stored in the system, that you
never reveal your password to anyone.

To get the attention of the system, press <CR>. There will be a
prompt for a username and then for a password, each of which must be
termninated by pressing <CR>. When a password is entered it is not
displayed on the screen. An exanple of a log-in sequence might be:

Username: JIM <CR>
Password: <CR>

Welcome to VAX/VMS Version V2.3
$

The "$" is a prompt for a new command and indicates that you have
logged onto the system correctly. If an error is made 1in typing
either the user name or password, then access can not be gained to
the system. The only remedy is to try again.

Commands wmust be given to VAX to make it do useful work. This is
done using the Digital Command Language (DCL). DCL comuands are
words from the English language which are suggestive of the function
to be performed. The comanand format 1is described in Section 4.
Commands are used to run prograus and manipulate documents which are
stored in files. Files are explained in Section 3.

One useful command to note here is the HELP command, which can be
used to obtain information about any other command. For examnple:

$ HELP
Wwill provide a 1list of all the commands available on the system.
Note that the '$' is not typed by the user as this is the prompt froum
the system. For more information on a particular command, type:

$ HELP command

For exauple:

$ HELP PRINT

will provide a synopsis of what the PRINT coummand does and how to use
it. '

When the session with the terminal is completed, the user uust
log-off to make the terminal available to other users (and to protect
personal files from accidental danage). Log-off Ly typing:

$ LOGOUT or $ LO

and the system will respond with a message similar to the following:

JIM logged out at 31-JUL-1981 11:05:45,.40

2. FILES

2.1 How To Identify Files

A file is a collection of 1logically related data located on a
medium, such as a disk, tape or floppy disk. To access files that
already exist, or to give names to files created with systeu
commands, the user must first know how to identify files.,

The formal, unique specification of a single file is of the form:
device:[directory]filename.type;version

Although at first this may seem to be very couplicated, certain
defaults are used (see below) so that a file need not pe given 1its
full name in every case.

Device

This is the actual physical device on which the file is stored.
Each user of the system is allocated an amount of storage space on a
disk. This disk is the user's default disk and nhas the device naue
DRAO:, DRA1:, DRA2:, or DRA3: (note that device naumes are terminated
with a colon). When referencing personal files or those belonging to
others which reside on the same disk , the device name can be omitted
and the system will use the default device naue,

Directory

Since a disk can contain files belonging to many different users,
each disk has a set of files called directories. A directory holds a
list of tne names of files on that disk belonging to a particular
user. The name given to a directory 1is wusually the sawe as the
user's usernaume. For exanple, the directory belonging to JIM on
device DRA1: is called DRA1:[JIM]. If DRA1: was JIM's default device
then this would be his default airectory.

The default device and directory can be explicitly changed Dby
using the command SET DEFAULT, described below. Tnis is especially
useful when using sub-directories (see Section 2.2). Note that the
defaults are restored to their original values at the end of the
terminal session. The command SHOW DEFAULT displays the current
default device and directory.

If the file being referenced is located in the current default

directory then the directory part of the file specification can be
omitted.

Filename

The owner of the file gives it this name, consisting of a string
of 1 to 9 alphanumeric characters, in order to distinguish it frouw
others in the same directory. Usually the naue is chosen so as to
describe the contents. For exauaple TEST1 may be the name given to a
file containing data to ve used for the first of a series of tests.

2-1

Type

The type of a file, sometimes called the extension, 1is an
alphanumeric character string of maximum length 3 which must be
preceded by a full-stop. It describes more specifically the kind of
data in the file. For example a file of type .IMP contains the
source statements of an IMP-77 program., Although any type can bve
given, the system recognises several default types used for special
purposes. Some of these are pgiven in the Appendix.

The type part of a file specification may be omitted when that
file type is taken as default for the particular command involved.
(See commands discussed later for specific exauples.)

Version Number

This number, ranging from 1 to 32767, differentiates between
versions of a file. The version number can usually be omitted from a
file specification as the system assumes certain default values which
are determined as follows:

1. When a new file is created the system assigns to it the version
number 1.

2., For an input file, that is one to be acted upon by a command,
"the highest version number (most recent copy of the file) is
used. L

3. Whenever an existing file is updated in any way, or additional
versions are created, the version number assigned to the new
copy is the highest existing version number incremented by 1.

Example
DRA2:[FREDINEWPROG.PAS;3

is the full specification of the third version of the file called
NEWPROG which is a program of PASCAL source statements and can oe
found in FRED's directory on disk DRA2. In accordance with the
defaults described above, the following command:

PASCAL NEWPROG

would cause the compilation of the program in the above file provided
the current default directory was DRA2:[FRED].

SET DEFAULT- Changes the default device and/or directory name for the
current process. The new default is applied to all
subsequent file specifications that do not explicitly
give a device or directory name. This command can be
given as many times as required during a terminal
session,

format: SET DEFAULT directory

exauples: $ SET DEFAULT [JIM]
The directory name JIM is now assumed to be the default
directory for subsequent file searches but the detfault
disk device remains the same.
$ SET DEFAULT DRAO:[TIM]
Both defaults are changed.

2.2 Sub=Directories

Normally, the system manager provides each user with only one
directory in which to maintain files. However VAX has a facility for
a hierarchical structure of directories so that the files can be
organised into suitable groups. " This 1is achieved by using
sub-directories which are created using the command CREATE/DIRECTORY
(see Section 4).

A sub-directory is itself a file in the main directory, and has
the file type .DIR, for example:

DRA1:[FREDJSUB.DIR;1

A file wWwithin a sub-directory is manipulated in the same way as
those in the main directory, except that the directory naue part of
its specification consists of two components separated by a full
stop. The first component is the main directory and the second 1is
thne sub-directory's naue. ~

€.4. [FRED.SUBJ
The full-stop thus has two uses in file specifications:

(i) To separate the file name and file type.
(ii) As here, to separate a directory name and the naane of a
sub-directory it contains.

Note that what might appear to be the more logical form of
sub—-directory identification, namely [[FREDISUB], is NOT correct.

A sub-directory may itself contain sub-directory files
.8, [FRED.SUB1]SUB2.DIR
which in turn may contain files which will have the directory na?é of
| [FRED.SUB1.3SUB2]

The number of these levels can not exceed 8 but there 1is no
maximum on the number of such hierarchical structures you can create
and access beginning with your own directories.

Sub-directories aid file management because prograns and data
files on different exercises can be grouped together in their own
sub-directory. This prevents the main directory from getting too
long, making it difficult to scan, It is usually convenient when
accessing files in a sub-directory to change the default directory
nane to that sub-directory. For example:

$ SET DEFAULT [FRED.SUBI
The sub-directory [(FRED.SUB] is now taken as the default for all

subsequent file references in which the directory name 1is not
explicitly specified.

2.3 Protection

Individual files are protected by means of a protection code which
indicates who is allowed access for what purposes, The following
- four categories of user are defined:

SYSTEM - The System Manager.
OWNER - Self explanatory.

GROUP - Users who are in the same user "group" as the owner of
the file. Each user is allocated to a particular group
(e.g. CS2, STAFF, etc.) by the system manager when
he/she is accredited to the systenm.

WORLD - All wusers who do not fall into one of the above
categories.

Each of these categories of user can be allowed or denied one ot
the following types of access:

READ - the right to examine, print or copy a file.
WRITE - the right to modify a file.

EXECUTE - the right to execute files that contain executable
images.

DELETE - the right to delete a file.

Since a directory is itself a file, it can be protected in the
same way. In this case, the above types of access are interpreted
‘respectively as the right to read files from the directory, write
files to the directory, create files in the directory, and delete
files from the directory.

The command used to specify these protection codes is:

SET PROTECTION -~ Establishes the protection to bpe applied to a
particular file, or a group of files, or establishes
the default protection for all files subsequently
created during the terminal session.

format: SET PROTECTION [=code] [filespec]

example: $§ SET PROTECTION=(GROUP:RWED, WORLD:R)/DEFAULT
' This command sets the default protection, which is
then applied to all files subsequently created, to
allow users in the same group unlimited access, and
all other users read access only. The default
protection for system and owner are not changed.

$ SET PROTECTION=WORLD MYFILE.IMP

Here, the users in the world category are denied all
access to the file WYFILE.IMP, and the access
allowed to other users is left unchanged. The type
of the file wmust be specified. As the version
number 1s omitted above, the protection applies to
only the highest existing version of the file. Type
HELP SET PROTECTION for more details.

2-4

3. USING THE COMMAND LANGUAGE

3.1 Coumand Format

The general format of a DCL command is:
command-name [qualifiers] [parameter-1] ... [parasneter-n]

Here, and in subsequent command descriptions, the square brackets [
and] surround optional values. For example:

$ COPY [qualifiers]

indicates that the user does not need to supply any qualifiers to
issue a valid COPY command.

Qualifiers

A qualifier modifies the action of a command, that is it provides
the system with additional information on how to execute the command.
A qualifier always begins with a slash (/), and its position in the
command line depends on its type. There are two types - a command

qualifier and a file qualifier. A command qualifier 1is placed
immediately after the command, and affects each of the comnand
parameters wnich follow. A file qualifier, on the other hand,

follows a file specification in the parameter list and affects only
that file.

If there is a value associated with a qualifier, then the two are
separated by an equal sign (=) or a colon (:) as in the example
below. This shows the use of the command qualifier /COPIES=n for the
PRINT command, which, in this case, causes 2 copies of both
MYFILE.DAT and PROG.PAS to be printed.

$ PRINT/COPIES=2 MYFILE.DAT,PROG.PAS
Although there are qualifiers associated with most commands, they
are optional as each command has a default action. For exaaple, the
default action of the PRINT command is to print 1 copy of each
specified file.

Parameters

Command parameters define what is to be acted upon by the command.
In many cases they are specifications of files to be manipulated.
Several DCL commands relating to files allow a parameter consisting
of a single input file specification to be replaced by a list of the
saine. Each parameter, whether or not it actually consists of a list,
is separated from the command name and each subsequent parameter by
at least one space. For example the following command:

$ COPY FILE1.PAS,FILE2.PAS FILE3.PAS

has 2 parameters - a list of 2 input files and an output file. The
effect of this particular command is to produce a new version of the
file FILE3.PAS consisting of the FILE1.PAS followed by FILE2.PAS.
The PRINT command in the example in the above section has 1 parameter
- a list of 2 input files.

3.2 Entering A Command

A command can be entered whenever the "$" prompt appears at the
terminal. This indicates that the system is ready to accept a
command. If the execution of a command is taking a long time, then
Subsequent commands may be entered before the "$" reappears, but will
not be displayed on the screen until the execution of the previous
comnand has been completed. (Note, however, that the unsuccessful
completion of a command may affect the result of any following
related commands.)

A long command can be carried onto the next line by using a hyphen
(=), which indicates this continuation and can be used at any point
within the command. The system then prompts the next line with '$ '
For example:

$ COPY FILE1.PAS,-
$_ FILE2.PAS FILE3.PAS

In general, if a command is entered without specifying the
required parameters, the system prompts for the additional data it
requires, as shown below:

$ COPY
$_From: FILE1.PAS,FILE2.PAS
$ To: FILE3.PAS

Temporary Defaults

The system uses temporary defaults for the execution of commands
which contain a list of file specifications as input. These defaults
are applied to the device name, directory name, file name and file
type of file specifications. Thus the command:

$ DELETE MYFILE.LIS;1, MYFILE.LIS;2, MYFILE.PAS;1

could be written as:

$ DELETE MYFILE.LIS;1, :;2, .PAS;:1
Another exaaple is as follows:

$ PRINT DRA1:[JIMITEST1.DAT, -
$_ TEST2, -

$_ [FREDISUMMARY.TST, -

$_ DRA2:FINAL

would cause the following files to be printed:

dral:[jim]test1.dat
dral:[jim]test2.dat
dral:[fred]summary.tst
dra2:[fred]final.tst

Wild Cards

Many DCL commands accept a 'wild card' (¥) in place of one or uore
of the directory, file name, file type or file version fields of a
file specification. When a wild card replaces a field in an 1input
file specification, the command 1is applied to all files whose
identifications satisfy the fields that are specified. For exaiple:

$ DELETE ¥.LIS;¥
will delete all listing files, and

$ PRINT MYFILE.¥
will print the latest version of each type of the file 'MYFILE'.
When a wild card replaces a field in an output file specification,
the system uses the corresponding field in the input file

specification to fill in that field of tne output file.

Truncating Commands

When entering commands or qualifiers, the full command or keyword
name need not always be entered. The rule to follow is that enough
characters must be typed so as to make the cowmand or keyword unique.
For example, the HELP command is the only comwand that begins with
the letter 'H' so has a minimum truncation of 1 letter. The commands
SET and SHOW however can not be truncated to less than 2 letters, An
exception to the rule is the command RUN which can be abbreviated to
'R'.

Not that this rule does not apply to user-defined commands (see
Section 7 for Foreign Commands).

3.3 JSystem Responses

The system responds to some commands by giving informatiod about
what it has done. For example, after a print comaand the system
displays the job identification number it assigned to the print job:

$ PRINT MYFILE.LIS
Job 210 entered on queue TTF7

Not all commands display informative messages - in fact the
successful completion of a command 1is most commonly indicated by a
"$" prompt for another command. Non-successful completion is always
indicated by an error message or messages.

Errors

If a mistake is made in entering a command the system will respond
with an error message and the faulty line, with the error enclosed by
Neoe\ . It will then prompt for another coummand as if none had been
entered. For example:

$ CODY OLDFILE.IMP NEWFILE.IMP
$DCL-W-IVVERB, unrecognised comnand
\CODY\ OLDFILE.IMP NEWFILE.IMP

$

The three-part code preceding the descriptive part of the message
indicates that the message is frowm DCL, the command interpreter; that
it is a warning (W) message; and that the uwumnemonic for this
particular message is IVVERB. |

Error messages can also be received during the execution of a
comnand if the requested function can not be performed. For example,
if a PRINT command is typed correctly, but the specified file does
not exist, the PRINT command gives the following inforwation:

$ PRINT NOFILE.DAT

%PRINT-W-OPENIN, error opening DRA1:[JIMINOFILE.DAT
as input

-RMS-E-FNF, file not found

The first wmessage is from the PRINT command which says it can not
open the file. The second message indicates the reason - that the
file cannot be found. The facility name in this wessage, RMS, is the
VAX/VMS file system. For information on how to reduce the amount of
error uwessage that is printed out, type HELP SET MESSAGE.

3-4

4, FILE MANAGEMENT

4.1 Editing A File

The edit commands described below can be used to create new files
or to update existing files. The default file types for
file-specifications in each of these commands is .IMP.

E ¥ - invokes the VAX implementation of ECCE, the Edinburgh
Compatible Context Editor. (see Reference 4)

format: E filespec updates an existing file or creates a
new file if it does not already exist.
E old new edits an existing file to a new file.

The default file type for the 'E' command can be changed using the
command EXT.

example: §$ E MYPROG
Updates the file MYPROG.IMP. The file will be created if
it does already exist.

$ EXT .PAS
$ E TESTPROG TEST1
Edits the file TESTPROG.PAS to TEST1.PAS.

v ¥ - invokes the screen-oriented version of ECCE.
format: V filespec updates an existing file,
V NL: new creates a new file,
V old new edits an existing file to a new file,
S ¥ - 1invokes the screen-editor 'S' for Visual 200 terminals.
format: S filespec updates an existing file.
S NL: new creates a new file.
S 0ld new edits an existing file to a new file,

S accepts single key-stroke commands as follows:

On the main Kkeyboard:

letters, digits, etc all replace the character under the cursor.

DEL Deletes the character to the left of the cursor (even
newline),.

RETURN Moves to the left margin or inserts newline if inserting.

LF (line feed) Repeats last text search command.

TAB Moves to next tab stop, SHIFT+TAB to last tab stop (or
tab on words).

BS Retrieve 1last 1line 'deleted and insert before current

line.

On the small keypad to the top right:

ARROWS

HOME

Move the cursor in the direction indicated; moving from
one line to another normally also moves to the first
(non-space) character on the line.

Toggle whether the cursor should follow the indentation
when moving between lines,

CP+CONVERT FUNCTION

Abandon the edit without altering the original file.

On the keypad to the right (no CONVERT FUNCTION is necessary):

CT
ST
IL

IC

DL
DC
EL TS
EP
EF
PRT

CPY
BS

ENTER

Clears all tabs.

Sets a tab stop at the current cursor position.

Inserts one or more lines (until next cursor move etc key
hit).

Inserts characters (without overwriting) until next
cursor move etc,

Deletes the line containing the curscor.

Deletes the character under the cursor.

Erases the rest of the current line.

Move to next page.

Move back to previous page.

Repaints the screen should it be suspiciously out of
step.

Rewind to top of file (- on keypad only).

Move to end of file (0 on keypad only).

Closes the edit.

Insert the last deleted line before the current line.
Accept a command line of the form:

€numbper move to line number,

8-number move back number lines.

text move to the next occurence of text (which
may not start +-@i).

+text - move to the next occurence of text.

-text move to the last occurence of text.

+ move to the next occurence of the same text

as last time.
- move to the last occurence of the Samne text
as last time.

nothing ignore (the ENTER was a mistake).

#W. cause TAB key to be interpreted as skip to
start of next word.

cause TAB key to revert to skipping to next

tab stop.

4.2 File Handling Commands

APPEND -

format:

qualifiers

examples:

CLEAN * -

format:

examnples:

This command adds the contents of one or more specified
input files, to the end of a specified output file.

APPEND inputfile,... outputfile

/PROTECTION=code
Defines the protection to be applied to the output file.

$ APPEND BOTTOM.IMP TOP
TOP.IMP now contains the same as it did before, but with
the contents of BOTTOM.IMP joined onto the end.

$ APPEND BOTTOM.IMP;¥ TOP

This command Jjoins all versions of BOTTOM.IMP onto the
contents of TOP.IMP, starting with the most recent
version., If more than one input file is specified, these
must be separated with commas (,) or plus signs (+).

This command invokes a program which allows you to 'clean
up' your files. The name of each file you specify 1is
displayed on the screen in turn, to which you can reply
with special one-letter commands. These commands allow
you to perform many different operations on each file,
such as renaming 1it, deleting it, or changing the
protection, Type 'h' for inforumation about these
commands. ~

CLEAN [filespec]

$ CLEAN
Each file in the current default directory is 'cleaned'.

$ CLEAN [JIM]
Each file in Jim's directory is 'cleaned'.

$ CLEAN ¥ LIS;*
Each 1listing file in the current default directory is
'cleaned’'. ‘

COPY -

forumat:

qualifiers

exanples:

CREATE -
format:

qualifiers

examples:

This command is used to copy one file to another file, or
to copy several files into a single file.

COPY inputfile,... outputfile

/PROTECTION=code
Defines the protection to be applied to the output file.

/REPLACE

/NOREPLACE

Requests that if a file already exists with the same file
specification as the output file, the existing file is to
be deleted. The COPY command allocates new space for the
output file. The default is NOREPLACE.

By default, the COPY command creates a new version of
a file if the file already exists, incrementing the
version number.

$ COPY DRA1:[FREDJFILE.IMP MYFILE .
Copies FILE.IMP from the directory FRED to MYFILE.IMP in
the user's directory.

$ COPY [FREDJFILE1.IMP,FILE2 NEWFILE

Copies two files from directory FRED to a single file in
the users directory. The file NEWFILE is a concatenation
of the other files. The comma may be replaced by a plus
3ign (+) with the same result.

This command is used to create a file or a sub-directory,
CREATE filespec

/PROTECTION=code
Defines the protection to be given to the file or
sub-directory.

/DIRECTORY
Indicates that a sub-directory is to be created.

$ CREATE TESTDATA.DAT

The file TESTDATA.DAT is created - if it already exists
then the version number is incremented by one, otherwise
it is given the version number 1. The contents of the
file can now be typed in from the terminal. Terminate
this input with CTRL+Z.

$ CREATE/DIRECTORY [JIM.SUB]
The sub-directory [JIM.SUB] is created.

DELETE -

format:

qualifiers

examples:

DIRECTORY -

format:

qualifiers

examples:

This command is used to delete one or more files from the
user's directory. All fields in the filename must be
specified. 1If an * is used in any field, then all files
that match the other fields will be deleted.

DELETE filespec,...

/CONFIRM

/NOCONFIRM

Controls whether the DELETE command displays the file
specification of each file before deleting, and requests
you to confirm whether or not the file should actually be
deleted. You should reply with a 'Y' if you want that
file to be deleted. The default qualifier is /NOCONFIRM.

/LOG

/NOLOG

Controls whether the DELETE command displays the file
specification of each file that it deletes. The default
qualifier is /NOLOG. '

$ DELETE FILE.LIS;3, EXE;2
This command deletes the two files FILE.LIS;3 and
FILE.EXE;2 from the current directory.

$ DELETE PROG.¥*; ¥
Deletes all types and versions of files with name PROG.

This command displays a 1list of files or information
about a file or group of files.

DIRECTORY [filespec,...]

/FULL

Lists all information about the specified files,
including the protection on each file, the owner number
and storage allocation.

$ DIRECTORY
Displays a 1list of all files in the current default
directory.

$ DIRECTORY/FULL (JIM.SUBIMYFILE.PAS
Displays all the information about each version of the
file MYFILE.PAS in the sub-directory [JIM.SUB].

$ DIRECTORY ¥, IMP.*
Lists all the IMP files in the current default directory.

FILES *# -

format:

exanples:

PRINT -

format:

qualifiers

examples:

FS PRINT *-

format :

This command prints out a list of the specified files.
No information other than the file names is displayed.

FILES [filespec]

$ FILES
The names of all the files in the current default
directory are listed.

$ FILES DRA1:[FRED]
A list of FRED's files is printed at the terminal.

$ FILES [JIM]PROG
Causes a list of Jim's files with file name PROG to be
displayed.

Queues one or more text files for printing on the printer
situated in Block O0/P. This command uses the default
file type of .LIS, if a file type for the first input
file is not specified.

PRINT filespeC,cccceess

/HEADER

/NOHEADER

Controls whether the name of the file is printed at the
top of each output page. The default qualifier is
/NOHEADER.

/COPIES=n
Gives the number of copies to be printed. The default
number is 1.

$ PRINT FILE1,FILE2 _

This will cause FILE1.LIS and FILE2.LIS to be queued
ready for printing. The comma may be replaced by a plus
sign.

$ PRINT/COPIES=2 PROG.LIS;*
Prints two copies of each version of the file PROG.LIS

This command queues a text file to bpe printed on the
filestore 1line printer, situated in the South Machine
Halls. As this printer is faster than the one in block
0/P, it should be used when printing out a long listing.
The default file type is .LIS.

FS PRINT filespec

PURGE -

format:

qualifiers

examples:

RENAME -

format:

qualifiers

examples:

TIDY ¥ -

TYPE -

format:

example:

This command is used to delete all but the most recent
version of the specified files.

PURGE [filespeC,cevecs.l

/KEEP=n
Specifies n as the maximum number of versions to retain.
The default value of KEEP is 1.

/LOG

/NOLOG

Controls whether the purge command displays the file
specification of files as it deletes them, The default
qualifier is /NOLOG.

$ PURGE
All but the most recent version of all files in the
current default directory are deleted.

$ PURGE PROG.* :
All but the most recent versions of all files called PROG
are deleted. ‘

Used to change the name, type and version number of the
specified file.

RENAME oldfilespec newfilespec

/NEW_VERSION

/NONEW_VERSION

Controls whether the RENAME command automatically assigns
a new version number to the output file, if a file with
the same name and file type already exists. The default
qualifier is /NONEW_VERSION.

$ RENAME OLD.LIS NEW

This changes the file name of the latest version of
OLD.LIS to NEW.LIS. If no file called NEW.LIS exists
then the new file is given a version number of 1.

$ RENAME % ,TXT;¥* % _QLD;¥

All versions of all files with file types of TXT, to have
file types of OLD. The file names and version numbers
remain unchanged. ‘

This command has the same effect as PURGE, plus all
version numbers are returned to one.

This command is used to display the contents of a text
file on the current output device i.e. the terminal. If
the file is longer than 24 lines, use CTRL+S and CTRL+Q
to stop and start the display. The default file type is
.LIS.

TYPE filespec

$ TYPE PROG
Displays the most recent version of PROG.LIS.

5. PROGRAM DEVELOPMENT AND EXECUTION

The source statements of a program are put into a file which is
created using an editor.(See Section 4.,) It is usual to give the file
a name which describes the function performed by the program. Before
a new version of a program can be executed it must go through two
stages:

5.1 Compilation

This 1is the stage where the source program is checked by a
compiler programn for syntax and programming errors. If there are no
errors in the program, it is translated into a binary form called
object code. The translated code, that is the object module, is
written into a file of type .0BJ. If there is a fault in the program
then a message giving the type of fault and the line number on which
it occured is displayed on the terminal. In this case no new .0BJ
file is created.

For each high-level language there is a different compiler which
can be invoked by its own command. For example:

IMp ¥ -This command invokes the IMP-77 compiler. (See Reference
6). The default file type is .IMP.

format: IMP filespec

example: $ IMP IMPROG
The 1latest version of IMPROG.IMP, if error-free, is
compiled and the object code which is produced is placed
in a new version of IMPROG.OBJ.

PASCAL -This command invokes the PASCAL compiler. The default
file type is .PAS.

format: PASCAL filespec
example: $ PASCAL PASPROG
The 1latest version of PASPROG.PAS, if error-free, 1is
compiled and the object code which is produced is placed
in a new version of PASPROG.OBJ.

Creatiqé A Listing

The qualifier /LIST can be used with both of the above commands.,
Like other qualifiers it is optional, but when included it tells the
system to create a compiler listing which it puts in a file with file
type .LIS e.g.

$ IMP/LIST IMPROG
$ PASCAL/LIST PASPROG

produce new versions of IMPROG.LIS and PASPROG.LIS respectively.
Compiler 1listings are helpful because they contain a copy of the
program, with line numbers, and indicate any faults occurring in it.

See the HELP information for other qualifiers,.

5-1

5.2 Linking

An object module is not, in itself, executable, as generally it
contains references to other programs or routines. The 1linker
combines these modules to produce an executable image, which is put
into a file with the type .EXE. Files containing external procedures
or other modules which are explicitly referenced by the object
module, are included as parameters in the link command., There is no
limit to the number of such files.

Linkiqg IMP Programs

RLINK ¥

SLINK ¥ -These commands are used to link compiled IMP programs with
the appropriate IMP library procedures before they can be
executed., SLINK rather than RLINK should be used when
input or output streans other than the terminal are
required.

format: RLINK filespec,....
SLINK filespec,....

The first file specification is the object module, that is
the compiled program. Others, if present, refer to files
containing external procedures or modules. The default
file type is .0BJ

example: $ RLINK IMPROG
IMPROG.OBJ is linked to the IMP system library and a new
version of the file IMPROG.EXE is created.

$ SLINK NEWPROG,EXROUT
The files NEWPROG.OBJ and EXROUT.OBJ are linked, and a new
version of the file NEWPROG.EXE is created.

Linking Other Programs

LINK -This command is used to link programs written in languages
other than IMP - e.g.PASCAL.

format: $ LINK filespec,...

The first file specification is the object module, that is
the compiled program. Other file specs, if present, refer
to files containing external procedures or modules. The
default file type is .0BJ

example: $ LINK PASPROG
The file PASPROG.OBJ is linked to the system library and a
new version of PASPROG.EXE is created.

$ LINK MYFILE, EXROUT
The files MYFILE.OBJ and EXROUT.OBJ are linked, and a new
version of MYFILE.EXE is created.

Object Module Libraries

Object module libraries can be created to store procedures that
are called frequently by many progranms. For example, the compiled

object modules named TIMER, CALC, and SWITCH can be put into a
library called MYLIB as follows:

$ LIBRARY/CREATE MYLIB TIMER,CALC,SWITCH

The library is given the default file type of .OLB. Suppose an
object module naned TESTPROG.OBJ calls at 1least one of these
routines. Then before it can be executed it must be linked using the
command below, which causes the 1linker to search the 1library

MYLIB.OLB automatically when it encounters any undefined external
references:

$ LINK TESTPROG,MYLIB/LIBRARY

5.3 Executing A Program

When a program has successfully completed the above two stages, it
is ready to run.

RUN -This command causes a program to be executed. The uefault
file type is .EXE

format: RUN filespec

example: $ RUN MYPROG
The latest version of the image MYPROG.EXE is executed.

Input And Qutput Streams For IMP Programs

When running an IMP prograa which was linked using the command
SLINK, there will be a prompt to provide file-specifications for the
input and output streams used by the program. The default file type
is .IMP. The response should have the following foriaat:

input-filespec,.... output-filespec,....

The file specifications entered are interpreted as defining the
input streams 1,2,.... and output streams 1,2,.... The default

assignments to the 16 possible input and output streans are as
follows:

Input Output
0 terminal terminal (Cannot be re-assigned)
1 terminal terminal

2-15 null stream null stream

The terminal or null stream can also be assigned to a streaa by
entering TT or NL: respectively in place of a file specification.
Initially, stream 1 is selected for input and output.

There are no prompts for streams when running programs linked by
the commands RLINK or LINK.

A running program may be halted by typing CTRL+Y. The execution
of an IMP program can also be suspended, by pressing CTRL+C. In this
case, the prompt Int: will appear at the terminal. A reply of '?'
will cause diagnostics to be displayed at the terminal, but the
execution will continue. A reply of '.' will halt the execution
altogether. If any other reply 1is given, it 1is stored in the
external string CONSOLEINT which may be accessed from the program if
required, and the execution will continue,

Run-Time Faults

If, for any reason, a program fails during execution, then the
system will output diagnostics giving the reason for its failure.
These diagnostics will consist of the number of the line at which the
program failed along with the name of the procedure it was executing
at the time,. The diagnostics produced for an IMP program are
somewhat better than those for PASCAL or FORTRAN, as the value of
each variable at the time of failure is also given.

6. COMMUNICATING WITH OTHER USERS

VAX has facilities for inter-user communication. The commands for
this are explained below:

NOTIFY * -

format:

example:

FIND ¥ -

format:

example:

GONE * -

format:

example:

USERS * -

format:

NAME * -

format:

Used to send a short uessage to a user who is currently
logged-on

NOTIFY username " message

$ NOTIFY FRED"time for coffee?
FRED is in block o/p #1

The message "time for coffee?" will appear at FRED's
terminal along with your naae (therefore no anonymous
messages!).

Used to obtain information on the 1location of the
specified user. If that user is not logged on then the
system will respond with a message containing this fact.

FIND username

$ FIND FRED
Fred Smith (FRED) is in block o/p #1

This shows that FRED is currently logged on and 1is using
terminal no. 1 in block 0O/P.

This command may be used as an alternative to LOGOUT when
logging off. It can provide extra information to any
user using the FIND command to obtain your location.

GONE message

$ GONE FISHING
Fred Smith (FRED) going fishing at 11:28, Wednesday

User FRED has now logged off. If another uses the FIND
command to find FRED, he will get FRED's message. For
example:

$ FIND FRED
FRED went fishing at 11:28, Wednesday

This command will cause a list of current users and the

terminals they are wusing to be displayed at your
terminal.

USERS

This command is used to find the name of another user
when only part of the name - for exaiaple the initials or
first name - is known.

NAME text

A list of user's names for which a match is found is
displayed on the screen.

6-1

6.1 The Mail System

Mail can be sent to other VAX users via the mail system, which is
invoked by the command:

$ MAIL
The system proumpts with:
MAIL>

and will then accept special commands that enable you to send mail to
other users and to forward, delete, read, reply to, file and print
mail you receive. Some of the mail commands are as follows:

SEND - Sends a file or a message to another user, The sender 1is
prompted for the username(s) of the recipient(s), and the
subject of the message. If no file is specified after the
SEND command, the user is then prompted for the text of the
message, which 1s terminated by CTRL+Z. Note that mail can
be sent to users on the network - see Section 10.4 for
details.

READ -~ Displays one page of a message.
DELETE~ Deletes the message which is currently being read.

DIR - Displays a 1list of the messages which have not yet been
deleted.

Type HELP for more information about these commands and others.

Any mail that is sent to you is put into the file MAIL.MAI in your
directory, which is given protection which prevents you frou deleting
it, in case you do so by mistake. This file is deleted when there

are no more messages left in it.

An alternative way to mail a file to another user is to use the
MAIL comnand as follows:

$ MAIL filespec usernamne
e.g. $ MAIL NOTICE.IMP JIM

The default extension for the file is taken to be .TXT.

7. TAILORING THE COMMAND LANGUAGE

7.1 Assignment Statements - Creating Synonyms For DCL Commands

An assigmment statement defines a symbolic name, or 'symbol' for
short, for a character string and in this way allows synonyms to be

defined for commands. The format of an assignment statement 1is as
follows:

symbol-name := [=] string

The 'symbol-name' 1is an alphanumeric string of 1 to 255
characters, which must begin with a letter, If a single equal sign
(=) is specified in the assignuwent, the symbol is put into the local
symbol table for the current command level, and if a double equal
sign is used it is put into the global symbol table. A global sywbol
is recognised in any command file and at the interactive level at the
terminal - that is at any command level - whereas a local symbol 1is
recognised only at the command level at which it was defined.

The 'string' part of the assignment specifies a character string
value (or expression resulting in a character string value) to be
equated to the symbol. The string must be enclosed in quotation
marks (") if it contains any multiple blanks or tab characters,
lowercase letters, an exclamation wark or quotation marks.

In the exanple below:

$ TIME := SHOW TIME
$ TIME
23-JUL-1981 9:50:12

The symbol TIME is put into the local symbol table with the string
SHOW TIME as its value. The word TIME can then be entered as if it
were a system command. The system substitutes the string SHOW TIME
for the symbol TIME and then executes this command.

The following assigmment:

$ LIST := DIRECTORY/FULL

defines a synonym for the DIRECTORY command that automatically
includes the /FULL qualifier. Then, if you issue the command line:

$ LIST MYFILE.DAT

the system substitutes the name DIRECTORY/FULL for the syabol LIST
and executes the command string DIRECTORY/FULL MYFILE.DAT.

When you log out, any symbols assigned at 'terminal level' during
that session will be lost.

Concatenating Symbols

If a symbol-name appears as the first word in a command string,
the command interpreter automatically substitutes it with its string
value. Symbols can also, however, be concatenated with other symbols
or items on a command line, if they are enclosed in apostrophes (')
to indicate to the system that it must perform symbol substitution,
For example:

$ PQUALS := /COPIES=2/HEADER
$ PRINT REPORT.DAT'PQUALS'

The assignmment statement equates the symbol-name PQUALS to a list of
qualifiers for the PRINT command. When the PRINT command is issued
as above, the system performs the substitution for the symbol PQUALS
since it is enclosed in apostrophes, and executes the command:

PRINT REPORT.DAT/COPIES=2/HEADER

Foreign Commands

The assignment statement can also be used to define a 'toreign
command' as follows:

$ symbol-name:= [=] $image~file-spec

After this assignment, whenever the symbol-name appears as the first
item in a command, the command interpreter automatically executes the
specified image. For example:

$ PROCESS f: $DRA1: [JIM.PROJ JPROCESS
$ PROCESS

Here, the symbol-name PROCESS is defined as a foreign command - that
is one that was previously not recognised by the command interpreter
- and the image PROCESS.EXE i3 executed. The dollar sign ($)
preceding the image-~file-specification is necessary, as it implies a
request to execute the image. A file type of .EXE and the highest
version number are taken as default in the file specification, but a
device, directory and file name mmust be given.

Variable data can be passed at execution time to IMP prograus
which are executed as foreign commands using the external 3string
function CLIPARAM. In the example below:

$ PROCESS DATA TEST

the parameter string 'DATA TEST! which follows the command is fetched
by the function CLIPARAM, and can be parsed and analysed within the
program as required. Note that if there are any symbols (which will
be enclosed in apostrophes) in the parameter string, substitution of
these symbols occurs before the resulting string 1is passed to the
progranm,

7.2 Command Files

A command file is a file that contains a sequence of DCL coumands,
By placing sets of frequently used commands in command files, you can
construct command language 'programs' from DCL commands.

The default file type for a command file is .COM, and each command
in it must begin with a dollar sign. Any data required by a command
in the file - for example specifications for input and output files -
immediately follows the command and does not begin with a dollar
sign. In this way the data can be distinguished from the commands.
A file named MYPROG.COM might look like the following:

$PASCAL MYPROG
$LINK MYPROG
$RUN MY PROG

These three commands can be executed, in the given order, by issuing
the command:

@MYPROG

When this command 1s executed, the system locates the file
MYPROG.COM, then reads each comaand line in the file and executes it.

One command file can invoke another with the @ command to give
different command levels, The maximum number of command files that
can be nested in this way is eight.

A command file can contain special DCL commands to conditionally
control the execution of the file. For a detailed explanation of
these commands, sSee Reference 1.

Generalisiq& Command Files

The sample command file shown above 1s not very flexible, as it
can be used to compile, link and run only the PASCAL program called
MYPROG. Command files c¢an be made much more general by using
symbols, and letting the system substitute the symbol's value while
it executes the file,. For example, suppose that the command file
DOPAS.COM contained the lines:

$PASCAL 'PROGRAM'
$LINK 'PROGRAM'
$RUN 'PROGRAM!'

then this file could be used to compile, link and execute any PASCAL
program if, before executing the file, an assignment statement is
given to define a value for the symbol PROGRAM. For exanple:

$ PROGRAM :== MYPROG
$ @DOPAS

will have the same effect as the command file MYPROG.COM above, Note
that a double equal sign is used, as the symbol PROGRAM is to be
recognised at a different command level.

An alternate way to generalise a comumand file is to make use of

Special symbols that the system defines automatically when you
execute the file. These symbols, called parameters, are naued

7-3

P1,P2,...P8 and the values given to them are specified on the @
command line,
For example, the above file DOPAS.COM would look like this:

$PASCAL 'P1!
$LINK 'P1!
$RUN 'P1!

The value for the symbol P1 is defined when executing the command
file, as follows:

$ G@DOPAS MYPROG

The system automatically equates the name MYPROG to the symbol P1,
and the null string to each of the symbols P2,...P8.

Redefining System Commands

Command files and assigmment statements can. be used together to
redefine and expand systewm commands. For example, you may wish to
purge listing files on a regular basis to keep your disk file
directory uncluttered. To do this, you could create a command file,
say OUT.COM, that contains the following lines:

$PURGE ¥.LIS
$LOGOUT

You can use this command file in place of the LOGOUT coummand to end
the terminal session, as follows:

$ @OoUT
Then, the PURGE command is automatically executed before you are
logged out of the system. Moreover, you could define a symbol named
OUT that is equated to the following command string:

$ OUT :== €OUT
Then, when you type the command line:

$ OUT

the system substitutes the symbol OUT with the €OUT command string,
and executes your command file.

The LOGIN.COM File

Each time you log in to the system, the command interpreter looks
for a file called LOGIN.COM in your default directory, and if it
exists then automatically executes it. This file can thus be used to
execute any commands or sequences of commands that you would normally
want to execute at the start of each terminal session. For exanple,
a LOGIN.COM file could contain the following statements:

$TIME :== SHOW TIME

$LIST :== DIRECTORY/FULL

$OUT :== €0UT

$TEST :== SET DEFAULT [JIM.TESTFILES]
$PROG :== $DRA1:[JIM]IPROG

Note that the above symbols are defined as global symbols, so they
will not be deleted when the file finishes executing.

A LOGIN.COM file can also contain commands to set up terminal
characteristics, assign logical names, run programs, execute coummand
files or display message files,

You can update your LOGIN.COM file at any time to change, add or
delete commands. After you first create the file, or after updating
it, you can execute it with the € command so that the commands it
contains become effective,

7.3 Batch Job Processing

A lot of time can be wasted in sitting at the terminal waiting for
a command or command file to finish executing, when they require a
lot of processing time - for exaaple the compilation of a large
source prograin. Instead, these can be submitted for execution as
batch jobs, which are put onto a queue and executed in due course,
leaving the terminal free for you to continue interactive work.

A command file is submitted as a batech job using the following
command :

SUBMIT -Enters one or more command files in the batch queue. The
default file type is .COM.

format: SUBMIT filespecl, filespec2,...

The system displays a message indicating that the Job was
successfully queued for processing, and gives the job
identification it has assigned to the job. All output
from the command file is written to a file of type .LOG in
your default directory, which is queued for printing then
deleted when the batch job completes.

example: $ SUBMIT TEST
Job 112 entered on queue SYS$BATCH

The file TEST.COM is entered on the batch job queue. When
the job has been processed, the file TEST.LOG is queued
for printing and then deleted.

A single command can be submitted as a batch job using the command
DO. For example:

$ DO RUN TEST1

In this case, system messages are put into the file DOJOB.LOG in your
default directory.

8. LOGICAL NAMES

Logical names are wused to Kkeep prograns and command files
independent of physical file specifications. They ‘also provide a
convenient shorthand way to specify files that are used frequently.
(Note - Do not confuse 1logical names with symbolic names which
normally relate to command definitions.)

To achieve this independence, 1input and output files are
referenced from the program according to the syntax requirements of
the programming language. Then after the program is compiled and
linked, but before running it, the connection is made between the
logical names used in the program and the actual files and devices.

The ASSIGN command makes this connection: it establishes a
correspondence between a logical name (the one used in the program)
and an equivalence name (the actual file or device used). The
program can then be run with different input and output files without
having to re-code it, or having to type in the appropriate streams at
run-time. Instead, an ASSIGN command 1is executed to change the
current equivalence of the logical name. This method of independence
is particularly useful when the same files are used 'most of the
time' as input or output to a prograu. In this case, as logical
names lose their value at the end of the terminal session, it is a
good idea to keep the assign commands within the LOGIN.COM file.

ASSIGN - Equates a logical name to a physical device name or file
specification, and places the pair of naumes in a logical
name table which is maintained by the system.

format: ASSIGN equivalence-name[:] logical-name

The equivalence name can be one of the following: a device
nase, a device and directory name, a complete file
specification or another 1logical name. It must be
followed by a colon when it is either a device name on its
own or a logical name which translates to a device name.
The logical name is a 1 to 63 character string which is to
be associated with the given device or file.

exanple: Suppose the IMP program DATES.EXE contained statements to
read and write to files as follows:

OPEN INPUT (1,"INFILE")
READ (INVAR)

OPEN OUTPUT (1,"OUTFILE")
WRITE (OUTVAR,O)

The following commands show how the same program can be
used with different files as input and output:

ASSIGN JAN.DAT INFILE
ASSIGN JAN.OUT OUTFILE
RUN DATES
ASSIGN FEB.DAT INFILE
ASSIGN FEB.OUT OUTFILE
RUN DATES

“r & & O & &

The system uses the default disk, directory and version
numbers to conplete the above file specifications.

8-1

8.1 Logical Names In Commands

A logical name can, as already mentioned, be used as shorthand for
a device name, device and directory name or a complete file
specification. Commands that read or write files, therefore, also
accept logical names for file specifications. For example:

$ ASSIGN DRA2:[BERT.PROJECT.TESTSITEST1.EXE TEST
$ RUN TEST

When the system processes the above RUN command, it replaces the
logical name TEST with its equivalence name and executes the program
DRA2:[BERT.PROJECT.TESTSITEST1. 1In the following exaaple:

$ ASSIGN DRAO: TEMP

$ ASSIGN TEMP: FULL

$ ASSIGN FULL:[FRED] FREDDY
$ PRINT FREDDY:PROG.IMP

the translation from logical name to equivalence name occurs three
times in the PRINT command, and the file DRAO:[FRED]JPROG.IMP 1is
printed. Note the necessary use of colons - the reason for this is
that the system always checks for a logical name to the left of a
colon in a file specification.

8.2 Displaying And Deleting Logical Name Table Entries

The SHOW LOGICAL command displays current entries in the logical
name table, For example, to display the 1logical name TEST the
following command should be entered:

$ SHOW LOGICAL TEST
TEST = DRA2:[BERT.PROJECT.TESTSITEST1.EXE

All 1logical name equivalences that are created are automatically
deleted at the end of the terminal session, but can be deleted before
this by either assigning a different vaiue to the logical name, or by
using the DEASSIGN command:

DEASSIGN - Cancels a logical name assignnent made by an ASSIGN
command.,

format: DEASSIGN logical-namel[:]

example: $ ASSIGN DRA1: DISK
$ DEASSIGN DISK :
The logical name DISK is deleted from the 1logical name
table,

9. VAX AND THE FILESTORE

The filestore is used, as its name suggests, for storing files,
VAX files can be sent to the filestore to provide a backup against
losing valuable data in the case of failure. Having copies of files
on the filestore also means that they can be edited even when no
access can be gained to VAX, by logging on to a LEGOS or ISYS80
terminal. In this case, the updated filestore version can be copied
back to the original file before the next editing session on VAX.

Entry to the filestore is gained by typing the command:
% $ FS

The response will be a prompt for a filestore username (normally the
same as the VAX username), followed by a prompt for a filestore
password (need not be the same as the VAX password). If <CR> is
pressed instead of typing a username and password, only a limited
number of filestore facilities can be accessed. The filestore
prompts for commands with:

Fs:

Files in a filestore directory other than your own can be accessed
by prefixing the filename with the owner's username, for example
JIM.BACKUP defines a file called BACKUP which belongs to user JIM.
Note that the naming conventions for filestore files differ from
those on VAX,

VAX files are sent to the filestore with the command SEND:

Fs: SEND MYPROG/BACKUP

The default file type for the VAX file is .IMP (or the current
default file type if changed by the EXT command), and the default
filestore file extension is null, so the command above sends the
latest version of the VAX file MYPROG.IMP to the file BACKUP on the
filestore, overwriting any existing version there. |

Fs: SEND MYFILE.PAS

If no file name is specified, then the VAX filename is used (adjusted
for the differing conventions for separating file type or extension),
30 the above command sends the file MYFILE.PAS to the filestore file
MYFILE:PAS. Files are fetched from the filestore in a similar way:

Fs: FETCH BACKUP/MYPROG

copies the file BACKUP from the filestore to a new version of the VAX
file MYPROG.IMP in the current default directory.

Fs: FETCH MYFILE:PAS

fetches the file MYPROG:PAS from the filestore to a new version of
the file MYPROG. PAS.

The command FILES gives a list of files on the current filestore
directory. To exit from the filestore and return to command level,
type STOP.

10. VAX AND THE ERCC NETWORK

10.1 Logging On To VAX From The ERCC Network

Vax is available as a host on the ERCC network. To access the
system, type "VAX" in response to the "HOST:" prompt. The next
prompt should be "Username:" as for a normal Vax login. At the Vax
end, the terminal should appear like any other terminal except that :

1. Broadcast messages do not break through when the user is
being prompted.
2. The end of input symbol is CTRL+Y, not CTRL+Z.

Escapes
TCP interrupts (in response to ESC) are interpreted as follows :

INT:Y Equivalent to Vax CTRL+Y : command interpreter break-in.
(do not confuse with CTRL+Y on the network terminal, which
means end of input)

INT:A Equivalent to Vax CTRL+Y.

INT:C Equivalent to Vax CTRL+C : program interceptible
interrupt. If no interception routine 1is set up,
equivalent to CTRL+Y.

INT:O Equivalent to Vax CTRL+0 : discard output until the next
INT:0 or the next input request.

INT:. Equivalent to Vax CTRL+C followed by a 1line of input
containing just a ".". This is sensible only for IMP
programs with the standard diagnostic system, when it will
stop the program without diagnostics.

INT:? Equivalent to Vax CTRL+C followed by a line of 1input
containing just a "?", This is sensible only for IMP
programs with the standard diagnostic system, when it will
print diagnostics.

Other Ignored.

10.2. Logging On To EMAS from VAX

The effect of typing the command "ERCC" when logged on to VAX is
similar to hitting the space bar on an EMAS terminal to initialise
the logging on sequence. The major difference is that VAX, rather
than EMAS, terminal conventions apply. Three important differences
should be noted :

(i) CTRL+C is equivalent to typing ESC on an EMAS terminal

(ii) CTRL+Y is equivalent to CTRL+A followed by CTRL+D

(iii) CTRL+Z is equivalent to typing EM (end of file) on an EMAS
terminal.

After normal disconnection or CTRL+Y, the terminal returns to VAX
command level,

10-1

10.3 Transferring Files Between VAX And The ERCC Network

Files can be transferred between VAX and devices or mainframes 6n
the ERCC network by using the Network File Transfer Utility (NETFS).
To invoke NETFS, simply enter the following command:

* $ NETFS
and the prompt
>>

is given in response. Special commands can now be issued to transfer
files, as described below.

First of all, a device or mainframe on the network must be
selected, to and from which successive transfers will be made. This
is achieved as follows:

>> DEVICE dev-name
where 'dev-name' is one of the following currently available devices:

2972: 2972 EMAS
2980: 2980 EMAS
FSTORE: The ERCC filestore
TOWER: LP41 - Lineprinter on Level 3, Appleton Tower
LP: The 2972 lineprinter
LP<n>: ERCC network lineprinters, sent via the 2972

Before a file can be transferred to or fram a host, a usernane
must be given to identify the file, using the START command, e.g.

>>START
User : ECSC98
Background pass :

The username and password can be entered on the same line, separated
by a space, or in response to the prompts as above, in which case the
password is not echoed. Note that there is a distinction between
upper and lower case letters for the password, so ensure that you
have typed it correctly.

Files can now be sent to the currently selected device or

mainframe by issuing the command SEND. For example, assuming the
above START command has already been entered:

>> SEND TEST.PAS TESTRUN

transfers the 1latest version of the file TEST.PAS (with default
device and directory names completing the specification) to
ECSC98.TESTRUN on the currently selected device. If the host
filename is omitted, then the file takes the same name as the VAX
file name. For example, the command:

>> SEND DRA1:[FRED JMYFILE.IMP

transfers the specified VAX file to the file ECSC98.MYFILE.

10-2

In the example below, the 2972 lineprinter is selected, and the file
[JIM.PROJJESSAY.LIS is queued to be printed:

>> DEVICE LP
>> SEND [JIM.PROJIESSAY.LIS

Listings sent directly to the lineprinters will have the delivery
information "ERCC front door" wunless this is changed using the
command DELIVER. For example:

>> DELIVER J.C.M.B. ROOM 1609
The owner's name on the listing can also be changed, as follows:
>> OWNER A.N. Other
Files belonging to the user specified in the START command can be

fetched from the currently selected wmainframe in a similar way.
However, the VAX password must also be given. For example:

>> DEVICE 2980

>> START ERCMT77 PASS

>> FETCH ERCCFILE VAXFILE.IMP
VAX password :

Here, the file ERCM77.ERCCFILE on the 2980 system is transferred to
VAX, and is given the name VAXFILE.IMP, with the default version
number, device and directory name completing the specification. If
no VAX filename is given, then the file is named after the EMAS file
(truncated to 9 characters) with the extension .IMP. For exauple the
comumand :

>> FETCH TESTPROGRAM

would transfer the file ECSC77.TESTPROGRAM from 2980 EMAS to the VAX
file TESTPROGR.IMP with the default values coming into force as
before to complete the file specification,

File transfers do not execute immediately, and you will be sent
mail by the NETFS wutility when a file has been successfully

transmitted or received. The command QUEUE displays a list of the
files waiting to be transferred from VAX. Entries can be removed
from this queue by using the command:

>> REMOVE identifier

where 'identifier' is the identification number pgiven to the file,
which is shown by the QUEUE command.

To communicate with a mainframe user, you can send a file or
message using the TELL command as follows:

TELL ERCM7T7 [JIM.INFOIMESSAGE
TELL ECSC98,ECSC99
{message typed in at terminal, terminated by CTRL+Z}

If in doubt about any of the NETFS commands, you can type the

command HELP. To exit from the NETFS program and return to VAX
command level, type either EXIT, LOGOFF, QUIT or STOP.

10-3

10.4 Sending Mail To Users On The ERCC Network

Mail can be sent to users on the 2972 and 2980 systems using the
MAIL program, which is described in Section 6.1. The only difference
between this and sending mail to other VAX users is the way in which
the recipients of the mail are specified. There are two possible
ways of doing this:

(i) The EMAS username is prefixed by the host name as in the
following example:
2972: :ECSCT8
2980: :ECSC99
(ii) The name of the EMAS user, enclosed in double quotes, is
prefixed by 'RCO', which is the directory containing a list
of all EMAS users on both systems. For example:
RCO::"J.Smith"
RCO::"T.G.Brown"

The same wessage can be sent to both VAX users and EMAS users in
the same way as it can be sent to more than one VAX user, that is by
separating the recipients with commas. For example, the reply to the
'To:' prompt might look like the following:

To: 2972::ECSC78, WR, RCO::"J.Smith"

10-4

11. PRODUCING DOCUMENTATION

LAYOUT 1s a prograam which produces a paged, formatted document
from a source file consisting of the document interspersed witn
Simple commands. See Reference 5. for a complete description of
these commands and how to use then,

To LAYOUT a source file on VAX, use the command:
$ LAYOUT filespec

The default file type is .LAY, and the output document is put into a
LIS file of the same name. For exaiple:

$ LAYOUT ESSAY
lays the file ESSAY.LAY into ESSAY.LIS.
Up to three input files can be specified by + sigzns as tollows:
$ LAYOUT DOC+APPENDIX
This lays DOC.LAY and APPENDIX.LAY into DOC.LIS.
If the command has the qualifier /DIABLO then a diablo file of the
Same name 1is produced, with the extension .DIA. This file can then
be printed on the Diablo printer by issuing the comnand TODIABLU as

follows:

$ LAYOUT DOC+APPENDIX/DIABLO
$ TODIABLO DOC

The first command above lays DOC.LAY and APPENDIX.LAY into DOC.LIS

and produces the file DOC.DIA which, in the second command above, is
sent to the Diablo to be printed.

11=1

APPENDIX: DEFAULT FILE TYPES

+ + +
i File Type | Contents i
+ + +
H COM i Command file to be executed with the @ command, i
i i or to be submitted for batch execution with the f
i i SUBMIT command. i
] 1 |}
i | 1
i DAT i Input or output data file, i
i] [}
i I]
| DIR | Directory file. i
[}] 1
t] 1
| EXE | Executable program image. i
1 }]
1]]
i FOR { FORTRAN prograa. i
] :] [}
]]]
i IMP i IMP-77 program, or data file for an IMP-T77 prograa. i
1] [}
1 | . H
i LAY i Source for LAYOUT, the document producing program. i
1] 1
1 1 i
i LIS i Listing file created by a language compiler or |
| i assembler, or LAYOUT; default input file ftor PRINT {
i i and TYPE coummands. |
] i i
i i i
i oBJ i Object file created by a language cowpiler or i
! | assembler, i
]] [}
i i |
i PAS | PASCAL program. |
e + - - —

REFERENCES

VAX/VHMS Command Language User's Guide
Digital Equipment Corporation

VAX/VMS Primer
Digital Equipment Corporation

VAX-11 Software Handbook
Digital Equipuent Corporation

Edinburgh Compatible Context Editor (ECCE)
(Dept. of Computer Science Internal Report)
L.D.Smith, University of Edinburgh

LAYOUT
(Dept. of Computer Science Internal Report)
P.McLellan, University of Edinburgh

The IMP-7T7 Language
(Dept. of Computer Science Internal Report)
P.S.Robertson, University of Edinburgh

