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EMAS—The Edinburgh Multi-Access System

H. Whitfleld* and A. S. Wight

int of Computer Science, Universily of Edinburgh, The King's Bulldings,

Deparime,
Mayfield Road, Edinburgh EH9 342, Scotland

EMAS is a general-purpose time-sharing system for the ICL System 4-75 computer, with provision

for fully interactf

and background p i

It s a virtual memory system with a threc level

storage hierarchy.
An outline description of the system is given together with a more detafled description of the
paging and scheduling software, which Is based on the working set concept. Detalled performance

figures are inclnded.
(Received October 1972)

The Edinburgh Multi-Access System (EMAS) is a general
purpose lime-sharing system for the ICL System 4-75
Computer.

Work began in August 1966 and for four years was under the”

control of the Edinburgh Muhli-Access Project (EMAP); a
joint project between the University of Edinburgh Department
of Computer Sci and International Computers Limited
(ICL). The computer itself was delivered in December 1968
and the disc-file followed in June 1969. The Computer Science
Department took over the development of the system in
October 1970 and service began in October 1971. The Edinburgh
Regional Computing Centre (ERCC) which runs the computing
service has taken an increasing role in the development and
maint of the sy since October 1970 and has now
(October 1972) taken it over almost completely. The ERCC has
also been involved in a major way in the provision of the
compilers for IMP (Stephens, 1973), the language in which the
system is written, and in the provision of other subsystem
software.

About 25 programmers of various levels of experience were
involved in the production of the software during the first
four years. During the past two years about seven people of
very considerable experience have been working on the soft-
ware much of which has been re-written either totally or in
part. EMAP was intended as a research and teaching project
as well as a production exercise. It is clear in retrospect that all
three functions cannot be reconciled and attempts to do so
inevitably lead to delays in production.

The first part of this paper is intended to give a broad picture
of the organisation of EMAS sufficient to enable the second
part and the other papers to be placed in their proper context.
The sccond part contains a description of the resident super-
visor. Where the system follows well understood principles
only brief descriptions will be given. We have tried to give
actual statistics and performance figures where we have them.
We do not believe that these are necessarily better than those of
other systems, but we do feel that there is a great lack of hard
facts in this arca. We must apologise that we do not yet have a
coherent performance model of our system and offer- the
statistics in the hope that others will be encouraged to publish
similar figures.

1. Hardware

The ICL System 4-75 computer is the Jargest of the System 4
range and has paging (address translation) hardware. The non-
privileged instruction set of the System 4-75 is the same as that
of the IBM 360 series machines. The channel arrangements are
also similar but the channel program command codes are not
the same. The interrupt and associated context switching

arrangements are similar to those on the RCA Spectra 70
series machines, in that System 4-75 has four sets of General
Purpose Registers corresponding to four different states called
P-states. Normal interrupts, such as channel or program error
interrupts, cause entry to the P3 state and the cormpouding
registers are used by the processor. Power fail and machine
check interrupts cause entry to P4 state and the processor then
uses the P4 registers. Some of the registers of the P3 and P4
states are aliases for special registers of all four states. Each
state has an interrupt mask register, an interrupt status register
and a program counter. These fulfi! a similar role to the pro-
gram status words on the IBM 360 series and are amongst the
aliased registers. It is not very convenient to run significant
amounts of program in P3 or P4 states because the number of
registers available for general use is reduced. The programs
which run on entry to these states contain instructions which
cause an immediate change to P2 state, where further processing
is done. P1 and P2 states each have the full set of 16 registers
and none of these are aliased or used for special purposes. The
Pl and P2 states arc completely cquivalent. Because most of the
supervisor is compiled from a high-level language and uses all
of the registers, we have chosen to use P2 state for the resident
(unpaged) supervisor and Pl state for all paged programs.
A consequence of having the four P-states is that no storing 9nd
restoring of registers in main memory is necessary on a switch
of context from one state to another. 3

There is, however, only one set of Floating-Point Registers.
Although these are addressable in all four P-states we have
chosen to regard them as registers of P] state. Normally they
are not changed by the other three states, but parameters are
passed between P1 and P2 states in these registers.

The configuration in use at Edinburgh is as follows:

4-75 CPU{, operator typewriter and console.

768K bytes 1u sec core store—4 bytes/access
and two way interleaved.

2 x 2M byte magnetic drums on one channel,
transfer rate of 860K bytes/sec.

Each drum has 128 tracks and there are 4 pages (of 4096
bytes) per track.
Revolution takes 20 mS.

2 x 350M byte non-replaceable disc-file with moving arms,
consisting of two devices on one channel. Transfer rate
256K bytes/sec.

Revolution takes 40 mS.
Average arm movement takes 60 mS.

3 x 7'5M byte replaceable disc drives.

4 x 120K bytes/sec 9 track tape drives.

1 7-track tape drive.

*Present Address: Mathematisch Instituut, Rijskuniversiteit te Groningen, Postbus 800, Groningen, The Netherlands.

{Typical instruction execution times are given in Table 1.
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Table I Sample instruction execution times

MNEMONIC DESCRIPTION FORMAT MICROSECS.

System software

EMAS is a virtual memory system, Each foreground or back-

ground user runs programs in an independent virtual memory

und each such user process has a share of the resources of the
ystera (core, CPU, etc.). At system interface level each user

LR Load RR 0-80
L Load RX 1-65
ST Store RX 1:25/1-47
STM Store Multiple RS 6°13 for 8 words
A Add RX 193
AR Add RR 109
MR Multiply RR 545
MVC Move SS 12:09 for 16 byles
BALR Branch and Link RR 179
BC Branch on Condition RX 1-44/1-67
BCR Branch on Condition RX 1-31
ADR Add Normalised RR 322
(Long)
MDR Multiply {Long) RR 1104

has a vmual memory of maximum size 2** bytes organised as
256 segments each of 2° bytes. Segments 0-31 of each virtual
memory are used by the director processes and are not available
to the user.

Central to EMAS is its File System which contains named
files belonging to all users. Each file is a completely unstructured
sequence of bytes of arbitrary length (in units of one page or
4096 bytes). Files have two part names as follows

MAC007. FRED

where the first part is the name of a user of the sysiem (the
owner of the file) and the second part is his chosen name for the
file. All files are held on-line and so are immediately available.

Files are accessed by connecting them. i.e. by having a mapping
set up between the whole file and a segment {or several contig-
uous segments) of virtual memory. This mapping is done by a

2 Line printers.

2 Card readers.

1 Card punch.

| Paper tape reader.

I Paper tape punch,

| Communications multiplexer with
64 Permanently wired teletypes,
16 Datel 200 ports,
4 1200 baud buffers with character video terminals.
§ 2400 baud synchronous buffers.

I British Standard Interfuce which connects to a PDP-1§
with interactive graphics hardware.

Authorised enhuncements arc:

1 x 2M byte magnetic drum to go on the existing chunnel.
256K bytes 1 sec core store.

The paging hardware

The 24 bit effective address which is generated by the usual
process of address computation is regarded as a virtual address
and is translated by the paging hardware into a physical address.
The method of translation is sketched in Fig. 1. Although there
is a segment table and a segment field in the virtual address. it is
1ol true (or symbollc) segmemauon us the segment and within

are not i independently. However.

it will be scen fater that many of the desirable properties of
segmentation cun still be realised.

The segment and page tables must be set up by the supervisor

so that the virtual to physical address mapping is correct. The
page table entries have availability bits to indicate whether a
page is in core and an interrupt occurs if uccess is attempted 10
a non-available page.
* The associative memory has eight cells and remembers the
eight distinct most recent accesses i oiding the two extri core
cycles needed to access the segment and page tables most of the
time.

It can be seen that this paging unit is similar to that on the
IBM 360:67*. However the System 4 unit provides 256
segments of 16 pages (cach of #W6 bytes), whereas the 24 bit
1BM 36067 provides 16 scgments of 256 pages. This lurger
number of segments allows the scgmentation 10 be used in a
more convenient fushion.

*The 1 d d i lation unit on the 1BM 370
series machines has four models of operation, one of which is essen-
tinlly the same as the 1BM 360/67 and one the same as the ICL

q 1o the system and once estublished access to the file is
by direct reference to the appropriate virtual address. The
system provides for controlled access to files in read;/read-write
and shared;unshared modes. When files are used in a shared
mode all users have access to the same physical copy whether
this is on disc, drum or in core. This facility is used extensively
to share the code of programs at various levels in the system
and results in marked saving of core, drum and disc spuce.

Input from cards or paper tape is handled by a system process
called demons and appears as files in the file system. Output to
printers. etc. is also handled by demons which prints files as
soon as possible after receiving a request. The foreground con-
soles are the only devices which communicate directly with
running user processes. The user app of the system is
sketched in Fig. 2,

Files reside on the disc-file where they are stored in puge
(4096 byte) blocks. The system uses the drums and core to
buffer parts of files while they are being operated upon.

The system software can be thought of as a set of concentric
shells. In the centre we have interrupt analysis, the CPU
despatcher, the basic synchronising primitives and message
passing software. Then there are the supervisor processes.
These are concerned with the following functions:

ENVAY REBSONDENT
-
ASSOCIATVE  MEMORY !

SASK Mt
SEIMENT TADLES

Tasul

.ceemB

{o] ==

= ~{D-*[aoe_vaw.x acohros

AVALABILITY
.

Fig. 1 Paging hardware
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Fig. 2 User appearance of EMAS

(a) Driving the fast devices—e.g. drums and disc-file.

(b) Driving 1he communication devices—e.g. lypewriter
consoles.

{c) Providing minimal support for slow devices—e.g. lapes,
card readers, line printers.

{d) Supporting virtual memories—i.¢. the paging software.

{¢) Scheduling of CPU-time and core for paged processes.

(f) Control of CPU errors.

Code for these processes is permanently resident.

The next shell of the set consists of the director processes.
Each user process has an associated director process which
performs (primarily) file system and console communication
services on its behalf. The director process has access to the
whole of the virtual memory whereas the user process can
access segments 32-255 only. The director process is superior
to the user process and can start or stop it and perform various
recovery functions. The intention here is to handle all non-time
critical system activities in paged processes and it is easier to
have such a paged director for each process. Where appropriate
(e.g. when accessing file indexes) the directors are interlocked
via a semaphore scheme. They all share identical code and usc
the same physical copy. It should be noticed that supervisor
overlays are in this way made unnecessary. as the paging of the
directors by the standard paging software provides a similar
function in a much more clegant way.

It can be remarked here that it has been a general principle
in our design not 1o place any system function at a more
central position than is strictly necessary.

Further system functions such as user vetting on logging in
and the input and output functions mentioned above are
handled by the demons process (Hayes, 1973).

The detailed organisation of the director is described in an
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accompanying paper (Rees, 1973), but it is worth looking
immediately at the relationship between the paged director and
the resident supervisor. Fig. 3 shows the mapping on the first
32 segments of each virtual memory. Segment 0 is not normally
used for somewhat bizarre reasons connected with a design
difficulty in the addressing system. Segment | is the buffer
segment which addresses the buffers into which all console and
slow device input/output 1akes place. Segment | is common to
all director processes and the pages which are allocated as
buffers are locked in core while transfers are in progress.
Segment 2 is the master segment; it is in read-write unshared
mode and contains the working variables for this incarnation
of director. These consist of u static-storage area and a stack:
there is also one page (page 0) used as the master page. This
contains the mapping of segments onto files for this virtual
memory and space for copies of the register sets* of the director
and user processes. It also contains usage information for pages
of files in active use. These tables on the master page are the
only ones accessed by both the director and the paging software
It is the responsibility of directors. which control the file system,
to write to the master page correct mapping information which
relates segment numbers to the physical disc locations of the
desired files. The paging software operates entirely from the
master page and has no knowledge of files as such or to whom
they belong. When a process is loaded to core the master page
must always be fetched—all other pages can if necessary be
demand-paged using the information on the master page.

Segment 3 addresses the file containing the director code. This
pure-procedure program file is accessed in read shared mode by
all directors.

Segments 4-31 address the file indexes of all accredited users
and are accessed in read-write shared mode by all directors.

Subsystem software

The items of software mentioned above, viz. the resident super-
visor, the directors and the demons process, constitute the
svstem, i.e. that part of the whole software complex which the
ordinary user cannot change. This basic system provides the
virtual memory support and file protection mechanisms.

A user at a console or a background user requires a great deal
more than this, ¢.g. command interpretation, job control
language analysis, loading operations, use of commands o1
catalogued procedures and use of utilities for the creation.

*A registerset of the program counter, the gencral purpose
registers and the floating point registers.
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Fig. 3 Mapping on segments 0-31




MEAN TIME DETWEEN CRABWES

inducad, by ) sorrwage
8) HAROWARE
) ALL QEABONS WCLUDING ABOVE

BASED ON 20 - DAY MOVING AVERAGK .

6 s 5 884838
._A.A-L_.il_-lv—-l—l«u.l_.-l..-‘l PIFUN T T W .
(_,'i
E'L

Fig. 4

management. compilation and execution of programs. In

EMAS these tacilities are provided by ordinary programs which
are protected and shared by the normal file control and file
access mechanism. A powerful subsystem (or collection of
such facilities) with a good range of commands has been
provided for the user. but there is nothing to prevent a user
adding his own commands (merely by compiling a program)
or indeed from choosing to use a completely different sub-
system. This is useful to the subsystem programmers who can
test new subsystems without affecting other users of the
system.

The standard subsystem is described in a separate paper
(Millard. Rees and Whitfield. 1973). The compilers in the
standard subsystem produce pure-procedure code in a standard
layout and observe parumeter passing and linkage conventions
which permit cross-calling between routines in different
lunguages. The files of the standurd subsysiem belong to a
user of the sysiem called manager who also owns the password
lists und is responsible for accrediting new users.

History and current status

When work on EMAS begun in October 1966 we naturally
wurned to the paper on Multics (Corbué and Vyssotsky, 1965)
as a starting point. This greatly influenced our thinking as did
the paper by Arden. Galler. O'Bricn and Westerveld (1966).
Work on Multics began in 1964, two yeurs earlier than on
EMAS. but intermediate results from the Multics Project did
not come out soon cnough to have much influence on the
subsequent course of our work. It is therefore interesting to
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compare the present state of EMAS with that of Multics (Cor-
bato, Saltzer and Clingen, 1972).

We have not been able to explore those areas which require a
multi-processor  configuration because of our hardware
provision and we deliberately chose not to have hierarchically
structured file directories and system administration (our
standard subsystem does however provide a hierarchical
structure of libraries of entry points of programs). Apart from
this we have set ourselves essentially the same goals as Multics
and have attained them in all essential respects.

The ICL 4-75 computer on which EMAS works is a slightly
modified 4-70 computer. The only additions are the paging unit
and ‘the use and change markers on the vore keys. The drums
do not have hardware queueing facilities but a similar effect is
organised in the drum software.

The hardwarc became availuble for sofiware development
over the first half of 1969, again two years later than in the case
of Multics. Until then we used the KDF9 computer with an
IMP compiler which produced code which simulated the effect
of the sume program on System 4. By September 1970 we hud
put a good deal of the system together. However. it was
apparent that a major re-design was necessary in the file
system area.

Here again the similarity to the Multics experience is remark-
able. The cause of necessary re-design was not so much bad
coding as a failurc to keep the software sufficiently simple in
concept to minimise the amount of code required. In particular
we had not realised that interacting paged processes, competing
for the same core. would take so long in elupsed time to com-
plete complex sequences of operations.

We very much simplified our specification to include only the

i features logically sary. simplified the manage-
ment of the file system, and improved the interfuces between
certain components. However, it was nol necessary 1o change
the design of the resident supervisor, We huve since re-wrillen
the file system twice more 10 provide improved fucilitics. 1o use
file disc space efficiently, and 10 make the director more
efficient in its paging characteristics. The supervisor has also
been improved in many significant ways although it has not
been necessary to re-write it. The iterutive technique of
program design suggested by Corbi6 et al. (1972) is entirely
in accord with our experience.

By early 1971 tagain two years later than Multics) EMAS was
sufficiently effective for us 10 be able to use it for all our
development. Al this point we began to make rapid progress.
By October 1971 the system was made available to general
users. EMAS currently supports 150 accredited users, und is
operated 18 hours per day Monday to Friday and 10 hours on
alternate Saturdays. The system currently supports about 30
fairly demanding users using one CPU and 768K bytes
(equivalent to 192K 32 bit words). Most of the user consoles
are within 1wo miles of the computer building and are used by
staff and research students of the University of Edinburgh and
by Government Research Council Institutes in the Edinburgh
area.

The system performs a great deal of crror detection and
recovery, and is reasonably proof against all but errors in the
CPU. Fig. 4 shows the crashes for the first half of 1972. The™
software time between crashes is large despite the fact that the
system is under continuous development. We would expect the
software error rate to fall to zero if we ceased development.
After a crash we take a dump to magnetic tape and re-IPL.
This takes less than a minute.

The EMAS system, i.e. residemt supervisor. director and
demons, consists of 11 modules, totalling about 20,000 source
statements in all. Thesc compile into about 180K bytes of code.
The basic subsystem, including compilers, commands und basic
libraries, consists of another 33,000 statements and 500K bytes
of code. Details are given in Tables 2 and 3. The compiler
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Table 2 Sizes of system components

COMPONENT FUNCTION LOCATION SOURCE: TEXT CODE SIZE STATIC DATA
{STATEMENTS) (BYTEST) (BYTEST)
SPAM PAGING RESIDENT 5.200 AJXN 1.9C0
CEDRIC COMMUNICATIONS RESIDENT 1,425 2.3C% 1.CI8
[PARAMETER
PART PASSING AND RESIDENT 1,705 3.FR8 3.510
OPERATOR CONTROL
DISC
FAST DRUM RESIDENT 1,525 2.6E0 1.C68
LOADUP
TAPE MAGNETIC TAPE RESIDENT 1,308 J.2A8 A98
SLOW SLOW DEVICES RESIDENT 741 1.520 8D0
PERM* RESIDENT 618 140
DIRECTOR FILE SYSTEM PAGED 3.500 9,600 1.C98
COMMUNICATIONS
ACCOUNTING
SPOOLING
DEMONS BACKGROUND JOB PAGED 3,849 CYR 1.089
INITIATION
LLOGGING ON
*in hexadecimal
*In Assembly Language
Compiled code run-ti
Table 3 Sizes of selected subsy p
COMPONENT FUNCTION " SOURCE TEXT CODE SIZI STATIC DATA
(STATEMENTS) (8YTEST) (BYTESt)
ACP & BCI ERROR CONTROL and 818 2.680 5BO
COMMAND INTERPRETATION
EDCP STREAM-FILE MAPPING 1,203 3 FCO 1,928
FPD VM LAYOUT and 1,412 4,880 1,410
PROGRAM LOADING
BCLL BASIC COMMANDS 1,308 6,298 9E0
EDIT EDITOR 977 2,CA8 308
FORTE FORTRAN COMPILER 7,749 10,058 1,4D0
IMPS IMP COMPILER 9.800 16,A78 D10

*+In Hexadecimal

operates at about 60 statements a second. Linkage of super-
visor takes less than one second. A complete system generation
takes less than 10 minutes and a new component can be intro-
duced in less than two minutes. The size of the resident super-
visor is 95K bytes of code and for a 30 user load about 128K
bytes of data and buffer areas. We make new supervisors and
directors about three times a week. New subsystems are
introduced about twice a month, but new versions can be
tested at any time. .

About 120 man years of effort have gone into the system to
date, a figure which is similar to the Multics experience. The
csst of the software was about £450,000 including about
£200,000 paid to the ERCC for some 3,000 hours of computing
time during the development period. In the past two years the
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design and implementation has been in the hands of six people
who understand the system and subsystem between them in
complete detail. It is estimated that this team, using the existing
system as a tool, could move the wholc system to a suitable
new machine with a different order code in one to two years or
to a very similar machine such as an IBM 370 series machine
with paging in about six months.

Like Multics, EMAS allows each user to choose the program
file which is mapped onto the virtual memory before his
process is initiated. The appearance of the system is determined
partly by the routines in this sub-system base file and partly
by the other files and services 1o which the user has access.
EMAS too has a stack-oriented, pure procedure environment
with libraries mainly in IMP and FORTRAN 1V, Appendix 1
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lists some of the facilities available.

It cannot be stressed 100 strongly how important the use of
IMP has been to the whole exercise. It is only by use of a high-
level language that the size of the text of the system can be-kept
down to a level where a very few people can understand all of
it. Why system programmers should continue to deprive
themselves of facilities which they feel obliged to provide for
others is beyond our comp ion. Good ile time and
run time diagnostics make for rapid program development and

The supervisor consists of a number of servicing routines®.
Each of these provides a set of associated services. For every
service there is a service number which can be regarded as
identifying a private semaphore (Dijkstra, 1968). A supervisor
service is activated (kicked) by sending a request message. This
can be regarded as a V-operation on its semaphore with the
queuing of the associated message. There is a queue (the
MAIN-Q) of services awaiting attention by the CPU. They are
queued initially in order of arrival, but second or subsequent

for the same service are held on side chains so that all

on a particular service can, where appropriate, be

an optimising mode in the compiler for validated prog
solves the efficiency prob! In systems progr ing it is  req
important that the | ge make the ionship between the

source text and the object code efficiency fairly obvious so that
the programmers avoid awkward constructions. In cases where
the ultimate in code efficiency is required we have used in-line
machine code rather than separate code subroutines which
always suffer from routine calling and return overheads. The
IMP compiler has 90K bytes of code and uses 25K bytes of
data.

2. The EMAS supervisor

The kernel

At the heart of the EMAS supervisor is the CPU despatcher.
It is not possible to have more than one CPU in a System 4-75
configuration so the despatching problem is slightly simplified.

*Each servicing routine may be regarded as the code of a supervisor
process.

serviced at one time.
MAIN-Q = 70 - 3| — 89 — 43

! !

70 89 o
1
89

The despatcher, which runs in P2 state, selects the first item
on the MAIN-Q and calls the appropriate routine. The routine
is then executed until it returns to the despatcher, all interrupts
other than machine checks and program errors being masked
off in P2 state. In the course of execution the routine may kick
other servicing routines causing further items to be placed
on the MAIN-Q. When it is called the servicing routine is
passed the request message. It may ask for any other messages
on the MAIN-Q side chain if it wishes. When the routine has
no more to do it returns to the despatcher. This can be regarded

The Computer Journal



Table 4 The category table

CATY PRIORITY CORE RESTIME LOOKTIME Ncyl NCY2 NCY3 NcY4
(PAGES)
(SECONDS)
1 1 44 1 0125 14 13 9 11
2 1 13 | 05 3 2 0 2
3 1 26 1 05 4 3 2 3
4 2 39 1 (] 4 4 3 4
5 1 13 1 05 8 6 0 5
6 1 13 2 05 9 7 0 5
7 2 13 s 05 10 7 0 5
8 I 26 1 05 n 9 5 8
9 2 26 2 05 12 10 € 8
10 3 26 5 05 13 10 7 8
11 2 39 I 05 14 12 8 1]
12 2 » 3 05 14 13 9 11
13 4 39 75 075 15 13 10 11
14 3 52 2 05 14 15 12 11
15 4 52 7-5 075 15 15 13 11

Demons starts in category 2 and all other paged processes in calegory I.

as a wait or P-operation on its private semaphore.

Routine calls are also provided to enable a servicing routine
to inhibit or uninhibit the activation of particular services.
These are used, for example, by routines which maintain
internal queues of their own for optimisation purposes. When
their queues are full they inhibit further requests until servicing
of some of the existing requests is complete.

The despatcher normally works through all the uninhibited
requests on the MAIN-Q causing execution of the servicing
routines in P2 state before switching to the execution of the
current Pl state paged process. However, it does examine the
interrupt flag register before calling a new servicing routine and
if high priority channel interrupts (drum or disc-file) are present
it exits to Pl-state immediately, 1o enable the interrupt to be
taken (Pl-state is run with all interrupts enabled). When
interrupts occur a request is placed on the MAIN-Q in the
normal way for the servicing routine. However, the high
priority interrupts cause immediate execution of the servicing
routine which effectively comes to the head of the MAIN-Q.

A request message or reply is always a 32-byte record with the
following format

0 2 4 6 8 10 12 3

I DSNO l mcrl SSNO | SACT | NOT USED I LINK I Variable parameters |

DSNO
DACT

is the service number being kicked.

is an activity number often used to indicate a sub-
service where more than one type of request is
handled on the same service number.

SSNO is the service ber of the requesting servicing
routine in case a reply is required.

SACT s its subservice number which is always returned
(in DACT) in replies.

LINK is a chain link (see below).

All service request messages and replies are stored in a
common list-processed area. At present there is space for 192
ges. The sy i a free list and the MAIN-Q
consists of a list of head cells to chains in this parameter area.
The restriction to 32 bytes was made to allow a consistent
scheme for paged and non-paged processes. Requests from
paged processes are made by placing the 32-byte record in the
4 x 64 bit foating-point registers and issuing the supervisor
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call (SVC) instruction. The floating point registers were
chosen because they are the only registers common to all four
P-states and it is not convenient to place SVC parameters in
memory in a paged system. It has been found that this restric-
tion to 32 bytes has rarely been an embarrassment.

Each director and each user process also has a service number.
Messages for paged processes are held in the sume area but the
head cells are not on the MAIN-Q and are held separately.

A useful feature of the parameter passing sch is the
service exchange. This has a table which relates service numbers
to the servicing routine or paged process. By changing this
table servicing routines can be moved around the system, ¢.g.
between supervisor and demons, without the problems of
changing all occurrences of the service number. Closely
connected to this is a facility which enables selected services to
be monitored. A printout is produced showing all messages
entering and leaving the associated servicing routines. This is a
most useful diagnostic facility as it enables software errors to
be located very precisely.

Servicing routines normally deal with groups of associated
services. For example there is a DRUM routine which handles
requests for transfers and termination interrupt messages.

The IMP language in which the system is written allows the
use of own variables and this feature is used to store information
between one call of DRUM and the next.

Because all servicing routines return to the despatcher to wait,
it is necessary to have one stack only for all the routines of
supervisor—indeed the organisation of the routines has been
made with this in mind.

It is perhaps worth remarking that servicing routines often
have at their head a jump to a switch label (vector label)
controlled by an own variable, sct on the previous entry.

EMAS also has a conventional semaphore scheme for the

Table 5 Priority ratio table

PRIORITY FREQUENCY
1 21432

2 8/32

3 2/32

4 1132
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FUNCTION
OPERATOR CONSOLE INTERRUPT
SLOW DEVICE INTERRUPTS
DRUM INTERRUPTS
REPLACEABLE DISC INTERRUPTS
DISC~FILE INTERRUPTS
COMMUNICATIONS MULTIPLEXOR INTERRUPTS
SLOW DEVICE REQUESTS
DEVICE LOAD-UP REQUESTS

ALTERNATE NUMBER FOR REPLIES
DRUM REQUESTS

REPLACEABLE DISC REQUESTS
DISC-FILE REQUESTS

MESSAGE TO OPERATOR CONSOLE

PROCESS STARTUP ALTERNATE NUMBER

CPU DESPATCHER REQUEST

SCHEDULER REQUEST

SEMAPHORE REQUEST P OR V.,

COREGIVE

PROGRAM ERROR OR SVC REQUEST
ALTERNATE NUMBER COREGIVE

PAGETURN INTERRUPT

CORETAKE

ALTERNATE NUMBER CORETAKE
CORE ALLOCATION FPOR BUFFERS
SCHEDULER REQUEST
SCHEDULER REQUEST
MAGNETIC TAPE CONTROL FUNCTION REQUEST
ACTIVEGIVE :
ALTERNATE NUMBER FOR REPLIES
ACTIVETAKE

ALTERNATE NUMBER FOR REPLIES

FROMACTIVE
- ALTERNATE NUMBER FOR REPLIES

TIME OF DAY REQUEST
PROCESS STARTUP REQUEST

USER CONSOLE INPUT/OUTPUT RELUESTS

CONSOLE BUFFER ALLOCATION

SLOWDEVICE REQUESTS
SUPERVISOR MONITOR OUTPUT
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Table 7 Use of CPU time

EMAS VERSION 729 DATE: 24/08/72 TIME: 12.02.00
TIME IN USER PROCESSES 9048 31.43
SUPERVISOR TIME CBARGED 2613 09.07
svC's 1311 04.55
PAGETURNS 1302 04.52
UNCHARGED SUPERVISOR TIME 2439 08.47
IDLE TIME 14656 51.01
TOTAL TIME 28786 100.00
ANALYSIS OF SUPERVISOR TIME
VIRTUAL MEMORY SUPPORT
DRUM TRANSFERS (6.29) 973 03.38
DISC TRANSFERS (7.8.32-41) 539 01.87
CORE LOADING (55-6,58-9,63-4) 1852 06.43
DRUM LOADING (73-80) 98 00. 34
SCHEDULING OF PAGED PROCESSES 115 00.39
TIME SLICING (50) 637 02.21
FILE SYSTEM SUPPORT (54,85-6,60-1) 40 00.13
SVC PARAMETER PASSING (57) 320 0l.1l1
COMMUNICATIONS SUPPORT (9,100-15) 403 0l.39
DEVICE PULLING (27-8) 23 00.07
MAGTAPES (5,45-8,72) 10 00.03
MISC. 42 00.14
EMAS VERSION 729 DATE: 24/08/72 TIME: 16.01.46

synchronisation of directors requiring common access to file
indexes. The P and V operations on the semaphores ussociated
with the indexes are implemented by a servicing routine which
forms queues (if necessary) when it receives P-operation
requests and sends replies when appropriaie, e.g. on receiving
a V-operation message.

Process synchronisation in EMAS is based on the parameter
passing scheme which can be thought of in terms of P and V
operations on private semaphores. P and V operations on
resource ph can be impl d trivially in terms of
the parameter passing scheme. In a system where the Pand V
operations are basic, a parameter passing scheme could be
implemented trivially using private semaphores. The two
schemes are dual.

Device handling routines
This section gives a brief description of the supervisor servicing
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routines which handle fast devices—drums and discs. The
communications device routine is described in the paper by
Rees (1973) and the slow device routine in the paper by Hayes
(1973).

Drums and dises are currently handled by two separate
routines. Each is activated in two ways, cither as a result of a
request for a transfer 10 be done or as it result of the occurrence
of an appropriate channel termination interrupt. The normal
request is for a page to be transferred between core and the
device. Provision is made for read, write and write-check®
transfers. If the device is idle a command chain is created and
initiated immediately on receipt of  transfer request. If the
device is busy the requests are queued by the routine which
inhibits its request service number when its queue becomes rull.
When the termination interrupt occurs and the routine is
*The write and check read facility is used when there is doubt
about the condition of the drum or disc hardware,
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called by the despatcher using its alternate service number, it LENGTH: length of block, i.c. number of valid

sends replies in respect of completed transfers, sets up a new
command chain and uninhibits its request service number to
allow q ing of further req

The drum routine currently has space to queue up 10 twenty
requests in total and sets up command chains of up 10 eleven
page transfers. There are four sectors round each track and
there are separite queues for each sector.

For each disc a single queue ordered by cylinder number is
kept. 1L is serviced first in the forward direction and then in the
reverse direction to reduce movement of the disc arms. An
analysis of the above routines and of new ones which will
shortly replace them will be reported on in due course.

The paging system

Files reside permanenily on the disc-file und pages of files are
moved between the disc-file. core and drum during the execu-
tion of user processes.

User processes do not make file-access requests but instead
refer to virtual memory addresses onto which liles have been
mapped. The paging software moves the relevant pages around
the storage hierarchy as required.

The director connects files to virtual memory by writing
information on the master page. Small files are laid out on the
disc-file in contiguous pages but a file of more than 16 pages in
length is broken into 16 page blocks plus a shorter block of
pages for any remainder. Onc 16 page block is not necessuarily
next to its successor block. On the master-page there is u table
which relates segment numbers in virtual memory to physical
disc-file addresses.

For each segment there is specified:

ACCESS MODE: no access, read read-write, shareable/
non-shareable.

340

pages in this segment.

DISC ADDRESS: disc address of first page of the block.
AMX: index into the active memory table.

The paging routines operate from this table (the claimed block
1able—CBT) and have no knowledge of files as such or to whom
they belong. Because this table and other necessary tables (see
Fig. §) arc quite large (about 3,000 bytes), the master page is
paged with the process. However, it must always be in core
while the process is receiving service from the CPU.

When a process which has its pages entirely resident on the
disc-file becomes active, it must first wait until it can be allo-
cated an initial amount of drum space. Its master page is then
copied to the drum and the process waits for an allocation of
core. When it is allocated core its master page is moved to core
and execution begins. This causes page demands and further
pages are brought in. As pages come in entries are added to the
core memory (CMT), core map (CMAP) and core position
(CPT) tables. Every so often the rcad-write markers on the core
pages belonging 10 a process are examined and cleared and
entries made in the USAGE ficld of the core map. If it appears
that pages are no longer being used they arc removed from
core to the drum. In this way the size of the core working set is
reduced. If a process goes to sleep (c.g. waits for console input)
or is removed from core for other reasons, the core working
set can, if appropriate, be retained and the pages in it pre-
loaded the next time.

The segment and page tables which drive the hardware have 1o
be set up for processes in corc from the other tables. It is worth
noting that the core mup and the core position tables contain all
the information needed to do this. In fact ahernative paging
hardware operating directly from these tables is easy to

The Computer Journal



Hh 0000000000 0COM
— TON
l =-{ 0
< NOOOOOQOQOOOOC®WAO®X®O
- o~ o
— ~
-
m NnNO00000000OoONTO
- [+)) NN~
— —
2 0000000 O0OMOan0OO0O0
—~ ©000000Q00COO~OLN
- — W ~0O0
© O ~SOAN
~ <
Q 00000ONORFHOO~mr
- - [TeNa] —- < 0N
v
a 00000V OCHARO0O0O00
o -~
wr
® NOOONOOMOVOLNODA®
™ V) Hee O~ O
~N © Q o N
I =1
N

~ NOOQOOWVWINOOHOOANO

0 OOOOOOO*OOSOOOO

N VOOONOOONAHLRAO T~
™ T3] 0 ("2}

~ wn (3]
(2]

O00O000000O0C

24/08/72 TIME: 08.02.00 UNTIL 16.01.46
201
176

3

o]
223
3297
182

Q0000000000

EMAS VERSION 729 DATE:

I

2
(o]
301
203

R‘OOOOOOOOOOO

gOOOOOOOOOOOOOO
N

o]
13 ANMPUOCOACANM
— -

- wn
=
Z -~
[

CATEGORY TABLE MOVEMENT

Table 9 Category table transitions
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envisage. An associative memory large cnough to contain
extracts from the core map and core position tables of the
current process would be nceded. At present we restrict these
tables to 63 entries.

To enable the paging routines 10 perform preloading oper-
ations where appropriate, extracts of the claimed block table
are kept permanently in core. This table (the active memory
table—AMT) has space for extracts concerning 32 blocks but
is not always full. The entry specifies the block disc address and
has a 16 bit mask to specify which pages of the block are
in the working set and therefore eligible for space on the drum.
When the pages of the working set are actually allocated space
on the drum the disc address is changed to a pointer to a block
page table (BPT) which has further pointers to the active store
table (AST). Here there is one entry for each drum page. In this
entry there is a core address if the page is allocated core.
There are also flags which specify whether the page is in core
or on the drum, and whether a page on the drum has been
changed since it was last on the disc-file.

In the case of files connected in u shareable mode therc is an
extrit level of indircction from the active memory tuble of each
user process through a common shared active memory table
(SAM) and then to the block page table entry. In this way all
references 10 a shared file use the sume disc. drum or core page
as appropriate. There is also a table (the page in transit table-—
PIT) which has chains of processes awaiting the arrival of a
shared page.

When a page fault interrupt occurs. i.c. reference is made to a
virtua) address where the corresponding page is not in core or
the page table is not up to date, the supervisor accesses the
claimed block table to check that access is valid. If the AMX
field is non-zero there is an extract in the active memory table,
and supervisor works down the chain to discover where the
latest version of a page is situated. It will then demand-page
it from the disc or drum, or, if it is in core already, complete the
page table. If the page is not in core but already on its way (for
some other process) an entry is made in the page in transit
table.

The paging is handled by a ber of servicing routines.

ACTIVEGIVE which moves the master page from disc to
drum,

COREGIVE  which pre-loads the current core working
set from drum to core.

PAGETURN  which services demand-page requests,

CORETAKE  which removes d pages or compl

working sets, and re-computes the working
set, and
ACTIVETAKE which moves pages from drum to disc.

In general pages leaving core go to the drum. However a
process which is designated for removal to disc can have its
unshared pages moved directly 10 dise.

Scheduling

There are two levels of scheduling decisions in EMAS, firstly
decisions as 10 whether processes should be allowed to start
and secondly decisions on the allocation of drum space, core
space and CPU time to active processes. The first level is fairly
simple. The machine operator determines the number of users
who are allowed 10 log on at any one time and the number of
background processes permitted.

This description concerns itself with the second level. Initially
we will ignore the question of allocation of drum space and
look at the core and CPU allocation. The basic aim of the
scheduling scheme is to keep the hardware acceptably busy
whilst at the same time providing adequate response for
inteructive activities. This is achicved by having a suitable mix
of processes in core at any time. Some will be allowed to stay
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for several seconds 1o keep the CPU busy, others will finish
qQuickly so that their spuce can be re-used by other interactive
processes. As processes change between interactive and non-
interactive phases the system must react accordingly.

The core must not be overloaded with processes or thrashing
will occur. We have already described in outline the way in
which a core working set is established. The scheduling system
uses the size of the working set to make an allocation of core,
and it also makes an allocation of CPU time. At any instant

every process is categorised according to these allocations,
Mts priority for loading 1o core depends on ils category.,

The system unloads from core processes which exhaust their
allocations. Whenever a process is unloaded new allocations are
made depending on the last allocation, the reason for unloading
and the actual amounts of core and time used in the last period
in core.

As there are invariubly more jobs awaiting execution than will
fit into core we have 10 have queues of such jobs. At present we
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have four such core-queues. one for each of four priority levels.
The priority level of a process is a property of its current
citegory.

We usc a simple algorithm to choose one of the four queues.
The algorithm is such that the higher priority queues are
sclected more frequenly than the lower priority queues in some
defined ratio. Once a queue is selected (and provided it has a
process waiting on it) the first process on that queue is chosen
as the next process to be loaded. This is done s soon as enough
core piges are free for its core allocation.

The whole working set is loaded at this time and the process
then goes onto the run-queue where it takes its turn on the
CPU. It may acquire extra pages on demand, and pages may be
removed by periodic examination of its use of core pages. I is

Volume 16 Number 4

allowed 1o acquire pages providing its working set size does not
exceed its core allocation. If this happens it is totally unloaded
and tiahes its turn on the core-queues again.

Processes on the run-queue, i.e. those in core which are not
awaiting the completion of u page-fault transfer, (ake turns on
the CPU in a simple round-robin fashion. They are allowed no
more than 30 milli-scconds in any one time-slice. Note, how-
ever. that they are not unloaded from core at the end of a
time-stice but when they use their CPU allocation. In this way
processes in core have a fairly equal share of the CPU. A short
time slice is necessiary to easure thut processes get biack on the
CPU quickly after a page-fault transfer is completed. so that
those which are building up a working set by demand paging
do so in a reasonably short clapsed time. When a process

U3



} its CPU allocation it is removed and put on one of the
core-queues again. Otherwise a process leaves core only if it
stops, or more commonly, if it is waiting for a slow device such
as the user console.

Whenever a process is removed from core ils working set is
recomputed and it is given a new category dependent upon the
reason for removal. For example. if it uses its predicted CPU-
time then it is usually moved to a category with a larger time.
‘This will mean it will get more time when it next comes to core
but it may have 1o wait longer to enter core as the priority
level associuted with its new category is likely to be lower.
When it next gets a turn its (full) working set is pre-loaded.

If the process exceeds ils core allocation it is normally moved
(next time it is loaded) to a category with a higher allocation
but its working sct is reduced to the master page. It is assumed
that it is a well behaved process moving to a different area of
virtual memory and that pre-loading of the existing working
set would not be helpful.

The system also adjusts the core allocation downwards if a
process has not used enough core by the time that it is unloaded
to justify its present category.

Processes which “go 1o sleep’, waiting for a console responsc
for cxample, are unloaded and moved to & category with the
same core allocation but less time and therefore higher priority.
When they wake up they go into the appropriate queue and are
loaded quickly with a short residence time. Here it is assumed
that interaction with the console could have changed the whole
course of the computation so that good response is the current
requirement. However the (full) working set is still pre-loaded
to facilitate rapid execution of repetitive console actions like
text editing.

The scheduling scheme has in practice turned out to be very
effective and the demand-page rate is low.

In earlier versions of the system we also had similar arrange.
ments for pre-loading pages from disc to drum and for re-
computing the drum working set. In this case pages would be
moved back 10 disc. This did not appear to justify the com-
plication involved and was removed. However the tables are
still set up for this more gencral situation, in case it is cver
desired 10 revert to the former system,

The whole of the ahove scheme is driven from the category
table*. For each category the following information is held:

PRIORITY determines which queue the process goes on
when waiting to be loaded.

CORE the core allocation (number of pages).
RESTIME  ihe CPU-time altocation.
LOOKTIME interval between recomputation of working set.

NCY | Category to move to if process runs out of core.

NCY 2 Category to move toif process runs out of time.

NCY 3 Category with next lower core size—zero if
there is no such category.

NCY 4 Category 10 move to if process goes to sleep.

The actual values in use at present are shown in Table 4.

Scheduling of the drum space is simpler. Active processes
accumuliale pages on the drum and keep them unless they
exceed a fairly generous limit or go 10 sleep (i.e. into a wait
state). When a process goes to sleep it may be allowed to keep
its drum space if it is in an interactive category or if the drum
is not congested. Otherwise the pages of the process which are
on the drum and have been changed since last on the disc are
copied 10 disc and the drum space is released.

In congested conditions pri wholly on the disc have to
wait for a drum allocation before they can be placed on the
core-queucs. Howeverit is not efficient to run the systemwith too

*This scheme is a development from a table driven scheduler for a
somewhat simpler situation described by Livermore (1966).

M

little drum space. At present we have 1016 drum pages., which
is enough for 25-30 processes. Shortly we shall have another
508 pages added.

The paging and scheduling routines have diagnostic facilities
built in to them which can be turned on from the operator’s
typewriter. Tracing can be performed in varying degrees of
detail for a selected process or for all paged processes. The
trace shows the elapsed time to the nearest milli-second of
every paging and scheduling event and the composition of the
core working set whenever it is pre-loaded. The trace gives
the virtual addresses of the pages in use providing useful
feedback when we are trying to optimise the paging behaviour
of standard programs such as compilers, editors, elc.

Accounting
The system keeps full records of the CPU time used by each
process, of the number of supervisor calls it makes and of the
page-transfers performed on its behalf. These, together with
records of input/output and of disc space in use, are used for
resource accounting and charging purposes.

The charging formula used by ERCC at present is:

C = KR (T + S/500 + P/256) + U/128
where C is the charge in new pence,

K is a constant {currently K = 2),

R is a rate depending on the time of day (current values
are R = |,R =08, R = 06),

T is CPU-time (in seconds) used by both user and
director,

S is number of SVCs issued, by both user and director,

P is number of page transfers (including director pages),

and U is number of records read or printed.

File storage is charged at the following rates:

0-15p per page day for files with backup status.
0-075p per page day for semi-permanent files.

Measurement of performance

A full analysis of the figures we have collected must be the

subject of unother paper. However, we present some basic
ements, Lo i the types of information we collect.

As we collect these figures whenever the system is running, the

informatior must be very cheap to collect and there must not

be 100 much of it to be examined afterwards.

We present in Tables 6 to 10 a set of figures of the type
produced at the end of every session. This particular session
from 0800 to 1600 is regarded as a typical day-time session for
the time of year. The maximum number of users during the
session was 32. The system tends to be lightly used before 1000
and over the lunch period, which accounts for the high idle
time. During term-time there would be more batch and detached
work to be run in slack periods. -

Table 6 shows the number of entries to servicing routines on
cach service number, the time used in total, and the average
time per entry. For example,service 29 shows that 981,823 page
transfers were made during the 8 hour period. The drum channel
can handle 200 transfers per second so the channel is occupied
for only 17 per cent of the time. Furthermore service 6 (the
drum interrupt) has only 343,010 entries so the average number
of transfers on a single chain is 2-86.

Table 7 which is derived from Table 6 gives an analysis of the
use of CPU-time.

Table 8 gives the averages, maxima and minima of various
system variables sampled every ten seconds during the last
146 minutes of the session. The figure of — 33 is not an error,
but a recent refinement in which the scheduler allows for pages
being shared in core.

Table 9 is the transition matrix for category changes.

Table 10 shows the distributions of various queue lengths.

Fig. 6 shows the movement of processes around the system.
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The numbers in brackets are counts of the number of move-
ments on each path. For example, it can be seen that the mean
interval t d page requests is 94-9 ms. Demand
paging accounts for only 26:7 per cent of all page movements.

During periods when the system is processing mainly batch
and detached work and there is a continuous supply of work,
the CPU-utilisation rises to about 85 per cent, of which about
10 per cent is supervisor time.

fn comparing these figures with other systems it should be
remembered that in a virtual memory system, all file accessing
operations are performed on the user's behalf by supervisor.
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