University of Edinburgh

&

Department of Computer Science

The EMAS Director

by
D.J. Rees

EMAS Report 2 Reprinted 1977

James Clerk Maxwell Building
The King's Buildings
Edinburgh EH9 3J2

031-667 1081

This paper has been accepted for publication
in the British Computer Socioty publication The
Computer Journal

Sunmary

The E7AS (Bdiinburgh Multi-Access System) Director is the paged part of the
EMAS operating system program. A description of its position in the EMAS system,
its functions and its implementation is given with particular reference to its

main components, the file system and the console input-output system.

3

he Z¥AS Dircctor

D.J. Rees
Department of Computer Science, University of Edinburgh, The King's Buildirgs,

Mayfield Road, Edinburgh, EH9 3JZ, Scotland.

Introduction

The Edinburgh Multi-Access System (EMAS) is a gercral purpose time-shering
system for the ICL 4-75 computer. An overview of the system is presented in
EMAS - The Edinburgh Multi-Access System (Whitfield and Wighi, 1973).

The EMAS opersting system software consists of seversl distinct parts. There
is a central part, known simply as the supervisor, which is permanently resident in
core and which performs the time-critical functions of the system. This is also
described in Whitfield and Wight (1973)e The other parts are not permanently
resident in core and are intended to implexment the non-time—critical functions of
the system. These parts are a number of system-owned processes waich provide
services for the system in general and the director which provides services for
individual processes. The director is the subject of this paper.

Instead of having the usual type of supervisor overlay for non-core-residen
parts, the director is made part of paged virtual memory and so is brought into
core a3 and when required by the standard paging mechanisms. This also relieves
the director of the problem of organising an overlay siructure itself. ZEzch BIAS
user process nas a director process of its own wnich occupies the first thirty iwo
segments of its virtual memory and which is paged in and out of core in the ordinary
way. All but one of these segments are, however, shared among all the director
érocesses. The remaining segments, 32 to 255, are available to the user process.
Vhereas when the director is acg}ve it may access the whole of that process's
virtual memory, when the user process is active it may only access segments 32-255.
This protection of the system is achieved by invalidating the relevant entries in

the segment table for the process.

The effect of this organisation is for the director to provide a first level
of processing of requests for system services from the user level. Such a request
takes the form of a supervisor call (svC) instruction issued by the user process
together with a set of parameters which define the service required. When a
request is made, the director of that process is activated and attempts to salisfy
the request. For many of the services it is atle to do so completely, but for
others further }equests for service to the supervisor o#’a systern—owned process are
necessary. These are also invoked by means of SVC but icsued by the directer.

The most important services provided for users by tﬁe system are those for
file handling, input-output, (console input-output in particular) aand for dealing
with contingencies such as program failure etc. ther services are concerned with
enteriﬁ% jobs onto a batch queue, setting local time-limits, getting systcas status
inforzation and so on. Normally, when a user process issues a service request, it
is suspended until a reply is received. In the case of console inpui-output,
however, it may sometimes be desirable to initiate a traasfer, say, and to continue
processing whilst the transfer is in progress. Facilities which allow this are also
available. The file-handling services are implemented entirely by the director and
the console input-output services by the director in cooperation with a supervisor
servicinz routine. Input-output service reqiests for devices such as card-readers,
line printers etc. are passed by the director to thre demons process (one of the
system-owned processes) which is described in Hayes (1973).

As a safety precaution, the EMAS system software resides on a replaceadble
disc unit (RDU). The supervisor is loaded into core from the RDU on start up but
the code of the system-owned processes remains and is paged from the RDU as required.
The diré;tor code which is shared by all the paged processes is that originally
associated with the demons process and hence it is also paged from the RDU when
any process requires it. In practice, of course, the director is in almost
constant use overall and therefore is either in core or on drum storage all the

.

time.

In common with the rest of the ZXAS system solftware, the director was
implemented using the IMP language, a langusge largely developed with this purpose
in mind though also widely used by users of the system (see Stephens (1973)). The
benefit of using a high level language such as IMP cannot be overestimated. Only
rare use of in-line machine code proved necessary, for example to issue SVCs.

Since the system has been on the air, the system itsell has been used o furiker
the development of the director., This has also proved invaluadle. For instance,
it has been possible to decide on a change, make the change, recompile the director

aind try it out within the space of ten minutes,

Structure of the Director

Figure 1 shows the contents of the segments of virtual zemory vwhich are the
concern of the director. Segment § is not used during the norzzl runzing of the
system but can be wade availsbie to run engineers' test prograzsz many of which
originated from the non-paged ICL 4-7C and which therefore require low zddresses
rather than possibly high virtual addresses. Segment 1 is accessible by all
directors in read-write shared mode and is used for irput-output buffers. Input-
outmut iransfers take place from core using physical rather than virtual addrecses
and hence the pages involved have to be locked in core for the duration of the
transfer. In praclice, pages are allocated and locked in core for longer periods,
for the total period Lhe device is in use. Ths two ejuivalent addresses, physical
and virtual, provide a convenient method of comzunication between the supervisor
and the director. In the case of console input, for cxample, the routine in core
initiates a transfer from a console into a buffer within the segment using its
physical address and on completion, the director uses the equivalent virtual
address to pass the input from there to the user area of virtual zeszory. This
latter communication between the director and user area is a straight forward copy
since they both occupy the same virtual memory. Since the tu{fer sez-ent is shared
among all the directors there is no protection from a director accessing an

inappropriate buffer should it go astray. This has never caused any problem, however.

31

enginecer test use

input-output buffers

master segment

director code

file system use

Figure 1

Segment 2, the magter resment (see Whitfield and Wight (1973)), is the only
unshared segment in the director an2 contains inforsmation relevant to the particular
process alone. Page £ is the pecter raze which con:a?ns all the virtual address
and physical disc storage address mappings used by the supervisor to perforz the
pPaging, together with other supervisor-used tables appropriate cnly to that process
such as metering infornmation tables. The master segment is also, by virtue of its
rend=-write unshared mode, an appropriate place to locate the data areas of that
process's director. The language Ii?, in which the director was procrammed, uses
a static storage area and a dynamic stack at run-time. These areas are loczted
from page 4 onwards. The gap between the master page and the data areas was created
to allow for a possible extension in size of the master page. This has not, in
fact, proved necessary. As an indication of the size of the directer's data areas,
pages 4, 5 and 6 are the only ones comadnly accessed during norzal runnins, In
physical terms, space is set aside for master segments, for all but the systiem-
owned processes, on the large disc file and paged from there.

Segment 3 contains the code of the director. This corzists of a loader, a
zodule of code needed for running INP programs, both quite slort, anl a mein
podule linked together in the system standerd way (sce Fillard, Rees and Whitfield
(19473)). On initial entryp, the loader satisfies external references between the
two other modules and jumps to the cain module. This m2in module is organised in
such a way as to minimize page-faulting by grouping together the cozzmonly accessed
parts as far as possible whilst bearing the positions of page boundaries in mind.
The IMP compiler allows the relative code address of each stztement cozpiled to be
monitored and ihis facilitates such an organisation, though improved versions of the
compiler result in the need for minor re-shuffling occasionally. The code oI the
director occupies approximately eleven pages of whicik only two or tkree
are used at one time during the most common reasons for entry.

Segments 4 to 31 are used by the file systex for disc file usage tables and

file ownership indexes. This is described further below.

The initial entry to the main director module is at its beginning and there-
after, in IMP terms, the program consists of an indefinite loop which is never
left. However, the loop contains an exit SVC to the supervisor which suspends its
operations while waiting for a reply or when there is nothing for it to process.
This is the normal exit point. What can be regarded as the normal eniry point
is the irstruction following this SVC. The program there consists of an exam-
ination of the parameters provided by the new entry which indicate what function
is required and a switch to the appropriate section of COdiné. In order to
acconplish the required function the director may have to call upon a supervisor
service such as manipulation of semaphores ore or more times., For services which
need no reply to the director, for example releasing a secmaphore, the director
may execute an SVC in line; In this case, thz director is not suspended. For
those services where the director needs a reply, after the SVC requesiing the
service has been issued the standard exit SVC is jumped to. This mechazlism allows
services which cannot imnmediately be completed to take place before a reply to
re—avwaken the director is sent. Upon re-entry the director returns to the approp-
riate section of coding by making use of the reply parameters and status variables
within the director. The reason for always using tze standard exit point is that
the supervisor queues requests and replies to the director in the order in which
they appear. It is therefore possible for an entry to occur other than for an

expected reply. Care has to be taken that no interference results.

The File System

File storage plays a central part in the use of EMAS and an important group
of user services are concerned with the manipulation of files. The igylementat;qguhub
of these services is contained entirely within the director apart from some sub-
sidiary functions such as semaphore operations and file clearing and copying which
are done by the supervisor. A user'operates on files at a logical level referencing
them by names of his own choosing and it is the function of the director to decide

on the physical positioning of them on the disc used for their storage. It is then

the function of the supervisor to access the disc areas when the user's virtual
nmemory references dictate, using tne virtual memory to disc address mappings set
up by the director in the master page of ine process when the files are connected.
A file cannot be accessed through the paging mechanism until it has teen
connected i.e. the mapping set up. Likewise, the file cannot be accessed after
the file has been discoﬁnected i.e. the mapping removed,

Files are stored on a-700 million character disc which logically consists of
two devices each with 350 million characters. During the initial developzernt and
usage of EMAS, one of these was sufficient to store user's and systenm files,

This allowed a very convenient method of development of th;.file systea software
by allowing each new version to be tested on the altcrnate device vithout tre rizk
of inadvertent destruction of files in actual use. Froz the haréware reliadiiity
point of view it alsé'proved invaluable: Increased availability and use of the
system has now, however, dictat;d that the whole disc be used.

A file name consists of two parts joined by a 'e.' characier. The first part
is the user name on the system of the owner of the {ile and the second an
arbitrary string of up to eight characters (excluding *.') to identify the file
amongst his own. The total nane is therefore unique on the systea. For example,
the user ERCC24 might have a file DIRFILE2 . The full naze would be ERCF24.
DIRFILE2 ., Given permission, any user on the system can access the file by-using
that name. For those operations which only the owner can perform the second part
of the name is sufficient, the owner name being implied.)

Files have lengths wiaich may be any zultiple of a paze i.e. 4096 bytes, up to
a maximum of 1024 pages. They are regarded from the system point of view as just
collections of bytes which may contain any information the user desires. 1In
particéular, no distinction is made by the system between files containing binary
machine code, source text etc. It is the function of the subsystem within the

user's -own virtual memory area to make any distinction that is required by meuns

of header information in the file or by any other means. Many other file systems

have made such distinctions and allowed such things as previous versions of updated
files to be retained. The philosophy adopted on EMAS has been one of providing
basic facilities which can be built upon by subsystems to provide more diverse
facilities. An example of this might be the connect service, described below,
which requires as a parameter the segment number in virtual memory to which the
file is to be connected. A subsystem couli remember which segments are in use and
50 be able to provide a connect service which found a free segment itself to
relieve the user of the burden. The simplicity of the approach to the design also
resulted in a certain orthogonality between the services making their functions as
distinct as possible. For instance, a file cannot be destroyed if it is still
connected in some virtual memory. There is no implicit disconnection defined in
this case and it must be disconnected beforehand by a seperate SVC. This gives a
certain amount of protection from inadvertent desiruction,

EMAS provides four possible modes of access to files when they are connected.
These are 'read-only' and 'read-or-write' each of which may be 'shared' or
‘unshared'. In a shared mode, any number of users may connect the file in their
virtual memories (the same shared-read or shared-read-write in all, but at any
virtual memory segment positions) whilst in unsazred rode only one user, not
necessarily the owner of the file, may connect it at onme time. 1In order %o be
allowed to conmect a file and hence to access it, the user must have been granted
pernission to do so by the owner of the file. Tne owner can set permissions for
hizmself, for selec&ed other individdal users and for all users and can specify
the level of access each should be permitted. The level specification takes the
form of a four-bit value, the bits being: S .5, U Uw where Sr is shared-

r W r

read, S“ is shared-read-write, Ur is unshared-read and U“Y is unshared-read-write.

Thus the value '1111' allows any mode of access, '1010' allows either of the read-
only modes and so on., When a file is created, permission is set for the owner
alone to have all modes. Ee can change this or permit other users by issuing an

appropriate SVC. The access checking procedure operates in the following way.

Yhen a user issues a connect SVC his director may go through three possible steps.
If the user is the owner of the file his permission is noted. If not, a list
containing the names of users granted individual perzissions and their access

modes is searched and the appropriate information noted if the user's name is

found. If neiﬁher condition holds, a temporary permission of zero is noted. 1In
all cases, the permitted values noted are 'OR' ed with that set up for all users and
the final permission results. At one.stage during the development of the file
system, an individual user could be singled out and given 2 lower access level

than all other users but it was pointed out that this might be rather vindictive.

The owner of a file may request that it should be archived as a preceution -
against loss for any reason. Usage flags are mainteined wrich indicate whether
the file has been aliered, or, at least, connected in a 'write' moie since it

was last archived. The archiving system is described in detail in Wight (1973).

The ownership of files cen be trarsferred between two users by maldng.use of

two services. The original owner of the file can offer his file to anoiher user

by using one service and then this user can accept the transfer. This two stege
method was preferred to a single unconditional tiansfer service to avoid a user
being given files by others without any control. File transferring is also the
method by which users perform input-output to ali devicss but consoles. The demens
process drives the physical devices. In the case of input, a file is created by
derons, filled with the incoming data and then transferred to the appropriate user
(indicated by the job document). In the case of output, the user creates a file

of output and transfers it to dezons which then outputs it to the requested device.

The file services available to a user are the following.

1. Create file. The user supplies a name for the file which must be distinct
from those of his other files and the number of pages it is to be in length. The
contents of the new file are cleared to zero in order both to maintain the privacy
of the owner of the previous file to use that disc area and to check that that

area of disc is undamaged.

2. Destroy file. A user can only destroy his own files and then only if not

connected in any virtual memory.

3. Rename file. A user can rename one of his files if the new name is histinct

and if it is not connected anywhere.

4. Change file size. A file can be increased or decreased in size by its owner
as long as the resulting size stays within the 1| to 1024 pages range. The file
must either not be connected anywhere or at most connected in the owner's own
virtual memory. In the latter case, either the ndditional pages are also connected
(and cleared to zero) or the deleted pages (truncated from the high-address end of
the file) disconnected. It nay only be connected in the owner's memory because a
director cannot change or modify the connect status of a file in a different virtual

zemory.

5. Set archiving status of file.

6. Get access permission. The file owner can ascertain what access permission

he has granted to himself or to others.

Te Set access permission., Set the modes of access to be allowed to nhimself or

to others.

8. Connect file. Connect a file to the user's own virtual memory from the
specified segment position onwards in the specified access mode. If the file is
more than sixteen pages long i.e. a segment, extra consecutive segments will also
be used in the connection as necessary. None of the segments must have a file

already comnected to them and the file nust not already be connected somewhere else

- 10 -

in the same virtual memory. The specified access mode must be allowed to this
user for the file. If not, a fault flag is returned, but it does not distinguish
between this fault and the ron-existence of the file. In other words, the

existence of a file with a given name is also fegardéd as private information in
addition to its contents. The service call will also be rejected if the file is
already connected in a different virtual memory and the required mode conflicts.

hat is, either the file is already connected in an unshared mode or it is connected
in a shared mode which is not the one required or the required mode is unshared.
No calls on the supervisor are involved in making the connection. The director
simply writes the mapping information into the appropriate place in the master

page from which the supervisor accesses it when the file is first referenced.

9. Disconnect file. The connection mapping in the master page is removed. In
this case, a call on the supervisor is made in order to remove any pages written

to in the file back from core or drum to disc. In fact, for reasons of consistency,
the supervisor removes all the pages belonging to the process which have been

written to back to the disc.

10. Change access mode of file. In an unshared mode, the mode can be changed
from read to read-write or vice versa without disconnection. For a shared mode,
the file must be disconnected and réconnected in the required mode (if it is
poséible).

11, Cet file information. A user can get status information about any file to
which he has been granted an access permission. The information corresponds to
the contents of the descriptor of the file (described below). This contains
such things as the length of the file, his permitted access modes, the current

connect mode, the number of shared connections and its archiving status.
12, Get file names. The user is given a list of the files he owns,

13, Get virtual memory map. A list of the names of all the files connected in

the user's virtual memory and their-positions is supplied.

- 11 -

14, Offer file for transfer. This is the first part of the transfer. Thc owner
specifies the name of the user ('SYSTEM' for the demons prodess) to which he wishes
to transfer the file. The file must be disconnected at the time and an effect of
the offering is to inhibit the owner from using it further. The owner can revoke

the oifer before the prospective new owner claims it.

15. Transfer offered file. A file offared to this user is transferred to his
ownership. The new owner can rensme the file in trhe process of transferring it

‘if he desires to avoid a clash with an existing name of his own.

Implemantation of the file system

All information relatingz to file usage is sitored on the same disec as the files
.themselves, though not in formally named files. Rather, an arca at the start of
"the disc is reserved for the purpose. This area is mapped onto the virtual memory

segments 4 to 31 of each process as 1t starts up in shared read-write mode by
writing the appropriate information into the master page in the same way that a
file is connected. Three kinds of table are con:tained in this area. They are

the following.
1. 'Page-in-use' bit tables. Storage on the disc is divided into pase-sized
units and each of these has a corresponding bii in a bit table. These are used
to indicate whether that page is in use i.e. is part of some file, or not. The
appropriate bits are set whenever a file is created or extended and cleared

whernever a file is destroyed or shortened,

2. User name versus user nucber tables. For convenience of implementation, each
user name has a corresponding unique user number. The advantage is that the numbér
occupies a field of smaller width than thg character string of the name and also ~
that it can be used for indexing. These tables, wnich are hash~coded on the names,
hold the corresponience beiween the names and nuzbers for retrieval when reguired.

When a process starts up, the entry parameters contain both the name of the process

user and the number. The table is consulted and if an entry is not found for this

- 12 -

name, implying that it is a new user who is starting a process for the first tize,
his nazme and number are inserted. Ciearly, the director need not and does rot
consult the table for its own user's rumber since it can de saved from the s tari-up
information. The table alsv is not consulted for th; demon process name 'SYSTEM'
since this is always assumed to be user number 2. Thus, the majority of file
service calls commonly do not involve consulting the table and theredy avoid a
probable page fault. Only those calls involving other user's {iles cause the

access.

3. User file indexes. Each accredited user of EMAS has a file index which

contains all the information e.g. location on disc, size etc.y relating to his
files. It is & page in length and has a virtusl zemory pesition given by nis
user number relative to the start of segment 4.

Tg‘haintain this consistent fora 6f adiressing, certain user nurbers are not
assigned so that the position can be used for the other types of tatles. This
structure imposes a limit on the number of users that may be accredited to the
system, which is the number of pages in segments 4 to 31 less the number of pages
used for the other tables, 8, i.e. 440. This number is regarded as sufficient for
the immediate future. The restriction could be removed either by moving the
boundary between director and user area or by napping onto virtual memory only
those indexes belonging to users wno are either currently runniné on the systea
or who hdve files currently in use dy others.

Fiéure 2 shows the layout of each file index. The header section contains:
1. the name of the index owner,

2. the number of free cells on the free list in~the list cells sections,

3. the head of the free list of cells,

4. a count of the file-pages this user owns for accounting purposes,

5. a set of subsystem file identifiers.

The use of the\}isf celis is described below. The subsystem file identifiers are

used by the director when the process starts. When a process starts, the only

- 13 -

virtual memory areas connected are the director code and the master segment. The
director makes further connections itself before any processing can be done.
Firstly, the segments 4 to 31 are connected and then two files in the user's area
starting from segment 32. These are intended to be a subsystem code file in
shared r«=ad-only mode and a file for it {0 use as a data area in read-write unshared
pode. Their names are the subsystem identifiers stored in the header. When the
director has completed these connections, it transfers control to the start of the
code file and indicates where the data file is connected (since the code file may
vary in length). The identifiers are initialised to the names of a standard
subsystexn and a data file when a user is first accredited to the systex and ihere-
after he can change them to whatever files he chooses by using a service provided
for the puryose, so that next time he starts up the new files are used. In the
main, this feature has only been uzed in the development of new versions of the
standard subsystexs though it is generally availatle.

The descripticn section of the index contains a 24-byte descriptor for each
file owned by the user. The contents of each descriptor are shown in figure 3.
The position of the descriptor within the descriptor area is given by a hash on
the file name. The information in the descriptor area is referenced and updated
as services are performed on the file. The layout of the index imposes a limit
of 128 files per user. This limitation was accepted to retain the convenience of
a pase-sized irdex,

The list cells area contains 224 cells each of 4 bytes. These are initially
formed into a free list from which cells can be taken when required and to which
they can bte returned when no longer needed. The links are page relative in order
to fit in a 2-byte field. The cells are used to contain one of two sorts of
inforuation, either starting page numbers on the disc of the various sections of
files (figure 4a) or access permissions for individual users (figure 4b). The
boundary between the descriptors and bit cells sections was fixed at what was

found to be a suitable value for an average user. The position could have been

or, position of single sections of file on disc

Figure 3

M
header 128 bytes
descriptors 3072 bytes
list cells 896 bytes
Figure 2
name ownp | ecp acc cons arch tran spare pags permil pagl
e s et .
9 bvtes 1 1 1 1 1 2 2 2 2 2
nzme: character string contsining name of file
own p: owner's own access parn:ission to file
. ecp: everyone else’s access permission to file
acc: mode of connection of fiic
cons: number of connections of file
arch: archiving status and usage bits
tran: user no. of user to whom fiie offered for transfer
spare: reserved for future use
pegs: length of file in pages
perml: link 1o list of cells for individua! access permissions
pagl: either, link to list of cells for disc positions of sections of file,

pagl
o
2 page no. -— page no. 0
N
(2 bytes 2 bytes
9
Figure 4a
perml
access | user no. - - | 2ccess | user no.
4 bits 12 bits 2 byies
Figure 4b
"‘,
}
.

14 -

made dynamic to suit more diverse needs but the cost of more complication was not
felt to be justified.

The file storage disc consists of disc surfaces on iwo separate rovating
spindles. One of the two devices occupies the two top halves of the spirdles and
the other device the bottom halves. Cylinder addressing alternates tetween the
spindles with even cylinder numbers on one and odd cylinder rumbers on the other.
There are 1024 cylinders on each device i.e. 521 per device spindle or cuadrant,
and each cylinder can hold 80 pages. Toigua:d arainst failures of the disc
hardware it was decided to make use of this separation. Each user on ‘he system
is assigned to one of the quadrants (from the range in which his user number lies)
and all the files belonging to him reside there. The files on each quadrant are
also archived geparately so that in the event of a partial disc failure involving
only one gquadrant, such as a head crash, only those filesneed be restored., The
system can also be restored to full use in cne quarter of the time. Each quadrant
has its own bit tavle and user name versus number table. With 4GD60 pases potentially
available for allocation to files on each quadrant, each bit table occupies a page
and a quarter. The remainder of the second page is used for the naze versus
number tavle. The user file indexes ere also organiced so as to reside on the
appropriate quadrant. 1In addition to these tables znd indexes in the rezerved area
at the start of the disc, space is also reserved for the master segments of
processes {other than the system-owned processes). These are dynamically allocated
to processes ac they siart and are not related to the user number. Aliowing for
a possible 63 processes, this reduces the total number of pages availavle in each
quadrani,by 720. The corresponding positions int he bit table are made use of by

the storage allocation algorithm.

The director has the facility to use the disc only from a given cylinder
onwards. During the development of EMAS this was made use of to ailow the
manufacturers J~level operating system some disc space. It is also a safety

feature should any cylinder reserved for indexes etc. become permanently unusable,

- 15 -

As files can be accessed by users other than their owners, precautions have
to be taken to guard against mutual interference when file operations take place.
To this end, each file index has a corresponding semaphore, Dijkstra (1968), upon
wnich P and V operations are performed by calling on a supervisor routine.
Whenever & director wishes to access a file index, it first claims the assoc-
iated semapho;e with a P operation, If the semaphore is not already claimed,
conirol is returned irmediately énd the director will proceed to access the index
and to release the semaphore with a V operation on completion. If the semaphore
is claimed, the supervisor queues the request and suspends the director i.e. does
not send 2 reply, until its turn in tke queue for the semaphore cores rourd,

The tit tatles and name versus number tables also each have a semaphore which
must e claizmed before accessing thex. An exception is mule in the case of the
name versus number tables in that the semayhore need only be claimed when updating
a table i.e. when a new user comes on since any concurrent look-ups will not
mutually interfere and the updating is done in one instruction.

A simple list-processing scheme is all trat is required to implement the
semaphore routine in the supervisor. 'Deadly embrace' situations are avoided by
allowing the director to claim only one semaphore at once. This is a more
stringent rule than is actually necessary but it does rot cause any difficulties
since most of tre services only involve one semaphore. For those that involve
two, it is occasionally recessary to release a semaphiore and reclaim it later
after a different semaphore has been used in order to follow tke rule. The
simplicity of the rule, however, makes for easy checking.

The amount of space in the file indexes and in the master page for mapping
tables precludes a corpletely gereral storage allocation system in which any page
of a file can be anywhere on the disc. The space is kept to manageable proportions
by insisting that the pages of a file connecied to 2 segment of virtual memory
should be located in consecutive disc page positions. The only mapping required

therefore is that for the first page of each segment. The remaining positions are

- 16 -

found simply by adding the page in segment rumber. Overlap froam the end of one
cylinder to the beginning of the next but one (to zaintain storage within a
quadrant) is allowed for in the disc accessing routines. This scheme will tend

to improve disc accessing for the many files which will be accessed sequerntially,
though the multi-programming wili dilute this attribute. No consecutive areas of
disc storage greater than sixteen pages are required. A file of more than sirteen
pages will be divided into sections, all sixteen pages in lergth excerting possibly
the last which will be whatever remeining number is reguired. Likeuise, a fil;

of less than sixteen pages will be all in one section.

These groups of pages are allocated by a search of the tit table for a long
enough sequence of zero bits. The efficienty of the searcrt algorithkm depends to
a large extent on the way the user or the sutsystem he is using creates, extends
and shortens files. In particular, when a file is extended, if its lergth is not
a multiple of sixteen, the last incomplete segmert will require more corsecutive
disc pages. An attempt to do this in situ is made, but if the reguired pages are
already allocated, a complete new set of pages of the right length must be fourd,
the existing part copied to tle new area, the remaincer cleared to zero and tre
old space deallocated. When a file is shortened, if the last segment. is
incomplete, tris remains in situ and the truncated pzges are deallocated. The
more time-ccnsuming and complex possibility of finding a grecup of peges in a lLole
of the right or more nearly the right size (a "best-fit* algorithz), and copying
into it, was not attempted. The result is that it is possible to make very
inefficient use of the disc, for instence by creating files of siczes in multiples
of sixteen pages and then truncating to an exact length later. Small unusable
holes will proliferate. The preferred strategy would either be to create files
‘Qf the right length immediately or to create small files and extend them when
necessary. The latter may result in excessive corying.

Simulation studies were carried out in order to find a suitable algoritim

for the expected usage. - Speed is a primary requirement in addition to a solution

- 17 =

to the fragmentation problem. The algorithm this resulted in operates in the
following way. Rather than searching the bit table fc¢r a hole of the right length
from every bit position onwards, which will be very slow when large iholes are
required, the positions from which comparisons staft are related to the length of
the hole required. For a sixteen psge hole, the positions are chosen every eight
bits and so on for hole sizes wh?ch are a power of two. For intermediate sized
holes, the positions relating to that of the next hizher power of two are used.
The least fragmentation was found to occur if the searches always start from the
beginning of the bit table but the loss of speed of this method was unacceptable.
Therefore, a compromise was adopted in which the search always starts from the
next position beyond where the last hole of this same size was allocated ard
continuescyclically from there. Although the turnover in file-page usage is

quite high, the benefit of cozpaction of disc use toward the beginning in terms

of head movemert is helped by initialisirg the search positions to the start of
the bit tabdle whenever EMAS is started up. The resulting algorithm is a variation
of the '2uddy' allocation system which is not directly applicable because of the
large anount of space involved.

Whenever EMAS is started up, the bit tables are recreated ané a consistency
check performed on the file indexes. Initially, the bit tables are cleared to
zero. Bach file index is then inspected in turn. The user name in the header
of the index is checked against the entry in the name versus number table and then
each file descriptor is examined. The list containing the disc positions of the
file pages is inspected and checked to be consistert with the file length in the
descriptor. In the process of doing this, the bits corresponding to the pages of
the file are set in the bit table. If any of the bits are already set, this
implies that two files clzim to have been allocsted pages in common and a fault
is signalled. This is conceivably possible when a crash has terminated the previous
session and the latest copies of the file indexes may not have been written back

to the disc. Also allowing for possible previous crashes, the connect mode and

- 18 -

and number of connections fields in the descriptor are cleared to zero.

This initialisation can be inhibited, for exazple if access %o the disc is
temporarily to be avoided or if a compleie reload of files froa btacxup tares is
(wignt, 1973) to be performed. In the latter case, the preliminar; clearing down of
a quadrant of the file system prior to recreating the files consists of clearing the
bit table to zero and setting eeck file index to an enpty status. The name versus

nunber table is also recreated from arckived information.

The Console Input-Output System

Console input-output differs from other input-ouiput in that communication
with the user process is direct rather than through the file systez. The user
process controls it by means of SVCs to the director which ccoperates with the
supervisor to perfora the required services. The equivalent of the various device
controllers in the demons process is therefore part in thre directior anc part in
the supervisor in this case. The cirecior part, veiry entered first when a
service call is made, performs all the validity checking of the parameters ané
deals with the input-output in terms of streams. The supervisor part deals with
physical input-output and initiates transfers through the multiplexer.

The console system also provides interrupt and prozpt facilities. Up to
sixteen consoles may be coupled to a single process for concurrent ussge. Cornsoles
are operated in an echo-plex mode when possible. That is, input characters are
echoed to the printer mechanism frem the multiplexer rather thar direct from the
keyboard. This allows confirsation of the successful receipt of the input by thke
multiplexer. A non-echo mode is also available.

A user gains access to EMAS either by dialling up on a modem telephone
connection or simply by switching on if he is using a dedicated telegraph
circuit. Pressing any key on the‘kéyboard produces a hardware interrupt from
the multiplexer when the line is in its dormant state. This is directed to the

appropriate part of the supervisor in order to initiate the login prccedure.

-19 -

The user is requested to type his system name and his password, which is not

echoed. The demons process also has the function of validating names and passwords.

If it succeeds the supervisor is requested to start up a process for the user.

Since the same mechanisn is used to log in additional consoles to a process, the

supervisor first checks that no process is already in existence for this user.

If one is in existence, no furthér process is started up. In both cases, the

presence of a console is made kndwn to the process by passing suitatle paraceters

to the user level via the director. During the passage through the director, the-

console identification number which is one of the parameters is noted so that any

future requests to use consoles can be verified as relsating only to those consoles

which have been logged in to that process. Since the input~-outpul services use

streanm numbers rather than console numbers (which may vary from run to run) for

convenience, service calls to associate console numbers and stream numbers must

be issued btefore any other calls, The services available are the following.

1, Couple input. Associate a console with an input stresm number.

2. Couple output. Associate a console with an output siream number.

3. Get input. Get a block (defined below) of input on a specified stream and’
place it in virtual memory from a given address orwards.

4. Set input request message. The prompt facility described below.

5. Put output. Cutput on a specified stream the specified text which is in
virtual memory from a given address onwirds,

6. Input available? Query whether any input is ready for a 'get input' call.
If a 'get input' call is issued when no input is availadle the process will
be suczpended until there is sooe.

7. Output possivle? Determine how much output can be requested without having
the process suspended i.e. how much buffer space is available?

8, Kill input. Cancel the previous 'get input' request.

9. Kill output. Terminate the *put output' transfer.

10. Decouple input. Dissociate an input strcam from a console.

- 20 -

11, Decouple output. Dissocizte an output stream from a console.

12. Logout console. Detach a console from the process.

The logout service docs not stop the process. A separate service is provided for
that purpose. This allows consoles to be logged onto arnd off from a running
process as required. It follows that there is no distinction tetween what are
sometimes known as 'foreground' ané 'backgrourd' jobs since eiiker car become the
other at any time.though they may have different running chzracteristics.
Input-output operations use segment 1, shared among all virtual meuories,
as a cozmunication region. Pages are allocated for this segment and locked in
core as required by the demands of console ussge. The supervisor accesses ithen
by physical addresses and the director by virtual addresses. Each console has
fixed buffers of 128 characters for input and output and they are used cyclically.
For input, the supervisor. initiat;s a transfer from the console to the
approprinte buffer and the charzcters are read in as they are typed. ¥Wher a
'get input' request is issued, the director requests the pOSition and extent of
any waiting input in the buffer from the supervisor by means of an SVC. If input
is available, a reply containing this inforration is sent back to the director
immedicztely. If not, a reply is withheld and this effectively suzpends the
director (and hence the user level) from further activity. Only when a dlock
of characters has been typed is a reply sent. This is clearly necessary to avoid
unnecessary paging in and out of the process just to process sirgle characters at
a time, A block of input is intended to contain suificiert for waking the process
to be worthwhile. It is defined to be a sequence of characters up to either a line
feed, an end message (EM) or an end of text (ETX) character. The multiplexer has
_a very convenient feature which allows it to pass a hardware interrupt to the
supervisor whenever one of these characters is typed without, except for ETX,
terminating the transfer. The supervisor can therefore recognise when an input
block is complete while the transfer is still in progress. Unfortunately, the

interrupt does not indicate where within the transfer one of the characters has

- 2] -

occurred so that a scan of the characters still has to be made to determine the
extent of the blocks In the case of ETX, the transfer then also has to be re-
initiated. Unfortunately the multiplexer gives in addition interrupts for
characters which have no significance for EMAS and these have to be ignored. If
there is more than one complete block in the buffer when a 'get input' is issued,
the total extent of all the blocks is indicated to the director., On receiving
the infornati&n the director copies it into the position specified by the requost
and returns control to the user level.

The prompt facility is used with the 'get inpul service. A string of up to
fifteen characters can be set as a prompt message. This message is output to the
console whenever a get input is issued and there is no input yet in the buffer
i.e.nrone at all rather than ro cezoplete dlocks., 1ItS use is therefore %o
irdicate to the user what input the program expects from him. I the user does
type ahead of the 'get input' request, the prompt message is not output. This
avoids the malordering possible when the stardard output stream is used for
prozpting. The same messace remains and is used for subsequent 'get inoul requests
. '

sev input re.uest messasc

until it is changed by a further service. It can be set
to a null string if no prompting is required. The basic command interpreter of
the standard subsystem makes use of the facility. By setting the message to
COMAND: it can indicate that the subsyster is at commard level and that it
expects a comzand as the next input., I the user has typed ahead, it can ounly be
assumed that he knows what will be expected and therefore the prompt is redundant.
Any user program can similarly specify what input it wants by setting the message
appropriztely. The mechanism is convenient where input may come to a program
either frox the console or from a file since the prompts can be regarded as an
additional output stream. In the case of input from a file, ordinary prompts
would be quite spurious, whereas this mechanism allows them to be suppressed

without having to change the progran.

For output requests, the director transfers into the buffer from the virtual

-22 -

address specified and calls on the supervisor to output the buffer to the ccnsole.
The process is allowed to continue if all the requested output will fit into the
buffer. If this is so the director divides the

output into parts which will fit into the buffer and.these are transferred
successively. Heanwhile the process is susperded until the last part has been
transferred into the buffer when it is then allowed to proceed. Gaps in thre
transfer to the console which might occur through having to wait for the next
part to be transferred into the tuffer by the director are for the most part
avoided by.double-buffering within the cyclic use of the buffer. Gaps can only
occur if the system response tize is longer than the time needed to transfer half
the buffer to the console.

From the point of view of the supervisor and the user sitting at the console,
there are three levels of priority in the use of the console. Lowest priority is
regarded as input. Vhen there is no other activity on the consocle, a read
transfer is left on. This allows the user to type his input, possibly ahead of
get input requests. If he types too far ahead, however, ani fills the vuffer,
he is told to wait and the read transfer is removed, only allowing hLim to
interrupt should he wish to., The next priority is output. As long as the user
ig not in the middle of a block typing ahead, any'put cuipu? request will cause
the supervisor to halt the read transfer and to initiate the output transfer. If
the user is typing ahead, the output is withheld until he completes an input block.
Highest priority is the interrupt. When there is either a read or a write operation
in progress, the user can interrupt it by typing an escape (ESC) character. ESC
is used for the purpose since it is one of the characters whichk causes a hardware
_interrupt fr&m the multiplexer when an input transfer is in progress. Due to the
design of the multiplexer any character typed causes a similar interrupt when an
output transfer is in progress. The break function i.e. break the transmitted
signal, which is often used for interrupting, is not used on EMAS because of the

havoc it tends to cause in.the multiplexer with the gemeration of an uncontrollably

-23 -

large nuzmbder of hardware interrupts. This havoc has, of course, to be accepted
when accidental line faults or breakages occur, though hardware modifications to
improve the situation are being implemented. When tke hardware interrupt
generated by ESC is received, the supervisor terminates the operation in progress
and queries the user for an interrupt identifier. This is a string of characters
which after being read in is transferred to the director to take some action on.
Three kinds of action are possible. The general mechanism is for the director

to store the identifier together with the number of the conscle from which it
came within its own data area in order that the user level program can query,
when it chooses, whether a particular identifier has appeared either at a particular
console or at any console coupled to the process. This is a mechanism the user
program can use to redirect itself, for example to terminate excessive printing,

while still retaining ccntrol. The exceptions to the

]

enerzl rule are to cater
for situations where some immediate action is reguired e.g. the prograw is in a
loop. Exceptional action is taken when the identifier consicts of a single
character. One of these, the letter Z, is allocated specially. If the director
finds this, it imcediatly terminates the process i.e. an escape route if all else
fails. The recaining single character identifiers are treated as outer level
sicnels, described below. The effect is to transfer control to some standard
place in the user area. This is intended to be in tiie subsystem so that it can
take some corrective action. In the standard subsysiem, for example, the ident-

ifier A, for abandon, returns control to the basic comzand interpreter.

Parameter Passing for Multi-Console Operation

Particularly for console input-output with more than one console attached
to a process, the possibility of certain service calls resulting in the process
being suspended may be inconverient. To circumvent this, an alternate way of
issuing a service call ic provided, using a call known as pon, for parameter on.
In this case, the parameters for the required service are laid out in virtual

memory instead of in the floating point registers where they are normally put

- 24 -

and their address passed as the parameter 1o the pon. The effect is for the
director, which receives the pon call, to issue the required service call
recursively, and immediately to reply to the user level. The initial processing
of the recursive call will, of course, take place bekore control returns o user
level since the director has higher priority, but the effect of issuirg the reply
is to allow the user level to prcceed wkatever the outcome of the service call.
The reply to that call will be sent to the director since all replies are sent

to the source of the request. The sequence of code at the director entry point
recognises that the input parameters represent a reply for a pon service and the
information in the reply is stored on a queue,

A poff, for parameter off{, call retrieves information stored by the diresctor
in this way. If there are no replies in the queue, the user level is susgpenied
until one appears. Again, to avoid the possibility of suspension, a to:if, for
test for parameters off, call is provided which tests whether there are replies
available to be poffed. Replies are returned to the user level by poffs in the
order in which they come to the director. In other words, if the user level has
ponned several calls before issuing a poff, the order of the replies may be
different. The user level therefore identifies each pon call with an activity
nunber as one of the parameters and this number is returred in the corresponding
poff so that the reply can be identified,

This mechanism is also used to pass information from within the system or
from a console to the user level. Certain activity members are reserved for this
purpose. For example, one use is the passing to the user level of the console
number of a new console just logged on so that it can be coupled and used for

input-output.

The Siznal Facility

The signal facilit; provides a method of recovering from failures in the
user level. The user program can specify a position within its area and

environment in terms of register contents required so that the program could be

- 25 -

rcstartéd at this point. Such a specification is set up by a call on tho director
which stores it so as to be available when required. If a number of these calls
are made, the positions are stacked. For most common failures where a recovery

is required, such as overflow, address error etc., the most recently stacked
definition is used. However, for disastrous errors, such as a hardware malfunction

affectirg this process, the oldest stacked definition, or puter level, is used.

The standard subsystem always stacks a recovery position first to be used as this
back-stop and other programs may stack and unstack definitions as they require.
The user prcgram may alse induce an artificial recovery at either the current or

outer level of the stacked definitions.

Acknowledgenents

Too many people have made contributions to the design of the director for
thea all to be individually acknowledged. Particular ihanks are, however, due
to S.T. Hayes, H. Whitfield ard A.S. Vigkt, Thanks are also due to F. Zarrstt
and his staff at the Edinburgh Regional Computing Centre for their valuzble Lelp
in the elucidation of the multiplexor hardware. S. Michaelson has always

provided encouragement and support. E. Whitfield implemented the signal mecharisz,

References

Dijkstra, E.V. (1968). Co-operating secuential processes.

In Progranming Langusges, F. Genuys (ED.).

Hayes, S.T. (1974). The EMAS Demons. The Computer Journal, Vol. -, &o. -
Millard, G.E., Rees, D.J., and Whitfield, H. (1974).

The Standard EMAS Subsystem. The Computer Journal, Vol. -, No. =-.
Stephens, P.D. (1974). The IMP Language and Compiler.

The Computer Journal, V&l. -, No, =,
Whitfield, H. and Wight, A.S, (1973). EMAS - The Edinburgh Multi-Access Systenm.
The Computer Journal, Vol. 16, No, 4.

