

Atlas Autocode Compiler for KOF ¢ Manual

Amendment Notice (1~-6-66)

Version I of the compiler is now in general use and is free
from *bugs?! as far as is known, The two main changes from

version H concern:

(i) Output
(ii) Fault Trapping

The ISO tape code version (K) does not yet contain these new
facilities but will shortly be bought into lins with Compiler I,

described here,

(i) GCutput

The output device, line printer or paper tape punch, may
now be specified by the programmer in his Job Heading, assuming
tho dovice of his chouice is available at the time of running
the job, The additional page Q - 1 - 1 specifies how this may
be done, See also the revised page 11 - 2 - 0, Note also that
the amount of ocutput is now checked!

A further modification, for both devices, ensures that a
newline or newline character is inserted every 120 printing
characters, should the programmer inadvertently omit to insert any,
For this 1eason also, a nowline is no longer inserted for every

query printing cperation.

(ii) Fault Trapping

This facility is now available, subject tc the limitation of
textual level, mentioned on the new page 3 = 10 - 1 under a)ii).
Soe the miscellanecus modifications below for the phrase structure

agsscciated with this kind cf statement,

Eege
foult 1 -> 23, 5, 6, 22 -> 31

means that if fault 1 occurs, then jump to label 23, or if faults 5,

6, or 22 occur then jump to label 31, The list of fault numbers

is given on page 8 -2 -0 cf the manual, For the example, therefoure,
if overflow (fault 1) occurred or a square root with a negative
argument (fault 5) was attempted, etc,, the program would be restarted
at the appropriate label,

Miscellaneous Modifications to the Manual

Page 0 -3 = (4]
Add: Secticn 16 USING TELETYPES

Section 17 DOUBLE LENGTH RCUTINES
Page 2 = 2 - O
Line 18: change [NAME]E(&[i'S[N}E)SE:Q

to [NAME]£(3[+* J[CONSTIE) 3E: 3
Ingsert betweon lines 23 and 24:

£fault3[FAULT LIST1(S],
Pago2-3-0
Lines 1G and 20: change

PISWITCH LIST]=[NAME LIST]E£(3[+']1IN1£:3[+'1IN]1E)3E,3(sWITCH LIST],
[NAME LISTIE(I[+'1INIE:3[+"1INID) Y,

to

PLSWITCH LIST)=[NAME LISTI£(3[+'1lceNsTI£:3[+'I[CCNSTIE)I[SWITCH LIST],
[NAME LIST1£(3[+'1{ceNsTIE:3[+'1{caNsTIE) 3,

Line 42 onwards:

Delete P[S]= seoesccnoccn
PITEXT]= cievcose
PICHARACTER]I= sa0es
P[END OF LINE]

and replace by:

P{Ss]=f;3, [NEWLINE CHARACTER];

PITEXT]=[ANY CHARACTER EXCEPT ; CR NEWLINEI{TEXT],z;

PIFAULT LIST1=[N-LIST1E->3[N1{,3[FAULT LIST],[N-LIST]1E->3[N];
P[N-LIST1=[N]}¢,3[N-LIST],[N];

E&Eéwﬁgrfijﬂg

Line 11: r9p1ﬂ00 P ..‘n[N]-q.-\nnu
by ooo...o[CONST]OQatv-.-
Line 17: roplace otooo‘o[i'][N].-Qvoo-:oo

by esesees =valued quantity [+'][canNsT]......
Page 3 = -0
Lines 10 anad 11:

Replace: in the form newline

print (value,1,0)

by: in the form print (value,9,0)
Line 14:
Replace: in the form newline
by: in the form spaces (3)
& Insert new page 2 - 10 = 1 (attached)

. Page § = 1 - 0

Line 28:

Replace: 26, by:
26, fault STATEMENT NOT AT BASIC TEXTUAL LEVEL

Page 8 = 2 - 0

Line 10:

Delete asterisk in g.* INPUT ENDED

i, e, now trappable,

Page 8 = 2 = 0 (continued)
Line 30:

Replace: 29. by:
29, * CGUTPUT EXCEEDED

Ingert now page 9 - 1 - 1 (attached)

Insort reovised page 11 - 2 - 0 {(attached)

Insert new Section 17 (attached)

0~-1-0

PREEACH

Atlas Autocode is an sutomstic programning language of Algol type,
originally developad by R.A, Brooker and J.S., Rohl for the Atlas
Computer at Manchester University.

An Atias Auvtocode compiler has now been written for the KDFg
conmputer, This document defines the versiom of Atlas Autocode acceptable
to the KDFG compiler. The suthors wish to thank Mr,.D. Kershaw for his
help in writing and testing the mathematical funmction routines,

For details of othexr versions of the language, see references (L),
(2) and (3). Where the differences are likely to affect the programmer,

a footnote appears in this document,

References

(1) Programming in Atlas Autocode, Edinburgh University Computer Unit
Report No, 1, P,D, Schofield and M.R. Osborne, (Revised Edition)
28th June 1065,

(2) Atlas Autocode Reference Manual, University of Manchester Computer

Science Department, R.A, Brooker and J,S, Rohl, ist March 1965,

(3) The Atlas Autocode Mini-Manual, Manchester University Computer Science

Department, W.F, Lunnon and G, Riding, March 1G65,

Section 1

Section 2

Section 3

Section 4

Section §

Section 6

Section 7

Section 8

Section §

Section 10

Section 11

Section 12

0~-2-0

CONTENTS

INTRODUCTION

SYNTAX

SEMANTICS (SOURCE STATEMENTS)

SEMANTICS (UNCONDITIONAL INSTRUCTIONS)

SEMANTICS (ARITHMETIC EXPRESSICNS)

SEMANTICS (CONDITIONAL PHRASES)

PERMANENT ROUTINES AND FUNCTIONS

DIAGNOSTIC MESSAGES

JOB HEADINGS

OPERATING INSTRUCTICNS

USING KDFG FLEXOWRITERS

MACHINE INSTRUCTIONS

0-3-0

Section 13 LIBRARY PACKAGE SCHEME

Section 14 MAGNETIC TAPE

Section 15 MATRIX ROUTINES

i-1-~-0

Section 1 INTRODUCTION

An Atlas Autocode program consists of a sequence of statements,
We describe these statemonts by giving first their syntax, and

secondly their semantics,

2~-1-0
Section 2 SYNTAX

The syntax describes in phrase~structure notation the structure
of the various forms of statement which are allowed in the language,
In this notation square brackets denote a class name, and slashed
brackets denote actual text in the program. A class name must be
replaced by one of the members of tpis class, For example, the
phrase~structure of one class of statement is

[N] £:3
[N] is the class of unsigned integers, 23 is a member of the class
[N]., It follows that

23 ¢

is a syntactically correct statement in an Atlas Autocode program,

In this example, [N] is a class-name, or phrase, which is

defined in phrase-structure form, in terms of class names or actual text,
[N], the class of unsigned integers is strictly defined by

PN] = [D1cIiT] [N], [DIGIT] ;

P[DIGIT] = £o03, £13, £23,80%3 ; .
This means that an unsigned integer is either (note the comma between
alternatives) a [DIGIT] follawed by another unsigned integer, or simply
. a [DIGIT]: a [DIGIT] is one of the digits 0-Q, A definition is started
by P (for PHRASE), and ended by a semi-colon, @ denotes the null text £ 3,

. " as spaces are ignored everywhere in a program,

2~-2-0

All statements of an Atlas Autocods program belong to the class P[SS]
defined below:

Piss] = [vuIills],

' [iul[coNDlfthen3[UI][S],
[urlliul[coND](s],
teycle3[NAME][APP1E=3[+'1[EXPR]E,3[+' J[EXPR]E,3(+' J[EXPR](S],
fropeatils],

[TYPE]1[NAME L1ST][S],
[TYPE' 1{array3[ARRAY LIST][S],
£switch3[SWITCH LISTI[S],
[RT1£spec3[NAME][FPP][S],
£spec3[NAME][FPP]1[S],
[RTIINAME] [FPP]([s],
fbogind[s],

fendils],

toend of programi,

[N1E: 3,
(NAMEJ£(3[+'JINIE)IE: 3,
fcompile queriesd[s],

R fignore queriesi(s],
tcomment3(TEXT]I(S],£|I[TEXTILS],
fupper case delimiters3[s],
fnormal delimitersd[s],

[s1;

where

plu1l

(NAME] [APP1£=3{+' J[EXPRI[QUERY'],
[NAME] [APP],

£->3[N],

t->3[NAME1£(3(+' 1I[EXPR]E)],
fcaptiond[TEXT],

£roturn},

frosult3t=3[+' 1[EXPR],
£stopl;

and |

P[+']
P[EXPR]
P[OPERAND]
PLAPP]
P[EXPR-LIST]
Plor]
‘P[QUERY’]
PL,']

Pliu]
Plreal']
PLTYPE]
PILTYPE']
P[NAME LIST]
PLARRAY LIST]

L]

P[BOUND PAIR LIST]=

PISWITCH LIST]

P[RT]
PLFPP]
PIFP-LIST]

P[FP-DELIMITER]

P[COND]
PLAND-C]
PLOR-C]
PLsc]

Plcaovp]
P[NAME]

PI[LETTER STRING]
P[DIGIT STRING']
P[PRIME STRING']

P[LETTER]
PLCONST]
P[FP CONST]
PIN]
P[DIGIT]
P(s]

PLTEXT]
P[CHARACTER]

P[END OF LINE]

2-3-0

£+3,8-3,05

[OPERAND] [OP][EXPR], [OPERAND];

[NAME][APP], [CONST],£(3(+' J[EXPRIE)3,£13[+" J[EXPR]IEI;
£(3[EXPR-LISTIE)3,p;

[+' JLEXPR]£,3(EXPR-LIST], [+' J[EXPR];
£+3,6-3,8%3,8/3,843,0;

£?24,p;

£,3,05

£if3,funlessi;

treall,p;

fintogerd,froall;

tintegerd,freall,p;

[NAME]£,3[NAME LIST],[NAME];

[NAME LIST)£(3[BOUND PAIR LIST]I£)3£,3[ARRAY LIST],
[NAME LIST]1£(3[BOUND PAIR LISTI£)3;

[+'1[EXPR]E:3[+' J[EXPR]E,3[BOUND PAIR LIST],

[+' JIEXPR]£:3(+' J[EXPR];

[NAME LISTI£(3[+'1INIE:3(+"IINIE)IE,I[SWITCH LIST],
[NAME LISTIE(3[+' JINIE:3(+' IINIEII;

troutine3,freal fni,finteger fn},freal mepd,finteger map};
£(3(FP-LISTIE)3,p;

[FP-DELIMITER] [NAME][FP-LIST], [FP-DELIMITER][NAME];
[,*1[RT],[,'J€integor array named,

[,"ltintegor named,[,'lEinteger},[,'I(real'lfarray named,
[,')Ereal named,[,')frcald,[,'1faddrd,,d;
[sC1fand3[AND-C],[sC]Eori[OR-C],[5C];
[scl£and3[AND-C],[sC];

[sclforifor-c],[scl;

[+'1(EXPRI[cOMP][+' J[EXPR]1[COMP][+' J[EXPR],
[+'1[EXPRI[COMP][+' 1[EXPR],£(3[CONDIE)3;
£=3,£23,£>3,8<3,£<3,£>3;

[LETTER STRING] [DIGIT STRING'] [PRIME STRING'];
[LETTER] [LETTER STRING],[LETTER];

[N],p;

£'3 [PRIME STRING'],p;

£A3,EB3, 000000, 8Y3,£23, 803,603, 0000000, By, E23;

[FP CONST] £o3 [+'] [N1,[FP CONSTI,fr3,£43;

[N] £,3 [N],[N] E.3,[N],£.3 [N];

(p1ciT] [N],[DIGIT];

tod,£13,£23,...4..,803;

£;3,[END OF LINE];

[CHARACTER] [TEXT],[CHARACTER],p;
[LETTER],[DIGIT],Gli,Ewi,E&a,i‘i,E(a,E)i,i*&,i+§.£.i.£~3,
G.i,E/i.E:&,E;i,E<§,E=a,E>§,E?i,£[i,E]i,E*i,iai,Eli,E_i;

3-1-0

Section 3 SEMANTICS (OF SOURCE STATEMENTS)

Not every statement which is syntactically correct is meaningful,

For example

cycle i = 7,1,10.5
is a syntactically correct statement, and will be recognized as such by
the compiler, However, its meaning is not clear, and that part of the
compiler which checks semantics will signal a fault, Wo therefore give
below, corresponding to each source statement, a description of the semantic

chocks made, and of the effoct of the statement both at compile and run

time,

3-2-0
Section 3.1 Source statement [UI] [s]
[UI] = unconditional instruction, i,e, one which may be made conditional.

[s]1 = separator, i,e. somi-colon or ond of linc,

a) Compilo time
b) Run time

c¢) General

See separate section on Unconditional Instructions,

Section 3,2 Source statement [iu] [COND] £then3 [UI] (S]
where [iul = £if3 or funlessd

a) Compile time
b) Run time

i) when [iu] = E£if3, If the conditional oxpression is true, then
the unconditional instruction is obeyed., Otherwise it is skipped,
ii) when [iu] = funless3}., Contrariwise,
¢) General

i) Only instructions of the class [UI) may bo made conditional,

Section 3.3 Source statement [UI] [iu] [COND] [s]

a) Compile time
b) Run time
c) General
Treated as [iu] [COND] &£then3 [UI] [s].

Soce seoction 3.2.

3-3~-0

Section 3.4 Source statement fcycled [NAME] [APP] =3 [+'] [ExPR] £,3 [+']

a) Compile time

i)

ii)
b) Run
i)

ii)

iii)

iv)

v)

[NAMEY [APP] mucst be an integer variable, The threoe expressions
must be of integer type.
A record is made so that a repeat can be associated with this cycle.
time
The three expressions(p,q,r sgy) are evaluated upon first entering
the cycle, The cycle is monitored if
r=p # n, where n is an integer > O
q

or q = 0,
The address of the variable [NAME] [APP] is recorded,
The recorded variable [NAME] [APP] is set at the beginning of the
first traverse of the cycle to the value p, When the associated
repeat is encountered, the current value of [NAME] [APP] is tested
against the final value r, If these two values are equal, control
passes ta the next statement after the repeat, Otherwise, the
current value of [NAME] [APP] is incremented by an amount q, and
another traverse of the cycle is begun,
Transfers of control within the body of a cycle, or out fraom the
bady of a cycle, are allowed in the usual way, However, control
ghould not be transferred into the body of the cycle from outside
in such a way that the values of p, q and r are undefined when
the repeat is encountered,
Assignments to the recorded variable should not be made within the
body of the cycle without a full regard to the possible consequences,
For instance, in view of iii) above it will be clear that on
encountering a cycle such as

cycle i = 1,1,10
i=o0
repeat

the program control will loop indefinitely,

¢) General

i) .

Cycles may be nested to any depth, but a cycle and its associated

ropeat must be in the same block,

Revised 14/1/66

3-3~-1
Section 3.5 Source statement frepeatd [S]

a) Compile time

i) Each ropeat is associated with the last unassociated eycle
statement in the same block, If no such cycle statement
oxists, a fault is recorded,

b) Run time
c) General

i) See cycle section 3.4.

. Revised 14/1/66

3-4-60
Section 3.6 Source statement [TYPE] [NAME LIST] [s]

a) Compile time
i) If any name on [NAME LIST] has been declared before in this block

then a fault is rocorded, Otherwise a location in the store is
assigned to this name for use within this block at run time,
ii) The type of the name in this block is recorded,
b) Run time
i) The values of the names are lost on leaving the block,

c) General

Section 3.7 Source statement [TYPE'] farray3 [ARRAY LIST] [s]

[TYPE'] = real, integer or g (p equivalent to real)

a) Compile time
i) If any name on [ARRAY LIST] has been declared before in the block

- then a fault is recorded, Otherwise the name and the type of the
name in this block are recorded.
ii) Instructions for calculating bounds and allocating space at run
time for each array are compiled into the program.

b) Run time

i) The bounds of each array are computed, and space is allocated.
ii) However, MONITOR is entered if any lower bound exceeds the
corresponding upper bound,
iii) This space is made available for other use at tho end of the block,
c) General
i) As array declaratiocns have an effect at run time, they should
normally be placed at the head of the block to prevent

inadvertent repeated allocation of new space,

3-5-0
Section 3.8 Source statement £switchd [SWITCH LIST] [S]

a) Compile time

i) If any name in [SWITCH LIST] has been declared before in
this block then a fault is recorded, Otherwise the name
and type of name in this block are recorded.

ii) The bounds are recorded and space is allocated for the

storage of the addresses corresponding to the switch labels

(see section 3,15,.).
b) Run time

¢) General

3-6-0
. Section 3.9 Source statement [RT] Espec} [NAME] [¥PP] [s]

a) Compile time

i) The [NAME] is declared as an [RT] type name of the current block,

A fault is recorded if the name has been sot before in the
current block except as an [RT] type parameter in a routine, fn
or map description,

ii) A record is made of the type of each formal parameter, The
names are not recorded, and it is only the order of the
parameter types which is made use of,

b) Run time
c) Genoeral
i) Any [RT] specified must be described somewhere in the same
block, otherwise a fault is recorded; except as in (ii).

ii) Within an [RT] description which uses routine~type parameters,

there must be, corresponding to each such parameter, a routine type
spec which appears before the first reference to that parameter,
However, in the case of routine-type formal paramoters, there

must be no description corresponding to the required spec,

iii) The reduced form £spect [NAME] [FPP] [S] may only be used as an
alternative to the above where the specification is of a [RT]
type parameter,

Section 3,10 Source statement [RT] [NAME] [FPP] [S]

[RT] = routine type

{FPP] = formal parameter part

a) Compile time

i) If the [NAME] has not been specified (see section 3,§) in the current
block, then this source statement is first treated exactly as
[RT] £spec} [NAME] [FPP] [S].
ii) This statement marks the beginning of a new block,

iii) The formal parameter nomes are declared in the new block in the
appropriate way, A fault is roecorded if the type of the first
formal parameter in the heading is not the same as the type of
the first parameter given in the corresponding specj similarly
for the second parameter, and so on,

iv) An [RT] car ounly be entered by an [RT] call, and therefore
the compiler inserts a jump around the description,
v) Compilation of the [RT] follows,
. b) Run time
i) The complete biock is skipped,

. ¢) Goneral

3-7-0

Section 3.11 Source statement fbegind [§]

a) Compile time

i) This statoment marks the beginning of a new block,
ii) The first statement of a program will normally be this statement,
b) Run time

¢) Goneral

Section 3.12 Source statement fendd [S]

a) Campile time
i) Denotes the end of a block,

ii) May denote the end of a routine, function or map,.
iii) Labels of the block which have been used but not set are/faulted,
iv) A check is made to ensure that all cycle statements have been
associated with a ropeat.
v) All the names declared in this blaock are unset.
vi) If the block is a routine then eond is treated as roturn; ond,
If the block is a fn or map, end is troated as MONITOR; end,
vii) 1If the ond corresponds to the first begin at the head of the
program, a fault is recorded and compilation ceases,
b) Run time

c) General

Section 3,13 Source statement fend of program}

a) Compile time

i) Exactly as fend} [S] (see section 3,12) i), iii), iv), v)),.

ii) The unconditional instruction stop is compiled,
iii) A fault is rocorded if this statement is not the end corresponding
to the first bogin of the program,
iv) Compilation ceases,
v) If no faults have been recorded the program is entered,
b) PRun time
i) Execution ceases,

¢) General

. . 3-8=0

* Section 3.14 Source statement [N] £:4

a) Compile time
i) If tho integer [N] is already on the label list associated with

this block, thon a fault is recorded,
ii) Otherwise, the integor [N] and the address of the next compiled
instruction are added to the label list,
b) Run time
No action,
c) General
i) [N] must be in the range 1-32,767

Section 3,15 Source statement [NAME] £(3 [+'] [N] £)3 £:3

a) Compile time
i) [NAME] must have beon declared in the current block as

a switch variable,

ii) This statement may not appear in a block within the block
in which tho name was declared,

iii) The signed integer [+'] [N] must be within the bounds
declared for this switch variable.

iv) This switch label must not have been set before in this block,

v) If a fault has not been recorded the address of the next

instruction is rocorded as the address of this switch label,

b) Run time

¢) General

3-¢-0

Section 3.16 Source Statement fcompile queries3[s]

a) Compile time

i) A marker is set so that query printing instructions
which occur will be compiled into the program,

ii) Cancels ignore queries,

b) Run time
i) See Section 4,1 .

ii) *If the expression after which the £?3 appears is
an integer expression then its value is printed
in the form newline

print (value,1,0)
iii) =*If the expression after which the £?9 appears is
a real expression then its value is priated in
the form newline
print £1 (value,10)
c) Gemeral
i) The query marker is initially set so that queries will

be compiled unless instructions are given to the cuntrary,

Section 3.17 Source Statement fignore queriesd[s]

a) Compile time

i) Cancels compile queries,

ii) Consequently queries are no longer compiled into
the program,
b) Run time
i) See Section 4,1
c) General
i) See Section 3.16,

¥ On the Manchester compilers the format is different, See

Manchester Reference Manual,

PpS

3=-10 -0
Section 3,18 Source statement £commentd [TEXT] [s]

or £13 [TEXT] [S]

a) Compile time

b) Run time

¢) General

No action,

Section 3,19 Source statement Eﬁpper cage delimitersd [S]

a) Compile time

Beginning with the line following the line in which this statement
appears, every upper case letter in the program (but not in the
data, if any) is replaced by the corresponding underlined lower
case letter,
b) Run time
c) General
i) From the line following the iine in which this statement
appears, delimiters may be typed in upper case letters iﬁétead
of being underlined,
ii) Upper case letters may not now appear in names, since a statement
such as
Fred = Jim + Albert
will be treated as
fred = jim + albert
which is not a legal statoment of the language.
Notice also that, for example,
print symbol('A')
will be treated as
print symbol('a')
iii) The effects of this statement are cancelled by

fnormal delimitersd [s]

which statoment also operates from the line following the

line in which it appears,

Section 3,20 Source statement Enormal delimitersd [S]

a) Compile time

Cancels fuppor case delimitorsd [S] (see soction 3.19).
b) Run time
¢) General

Rovised 1/3/66

3-10 -1

Secticn 3.,20.1 Scurce statement £faultd [FAULT LIST] [S]

2) Cocmpile time

i)

ii)

Tho labels reforred to within the jump instruction following
oeach [N=LIST] must cbey the normal rules for jump labels.
See section 4.3.

This statoment may only appear at the basic textual level

of the program, i.e. within begin ...s. ond of progranm,
but not within any other blocks or routines, otherwise it

will be faulted,

b) Run timo

i)

Cortain information concerning the curront state of the
program is stored so that if a fault, which has been
allowed for, occurs subsequontly, this information may

be used to rostart the program from the relevant label,
I,0. Tho statement must be executed at scme time during
the normal flow of control of the program in order fér any

faults toc be trapped thereafter.

c) Goneral

i)

ii)

For the faults which may be trapped and their corresponding
numbers, which appear in the [N-LIST]ls, see section 8.2,
The label jumped to when any particular feult is trapped
may be changed dynamically by executing o further fault

statement in which the new label appears,

Section 3,21

a) Compile time
b) Run time

¢) General

No action,

Source

3-11 -0

statoment [S]

4=-1~0

Section 4 SEMANTICS (UNCONDITIONAL INSTRUCTIONS)

Section 4,1 Unconditional instruction [NaME] [APP] £=3 [+'] [EXPR] [QUERY']

a) Compile time
i) 1If the NAME is of integor type and the RHS is of real type thon

a fault is recorded.

ii) NAME must be capable of being a destination for a value, i.o, a
function or a routine name or-switch is not allowed,

iii) If the query marker is sot (see soction 3,16 and 3.17) and [QUERY']={?3
then instructions are compiled to print the value of the RHS,

b) Run time
i) The RHS is evaluated and the value is assigned to the destination

given by the LHS,

ii} 1f a query printing instruction has been compiled the value of
the RHS is printed.

c) Goneral

4~-2-0

Section 4.2 Unconditional Instruction [NAME] [APP]

a) Compile time

i) A chock is made to ensure that [NAME] has been declared
as a routine,
ii) Checks are made to ensure that the actual parametors in
[APP] arec consistent with the formal parameters of

the routine spec for [NAME], both in type and number,

iii) If no faults have been found the routine call is compiled,
b) Run time
i) The actual parameters are evaluated and passed on for use
by the routine body,
ii) The routine body is entered,
iii) When the routine body is left, control is returned to the

instruction following the one in which [NAME] [APP] appears,
¢) General

i) For rules regarding formal-actual parameter correspondence
see roference (1) or (2),
ii) Similar rules apply to the passing of parameters to other

RT types.

: . 4-3-0

Soction 4.3 Unconditional Instruction £->3 [N]

a) Compile time

i) As the label corresponding to this jump may not yeot
be set in this block a jump to address zero is compiled
and a record is made so that this jump instruction can be
adjusted at the end of the block when the address of the
label should be known,
b) Run time
i) The normal sequence of instructions is broken and the
noxt instruction to be obeyed is takon at label [N] of
the block in which this jump instruction appears.
¢) Goneral
i) Bocause of a)i) above, labels which are not set are not

faulted until the end of the block in which the jump appears.

Scction 4.4 Unconditional Instruction £->3[NAMEIE(3[+'1[EXPRIE)Z

a) Compile time

i) Unless [NAME] is a switch variable declared in the current
block a fault is recorded,
ii) Unless [EXPR] is an intoger expression a fault is rocorded,

b) Run time

i) The expression is evaluated and a check is madoe to see that

the value is within the bounds of the switch vector as declared
and that a switch label exists corresponding to‘this value
of the argumoent, If the label exists control is transferred
to that label, otherwise the program is monitored,

c) Goneral

i) A jump to a switch label has the property of an ordinary

jump in that control can only be transferrod within tho same
block level, The scope of a switch declaration extends over
the block in which it appoears but NOT over blocks within this
block, unlike the scope of other declarations, Consequently

a jump may not be made to a switch label in an onclosing block,

4-4-0
Section 4.5 Unconditional Instruction fcaptioni[TEXT]

a) Comﬁile time

i) Erases, spaces and underlined spaces in the [TEXT]
are ignored in the usual way,
ii) Tho symbols # $ g4 s h 4 § have special significance

and are replaced in the output text as shown below

-3 become space

gs underlined space
At newline

43 j

iii) [TEXT] is terminated by ; or newline only,
b) Run time
i) The [TEXT] modified as described above is output,
¢) General
i) In view of a)iii) above the instruetion
caption ANSWER = 3 if x = 3
will always result in the following output

ANSWER=3i fx=3

If this was intended to be a conditional instruction it

should have been written

if x=3 then caption ANSWER = 3

ii;) Note that c at the ond of a line has its usual effect,

4-5-0
Section 4.6 Unconditional Instruction freturni

a2) Compile time

i) A fault is recorded unless this instruction appears in a
block delimited by routine ...ssee end, '
ii) This instruction may appear more than once in such a
block,
b) Run time
i) This instruction is the dynamic end of a routine block
and control passes back to the instruction following
the routine call which caused the entry.
ii) The routine is regarded as a block and consequently
on exit from this block all of the local working space
is deallocated in the usual way,
©) Genoral
i) The end corresponding to the routine heading is regarded
as return; end so that an exit from a routine can be ma;e

by running onto its end,

4=-6-0
Section 4.8 Unconditional Instruction $stopd

a) Compile timeo

b) Run time
i) ' Execution ceases,

¢) General

5~-1-0

Section §

SEMANTICS (ARITHMETIC EXPRESSIONS)

Phrase [+'] [EXPR]

This combinatiqn of phrases is treated as either an integer

expression or a roal expression, depending upon the context,

INTEGER EXPRESSION

REAL EXPRESSION

a) Compilc time

(i) A choeck is made that all
operands are integor operands
(i.e, integor variables or
integor functions valid at tho
current level, or intoger

constants),

(i) Operands can be either roal

or intoger, oxcept that the
operand immediately following
the operator ¥ must satisfy the
conditions for an integer

expression,

(ii) If an operator is rocognised as p, this is roplaced by a multiplication,

b) Run time
(i) Intogers arc held in 48-bit
fixed point form, and must
therofore lie in the rango

247 1o 24_1),

N.B,

Programmors are recommondoed
to restrict their intogers
further to the range -236 to
(236-1) so that thoir programs
will also run on Atlas if

required,

— e s e e

(i) Roal numbers are held in floating

point form (ono sign bit, 8-bit
binary oxponont, 39-bit mantissa).
Integor quantities occurring in real
expressions are immediately converted
to floating point form, except where
a sub-exprossion in brackets or
modulus signs consists wholly of
integer operands and tho operators

+, = and *, In this case the
sub-oxprossion is evaluated fixed

point, and then converted,

(ii) Sub-oxpressions in brackets (or modulus signs) are ovaluated first,

Aftor this, the order of precedence between operators is (highest

procedonce first):-

(a) %

(b) * and /

(e) + and =

(oxponentiation)
(multiplication and division)

(addition and subtraction)

Where two adjacent operators aro of equal precedence, operations are

carried out from left to right,

5=-2=0

INTEGER EXPRESSION | REAL EXPRESSION
|
(iii) An initial minus sign has the same effoct as '-1*'(although

oxocutod more rapidly) and so takes procedence over all operators oxcept ¥,

(iv) The program is monitored ('OVERFLOW REGISTER SET') if at any stage

in the calculation a number oxceeding the capacity of a 48—bit word is

produced.,

(v) Exponentiation is carried out | (v) Exponentiation is carried out
by ropeated multiplication., The | by repeated multiplication, The
program is monitored immediately | program is monitored immediatoly
("ILLEGAL EXPONENT') if the | ('ILLEGAL EXPONENT') if the
exponent n lies outside the rangel exponent n lics ocutside the range
0<ng 63, ! =255 £ n £ 255,

(Note that smaller oxponoents may | If n is nogative, x¥n is
also cause a monitor signal by | evaluated as 1/x%in|,

sotting tho overflow register |
while attempting to execute, for |
cxample, 2%50), |

(vi) o0%0 gives the rosult 1 (as, of course, does any other quantity raised

to the power zero),

(vii) The program is monitored |
whenever a division results in a |
non-integral quotient, Note the |
significance of tho order in |
which operations are carried out |
in the following examples in |

which i is an integer:~ |

i=(i+1)/2%i (fails if i |
is oven)]
i=ix(i+1)/2 (valid for alll

values of i) |

(viii) An attompt to divide by zoero causes the program to be monitored,

c) Goneral

6-—1;«-0

Soction 6 SEMANTICS (CONDITIONAL PHRASES)

Phrase [COND]

a) Compile time

Any constituent exprossion which contains

i) a real variable, real function or real constant

or ii) eithor of the operators / or ¥

is compiled as a real expression, All othor expressions

are compiled as integer exprossions,

b) Run timo

i)

ii)

iii)

[+'] [EXPR] {comp] [+'] [EXPR]

The left-hand oxpresaion is evaluated first, followed by the
right-hand one, If one is an integer expression and the other
roal, the former is converted to floating point form before
comparison,

[+'1 [EXPR] [comP] [+'] [EXPR] [COMP] [4+'] [EXPR]

The first two oxprossions are evaluated and compared, The
third oxprossion is only ovaluated if the roquirod condition
botwoon the first two is satisfied, Conversion to floating
point form is carried out if nocessary as in (i).

[sC] and [AND-C]

[sc] or [OR-C]

The conditions are tosted from left to right, stopping as
soon as sufficient information is obtained to give the

overall vordict truoc or false,

c¢) Genoral

7 =1=0

Section 7 PERMANENT ROUTINES AND FUNCTIONS

routine spec read ([TYPE] name x1, [TYPE] name X2,¢eese)

whore [TYPE] is integer or real,
This tekes the next number from the input data tape and stores
it in x1; takes the next number and stores it in x2 and so on for
‘each parameter, The numbers may be iq either fixed or floating
point form, A fault is signalled if the number assigned to an
integer variable is not integral and also if any characters other
than digits, 4+, -, a, . oceur, This routine is unique in allowing

a variable number of parameters,

routine spec print (real x, integer m,n)

This prints the value of x on the output medium in fixed point
form with m digits before the decimal point and n digits after,
Insignificant leading zeros are replaced by spaces and any minus
sign right justified, If more than m significant figures occur
before the decimal point, the point will be displaced to the right

and the extra digits inserted,

routine spec print f1 (real x, integer n)

Prints the value of x on the output medium in floating point
form, standardised in the range 1 < x < 10 with n digits after

the decimal point,

7=-2=0

i

routine spec read symbol (integer name n)

Roads the next alpha~numeric symbol (simple or compound) from
the input data tape, stores it in the specified integer location,

and moves onto the following symbol,

integer fn spec next symbol

Gives the value of the next symbol (simple or compound) read
from the data tape, without moving on to the following symbol,
In other words, the same symbol can be obtained again by either

a 'read symbol' or a "next symbol' instruction,

routine spec skip symbol

Passes over the next symbol from the data tape to the following

one without reading,

routine spec print symbol (integer n)

Prints on the output medium the symbol specified by the integer

value n,

7-3-0

routine‘spec read binary (integer name n)

Reads the next #-bit row of holes from the data tape as a binary
number in the range 0-127 (with the tape so oriented that the
sprocket hole comes between the digits of value 4 and 8) and

places it in the specified location,

routine spec punch binary (integer n)

Punches, as a row of holes on the output tape the seven least

significant binary digits of the integer value specified by n,

7-4-0

routine spec newline

Either punches a newline character on the output paper tape, or
resets the carriage of the line printer to a newline, if this

device is selected,

routine spec newlines (integer n)

Punches the number of newline characters specified by the integer
value n on the output paper tape, or resets the carriage and
that number of 'line fecd's whon the line printer is selected,

routine spec space

Either punches a space character on the output paper tape or advances

the carriage of the line printer one position,

routine spec spaces (integer n)

Punches the number of space characters specified by the integer
value n on the output paper tape, or advances the carriage of the

line printer that number of positions,

7-5=0

P
1

|
routine spec tab

Punchéé a tab character on the output paper tape., If the line printer
is selected as the output device, this is equivalent to a 'spaces 58)'

instruétion.

routine spec tabs (integer n)

Punches the number of tab characters specified by the integer value
n on the output paper tape, If the line printer is selected this.

is equivalent to 'spaces (8*n)’,

routine spec run out (integer n)

Punches n runout characters on the output paper tape, If the

line pyinter is selected this is equivalent to a 'nowpage' instruction,

routine spec newpage

Causes the line printer to move to a new page of paper, If paper

tape is selected, 30 newline characters are punched,

routine spec stop code

Punches the 'stop code' character on the output paper tape. (This

causes the Flexowriter to stop whenever it is read,)

routine spec colour change

Puncheg the 'colour change'! character on the output paper tape,
(This éauses any future printing on the Flexowriter toc be in red

if it was printing in black and vice versa,)

7-6=-0

integer fn spec int pt (real x)

Gives the value of the integral part of the quantity specified by X,

integer fn spec int (real x)

Gives the value of the nearest integer to the quantity specified
by x , i,e, int pt (x + .5),
|

real fn spec fracpt (real x)
Gives the value of the fractional part of tho quantity specified by x.

integer fn spec parity (integer n)

Gives §he value of (~1) raised to the powor of the quantity specified

by the integer value n,

7-7-0

integer fn spec addr ([TYPE] name x)

where [TYPE] is integer or real, It takes the value of the address

of the named location,

integer map spec integer (integer 8)

Specifies the integer location whose address is the quantity given
by the value s,

real map spec real (integer s)

Specifies the real location whose address is the quantity given by

the value s,

=-1-0

Section & DIAGNGSTIC liESSAGES

1.
2,
3.
4o
5.

7
3.
G o
10,
11,
12,
13,
14.
15,
18,
17,
18.
15,
20,
21,
22,
23.
24.
25.
206,
27
28,
20,
30.
31,

CONPILE TIME FAULTS

TOU LANY REPEATS
LABEL SET TVICE
spee FAULTY
SWITCH VECTOR NUT DECLARED
SVITCH LABEL ERROR
SVITCH LABEL SET TWICE
NAME SET TWICE
TCO HMANY PARAMETERS IN RT DESCRIPTION
PARAMETER FAULT IN RT DESCRIPTICN
TGO FEW PARAMETERS IN RT DESCRIPTION
LABEL NOT SET
NG TYPE DELIMITER IN RT DESCRIPTION
rogeat MISSING
TOP MANY onds
TGO FEV onds
NAME NCT SET
NOT A RT NAME
SWITCH VECTOR ERROR
WRONG NUMBER OF PARLIETERS
WITCH VECTOR IN EXPRESSIGN
RT TYPE NGT YET SPECIFIED
ACTUAL PLRALETER FAULT
routino NAME IN EXPRESSICN
REAL QUANTITY IN INTEGER EXPRESSICN
cyelo VARIABLE NOT AN INTEGER VARIABLE

SWITCH VECTGR INSIDE GUT
RT TYPE NOT DESCRIBED
LHS NCT A DESTINATION GR NAME 1S NOT AN ADDRESS
roturn GUT CF CONTEXT

rosult GUT OF CONTEXT

MACHINE CCODE NOT SWITCHED ON
PRIVATE LABEL SET TVICE

TOO MANY LEVELS: TEXTUAL LEVEL > ¢

7

TCO MANY LEVELS: TEXTUAL LEVEL > 15

JOB HEADING OUT OF CONTEXT

REAL QUANTITY AS EXPONENT

8§-2-0

RUN-TIME MONITCR MESSAGES

1, OVERFLOW SET

2. OVERFLOW SET

3. NON-INTEGRAL CYCLE

4. EXCESS BLOCKS

5, SQRT OF NEGATIVE ARGUMENT

6, LOG OF NEGATIVE ARGUMENT

7. SWITCH VARIAELE NOT SET

8., .

9o* INPUT ENDED

10, NON-INTEGRAL QUOTIENT

11, RESULT NOT SPECIFIED

12,* EXECUTION TIME EXCEEDED

13.* PROGRAM TERMINATED BY SUPERVISOR
14. SYMBOL ..., IN DATA

15, ménE THAN 3 SYMBOLS IN ONE PRINTED POSITION IN DATA
16, REAL INSTEAD OF INTEGER IN DATA
17,
18. PARITY FAULT IN DATA
19, UNASSIGNED CHARACTER IN DATA
20, MORE THAN 120 CHARACTERS ON A LINE IN DATA
. 21, ILLEGAL EXPONENT

22, TRIG FUNCTION INACCURATE

. 23. TAN TOO LARGE
24, EXP TOG LARGE
25. ARCTAN (0,0)
26. INT TOCG LARGE
27. INTPT TOO LARGE
28, ARRAY INSIDE OUT
20.
30.
31.
32,

* THESE FAULTS MAY NOT BE TRAPPED,

g=-1-0

Section G JOB HEADINGS

Control statement £*3 £x3 £x3 £ad [5]

a) Compile time

All linos from *%*%*A to COMPILER AA or AB aroc rogarded as forming
tho Job Hoading, and rocognised independently of the main phrase
structure dofinitions, The aim is to make tapes preparcd for Atlas
and KDFQ interchangoable wherover possible, although rather more
freedom is allowed in the case of KDFg,
All linos of the Job Hoading are disrogarded unloss thoy start
with ono of tho key words given below or arc on the lines following
JOB or TAPE :~-

i) JOB

The line immodiately following JOB gives tho title of the program,
of which the first 60 charactors are printed out at the head of tho
program map and also stored away for further use at run timeo,

ii) EXECUTION ”
This must be followed by the overall time limit for the job, in
minutes or soconds,

0.g. EXECUTION 15 SECONDS

. or EXECUTION 3,25 MINUTES
This time covers input of data, computing and output, If this item
. : is not included the time allowed is 2 minutes,
iii) TAPE

The integer following on the same lino, or the start of the next,

must be an intogoer, n, in the range 1 < n < 8, giving the magnetic

tape channol number followed by tho 8 characters of the
corresponding tape idontifier, If writing to this tape is intended,
tho tapo identifier must be followed by * WITH WRITE PERMIT,
XY TAPE
1 DG720006
TAPE
5 DG720007% WITH WRITE PERMIT

On KDFg, but not yet on Atlas, tho abovoe can be contractéd to
TAPE
1 DG;720000
5 DG/20007* WITH WRITE PERMIT

9-1-1

iiia) CUTPUT
On the same line, or the start of the next, must be the
integor O, indicating channel O (unlike Atlas, whore
multi-channel output is possible), Following this on
the same line is tho ocutput device required, which may be
either LINZE PRINTER
or SEVEN-HOLE PUNCH

In tho care of the line printer being selected, this should
be followed by a number indicating the number of lines of

of output to be allowed,

Qe CUTPUT
O LIKE PRINTER 400 LINES

For the paper tape punch, the number of blecks (cne block
consisting of 4096 characters) of cutput tc be allowed
should follow,

©.g. OUTPUT
0 SEVEN-HOLE PUNCH 5 BLOCKS

I1f the OUTPUT soction is omitted, tho cutput will

- 4 antomatically be sent to the line printer, when 200
linos of output are allowed, or, if a printer is not
available, to the paper tape punch, when 1 bloek is

allowed,

If the limit of cutput is oxceeded then the program is

terminated,

9g-2-0

iv) PARAMETER
This must bo followod by * and an oight digit constant (distinguishing
the individual programmer) which will be used as a security choeck
to prevent overwriting one anothors' scctions on tape,
CuBe PARAMETER *23127643

v) COMPILER AA or COMPILER AB
This terminatos tho job hoading and the next line becomes lino 0 in
the program map,

b) Run time

The title lino is reproduced at\tho ond of the output,

¢) Gonoral

i)
or ii)
or iii)

Spaces are disregarded throughout tho Job Hoading, oxcept in the

title line and tho constant giving tho Execcution time,

The program will be monitored if:-

#%% appears anywheroe othor than the beginning of the program.
COMPILER AA or AB has not been found within the first 20 lines
aftor ***j,

The symbols following EXECUTION do not form a logal constant,

Any other fault in tho job heading simply causes the lino concerned

to be disregarded,

: 10-4-0

. EDINGBYRGH UNIVERSITY ATLAS AUTOCODE : VERSION I

NORMAL OPERATING INSTRUCTIONS (dated 15/2/606)

(1) Fit 7-hole plug if using 7 track width tape,
Load 1184 word non-time sharing director program if systoem

is being run on a 4 module machine,

(2) Load magnetic tapes

(a) DG721 without write ring
(b) ZERO tape with write ring,

(3) PRun binary call tape DR72CPR/AA/I which asks you to type ini-

[m] START GF AA RUN
[q] COMPILER TAPE;DG72I =>

[yl CPR WORK TAPE; .~> (8 spaces, means use ZERG tgpe)
[{q] READER;Y,-> (means Yes, a tape reader is
available)
[q] PUNCH;Y.-> (means Yes, a paper tape punch
is available)
: [q] LINE PRINTER;Y,~> (means Yes, a line printer is
available)

The particular cutput device is then chosen automatically by
each individual program, If any of these peripheral devices

are not available, reply N.=> to the question, meaning

No, that device is not available, Detaiis of these cases may be
found in the 'Special Actions' section, (£f)~(i), If the reply is

neither 7¥,~> nor N,=>, the question will be repeated,

(4) Feed in programs, followed by their data (1f any) one after
the other, This compiler automatically skips data if not required
(rut see special warning about binary data), The monitor will

print:i-

[m] PROCGRM hh,mm.ss (when looking for the next program)
[m] ENTERED (when compilation is successful),

Where two or more prograns are supplied on one tape, the compiler
automatically runs on from one program to the next,

(5) At the end of run TINT; A.~>

10 = 5 = 0

SPECIAL ACTIONS : VERSION I

(a) Reador Disengages (other than at end of tape)

Look at monitor
If it says RELOAD
PROGRM hh,mm,ss
pull the tape back about Oins to 12 ins (tro 'runout! between
programs) and re-engage. Dtherw@se re~engage without moving

the tape.

(b) Failure OON, 00T, OOL, LIV, etc,

REACT; 10 ,~>

(¢c) Job Appears Overdue (See EXECUTION TIME given on box)

TINT;I1,~->
Monitor will either print

TIME OK (if within Execution time) or
PROGRM hh,mm,ss (automatically killing that job and

entering the next),

(d) To Kill a Job Which Appears Out of Control

TINT; 10 ,.~>

(e) Other On-Line Messages

AA PAR) Faulty Mag. Tape Station with Compiler Tape,
AA SUM) Try another deck,
AA FAIL) Faulty Mag. Tape Station with ZERO Tape,

Try another deck,

10 - 6 -0

(f) Paper Tane Reader Not Available

To operate the system, the input must previously have been
recorded on magnetic tape in the standard Atlas Autocode
format (i,e. 30 word blocks suitable for character reading),
The response to the query in this case will be

[q] READERj;N,-> (means No, reader is not available)

whereupon the identifier of the mag. tape on which the input

is recorded must be typed in, in rosponse to:-

[q] INPUT MAG TAPE;??????2??,~>

Then proceed as normal,

(g) Paper Tape Punch Not Availabhle

In response to the punch guery type in:-

[q] PUNCH;N,=-> (means No, punch is not available),

All the output will now go to the line printer,

(h) Line Printer Not Available

In response to the line printer query, type in

{q] LINE PRINTER;N,-> (means No, line printer is not available).

All the output will now go to the paper tape punch,

(i) Neither Paper Tape Punch nor Line Printer Available

Inz response to the two queries, type in:-

[q] PUNCH;N,->
[q] LINE PRINTER;N,~>

The output may now be dumped onto magnetic tape, the identifier

of which must be typed in, in response to:-
[q] oUTPUT MAG TAPE;?U299990? y=>

Then proceed as normal,

(a)

(b)

10 =7 -0

SPECIAL JOBS : VERSION I

Jobs with Binary Data

These jobs will be specially marked on the box, and the data
tape will be separate from the program,
(i) ©PFeoed in program, At end, look at monitor,
(ii) (a) 1If roply is ENTERED, feed in data tape,
(b) 1If reply is PROGRM, .do not feed in data tape, but go

on to next progran,

Jobs Using Extra Magnetic Tapes

If extra mag, tapes (in addition to the standard Compiler Tape

and ZERC tape) are required, this will be marked in the job heading
stuck on the outside of the box, in the form

TAPE

1 DG720004*WITH WRITE PERMIT

Tape Identifier Write ring required.,
I1f, **WITH WRITE PERMIT® is omittéd, do NOT fit the write ring.

This extra tape(s) can be dismounted when the program ends and
another PROGRM is called,

¢ \ 11 -1 -0

Section 11 USING KDFQ FLEXOWRITERS

As the keyboard is different and no backspacing is possible
on KDFQ-coded flexowriters, certain symbols required in Atlas Autocode

are punched as follaows:-

Atlas KDF
' L oorl
] { or)
? T
m v
$ or g x
4 org x
b orga £
i ory 3
2 (superscript) T 2
3 .5 f
o 10(subscript)
For example

if i = 'a' then caption % h FAULT $ in g DATA p

x=5%7* |x +yl ?
| rubbishy bit of program

can be punched

<
T

if i = [a] then caption £ J FAULT * in * DATA &

= S52% (x +y) T
rubbishy bit of program

Notes 1, The jump instruction e.g. => 7 is punched with - (minus)

followed by > (greater than) and not the 'end message' symbol,

2. ¢ (underlined divide) is an illegal symbol, even in captions

and comments, as it is used to terminate the KDFQ~-tape input,

i1-2-0

Cutput to KDF g Lino Printers

Hore, only upper case letters can be printed, and no

underlining is possible.

a, A, a and A are all printed A

% is printed

1)

but all other symbols produced by backspacing on the
Atlas~coded flexuwriteor are printed with each cumpunent of the

symbol occupying a separate character position,

E.g. F will appoar /=

Any single symbol not in the printer character set will be printed as ﬁé.

Revised 1/6/66,

13.2

13 -1-0

Section 13 LIBRARY PACKAGE SCHEME
13.1 Purpose of the Library Package Scheme

Because the storage available on KDF g for program and data
is considerably less than that available on Atlas it is not
considered proper to use a large part of the store for permanent
routines and functions, Some of the more fundamental permanent
routines and functions have been provided within the compiler
system but others must be provided in other ways, As an
immediate means of providing convenient use of library routines
not included in the permanent material a library package scheme
has been introduced, This may be roplaced at some later date
by some other library program scheme but conventions have been
chosen which will involve no change of programs in the future

should such a scheme be introduced,

Library Packages

A library package is a small collection of routines or functions
on paper tape. The routines and functions will usually be members
of a set of similar or associated processes, o,g. packages for
matrix operations and magnetic tape oporations have already
been provided, Tho library package is read into the computer
immediately before the user's program and becomes part of the

permanent material for the duration of this one user program only.

13 -2-0

13.3 Structure of Library Packages

A library package is provided on paper tape and has the

following form:-

R [) JOB HEADING
JOB) oF
TITLE OF LIBRARY PACKAGE AND DATE) LIBRARY PACKAGE
COMPILER AA .)
mcode
ym”mew,W”U})
i 5 ¢mmmmw=w=]ibrary routine)
f)
b)
T) several routines
e e) .
?
; §)
! Gmmmmmema]ibrary routine)
et et)

end of perm

13.4 Use of Library Packages

13.4.1 The user must obtain a copy of the library package

from his computer unit, This he should mark as *tape 1%,

His own program will then be 'tape 2! and ho should

clearly mark on the box in which he sends his program

for running 'Two tapes marked tape 1 and tape 2 to be

read in order',

13.4.2 His main program (tape 2) will require a special job

heading in the following form:-

(0.g., in the caso of the magnetic tape package being tape 1)
| INSERT MAGNETIC TAPE PACK; *%*A
JGB

etc, (in the usual way)

13.5

13-3-0

13.4.3 Apart from providing tape 1 (the library package) and
using the special form of job heading described above
the user has no restrictions to remember, (but see
13.5 and 13.6)

13.4.4 Within his program the user must treat the library
routines as if they were part of the permanent material,

He must therefore use them without specification or

doscription in the same way that he uses sin, cos, print
etc, without specification or description,

13.4.5 At compilation a program ﬁap is first produced for the library
package and is followed by the user's program map in the

usual way.

Use of Two or More Packages at the Same Time

If a user requires to use two or moro packages with the same
program then he must modify the job headings of the second and
subsequent packages in the following way,

E.g. if tho second package is the matrix pack its jab headiﬁg
must be changed from *KEQ

JOB

MATRIX PACK = DATE

COMPILER AA

to: | SECOND PACKj; ***A
JOB
MATRIX PACK -~ DATE
COMPILER AA

In fact only the first library package will start with the
normal *kA
JOB

etc,

the subsequent packages and the main program starting with the

special form

| SOME COMMENT; *%%A

s 13-4-0
13.6 Cautions

13,6.1 The special form of job heoading described above is
required to force the ***4 marker off thoe left margin,
On KDF § this prevents it giving INPUT ENDED, LIBRARY
PACKAGES CAN NOT BE USED ON ATLAS IN THIS FORM,

13.06.2 Anyone wishing to produce a library package should
consult his computer unit for advice,

13.6.3 If a program fails in a library package and is
MONITORED the line number given as the STOPPING LINE

is the line number in the main program and this line

will of course contain a call on the library routine
or functicon in which failure was detected, Hence library

packages have the same status as permanent routines or

functions,

14-1-0

Section 14 Magnetic tape on KDFQ
14.0 Introduction

Magnetic tape facilities are now available on the KDFQ at Glasgow
and Newcastle Universities, A number of routines have heen written
for such standard tasks as filing data or programs on tape; copies
of these routines, which are described below, may be obtained from the

Computer Unit,

14.1 Security Sys*tem

14.1.1 The magnetic tape routines use a tape which has been pre-addressed
in sections of 5i2 words, Particular sections are allocated to
particular users, and there is a security syster in operation to
ensure that no user has access to any other user's sections,

14.1.2 Any user wishing to have magnetic tape sections allocated to him

should complete a Magnetic Tape Allocation Request Card, and return
it to the Computer Unit, He will be required to state how many
sections he needs, and whether he wants sections at Newcastle or
Glasgow, The Unit will then take steps to allocate the sections
required, and to inform the user of this allocation by a letter of
the following form:

Dear ceey

You have been allocated 100 sections numbered 1 to 100

on a magnetic tape held at Glasgow University Computing

Laboratory, “
Tape Identifier DG720G02
Parameter *01026561

Signed ,,,
14.1.3 The following points should be noted:

a) The sections allocated to a particular user will invariably be
numbered from 1 upwards, It is the task of the security system
to ensure that the correct physical sections on the magnetic
tape are used,

b) Every reel of magnetic tape has a unique identifier consisting of
eight letters or digits, In the example above the user has been
allocated sections on tape DG720002. This identifier must be
quoted in the job heading of any program requiring to use that
tape (see 14,2 below),

A PROGRAM REQUIRING TO USE A TAPE HELD, FOR EXAMPLE, IN CLASCGOW
MUST BE CLEARLY LABELLED TO ENSURE THAT IT IS NOT SENT ELSEWHERE,
c) Every user will be assigned a security parameter when he first
- , applies to have sections allucated, In the example above, the

user has Leen assigned the parameter *01026561. A parameter

144144

14 ~2-0

will consist of an asterisk followed by eight digits, and must be
quoted in the job heading of any of that user's programs which
roquire to use magnetic tape (see 14,2 below),
If a user has been allocated sections on more than one magnetic
tape, he will use the same security parameter to refer to all of
them, However, two sets of sections on the same tape cannot be
referred to by the same parameter,
The situation will occasionally arise where one user with one
security parameter wishes to hand over data to another user with
a different security parameter, As the sections allocated to two
difforent users cannot normally be accessed by the same program,
special arrangements have to be made in this case, The users con-

cerned should consult the Computer Unit,

14.2 Job ileadings for Magnetic Tape Johs

1432;1
14.2.2

14.2.3

144244

Goneral rules for job headings will be found in Section g,
For a magnetic tape job, the first line of the job heading, namely
EETY

must be replaced by

| PRECEDE BY MAGPACK j; ***A
The user's security parameter must be declared in the job heading
by a line such as

PARAMETER *01026561
Each tape which the program may use must be declared in the job
heading along with its logical channel numker, For example, if the
program needs to rofer to the tape DG/20002 as tape channel 4, say,
then the following line must be added to the job heading:

TAPE 4 DC720002
Moreover, if the program will cause writing onto this particular
tape, then the words *WITH WRITE PERMIT must be added, making the
complete line

TAPE 4 DG720002* WITH WRITE PERMIT
If these words are not added, then the security system will not
allow writing to this tape,
Exceptionally, a programmer using machine code may declare, for
instance

TAPE 3 ZEROTAPE*WITH WRITE PERMIT
with the obvious meaning, but it chould be noticed that the standard
magnetic tape routines cannot now be used on this channel,
A logical channel number n, say, must be in the range 1 < n < 8

(see also 14.4.1,.1 heluw),

: | 14-3-0

1443 Running a Magnetic Tape Job

14.3.1 The magnetic tape routines are available on paper tape, and must
currently be compiled immediately before the job heading (modified
as described above) of the user's program, Clearly this may be
achieved either by copying the routines onto the beginning of the
program tape, or by lakelling the magnetic tape routines TAPE 1
and the program TAPE 2 and instructing the operators to run the
tapes in succession,

14.32 The program map produced by'the compiler will have the following
structure:

MAGNETIC TAPE ROUTINES 5/2/60

2 ROUTINE claim tape) program map of the
.)
.)
357 END OF ROUTINE) mag, tape routines
UEDIN, BLOGGS GGPU, TITLE OF USER'S PROGRAM
o BEGIN) program map
.) of the
672 END OF PROGRAM) user's program

14.3.3 A copy of the program's job heading should be attached to the
outside of the box in which it is packed, so that the
operators can see which tapes need to be mounted., As a double
check on the security system, the operators will not normally
mount a reel of magnetic tape with a write-ring unless the tape
is marked *WITH WRITE PERMIT in the job heading,
411 magnetic tape jobs must be clearly marked with the name of

the computing laboratory where they are to be run,

The Magnetic Tape Routines

The magnetic tape routines are supplied as a package which must
be compiled immediately before the user's program as described in
14.3.1 above, When this is dore, these rovtines bocome to all intents
and purposes extra permanont routines of the compiler, which the
program may call without either a specification or description,

The routines in the package are described bhelow,

14.4.1 routine claim tape (integer channel)

Iefore any othor cperations can be performed on a magnetic tape,

the tape must be claimed., The parameter 'channel’ refers to the

logical channel number assigned in the job heading., For example,
if the line
TAPE. 4 D(720002

appears in the jcb heading, then the imnstruction

14 - 4 -0

claim tape (4)

will make DG720002 available for other operations on channel 4.
The Director program will if necessary instruct the operator to
mount the required tape, and the tape will then be positioned at
the beginning of the sections allocated to the user with the
declared security parsmeter,
The following monitors may occur, all of which are followed by
termination of the program:
TAPE CLAIMED TWICE n

The tape on Channel n has been claimed before and has not yet

been released,
TAPE CHANNEL NOT DEFINED n

Either n does not lie between 1 and 8, or else no line of the type

TAPE n DG720002

appeared in the job heading,

ILLEGAL TAPE CLAIM n

No sections on the tape on channel n have been allocated to

the user with the declared security parameter.
14.4.1,1 Notice that it is legitimate (* not on Atlas) to declare
the same tape on two channels in the job heading, for
example by
TAPE 4 DG720002
. TAPE 5 DG720002
provided that no attempt is made to claim channels 4
. ’ and § simultanocously, If such an attempt is made, the
program is monitored
PROGRAM TERMINATED BY SUPERVISOR,
14.4.2 routine release tape (integer channel)

The tape on the logical channel designated by the parameter is
released, that is to say, no more operations may be performed

upon it by the program unless it is subsequently reclaimed (by

a 'claim tape (n)' instruction) ecither on the same or on a
different logical channel,

It is not good practice to alternate 'claim tape' and 'release
tape' instructions unnecessarily, as every time a tape is released
it is rewound to the beginning of the reel, with a consequent loss
of time if it later has to be re-positioned at the user’s sections,
Any tapes not specifically released by the program will be released
automatically whonever the program stops or is monitored,

The following monitors may occur, both being followed by termination

144443

14-5~0

of the program:

ILLEGAL TAPE RELEASE n
The tape on channel n was not claimed, and therefore may not
be released,

TAPE CHANNEL NOT DEFINED n
n does not lie between 1 and 8,

routine write to file (integer channel, integer name section, [

addr siart, finish)

'start' and 'finish' will normally be olements of the same array,
so that, for example

i =13 write to file (4, i, A(1), A(800))
will write the 800 words of store A(1) to A(800) onto the tape on
logical channel 4, starting at section i = 1, Words are written to
magnetic tape only in complete 512 word blocks, so that, in this
instance, A(1) to A(512) will bo written to section 1 of the tape,
and A(513) to A(800) and 224 words of rubbish will be written to
soction 2, This implies that all the information previously in
section 2 has been lost, even though on this occasion we ouly
really needed to use the first 288 words of the section, The

integer name parameter "section' is set on oxit from the routine

to the number of the last section written into, i,o, in the example
we are considering, on exit from the routine i will be equal to 2,
Suppose an array was declared by
array B(1:10, 1:20)
Then we may write the wholo array to tape by
write to file (4, i, B(1,1) B(10,20))
and similarly for arrays of more than two dimensions, However, if
an instruction such as
write to file (4, i, B(2,3), B(8,17))
were written, then the effect is not defined, Similarly instructions
such as
write to file (4, i, A(1), C(40))
should be avoided,
The following monitors may occur, all of which are followed by
termination of the program:
TAPE CHANNEL NOT DEFINED n
n lies outside the range 1 to 8,
WRITE ON UNCLAIMED CHANNEL n
NO WRITE PERMIT n
The words *WITH WRITE PERMIT did not appear when the channel
n was defined in the job heading,
TAPE WRITE INSIDE OUT n
addr(start) > addr(finish), For example,
write to file (4, i, A(100), A(1))

would be monitoured in this way,

} . 14-6-0

TAPE WRITE OFF LIMITS n
The program is monitored if a user who has been allocated,
for example, 50 sections on channel n attempts to address
sections numbered 51 or above j; also any attempt to address
a section with a negative or zero address is monitored,

EXCESS BLOCKS DURING WRITE TRANSFER n
Suppose a long program occupies so much space that the last
array doeclared, Z(1:100), say, oxtends to within a few locations
of the end of tho core store, Then a routine call such as

write to file (4, i, z(1), z(100))

will be monitored if there are less than 512 locations between
Z(1) and the end of the store inclusive. This is beocause all
writo-transfers are made in blocks of 512 words, and it would
not be possible in such a case to perform the transfer correctly,
Clearly this problem will only arise with a program which uses

almost all the capacity of the machine,

144444 routine read from file (integer channel, integor name c

section, addr start, finish)
Similar to 'write to file', section 14.4.3, with the following
provisos;
Transfers are not necessarily made in 512 word blocks, so that,
for instance,
. road from file (4, i, A(1), A(800))
will overwrite only the designated aroca of core-store, and will
no* spoil any information which may be hold immediately above
A(800).
The paramcter 'soction' is sot on exit from the routine to the

number of the last tape section read,

The following monitors may occur:
TAPE CHANNEL NOT DEFINED n
READ ON UNCLAIMED CHANNEL n
TAPE READ INSIDE-OUT n
TAPE READ OFF LIMITS n
Cf. section 14.4.3.
14.4.5 routine file this program (integer channel, section, marker)
A rocord of the current state of the program is dumped onto the
magnotic tape on the indicated logical channel, beginning at the

indicated section and using as many other sections in sequence as

14-97=-0

are nocessary (never more than 32),
The channel must previously have been claimed in the usual way,
and moreover the channel must have been designated *WITH WRITE
PERMIT in the job heading,
A message of tho following form is output on completion of the
transfeor to tapo:

PROGRAM STARTS SECTION 25 ON CHANNEL 4

PROGRAM ENDS SECTION 41
I1f the parametor "marker' is zero, then the program will stop on
completion of the transfer to tape and tho associated message;
otherwise execution of the program continues in the normal way,
A program rocorded on magnetic tape in this way can be re-entered
by use of the routine 'enter filed program' described below,
An attempt to file a program may be monitored for any of the

roasons listed in section 14.4.3.

14.4.6 routine enter filed program (integer channel, section)
If a program has been previously filed starting at the designated
soction on tho designated channel, then it is brought down into
the store, and execution of it continues from a point immediately
following the relevant call of 'file this program',
For instance, in the simplost case, suppose we have a large program
» which will be used many times, Then the following arrangement

will save continual recompilation of the complete program:

v ' a) compile (not forgotting tho magnetic tape package) and run
| PRECEDE BY MAGPACK j; *%*A
JOB

UEDIN, BLOGGS GGPU, LONG PROGRAM
PARAMETER *01026501

TAPE 1 DG720002* WITH WRITE PERMIT
COMPILER AA

begin

claim tape (1)

file this program (1, 1, 0)

comment re-enter at this point

vee) rest of program

end of program

HkkZ

14-8-0

b) Subsequently, whenever this program is needed, compile and run
| PRECEDE BY MAGPACK j ***A
JOB
UEDIN, BLOGGS OGPU, RECALL LONG PROBLEM
PARAMETER *01026561
TAPE 1 DG720002
COMPILER AA
bogin
claim tape (1)
enter filed program (1, 1)

end of program

Data for this run if any

®%KZ,

Notice that the tape on channel 1 must be claimed in the usual way
before an attompt is made to enter a program kept on it,

The call of 'file this program' may be anywhere in the program,
execution carrying on, when the program is re-entered by 'enter
filed program', oxactly where it left off, Tho contents of all
variables and arrays will be exactly the same as they wore when
the program was susponded, Similarly, for the bonefit of machine
code programmers, the contents of the Q-stores, tho nesting store,
and the SJNS will all be unaltered,

In fact, for many purposes, a good rule-of-thumb is to regard
the call of 'file this program' and the corresponding call of
"ontar filod program' as having no effect on the program whatsoever
oxcept to allow an arbitrary time to elapse before execution is
completed,

The exceptions to this statement are noted below,

1444.6,1 Suppose the following program is run:

|PRECEDE BY MAGPACK ; *%%A

JOB

UEDIN, BLOGGS OGPU, FILING PROGRAM
PARAMETER *01026561

TAPE 1 DC720002* WITH WRITE PERMIT
TAPE 2 DG;20003

TAPE 3 DGJ20004

EXECUTION 5 MINUTES

OUTPUT O LINE PRINTER 1000 LINES
COMPILER AA

bogin

integer n
claim tapo (1)
claim tape (2)
file this program (1, 25, 0)

read (n)

14-g9g=~0

print (n, 1, 0)
comment rest of program
end of program

17

*kKZ

and suppase the filed program is subsequently recalled by
|PRECEDE BY MAGPACK j ***A
JOB
UEDIN, BLOGCGS OGPU, RECALL PROGRAM
PARAMETER *010265061
TALPE 2 DG720003
TAPE 8 DG720002
EXECUTION 2 MINUTES
OUTPUT O SEVEN-HOLE PUNCH 2 BLOCKS
COMPILER AA
claim tape (8)
enter filed program (8, 25)
end of program

56

T VA

Then:

a) The title, date and other monitoring dotails used
throughout this run will be the title otc. of the
recalling program: for example, the output will end

STOPPED AT LINE 123
UEDIN, BLOGGS OGPU, RECALL PROGRAM
and so on, ‘

b) The execution time for the complete run will not be
allowed to excoed the timo stated in the job heading of
the recalling program; that is, rogardless of the fact
that the original program spocified 5 minutes oxecution
time in its job heading, oxecution will be terminated
in this case 2 minutes after entry to the recalling
program,

c) The input and output used throughout the run are those
of the recalling program, For instance, in the oexample
shown above, after the original program is reo=-entered
by the instruction

enter filed program (8, 25)
the value of n read will be 56, not 17, and the sub-
soquent print instruction will cause cutput to the

punch, not to the line-printer,

14 - 10 - 0

d) Tho states of all magnotic tape channels immediately after

ro~entry to tho original program are tho samo as their

statos in the recalling program immediately before ontry

to the routine 'onter filed program',

For instance, in the examplo above, the states of the 8
logical channels at the time when the read and print
instructions are oboyed will be:

Channels 1, 3,4,5,6,7: undefined

Channel 2 :' tape DG720003, as yet unclaimed, and with

no write permit

Channel 8 : tape DG720002, claimed, no write permit,
It is the programmor's respongibility to onsure that
the magnetic tapoe channels are in the state in which
the original program expects to find thoem,

o) There is no roason why program A should not recall B
which might subsequently recall C ,,, and so on, In
this case, in paragraphs a), b) and ¢) above, the
words ‘rocalling program' should be taken to mean
ttho program which started the whole business off'; in
paragraph d), howevor, the words 'recalling program'
should be read literally,

14.4.6.2 Should an attempt be made to rocall a program from a soction
whore no program has previously been filed, the effect is
undefined, but will most probably be the monitor

PROGRAM TERMINATED BY SUPERVISOR

An attompt to onter a filed program may also be monitored
in the ways listed in soction 14.4.4.

14.4.6.3 A shortoned version of the magnotic tape package, containing
just the routines 'claim tape' and tonter filed program' is
available from the Computor Unit, This tape, called

SHORTPACK, is clearly all that is necded to onable a filed

program to be re-entered, since if tho original program had

all tho magnetic tape routines available to it when it was
filed, thon it will still have them all available when it is
rocalled,

14.5 Hardwaro failuro

A monitor such as
TAPE MALFUNCTION
SEE CcamMP, UNIT
CHANNEL 4
TRUNK 7

should be reported immediately, as it is evidence aof a failure in tho
hardwaro,

15 -1 -0

Section 15 Routines and Functions for KDFG Matrix Pack

All arrays are regarded as having the lower bound for the suffix
of each1dimension equal to 1, The actions of these routines and
functions are the same as those in section 11 of the green Atlas
Autocode Reference Manual published by Manchester "lniversity, However,
as the compiler on KDFQ differs in certain ways from the one on Atlﬁs,
these routines need more parameters than the corresponding ones on
Atlas, -
To use tho matrix pack the job heading of your program should
take the form:
;l INSERT MATRIX PACKj; ***A

JOB

ete,,
the rest of the job heading being normal,

The fol;uwing is a brief description of each of the items in the pack,

routine eqn solve k(array name A,b, integer n, real name det)
A is nxn, b is n vector, Solution x of Ax = b is placed in b, A is

destroyed,

routine matrix div k (array name 4,B, integer n,m, real name det)

Aisnxm, Bisnxn, A=inv(B), A on exit, B is destroyed,

routine invert k(array name A,B, integer n, real name det)

A and Bare n x n, A = inv(B) on exit, B is dostroyed,

A and B'must be distinet arrays,

NOTE

In the above three routines det contains on exit the value of the
detorminant of the matrix which is inverted, Should this value be
zero then the matrix is not invertible and the process has failed,

In these three routines, and the function which follows, a programmed

stop is encountered if n < O,

roal fn det k(array name A, integer n)

rosult = det(A), A is n x n and is destroyed, This function uses

eqn solve k,

routine null k(array name A, integer n,m)

Ais nxm, Ais set to zeroc on oxit,

routine unit k(array name 4, integer n)

Ais nxn, A = unit matrix on exit,

15 -2 -0

routine matrix add k(array name A,B,C, integer n,m)
A,B and C are n X m,

A =B+ C on exit,

routine matrix sub k(array name A,B,C, integer n,m)

As previous routine, but A = B - C,

routiqg‘matrix copy k(array name A,B, integer n,m)
L£,B aro n x m, A = B on exit,

routine matrix mult k(array neme A,B,C, integer n,p,m)

Bisnxp, Cispxm Aisnxmand A =B * C on exit,

routine matrix mult k'(array name A,B,C, integer n,p,m)

Bisnxp,Cismxp, Aisnxmand A =B * CT on exit,

Note
In tho above two routines the arrays A,B and C must be distinct,

as must A and B in the following routine,

routine matrix trans k(array name A,B, integer n,m)

Aisnxm Bismxn, A= BT on exit,

T ‘ 17 -1-0

Section 17 KDF Q DCUBLE LENGTH PACK

This package contains certain routines and functions for use
whon double=-word length precision arithmetic is required, In
place of the single length word consisting of an exponent of
7 bits and a mantissa cf 30 bits (plus 2 sign bits), there is,
in the double length quantity, an exponent of 7 bits and a
mantissa of 78 bits, approximately equivalent to 23 decimal digits.
Double length quantities, for Ehe purpcse cf this package,
oceupy two, not necessarily contigucus, real lccaticms, The locaticn
containing the more significant part will ccntain a standardised
floating point number, and the lesser significant part will contain
a positivo floating point number with an expcnent of 3G loss than

that of the more significant part. However, this lees significant

part may be non-standard and so should not be used as a separate
real guantity, as oporaticns on non-standard quantities are not
guarantoed,

NeB. It is not sufficient to set the lesser significant parf

of a number to zerc whon converting from single to double length.

The routine 'decon’ should be used,
Cole roal x1, x2
These twc real locations may now be usod to hold one duuble length

quantity. In the routines and functions both parts are specified as

paramotors,

EeZe dread (x1, x2)
dprint (x1, x2, 4, 20)

will read the noxt number from the data into the dcuble loength
location specified by the two real locations x1, x2 and then it

will be printed out to 20 decimal places,

To use the pack, the job heading of the main program should
take the fcrm:

| INSERT D,L. PACK; **%4
JoB
otc,

as described in section 13,

Copies of tho packago may be cbtained from the Computer Unit.

1 -2 -0

routine spec decon (real a, real namo %1, x2)

Places the double-lerngth oquivalent uf the single length

quantity a in the locations x1,x2,.

routine smec da (real namo al, a2, bl, b2, x1, x2)

Placos the sum of the quantities specified by 21,22 and bil,b2

in the locations xi,x2,

routine spec ds (reai name al, a2, bl, bz, x1, x2)

Subtracts the quantity bil,bk2 from the quantity al,a2 and

places tho result in =x1,x2,

routine spec dm (resl name al, a2, bl, b2, x1, x2)

Multiplies the quantities al,a2 and bl,b2 and places the

result in x1,x2.

routine spec dd (real name al, a2, bl, b2, x1, x2)

Divides the quantity al,a2 by the quantity bl,b2 and places

the result in xI1,x2,

17 -3 -0

routine spec dread (real name x1, x2)

Porforms the same function as the permanent routine 'read!
oxcept that in this case the number is stored tc dcuble length
accuracy in x1,x2, A variable number cf parumoters is not

allowed in this routine,

routine spec dprint (real name x1, x2, intoeger m, n)

Prints tho quantity x1,x2 in fixed point form as permanent

routine *print®.

routine spec dprint fl (real name x1, %2, intoger n)

Prints the quantity x1,x2 in ficating point form as
permanent routine ‘print f1',
N,B. The quantities printed x1,x2, are name type rarameters in

these routines,

17 - 4 -0
routine spoc dmod (real name ai, a2, x1, x2)

Takes the absoclute value of tho quantity al,a2z and placos it

in x1i,x2,

routino spec dsqrt (real namo al, a2z, x1, x2)

Takes the square root of the quantity al,a2 and places it

in =x1,x2,

routine spoc dlog (real name al, a2, xi, x2)

Takes tho natural logarithm of tho guantity al,a2 and places
it in x1,x2,

